2 * Copyright (C) 2011 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
17 #define DM_MSG_PREFIX "thin"
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
36 * Device id is restricted to 24 bits.
38 #define MAX_DEV_ID ((1 << 24) - 1)
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
54 * Let's say we write to a shared block in what was the origin. The
57 * i) plug io further to this physical block. (see bio_prison code).
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
65 * iv) insert the new mapping into the origin's btree
66 * (process_prepared_mapping). This act of inserting breaks some
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
76 * Steps (ii) and (iii) occur in parallel.
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
86 * - The snap mapping still points to the old block. As it would after
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
98 /*----------------------------------------------------------------*/
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
115 struct hlist_node list;
116 struct bio_prison *prison;
119 struct bio_list bios;
124 mempool_t *cell_pool;
128 struct hlist_head *cells;
131 static uint32_t calc_nr_buckets(unsigned nr_cells)
136 nr_cells = min(nr_cells, 8192u);
145 * @nr_cells should be the number of cells you want in use _concurrently_.
146 * Don't confuse it with the number of distinct keys.
148 static struct bio_prison *prison_create(unsigned nr_cells)
151 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
152 size_t len = sizeof(struct bio_prison) +
153 (sizeof(struct hlist_head) * nr_buckets);
154 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
159 spin_lock_init(&prison->lock);
160 prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
161 sizeof(struct cell));
162 if (!prison->cell_pool) {
167 prison->nr_buckets = nr_buckets;
168 prison->hash_mask = nr_buckets - 1;
169 prison->cells = (struct hlist_head *) (prison + 1);
170 for (i = 0; i < nr_buckets; i++)
171 INIT_HLIST_HEAD(prison->cells + i);
176 static void prison_destroy(struct bio_prison *prison)
178 mempool_destroy(prison->cell_pool);
182 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184 const unsigned long BIG_PRIME = 4294967291UL;
185 uint64_t hash = key->block * BIG_PRIME;
187 return (uint32_t) (hash & prison->hash_mask);
190 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192 return (lhs->virtual == rhs->virtual) &&
193 (lhs->dev == rhs->dev) &&
194 (lhs->block == rhs->block);
197 static struct cell *__search_bucket(struct hlist_head *bucket,
198 struct cell_key *key)
201 struct hlist_node *tmp;
203 hlist_for_each_entry(cell, tmp, bucket, list)
204 if (keys_equal(&cell->key, key))
211 * This may block if a new cell needs allocating. You must ensure that
212 * cells will be unlocked even if the calling thread is blocked.
214 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
216 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
217 struct bio *inmate, struct cell **ref)
221 uint32_t hash = hash_key(prison, key);
222 struct cell *cell, *cell2;
224 BUG_ON(hash > prison->nr_buckets);
226 spin_lock_irqsave(&prison->lock, flags);
228 cell = __search_bucket(prison->cells + hash, key);
230 bio_list_add(&cell->bios, inmate);
235 * Allocate a new cell
237 spin_unlock_irqrestore(&prison->lock, flags);
238 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
239 spin_lock_irqsave(&prison->lock, flags);
242 * We've been unlocked, so we have to double check that
243 * nobody else has inserted this cell in the meantime.
245 cell = __search_bucket(prison->cells + hash, key);
247 mempool_free(cell2, prison->cell_pool);
248 bio_list_add(&cell->bios, inmate);
257 cell->prison = prison;
258 memcpy(&cell->key, key, sizeof(cell->key));
259 cell->holder = inmate;
260 bio_list_init(&cell->bios);
261 hlist_add_head(&cell->list, prison->cells + hash);
266 spin_unlock_irqrestore(&prison->lock, flags);
274 * @inmates must have been initialised prior to this call
276 static void __cell_release(struct cell *cell, struct bio_list *inmates)
278 struct bio_prison *prison = cell->prison;
280 hlist_del(&cell->list);
282 bio_list_add(inmates, cell->holder);
283 bio_list_merge(inmates, &cell->bios);
285 mempool_free(cell, prison->cell_pool);
288 static void cell_release(struct cell *cell, struct bio_list *bios)
291 struct bio_prison *prison = cell->prison;
293 spin_lock_irqsave(&prison->lock, flags);
294 __cell_release(cell, bios);
295 spin_unlock_irqrestore(&prison->lock, flags);
299 * There are a couple of places where we put a bio into a cell briefly
300 * before taking it out again. In these situations we know that no other
301 * bio may be in the cell. This function releases the cell, and also does
304 static void __cell_release_singleton(struct cell *cell, struct bio *bio)
306 hlist_del(&cell->list);
307 BUG_ON(cell->holder != bio);
308 BUG_ON(!bio_list_empty(&cell->bios));
311 static void cell_release_singleton(struct cell *cell, struct bio *bio)
314 struct bio_prison *prison = cell->prison;
316 spin_lock_irqsave(&prison->lock, flags);
317 __cell_release_singleton(cell, bio);
318 spin_unlock_irqrestore(&prison->lock, flags);
322 * Sometimes we don't want the holder, just the additional bios.
324 static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
326 struct bio_prison *prison = cell->prison;
328 hlist_del(&cell->list);
329 bio_list_merge(inmates, &cell->bios);
331 mempool_free(cell, prison->cell_pool);
334 static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
337 struct bio_prison *prison = cell->prison;
339 spin_lock_irqsave(&prison->lock, flags);
340 __cell_release_no_holder(cell, inmates);
341 spin_unlock_irqrestore(&prison->lock, flags);
344 static void cell_error(struct cell *cell)
346 struct bio_prison *prison = cell->prison;
347 struct bio_list bios;
351 bio_list_init(&bios);
353 spin_lock_irqsave(&prison->lock, flags);
354 __cell_release(cell, &bios);
355 spin_unlock_irqrestore(&prison->lock, flags);
357 while ((bio = bio_list_pop(&bios)))
361 /*----------------------------------------------------------------*/
364 * We use the deferred set to keep track of pending reads to shared blocks.
365 * We do this to ensure the new mapping caused by a write isn't performed
366 * until these prior reads have completed. Otherwise the insertion of the
367 * new mapping could free the old block that the read bios are mapped to.
371 struct deferred_entry {
372 struct deferred_set *ds;
374 struct list_head work_items;
377 struct deferred_set {
379 unsigned current_entry;
381 struct deferred_entry entries[DEFERRED_SET_SIZE];
384 static void ds_init(struct deferred_set *ds)
388 spin_lock_init(&ds->lock);
389 ds->current_entry = 0;
391 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
392 ds->entries[i].ds = ds;
393 ds->entries[i].count = 0;
394 INIT_LIST_HEAD(&ds->entries[i].work_items);
398 static struct deferred_entry *ds_inc(struct deferred_set *ds)
401 struct deferred_entry *entry;
403 spin_lock_irqsave(&ds->lock, flags);
404 entry = ds->entries + ds->current_entry;
406 spin_unlock_irqrestore(&ds->lock, flags);
411 static unsigned ds_next(unsigned index)
413 return (index + 1) % DEFERRED_SET_SIZE;
416 static void __sweep(struct deferred_set *ds, struct list_head *head)
418 while ((ds->sweeper != ds->current_entry) &&
419 !ds->entries[ds->sweeper].count) {
420 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
421 ds->sweeper = ds_next(ds->sweeper);
424 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
425 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
428 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
432 spin_lock_irqsave(&entry->ds->lock, flags);
433 BUG_ON(!entry->count);
435 __sweep(entry->ds, head);
436 spin_unlock_irqrestore(&entry->ds->lock, flags);
440 * Returns 1 if deferred or 0 if no pending items to delay job.
