2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
19 #define DM_MSG_PREFIX "thin"
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
30 * The block size of the device holding pool data must be
31 * between 64KB and 1GB.
33 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
34 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
37 * Device id is restricted to 24 bits.
39 #define MAX_DEV_ID ((1 << 24) - 1)
42 * How do we handle breaking sharing of data blocks?
43 * =================================================
45 * We use a standard copy-on-write btree to store the mappings for the
46 * devices (note I'm talking about copy-on-write of the metadata here, not
47 * the data). When you take an internal snapshot you clone the root node
48 * of the origin btree. After this there is no concept of an origin or a
49 * snapshot. They are just two device trees that happen to point to the
52 * When we get a write in we decide if it's to a shared data block using
53 * some timestamp magic. If it is, we have to break sharing.
55 * Let's say we write to a shared block in what was the origin. The
58 * i) plug io further to this physical block. (see bio_prison code).
60 * ii) quiesce any read io to that shared data block. Obviously
61 * including all devices that share this block. (see dm_deferred_set code)
63 * iii) copy the data block to a newly allocate block. This step can be
64 * missed out if the io covers the block. (schedule_copy).
66 * iv) insert the new mapping into the origin's btree
67 * (process_prepared_mapping). This act of inserting breaks some
68 * sharing of btree nodes between the two devices. Breaking sharing only
69 * effects the btree of that specific device. Btrees for the other
70 * devices that share the block never change. The btree for the origin
71 * device as it was after the last commit is untouched, ie. we're using
72 * persistent data structures in the functional programming sense.
74 * v) unplug io to this physical block, including the io that triggered
75 * the breaking of sharing.
77 * Steps (ii) and (iii) occur in parallel.
79 * The metadata _doesn't_ need to be committed before the io continues. We
80 * get away with this because the io is always written to a _new_ block.
81 * If there's a crash, then:
83 * - The origin mapping will point to the old origin block (the shared
84 * one). This will contain the data as it was before the io that triggered
85 * the breaking of sharing came in.
87 * - The snap mapping still points to the old block. As it would after
90 * The downside of this scheme is the timestamp magic isn't perfect, and
91 * will continue to think that data block in the snapshot device is shared
92 * even after the write to the origin has broken sharing. I suspect data
93 * blocks will typically be shared by many different devices, so we're
94 * breaking sharing n + 1 times, rather than n, where n is the number of
95 * devices that reference this data block. At the moment I think the
96 * benefits far, far outweigh the disadvantages.
99 /*----------------------------------------------------------------*/
104 static void build_data_key(struct dm_thin_device *td,
105 dm_block_t b, struct dm_cell_key *key)
108 key->dev = dm_thin_dev_id(td);
112 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
113 struct dm_cell_key *key)
116 key->dev = dm_thin_dev_id(td);
120 /*----------------------------------------------------------------*/
123 * A pool device ties together a metadata device and a data device. It
124 * also provides the interface for creating and destroying internal
127 struct dm_thin_new_mapping;
130 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
133 PM_WRITE, /* metadata may be changed */
134 PM_READ_ONLY, /* metadata may not be changed */
135 PM_FAIL, /* all I/O fails */
138 struct pool_features {
141 bool zero_new_blocks:1;
142 bool discard_enabled:1;
143 bool discard_passdown:1;
147 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
148 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
151 struct list_head list;
152 struct dm_target *ti; /* Only set if a pool target is bound */
154 struct mapped_device *pool_md;
155 struct block_device *md_dev;
156 struct dm_pool_metadata *pmd;
158 dm_block_t low_water_blocks;
159 uint32_t sectors_per_block;
160 int sectors_per_block_shift;
162 struct pool_features pf;
163 unsigned low_water_triggered:1; /* A dm event has been sent */
164 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
166 struct dm_bio_prison *prison;
167 struct dm_kcopyd_client *copier;
169 struct workqueue_struct *wq;
170 struct work_struct worker;
171 struct delayed_work waker;
173 unsigned long last_commit_jiffies;
177 struct bio_list deferred_bios;
178 struct bio_list deferred_flush_bios;
179 struct list_head prepared_mappings;
180 struct list_head prepared_discards;
182 struct bio_list retry_on_resume_list;
184 struct dm_deferred_set *shared_read_ds;
185 struct dm_deferred_set *all_io_ds;
187 struct dm_thin_new_mapping *next_mapping;
188 mempool_t *mapping_pool;
189 mempool_t *endio_hook_pool;
191 process_bio_fn process_bio;
192 process_bio_fn process_discard;
194 process_mapping_fn process_prepared_mapping;
195 process_mapping_fn process_prepared_discard;
198 static enum pool_mode get_pool_mode(struct pool *pool);
199 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202 * Target context for a pool.