442 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
448 spin_lock_irqsave(&ds->lock, flags);
449 if ((ds->sweeper == ds->current_entry) &&
450 !ds->entries[ds->current_entry].count)
453 list_add(work, &ds->entries[ds->current_entry].work_items);
454 next_entry = ds_next(ds->current_entry);
455 if (!ds->entries[next_entry].count)
456 ds->current_entry = next_entry;
458 spin_unlock_irqrestore(&ds->lock, flags);
463 /*----------------------------------------------------------------*/
468 static void build_data_key(struct dm_thin_device *td,
469 dm_block_t b, struct cell_key *key)
472 key->dev = dm_thin_dev_id(td);
476 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
477 struct cell_key *key)
480 key->dev = dm_thin_dev_id(td);
484 /*----------------------------------------------------------------*/
487 * A pool device ties together a metadata device and a data device. It
488 * also provides the interface for creating and destroying internal
493 struct pool_features {
494 unsigned zero_new_blocks:1;
495 unsigned discard_enabled:1;
496 unsigned discard_passdown:1;
500 struct list_head list;
501 struct dm_target *ti; /* Only set if a pool target is bound */
503 struct mapped_device *pool_md;
504 struct block_device *md_dev;
505 struct dm_pool_metadata *pmd;
507 uint32_t sectors_per_block;
508 unsigned block_shift;
509 dm_block_t offset_mask;
510 dm_block_t low_water_blocks;
512 struct pool_features pf;
513 unsigned low_water_triggered:1; /* A dm event has been sent */
514 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
516 struct bio_prison *prison;
517 struct dm_kcopyd_client *copier;
519 struct workqueue_struct *wq;
520 struct work_struct worker;
521 struct delayed_work waker;
524 unsigned long last_commit_jiffies;
527 struct bio_list deferred_bios;
528 struct bio_list deferred_flush_bios;
529 struct list_head prepared_mappings;
530 struct list_head prepared_discards;
532 struct bio_list retry_on_resume_list;
534 struct deferred_set shared_read_ds;
535 struct deferred_set all_io_ds;
537 struct new_mapping *next_mapping;
538 mempool_t *mapping_pool;
539 mempool_t *endio_hook_pool;
543 * Target context for a pool.
546 struct dm_target *ti;
548 struct dm_dev *data_dev;
549 struct dm_dev *metadata_dev;
550 struct dm_target_callbacks callbacks;
552 dm_block_t low_water_blocks;
553 struct pool_features pf;
557 * Target context for a thin.
560 struct dm_dev *pool_dev;
561 struct dm_dev *origin_dev;
565 struct dm_thin_device *td;
568 /*----------------------------------------------------------------*/
571 * A global list of pools that uses a struct mapped_device as a key.
573 static struct dm_thin_pool_table {
575 struct list_head pools;
576 } dm_thin_pool_table;
578 static void pool_table_init(void)
580 mutex_init(&dm_thin_pool_table.mutex);
581 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
584 static void __pool_table_insert(struct pool *pool)
586 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
587 list_add(&pool->list, &dm_thin_pool_table.pools);
590 static void __pool_table_remove(struct pool *pool)
592 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
593 list_del(&pool->list);
596 static struct pool *__pool_table_lookup(struct mapped_device *md)
598 struct pool *pool = NULL, *tmp;
600 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
602 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
603 if (tmp->pool_md == md) {
612 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
614 struct pool *pool = NULL, *tmp;
616 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
618 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
619 if (tmp->md_dev == md_dev) {
628 /*----------------------------------------------------------------*/
632 struct deferred_entry *shared_read_entry;
633 struct deferred_entry *all_io_entry;
634 struct new_mapping *overwrite_mapping;
637 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
640 struct bio_list bios;
642 bio_list_init(&bios);
643 bio_list_merge(&bios, master);
644 bio_list_init(master);
646 while ((bio = bio_list_pop(&bios))) {
647 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
649 bio_endio(bio, DM_ENDIO_REQUEUE);
651 bio_list_add(master, bio);
655 static void requeue_io(struct thin_c *tc)
657 struct pool *pool = tc->pool;
660 spin_lock_irqsave(&pool->lock, flags);
661 __requeue_bio_list(tc, &pool->deferred_bios);
662 __requeue_bio_list(tc, &pool->retry_on_resume_list);
663 spin_unlock_irqrestore(&pool->lock, flags);
667 * This section of code contains the logic for processing a thin device's IO.
668 * Much of the code depends on pool object resources (lists, workqueues, etc)
669 * but most is exclusively called from the thin target rather than the thin-pool
673 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
675 return bio->bi_sector >> tc->pool->block_shift;
678 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
680 struct pool *pool = tc->pool;
682 bio->bi_bdev = tc->pool_dev->bdev;
683 bio->bi_sector = (block << pool->block_shift) +
684 (bio->bi_sector & pool->offset_mask);
687 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
689 bio->bi_bdev = tc->origin_dev->bdev;
692 static void issue(struct thin_c *tc, struct bio *bio)
694 struct pool *pool = tc->pool;
698 * Batch together any FUA/FLUSH bios we find and then issue
699 * a single commit for them in process_deferred_bios().
701 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
702 spin_lock_irqsave(&pool->lock, flags);
703 bio_list_add(&pool->deferred_flush_bios, bio);
704 spin_unlock_irqrestore(&pool->lock, flags);
706 generic_make_request(bio);
709 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
711 remap_to_origin(tc, bio);
715 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
718 remap(tc, bio, block);
723 * wake_worker() is used when new work is queued and when pool_resume is
724 * ready to continue deferred IO processing.
726 static void wake_worker(struct pool *pool)
728 queue_work(pool->wq, &pool->worker);
731 /*----------------------------------------------------------------*/
734 * Bio endio functions.
737 struct list_head list;
741 unsigned pass_discard:1;
744 dm_block_t virt_block;
745 dm_block_t data_block;
746 struct cell *cell, *cell2;
750 * If the bio covers the whole area of a block then we can avoid
751 * zeroing or copying. Instead this bio is hooked. The bio will
752 * still be in the cell, so care has to be taken to avoid issuing
756 bio_end_io_t *saved_bi_end_io;
759 static void __maybe_add_mapping(struct new_mapping *m)
761 struct pool *pool = m->tc->pool;
763 if (m->quiesced && m->prepared) {
764 list_add(&m->list, &pool->prepared_mappings);
769 static void copy_complete(int read_err, unsigned long write_err, void *context)
772 struct new_mapping *m = context;
773 struct pool *pool = m->tc->pool;
775 m->err = read_err || write_err ? -EIO : 0;
777 spin_lock_irqsave(&pool->lock, flags);
779 __maybe_add_mapping(m);
780 spin_unlock_irqrestore(&pool->lock, flags);
783 static void overwrite_endio(struct bio *bio, int err)
786 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
787 struct new_mapping *m = h->overwrite_mapping;
788 struct pool *pool = m->tc->pool;
792 spin_lock_irqsave(&pool->lock, flags);
794 __maybe_add_mapping(m);
795 spin_unlock_irqrestore(&pool->lock, flags);
798 /*----------------------------------------------------------------*/
805 * Prepared mapping jobs.
809 * This sends the bios in the cell back to the deferred_bios list.
811 static void cell_defer(struct thin_c *tc, struct cell *cell,
812 dm_block_t data_block)
814 struct pool *pool = tc->pool;
817 spin_lock_irqsave(&pool->lock, flags);
818 cell_release(cell, &pool->deferred_bios);
819 spin_unlock_irqrestore(&tc->pool->lock, flags);
825 * Same as cell_defer above, except it omits one particular detainee,
826 * a write bio that covers the block and has already been processed.
828 static void cell_defer_except(struct thin_c *tc, struct cell *cell)
830 struct bio_list bios;
831 struct pool *pool = tc->pool;
834 bio_list_init(&bios);
836 spin_lock_irqsave(&pool->lock, flags);
837 cell_release_no_holder(cell, &pool->deferred_bios);
838 spin_unlock_irqrestore(&pool->lock, flags);
843 static void process_prepared_mapping(struct new_mapping *m)
845 struct thin_c *tc = m->tc;
851 bio->bi_end_io = m->saved_bi_end_io;
859 * Commit the prepared block into the mapping btree.
860 * Any I/O for this block arriving after this point will get
861 * remapped to it directly.
863 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
865 DMERR("dm_thin_insert_block() failed");
871 * Release any bios held while the block was being provisioned.
872 * If we are processing a write bio that completely covers the block,
873 * we already processed it so can ignore it now when processing
874 * the bios in the cell.
877 cell_defer_except(tc, m->cell);
880 cell_defer(tc, m->cell, m->data_block);
883 mempool_free(m, tc->pool->mapping_pool);
886 static void process_prepared_discard(struct new_mapping *m)
889 struct thin_c *tc = m->tc;
891 r = dm_thin_remove_block(tc->td, m->virt_block);
893 DMERR("dm_thin_remove_block() failed");
896 * Pass the discard down to the underlying device?
899 remap_and_issue(tc, m->bio, m->data_block);
901 bio_endio(m->bio, 0);
903 cell_defer_except(tc, m->cell);
904 cell_defer_except(tc, m->cell2);
905 mempool_free(m, tc->pool->mapping_pool);
908 static void process_prepared(struct pool *pool, struct list_head *head,
909 void (*fn)(struct new_mapping *))
912 struct list_head maps;
913 struct new_mapping *m, *tmp;
915 INIT_LIST_HEAD(&maps);
916 spin_lock_irqsave(&pool->lock, flags);
917 list_splice_init(head, &maps);
918 spin_unlock_irqrestore(&pool->lock, flags);
920 list_for_each_entry_safe(m, tmp, &maps, list)
927 static int io_overlaps_block(struct pool *pool, struct bio *bio)
929 return !(bio->bi_sector & pool->offset_mask) &&
930 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
934 static int io_overwrites_block(struct pool *pool, struct bio *bio)
936 return (bio_data_dir(bio) == WRITE) &&
937 io_overlaps_block(pool, bio);
940 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
943 *save = bio->bi_end_io;
947 static int ensure_next_mapping(struct pool *pool)
949 if (pool->next_mapping)
952 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
954 return pool->next_mapping ? 0 : -ENOMEM;
957 static struct new_mapping *get_next_mapping(struct pool *pool)
959 struct new_mapping *r = pool->next_mapping;
961 BUG_ON(!pool->next_mapping);
963 pool->next_mapping = NULL;
968 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
969 struct dm_dev *origin, dm_block_t data_origin,
970 dm_block_t data_dest,
971 struct cell *cell, struct bio *bio)
974 struct pool *pool = tc->pool;
975 struct new_mapping *m = get_next_mapping(pool);
977 INIT_LIST_HEAD(&m->list);
981 m->virt_block = virt_block;
982 m->data_block = data_dest;
987 if (!ds_add_work(&pool->shared_read_ds, &m->list))
991 * IO to pool_dev remaps to the pool target's data_dev.
993 * If the whole block of data is being overwritten, we can issue the
994 * bio immediately. Otherwise we use kcopyd to clone the data first.
996 if (io_overwrites_block(pool, bio)) {
997 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
998 h->overwrite_mapping = m;
1000 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1001 remap_and_issue(tc, bio, data_dest);
1003 struct dm_io_region from, to;
1005 from.bdev = origin->bdev;
1006 from.sector = data_origin * pool->sectors_per_block;
1007 from.count = pool->sectors_per_block;
1009 to.bdev = tc->pool_dev->bdev;
1010 to.sector = data_dest * pool->sectors_per_block;
1011 to.count = pool->sectors_per_block;
1013 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1014 0, copy_complete, m);
1016 mempool_free(m, pool->mapping_pool);
1017 DMERR("dm_kcopyd_copy() failed");
1023 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1024 dm_block_t data_origin, dm_block_t data_dest,
1025 struct cell *cell, struct bio *bio)
1027 schedule_copy(tc, virt_block, tc->pool_dev,
1028 data_origin, data_dest, cell, bio);
1031 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1032 dm_block_t data_dest,
1033 struct cell *cell, struct bio *bio)
1035 schedule_copy(tc, virt_block, tc->origin_dev,
1036 virt_block, data_dest, cell, bio);
1039 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1040 dm_block_t data_block, struct cell *cell,
1043 struct pool *pool = tc->pool;
1044 struct new_mapping *m = get_next_mapping(pool);
1046 INIT_LIST_HEAD(&m->list);
1050 m->virt_block = virt_block;
1051 m->data_block = data_block;
1057 * If the whole block of data is being overwritten or we are not
1058 * zeroing pre-existing data, we can issue the bio immediately.
1059 * Otherwise we use kcopyd to zero the data first.