205 struct dm_target *ti;
207 struct dm_dev *data_dev;
208 struct dm_dev *metadata_dev;
209 struct dm_target_callbacks callbacks;
211 dm_block_t low_water_blocks;
212 struct pool_features requested_pf; /* Features requested during table load */
213 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
217 * Target context for a thin.
220 struct dm_dev *pool_dev;
221 struct dm_dev *origin_dev;
225 struct dm_thin_device *td;
228 /*----------------------------------------------------------------*/
231 * A global list of pools that uses a struct mapped_device as a key.
233 static struct dm_thin_pool_table {
235 struct list_head pools;
236 } dm_thin_pool_table;
238 static void pool_table_init(void)
240 mutex_init(&dm_thin_pool_table.mutex);
241 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
244 static void __pool_table_insert(struct pool *pool)
246 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
247 list_add(&pool->list, &dm_thin_pool_table.pools);
250 static void __pool_table_remove(struct pool *pool)
252 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
253 list_del(&pool->list);
256 static struct pool *__pool_table_lookup(struct mapped_device *md)
258 struct pool *pool = NULL, *tmp;
260 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
262 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
263 if (tmp->pool_md == md) {
272 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
274 struct pool *pool = NULL, *tmp;
276 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
278 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
279 if (tmp->md_dev == md_dev) {
288 /*----------------------------------------------------------------*/
290 struct dm_thin_endio_hook {
292 struct dm_deferred_entry *shared_read_entry;
293 struct dm_deferred_entry *all_io_entry;
294 struct dm_thin_new_mapping *overwrite_mapping;
297 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
300 struct bio_list bios;
302 bio_list_init(&bios);
303 bio_list_merge(&bios, master);
304 bio_list_init(master);
306 while ((bio = bio_list_pop(&bios))) {
307 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
310 bio_endio(bio, DM_ENDIO_REQUEUE);
312 bio_list_add(master, bio);
316 static void requeue_io(struct thin_c *tc)
318 struct pool *pool = tc->pool;
321 spin_lock_irqsave(&pool->lock, flags);
322 __requeue_bio_list(tc, &pool->deferred_bios);
323 __requeue_bio_list(tc, &pool->retry_on_resume_list);
324 spin_unlock_irqrestore(&pool->lock, flags);
328 * This section of code contains the logic for processing a thin device's IO.
329 * Much of the code depends on pool object resources (lists, workqueues, etc)
330 * but most is exclusively called from the thin target rather than the thin-pool
334 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
336 sector_t block_nr = bio->bi_sector;
338 if (tc->pool->sectors_per_block_shift < 0)
339 (void) sector_div(block_nr, tc->pool->sectors_per_block);
341 block_nr >>= tc->pool->sectors_per_block_shift;
346 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
348 struct pool *pool = tc->pool;
349 sector_t bi_sector = bio->bi_sector;
351 bio->bi_bdev = tc->pool_dev->bdev;
352 if (tc->pool->sectors_per_block_shift < 0)
353 bio->bi_sector = (block * pool->sectors_per_block) +
354 sector_div(bi_sector, pool->sectors_per_block);
356 bio->bi_sector = (block << pool->sectors_per_block_shift) |
357 (bi_sector & (pool->sectors_per_block - 1));
360 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
362 bio->bi_bdev = tc->origin_dev->bdev;
365 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
367 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
368 dm_thin_changed_this_transaction(tc->td);
371 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
373 struct dm_thin_endio_hook *h;
375 if (bio->bi_rw & REQ_DISCARD)
378 h = dm_get_mapinfo(bio)->ptr;
379 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
382 static void issue(struct thin_c *tc, struct bio *bio)
384 struct pool *pool = tc->pool;
387 if (!bio_triggers_commit(tc, bio)) {
388 generic_make_request(bio);
393 * Complete bio with an error if earlier I/O caused changes to
394 * the metadata that can't be committed e.g, due to I/O errors
395 * on the metadata device.