1061 if (!pool->pf.zero_new_blocks)
1062 process_prepared_mapping(m);
1064 else if (io_overwrites_block(pool, bio)) {
1065 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1066 h->overwrite_mapping = m;
1068 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1069 remap_and_issue(tc, bio, data_block);
1073 struct dm_io_region to;
1075 to.bdev = tc->pool_dev->bdev;
1076 to.sector = data_block * pool->sectors_per_block;
1077 to.count = pool->sectors_per_block;
1079 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1081 mempool_free(m, pool->mapping_pool);
1082 DMERR("dm_kcopyd_zero() failed");
1088 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1091 dm_block_t free_blocks;
1092 unsigned long flags;
1093 struct pool *pool = tc->pool;
1095 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1099 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1100 DMWARN("%s: reached low water mark, sending event.",
1101 dm_device_name(pool->pool_md));
1102 spin_lock_irqsave(&pool->lock, flags);
1103 pool->low_water_triggered = 1;
1104 spin_unlock_irqrestore(&pool->lock, flags);
1105 dm_table_event(pool->ti->table);
1109 if (pool->no_free_space)
1113 * Try to commit to see if that will free up some
1116 r = dm_pool_commit_metadata(pool->pmd);
1118 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1123 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1128 * If we still have no space we set a flag to avoid
1129 * doing all this checking and return -ENOSPC.
1132 DMWARN("%s: no free space available.",
1133 dm_device_name(pool->pool_md));
1134 spin_lock_irqsave(&pool->lock, flags);
1135 pool->no_free_space = 1;
1136 spin_unlock_irqrestore(&pool->lock, flags);
1142 r = dm_pool_alloc_data_block(pool->pmd, result);
1150 * If we have run out of space, queue bios until the device is
1151 * resumed, presumably after having been reloaded with more space.
1153 static void retry_on_resume(struct bio *bio)
1155 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1156 struct thin_c *tc = h->tc;
1157 struct pool *pool = tc->pool;
1158 unsigned long flags;
1160 spin_lock_irqsave(&pool->lock, flags);
1161 bio_list_add(&pool->retry_on_resume_list, bio);
1162 spin_unlock_irqrestore(&pool->lock, flags);
1165 static void no_space(struct cell *cell)
1168 struct bio_list bios;
1170 bio_list_init(&bios);
1171 cell_release(cell, &bios);
1173 while ((bio = bio_list_pop(&bios)))
1174 retry_on_resume(bio);
1177 static void process_discard(struct thin_c *tc, struct bio *bio)
1180 struct pool *pool = tc->pool;
1181 struct cell *cell, *cell2;
1182 struct cell_key key, key2;
1183 dm_block_t block = get_bio_block(tc, bio);
1184 struct dm_thin_lookup_result lookup_result;
1185 struct new_mapping *m;
1187 build_virtual_key(tc->td, block, &key);
1188 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1191 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1195 * Check nobody is fiddling with this pool block. This can
1196 * happen if someone's in the process of breaking sharing
1199 build_data_key(tc->td, lookup_result.block, &key2);
1200 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1201 cell_release_singleton(cell, bio);
1205 if (io_overlaps_block(pool, bio)) {
1207 * IO may still be going to the destination block. We must
1208 * quiesce before we can do the removal.
1210 m = get_next_mapping(pool);
1212 m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1213 m->virt_block = block;
1214 m->data_block = lookup_result.block;
1220 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1221 list_add(&m->list, &pool->prepared_discards);
1226 * This path is hit if people are ignoring
1227 * limits->discard_granularity. It ignores any
1228 * part of the discard that is in a subsequent
1231 sector_t offset = bio->bi_sector - (block << pool->block_shift);
1232 unsigned remaining = (pool->sectors_per_block - offset) << 9;
1233 bio->bi_size = min(bio->bi_size, remaining);
1235 cell_release_singleton(cell, bio);
1236 cell_release_singleton(cell2, bio);
1237 remap_and_issue(tc, bio, lookup_result.block);
1243 * It isn't provisioned, just forget it.
1245 cell_release_singleton(cell, bio);
1250 DMERR("discard: find block unexpectedly returned %d", r);
1251 cell_release_singleton(cell, bio);
1257 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1258 struct cell_key *key,
1259 struct dm_thin_lookup_result *lookup_result,
1263 dm_block_t data_block;
1265 r = alloc_data_block(tc, &data_block);
1268 schedule_internal_copy(tc, block, lookup_result->block,
1269 data_block, cell, bio);
1277 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1283 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1285 struct dm_thin_lookup_result *lookup_result)
1288 struct pool *pool = tc->pool;
1289 struct cell_key key;
1292 * If cell is already occupied, then sharing is already in the process
1293 * of being broken so we have nothing further to do here.
1295 build_data_key(tc->td, lookup_result->block, &key);
1296 if (bio_detain(pool->prison, &key, bio, &cell))
1299 if (bio_data_dir(bio) == WRITE)
1300 break_sharing(tc, bio, block, &key, lookup_result, cell);
1302 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1304 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1306 cell_release_singleton(cell, bio);
1307 remap_and_issue(tc, bio, lookup_result->block);
1311 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1315 dm_block_t data_block;
1318 * Remap empty bios (flushes) immediately, without provisioning.
1320 if (!bio->bi_size) {
1321 cell_release_singleton(cell, bio);
1322 remap_and_issue(tc, bio, 0);
1327 * Fill read bios with zeroes and complete them immediately.
1329 if (bio_data_dir(bio) == READ) {
1331 cell_release_singleton(cell, bio);
1336 r = alloc_data_block(tc, &data_block);
1340 schedule_external_copy(tc, block, data_block, cell, bio);
1342 schedule_zero(tc, block, data_block, cell, bio);
1350 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1356 static void process_bio(struct thin_c *tc, struct bio *bio)
1359 dm_block_t block = get_bio_block(tc, bio);
1361 struct cell_key key;
1362 struct dm_thin_lookup_result lookup_result;
1365 * If cell is already occupied, then the block is already
1366 * being provisioned so we have nothing further to do here.
1368 build_virtual_key(tc->td, block, &key);
1369 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1372 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1376 * We can release this cell now. This thread is the only
1377 * one that puts bios into a cell, and we know there were
1378 * no preceding bios.
1381 * TODO: this will probably have to change when discard goes
1384 cell_release_singleton(cell, bio);
1386 if (lookup_result.shared)
1387 process_shared_bio(tc, bio, block, &lookup_result);
1389 remap_and_issue(tc, bio, lookup_result.block);
1393 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1394 cell_release_singleton(cell, bio);
1395 remap_to_origin_and_issue(tc, bio);
1397 provision_block(tc, bio, block, cell);
1401 DMERR("dm_thin_find_block() failed, error = %d", r);
1402 cell_release_singleton(cell, bio);
1408 static int need_commit_due_to_time(struct pool *pool)
1410 return jiffies < pool->last_commit_jiffies ||
1411 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1414 static void process_deferred_bios(struct pool *pool)
1416 unsigned long flags;
1418 struct bio_list bios;
1421 bio_list_init(&bios);
1423 spin_lock_irqsave(&pool->lock, flags);
1424 bio_list_merge(&bios, &pool->deferred_bios);
1425 bio_list_init(&pool->deferred_bios);
1426 spin_unlock_irqrestore(&pool->lock, flags);
1428 while ((bio = bio_list_pop(&bios))) {
1429 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1430 struct thin_c *tc = h->tc;
1433 * If we've got no free new_mapping structs, and processing
1434 * this bio might require one, we pause until there are some
1435 * prepared mappings to process.
1437 if (ensure_next_mapping(pool)) {
1438 spin_lock_irqsave(&pool->lock, flags);
1439 bio_list_merge(&pool->deferred_bios, &bios);
1440 spin_unlock_irqrestore(&pool->lock, flags);
1445 if (bio->bi_rw & REQ_DISCARD)
1446 process_discard(tc, bio);
1448 process_bio(tc, bio);
1452 * If there are any deferred flush bios, we must commit
1453 * the metadata before issuing them.
1455 bio_list_init(&bios);
1456 spin_lock_irqsave(&pool->lock, flags);
1457 bio_list_merge(&bios, &pool->deferred_flush_bios);
1458 bio_list_init(&pool->deferred_flush_bios);
1459 spin_unlock_irqrestore(&pool->lock, flags);
1461 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1464 r = dm_pool_commit_metadata(pool->pmd);
1466 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1468 while ((bio = bio_list_pop(&bios)))
1472 pool->last_commit_jiffies = jiffies;
1474 while ((bio = bio_list_pop(&bios)))
1475 generic_make_request(bio);
1478 static void do_worker(struct work_struct *ws)
1480 struct pool *pool = container_of(ws, struct pool, worker);
1482 process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1483 process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
1484 process_deferred_bios(pool);
1488 * We want to commit periodically so that not too much
1489 * unwritten data builds up.
1491 static void do_waker(struct work_struct *ws)
1493 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1495 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1498 /*----------------------------------------------------------------*/
1501 * Mapping functions.
1505 * Called only while mapping a thin bio to hand it over to the workqueue.
1507 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1509 unsigned long flags;
1510 struct pool *pool = tc->pool;
1512 spin_lock_irqsave(&pool->lock, flags);
1513 bio_list_add(&pool->deferred_bios, bio);
1514 spin_unlock_irqrestore(&pool->lock, flags);
1519 static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1521 struct pool *pool = tc->pool;
1522 struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1525 h->shared_read_entry = NULL;
1526 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1527 h->overwrite_mapping = NULL;
1533 * Non-blocking function called from the thin target's map function.
1535 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1536 union map_info *map_context)
1539 struct thin_c *tc = ti->private;
1540 dm_block_t block = get_bio_block(tc, bio);
1541 struct dm_thin_device *td = tc->td;
1542 struct dm_thin_lookup_result result;
1544 map_context->ptr = thin_hook_bio(tc, bio);
1545 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1546 thin_defer_bio(tc, bio);
1547 return DM_MAPIO_SUBMITTED;
1550 r = dm_thin_find_block(td, block, 0, &result);
1553 * Note that we defer readahead too.
1557 if (unlikely(result.shared)) {
1559 * We have a race condition here between the
1560 * result.shared value returned by the lookup and
1561 * snapshot creation, which may cause new
1564 * To avoid this always quiesce the origin before
1565 * taking the snap. You want to do this anyway to
1566 * ensure a consistent application view
1569 * More distant ancestors are irrelevant. The
1570 * shared flag will be set in their case.
1572 thin_defer_bio(tc, bio);
1573 r = DM_MAPIO_SUBMITTED;
1575 remap(tc, bio, result.block);
1576 r = DM_MAPIO_REMAPPED;
1582 * In future, the failed dm_thin_find_block above could
1583 * provide the hint to load the metadata into cache.
1586 thin_defer_bio(tc, bio);
1587 r = DM_MAPIO_SUBMITTED;
1594 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1597 unsigned long flags;
1598 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1600 spin_lock_irqsave(&pt->pool->lock, flags);
1601 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1602 spin_unlock_irqrestore(&pt->pool->lock, flags);
1605 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1606 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1612 static void __requeue_bios(struct pool *pool)
1614 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1615 bio_list_init(&pool->retry_on_resume_list);
1618 /*----------------------------------------------------------------
1619 * Binding of control targets to a pool object
1620 *--------------------------------------------------------------*/
1621 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1623 struct pool_c *pt = ti->private;
1626 pool->low_water_blocks = pt->low_water_blocks;
1632 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1638 /*----------------------------------------------------------------
1640 *--------------------------------------------------------------*/
1641 /* Initialize pool features. */
1642 static void pool_features_init(struct pool_features *pf)
1644 pf->zero_new_blocks = 1;
1645 pf->discard_enabled = 1;
1646 pf->discard_passdown = 1;
1649 static void __pool_destroy(struct pool *pool)
1651 __pool_table_remove(pool);
1653 if (dm_pool_metadata_close(pool->pmd) < 0)
1654 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1656 prison_destroy(pool->prison);
1657 dm_kcopyd_client_destroy(pool->copier);
1660 destroy_workqueue(pool->wq);
1662 if (pool->next_mapping)
1663 mempool_free(pool->next_mapping, pool->mapping_pool);
1664 mempool_destroy(pool->mapping_pool);
1665 mempool_destroy(pool->endio_hook_pool);
1669 static struct pool *pool_create(struct mapped_device *pool_md,
1670 struct block_device *metadata_dev,
1671 unsigned long block_size, char **error)
1676 struct dm_pool_metadata *pmd;
1678 pmd = dm_pool_metadata_open(metadata_dev, block_size);
1680 *error = "Error creating metadata object";
1681 return (struct pool *)pmd;
1684 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1686 *error = "Error allocating memory for pool";
1687 err_p = ERR_PTR(-ENOMEM);
1692 pool->sectors_per_block = block_size;
1693 pool->block_shift = ffs(block_size) - 1;
1694 pool->offset_mask = block_size - 1;
1695 pool->low_water_blocks = 0;
1696 pool_features_init(&pool->pf);
1697 pool->prison = prison_create(PRISON_CELLS);
1698 if (!pool->prison) {
1699 *error = "Error creating pool's bio prison";
1700 err_p = ERR_PTR(-ENOMEM);
1704 pool->copier = dm_kcopyd_client_create();
1705 if (IS_ERR(pool->copier)) {
1706 r = PTR_ERR(pool->copier);
1707 *error = "Error creating pool's kcopyd client";
1709 goto bad_kcopyd_client;
1713 * Create singlethreaded workqueue that will service all devices
1714 * that use this metadata.
1716 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1718 *error = "Error creating pool's workqueue";
1719 err_p = ERR_PTR(-ENOMEM);
1723 INIT_WORK(&pool->worker, do_worker);
1724 INIT_DELAYED_WORK(&pool->waker, do_waker);
1725 spin_lock_init(&pool->lock);
1726 bio_list_init(&pool->deferred_bios);
1727 bio_list_init(&pool->deferred_flush_bios);
1728 INIT_LIST_HEAD(&pool->prepared_mappings);
1729 INIT_LIST_HEAD(&pool->prepared_discards);
1730 pool->low_water_triggered = 0;
1731 pool->no_free_space = 0;
1732 bio_list_init(&pool->retry_on_resume_list);
1733 ds_init(&pool->shared_read_ds);
1734 ds_init(&pool->all_io_ds);
1736 pool->next_mapping = NULL;
1737 pool->mapping_pool =
1738 mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
1739 if (!pool->mapping_pool) {
1740 *error = "Error creating pool's mapping mempool";
1741 err_p = ERR_PTR(-ENOMEM);
1742 goto bad_mapping_pool;
1745 pool->endio_hook_pool =
1746 mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
1747 if (!pool->endio_hook_pool) {
1748 *error = "Error creating pool's endio_hook mempool";
1749 err_p = ERR_PTR(-ENOMEM);
1750 goto bad_endio_hook_pool;
1752 pool->ref_count = 1;
1753 pool->last_commit_jiffies = jiffies;
1754 pool->pool_md = pool_md;
1755 pool->md_dev = metadata_dev;
1756 __pool_table_insert(pool);
1760 bad_endio_hook_pool:
1761 mempool_destroy(pool->mapping_pool);
1763 destroy_workqueue(pool->wq);
1765 dm_kcopyd_client_destroy(pool->copier);
1767 prison_destroy(pool->prison);
1771 if (dm_pool_metadata_close(pmd))
1772 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1777 static void __pool_inc(struct pool *pool)
1779 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1783 static void __pool_dec(struct pool *pool)
1785 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1786 BUG_ON(!pool->ref_count);
1787 if (!--pool->ref_count)
1788 __pool_destroy(pool);
1791 static struct pool *__pool_find(struct mapped_device *pool_md,
1792 struct block_device *metadata_dev,
1793 unsigned long block_size, char **error,
1796 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1799 if (pool->pool_md != pool_md)
1800 return ERR_PTR(-EBUSY);
1804 pool = __pool_table_lookup(pool_md);
1806 if (pool->md_dev != metadata_dev)
1807 return ERR_PTR(-EINVAL);
1811 pool = pool_create(pool_md, metadata_dev, block_size, error);
1819 /*----------------------------------------------------------------
1820 * Pool target methods
1821 *--------------------------------------------------------------*/
1822 static void pool_dtr(struct dm_target *ti)
1824 struct pool_c *pt = ti->private;
1826 mutex_lock(&dm_thin_pool_table.mutex);
1828 unbind_control_target(pt->pool, ti);
1829 __pool_dec(pt->pool);
1830 dm_put_device(ti, pt->metadata_dev);
1831 dm_put_device(ti, pt->data_dev);
1834 mutex_unlock(&dm_thin_pool_table.mutex);
1837 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1838 struct dm_target *ti)
1842 const char *arg_name;
1844 static struct dm_arg _args[] = {
1845 {0, 3, "Invalid number of pool feature arguments"},
1849 * No feature arguments supplied.
1854 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1858 while (argc && !r) {
1859 arg_name = dm_shift_arg(as);
1862 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1863 pf->zero_new_blocks = 0;
1865 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1866 pf->discard_enabled = 0;
1868 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1869 pf->discard_passdown = 0;
1873 ti->error = "Unrecognised pool feature requested";
1881 * thin-pool <metadata dev> <data dev>
1882 * <data block size (sectors)>
1883 * <low water mark (blocks)>
1884 * [<#feature args> [<arg>]*]
1886 * Optional feature arguments are:
1887 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1888 * ignore_discard: disable discard
1889 * no_discard_passdown: don't pass discards down to the data device
1891 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1893 int r, pool_created = 0;
1896 struct pool_features pf;
1897 struct dm_arg_set as;
1898 struct dm_dev *data_dev;
1899 unsigned long block_size;
1900 dm_block_t low_water_blocks;
1901 struct dm_dev *metadata_dev;
1902 sector_t metadata_dev_size;
1903 char b[BDEVNAME_SIZE];
1906 * FIXME Remove validation from scope of lock.
1908 mutex_lock(&dm_thin_pool_table.mutex);
1911 ti->error = "Invalid argument count";
1918 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1920 ti->error = "Error opening metadata block device";
1924 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1925 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1926 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1927 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1929 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1931 ti->error = "Error getting data device";
1935 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1936 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1937 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1938 !is_power_of_2(block_size)) {
1939 ti->error = "Invalid block size";
1944 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1945 ti->error = "Invalid low water mark";
1951 * Set default pool features.
1953 pool_features_init(&pf);
1955 dm_consume_args(&as, 4);
1956 r = parse_pool_features(&as, &pf, ti);
1960 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1966 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1967 block_size, &ti->error, &pool_created);
1974 * 'pool_created' reflects whether this is the first table load.
1975 * Top level discard support is not allowed to be changed after
1976 * initial load. This would require a pool reload to trigger thin
1979 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
1980 ti->error = "Discard support cannot be disabled once enabled";
1982 goto out_flags_changed;
1986 * If discard_passdown was enabled verify that the data device
1987 * supports discards. Disable discard_passdown if not; otherwise
1988 * -EOPNOTSUPP will be returned.
1990 if (pf.discard_passdown) {
1991 struct request_queue *q = bdev_get_queue(data_dev->bdev);
1992 if (!q || !blk_queue_discard(q)) {
1993 DMWARN("Discard unsupported by data device: Disabling discard passdown.");
1994 pf.discard_passdown = 0;
2000 pt->metadata_dev = metadata_dev;
2001 pt->data_dev = data_dev;
2002 pt->low_water_blocks = low_water_blocks;
2004 ti->num_flush_requests = 1;
2006 * Only need to enable discards if the pool should pass
2007 * them down to the data device. The thin device's discard
2008 * processing will cause mappings to be removed from the btree.
2010 if (pf.discard_enabled && pf.discard_passdown) {
2011 ti->num_discard_requests = 1;
2013 * Setting 'discards_supported' circumvents the normal
2014 * stacking of discard limits (this keeps the pool and
2015 * thin devices' discard limits consistent).
2017 ti->discards_supported = 1;
2021 pt->callbacks.congested_fn = pool_is_congested;
2022 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2024 mutex_unlock(&dm_thin_pool_table.mutex);
2033 dm_put_device(ti, data_dev);
2035 dm_put_device(ti, metadata_dev);
2037 mutex_unlock(&dm_thin_pool_table.mutex);
2042 static int pool_map(struct dm_target *ti, struct bio *bio,
2043 union map_info *map_context)
2046 struct pool_c *pt = ti->private;
2047 struct pool *pool = pt->pool;
2048 unsigned long flags;
2051 * As this is a singleton target, ti->begin is always zero.
2053 spin_lock_irqsave(&pool->lock, flags);
2054 bio->bi_bdev = pt->data_dev->bdev;
2055 r = DM_MAPIO_REMAPPED;
2056 spin_unlock_irqrestore(&pool->lock, flags);
2062 * Retrieves the number of blocks of the data device from
2063 * the superblock and compares it to the actual device size,
2064 * thus resizing the data device in case it has grown.
2066 * This both copes with opening preallocated data devices in the ctr
2067 * being followed by a resume
2069 * calling the resume method individually after userspace has
2070 * grown the data device in reaction to a table event.
2072 static int pool_preresume(struct dm_target *ti)
2075 struct pool_c *pt = ti->private;
2076 struct pool *pool = pt->pool;
2077 dm_block_t data_size, sb_data_size;
2080 * Take control of the pool object.
2082 r = bind_control_target(pool, ti);
2086 data_size = ti->len >> pool->block_shift;
2087 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2089 DMERR("failed to retrieve data device size");
2093 if (data_size < sb_data_size) {
2094 DMERR("pool target too small, is %llu blocks (expected %llu)",
2095 data_size, sb_data_size);
2098 } else if (data_size > sb_data_size) {
2099 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2101 DMERR("failed to resize data device");
2105 r = dm_pool_commit_metadata(pool->pmd);
2107 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2116 static void pool_resume(struct dm_target *ti)
2118 struct pool_c *pt = ti->private;
2119 struct pool *pool = pt->pool;
2120 unsigned long flags;
2122 spin_lock_irqsave(&pool->lock, flags);
2123 pool->low_water_triggered = 0;
2124 pool->no_free_space = 0;
2125 __requeue_bios(pool);
2126 spin_unlock_irqrestore(&pool->lock, flags);
2128 do_waker(&pool->waker.work);
2131 static void pool_postsuspend(struct dm_target *ti)
2134 struct pool_c *pt = ti->private;
2135 struct pool *pool = pt->pool;
2137 cancel_delayed_work(&pool->waker);
2138 flush_workqueue(pool->wq);
2140 r = dm_pool_commit_metadata(pool->pmd);
2142 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2144 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2148 static int check_arg_count(unsigned argc, unsigned args_required)
2150 if (argc != args_required) {
2151 DMWARN("Message received with %u arguments instead of %u.",
2152 argc, args_required);
2159 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2161 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2162 *dev_id <= MAX_DEV_ID)
2166 DMWARN("Message received with invalid device id: %s", arg);
2171 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2176 r = check_arg_count(argc, 2);
2180 r = read_dev_id(argv[1], &dev_id, 1);
2184 r = dm_pool_create_thin(pool->pmd, dev_id);
2186 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2194 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2197 dm_thin_id origin_dev_id;
2200 r = check_arg_count(argc, 3);
2204 r = read_dev_id(argv[1], &dev_id, 1);
2208 r = read_dev_id(argv[2], &origin_dev_id, 1);
2212 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2214 DMWARN("Creation of new snapshot %s of device %s failed.",
2222 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2227 r = check_arg_count(argc, 2);
2231 r = read_dev_id(argv[1], &dev_id, 1);
2235 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2237 DMWARN("Deletion of thin device %s failed.", argv[1]);
2242 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2244 dm_thin_id old_id, new_id;
2247 r = check_arg_count(argc, 3);
2251 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2252 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2256 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2257 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2261 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2263 DMWARN("Failed to change transaction id from %s to %s.",
2272 * Messages supported:
2273 * create_thin <dev_id>
2274 * create_snap <dev_id> <origin_id>
2276 * trim <dev_id> <new_size_in_sectors>
2277 * set_transaction_id <current_trans_id> <new_trans_id>
2279 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2282 struct pool_c *pt = ti->private;
2283 struct pool *pool = pt->pool;
2285 if (!strcasecmp(argv[0], "create_thin"))
2286 r = process_create_thin_mesg(argc, argv, pool);
2288 else if (!strcasecmp(argv[0], "create_snap"))
2289 r = process_create_snap_mesg(argc, argv, pool);
2291 else if (!strcasecmp(argv[0], "delete"))
2292 r = process_delete_mesg(argc, argv, pool);
2294 else if (!strcasecmp(argv[0], "set_transaction_id"))
2295 r = process_set_transaction_id_mesg(argc, argv, pool);
2298 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2301 r = dm_pool_commit_metadata(pool->pmd);
2303 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2312 * <transaction id> <used metadata sectors>/<total metadata sectors>
2313 * <used data sectors>/<total data sectors> <held metadata root>
2315 static int pool_status(struct dm_target *ti, status_type_t type,
2316 char *result, unsigned maxlen)
2320 uint64_t transaction_id;
2321 dm_block_t nr_free_blocks_data;
2322 dm_block_t nr_free_blocks_metadata;
2323 dm_block_t nr_blocks_data;
2324 dm_block_t nr_blocks_metadata;
2325 dm_block_t held_root;
2326 char buf[BDEVNAME_SIZE];
2327 char buf2[BDEVNAME_SIZE];
2328 struct pool_c *pt = ti->private;
2329 struct pool *pool = pt->pool;
2332 case STATUSTYPE_INFO:
2333 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2338 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2339 &nr_free_blocks_metadata);
2343 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2347 r = dm_pool_get_free_block_count(pool->pmd,
2348 &nr_free_blocks_data);
2352 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2356 r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
2360 DMEMIT("%llu %llu/%llu %llu/%llu ",
2361 (unsigned long long)transaction_id,
2362 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2363 (unsigned long long)nr_blocks_metadata,
2364 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2365 (unsigned long long)nr_blocks_data);
2368 DMEMIT("%llu", held_root);
2374 case STATUSTYPE_TABLE:
2375 DMEMIT("%s %s %lu %llu ",
2376 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2377 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2378 (unsigned long)pool->sectors_per_block,
2379 (unsigned long long)pt->low_water_blocks);
2381 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2382 !pool->pf.discard_passdown;
2383 DMEMIT("%u ", count);
2385 if (!pool->pf.zero_new_blocks)
2386 DMEMIT("skip_block_zeroing ");
2388 if (!pool->pf.discard_enabled)
2389 DMEMIT("ignore_discard ");
2391 if (!pool->pf.discard_passdown)
2392 DMEMIT("no_discard_passdown ");
2400 static int pool_iterate_devices(struct dm_target *ti,
2401 iterate_devices_callout_fn fn, void *data)
2403 struct pool_c *pt = ti->private;
2405 return fn(ti, pt->data_dev, 0, ti->len, data);
2408 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2409 struct bio_vec *biovec, int max_size)
2411 struct pool_c *pt = ti->private;
2412 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2414 if (!q->merge_bvec_fn)
2417 bvm->bi_bdev = pt->data_dev->bdev;
2419 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2422 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2425 * FIXME: these limits may be incompatible with the pool's data device
2427 limits->max_discard_sectors = pool->sectors_per_block;
2430 * This is just a hint, and not enforced. We have to cope with
2431 * bios that overlap 2 blocks.
2433 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2434 limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2437 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2439 struct pool_c *pt = ti->private;
2440 struct pool *pool = pt->pool;
2442 blk_limits_io_min(limits, 0);
2443 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2444 if (pool->pf.discard_enabled)
2445 set_discard_limits(pool, limits);
2448 static struct target_type pool_target = {
2449 .name = "thin-pool",
2450 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2451 DM_TARGET_IMMUTABLE,
2452 .version = {1, 1, 0},
2453 .module = THIS_MODULE,
2457 .postsuspend = pool_postsuspend,
2458 .preresume = pool_preresume,
2459 .resume = pool_resume,
2460 .message = pool_message,
2461 .status = pool_status,
2462 .merge = pool_merge,
2463 .iterate_devices = pool_iterate_devices,
2464 .io_hints = pool_io_hints,
2467 /*----------------------------------------------------------------
2468 * Thin target methods
2469 *--------------------------------------------------------------*/
2470 static void thin_dtr(struct dm_target *ti)
2472 struct thin_c *tc = ti->private;
2474 mutex_lock(&dm_thin_pool_table.mutex);
2476 __pool_dec(tc->pool);
2477 dm_pool_close_thin_device(tc->td);
2478 dm_put_device(ti, tc->pool_dev);
2480 dm_put_device(ti, tc->origin_dev);
2483 mutex_unlock(&dm_thin_pool_table.mutex);
2487 * Thin target parameters:
2489 * <pool_dev> <dev_id> [origin_dev]
2491 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2492 * dev_id: the internal device identifier
2493 * origin_dev: a device external to the pool that should act as the origin
2495 * If the pool device has discards disabled, they get disabled for the thin
2498 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2502 struct dm_dev *pool_dev, *origin_dev;
2503 struct mapped_device *pool_md;
2505 mutex_lock(&dm_thin_pool_table.mutex);
2507 if (argc != 2 && argc != 3) {
2508 ti->error = "Invalid argument count";
2513 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2515 ti->error = "Out of memory";
2521 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2523 ti->error = "Error opening origin device";
2524 goto bad_origin_dev;
2526 tc->origin_dev = origin_dev;
2529 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2531 ti->error = "Error opening pool device";
2534 tc->pool_dev = pool_dev;
2536 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2537 ti->error = "Invalid device id";
2542 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2544 ti->error = "Couldn't get pool mapped device";
2549 tc->pool = __pool_table_lookup(pool_md);
2551 ti->error = "Couldn't find pool object";
2553 goto bad_pool_lookup;
2555 __pool_inc(tc->pool);
2557 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2559 ti->error = "Couldn't open thin internal device";
2563 ti->split_io = tc->pool->sectors_per_block;
2564 ti->num_flush_requests = 1;
2566 /* In case the pool supports discards, pass them on. */
2567 if (tc->pool->pf.discard_enabled) {
2568 ti->discards_supported = 1;
2569 ti->num_discard_requests = 1;
2574 mutex_unlock(&dm_thin_pool_table.mutex);
2579 __pool_dec(tc->pool);
2583 dm_put_device(ti, tc->pool_dev);
2586 dm_put_device(ti, tc->origin_dev);
2590 mutex_unlock(&dm_thin_pool_table.mutex);
2595 static int thin_map(struct dm_target *ti, struct bio *bio,
2596 union map_info *map_context)
2598 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2600 return thin_bio_map(ti, bio, map_context);
2603 static int thin_endio(struct dm_target *ti,
2604 struct bio *bio, int err,
2605 union map_info *map_context)
2607 unsigned long flags;
2608 struct endio_hook *h = map_context->ptr;
2609 struct list_head work;
2610 struct new_mapping *m, *tmp;
2611 struct pool *pool = h->tc->pool;
2613 if (h->shared_read_entry) {
2614 INIT_LIST_HEAD(&work);
2615 ds_dec(h->shared_read_entry, &work);
2617 spin_lock_irqsave(&pool->lock, flags);
2618 list_for_each_entry_safe(m, tmp, &work, list) {
2621 __maybe_add_mapping(m);
2623 spin_unlock_irqrestore(&pool->lock, flags);
2626 if (h->all_io_entry) {
2627 INIT_LIST_HEAD(&work);
2628 ds_dec(h->all_io_entry, &work);
2629 list_for_each_entry_safe(m, tmp, &work, list)
2630 list_add(&m->list, &pool->prepared_discards);
2633 mempool_free(h, pool->endio_hook_pool);
2638 static void thin_postsuspend(struct dm_target *ti)
2640 if (dm_noflush_suspending(ti))
2641 requeue_io((struct thin_c *)ti->private);
2645 * <nr mapped sectors> <highest mapped sector>
2647 static int thin_status(struct dm_target *ti, status_type_t type,
2648 char *result, unsigned maxlen)
2652 dm_block_t mapped, highest;
2653 char buf[BDEVNAME_SIZE];
2654 struct thin_c *tc = ti->private;
2660 case STATUSTYPE_INFO:
2661 r = dm_thin_get_mapped_count(tc->td, &mapped);
2665 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2669 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2671 DMEMIT("%llu", ((highest + 1) *
2672 tc->pool->sectors_per_block) - 1);
2677 case STATUSTYPE_TABLE:
2679 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2680 (unsigned long) tc->dev_id);
2682 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2690 static int thin_iterate_devices(struct dm_target *ti,
2691 iterate_devices_callout_fn fn, void *data)
2694 struct thin_c *tc = ti->private;
2697 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2698 * we follow a more convoluted path through to the pool's target.
2701 return 0; /* nothing is bound */
2703 blocks = tc->pool->ti->len >> tc->pool->block_shift;
2705 return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2710 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2712 struct thin_c *tc = ti->private;
2713 struct pool *pool = tc->pool;
2715 blk_limits_io_min(limits, 0);
2716 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2717 set_discard_limits(pool, limits);
2720 static struct target_type thin_target = {
2722 .version = {1, 1, 0},
2723 .module = THIS_MODULE,
2727 .end_io = thin_endio,
2728 .postsuspend = thin_postsuspend,
2729 .status = thin_status,
2730 .iterate_devices = thin_iterate_devices,
2731 .io_hints = thin_io_hints,
2734 /*----------------------------------------------------------------*/
2736 static int __init dm_thin_init(void)
2742 r = dm_register_target(&thin_target);
2746 r = dm_register_target(&pool_target);
2748 dm_unregister_target(&thin_target);
2753 static void dm_thin_exit(void)
2755 dm_unregister_target(&thin_target);
2756 dm_unregister_target(&pool_target);
2759 module_init(dm_thin_init);
2760 module_exit(dm_thin_exit);
2762 MODULE_DESCRIPTION(DM_NAME "device-mapper thin provisioning target");
2763 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2764 MODULE_LICENSE("GPL");