397 if (dm_thin_aborted_changes(tc->td)) {
403 * Batch together any bios that trigger commits and then issue a
404 * single commit for them in process_deferred_bios().
406 spin_lock_irqsave(&pool->lock, flags);
407 bio_list_add(&pool->deferred_flush_bios, bio);
408 spin_unlock_irqrestore(&pool->lock, flags);
411 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
413 remap_to_origin(tc, bio);
417 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
420 remap(tc, bio, block);
425 * wake_worker() is used when new work is queued and when pool_resume is
426 * ready to continue deferred IO processing.
428 static void wake_worker(struct pool *pool)
430 queue_work(pool->wq, &pool->worker);
433 /*----------------------------------------------------------------*/
436 * Bio endio functions.
438 struct dm_thin_new_mapping {
439 struct list_head list;
443 unsigned pass_discard:1;
446 dm_block_t virt_block;
447 dm_block_t data_block;
448 struct dm_bio_prison_cell *cell, *cell2;
452 * If the bio covers the whole area of a block then we can avoid
453 * zeroing or copying. Instead this bio is hooked. The bio will
454 * still be in the cell, so care has to be taken to avoid issuing
458 bio_end_io_t *saved_bi_end_io;
461 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
463 struct pool *pool = m->tc->pool;
465 if (m->quiesced && m->prepared) {
466 list_add(&m->list, &pool->prepared_mappings);
471 static void copy_complete(int read_err, unsigned long write_err, void *context)
474 struct dm_thin_new_mapping *m = context;
475 struct pool *pool = m->tc->pool;
477 m->err = read_err || write_err ? -EIO : 0;
479 spin_lock_irqsave(&pool->lock, flags);
481 __maybe_add_mapping(m);
482 spin_unlock_irqrestore(&pool->lock, flags);
485 static void overwrite_endio(struct bio *bio, int err)
488 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
489 struct dm_thin_new_mapping *m = h->overwrite_mapping;
490 struct pool *pool = m->tc->pool;
494 spin_lock_irqsave(&pool->lock, flags);
496 __maybe_add_mapping(m);
497 spin_unlock_irqrestore(&pool->lock, flags);
500 /*----------------------------------------------------------------*/
507 * Prepared mapping jobs.
511 * This sends the bios in the cell back to the deferred_bios list.
513 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
515 struct pool *pool = tc->pool;
518 spin_lock_irqsave(&pool->lock, flags);
519 dm_cell_release(cell, &pool->deferred_bios);
520 spin_unlock_irqrestore(&tc->pool->lock, flags);
526 * Same as cell_defer except it omits the original holder of the cell.
528 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
530 struct pool *pool = tc->pool;
533 spin_lock_irqsave(&pool->lock, flags);
534 dm_cell_release_no_holder(cell, &pool->deferred_bios);
535 spin_unlock_irqrestore(&pool->lock, flags);
540 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
543 m->bio->bi_end_io = m->saved_bi_end_io;
544 dm_cell_error(m->cell);
546 mempool_free(m, m->tc->pool->mapping_pool);
548 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
550 struct thin_c *tc = m->tc;
556 bio->bi_end_io = m->saved_bi_end_io;
559 dm_cell_error(m->cell);
564 * Commit the prepared block into the mapping btree.
565 * Any I/O for this block arriving after this point will get
566 * remapped to it directly.
568 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
570 DMERR_LIMIT("dm_thin_insert_block() failed");
571 dm_cell_error(m->cell);
576 * Release any bios held while the block was being provisioned.
577 * If we are processing a write bio that completely covers the block,
578 * we already processed it so can ignore it now when processing
579 * the bios in the cell.
582 cell_defer_no_holder(tc, m->cell);
585 cell_defer(tc, m->cell);
589 mempool_free(m, tc->pool->mapping_pool);
592 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
594 struct thin_c *tc = m->tc;
596 bio_io_error(m->bio);
597 cell_defer_no_holder(tc, m->cell);
598 cell_defer_no_holder(tc, m->cell2);
599 mempool_free(m, tc->pool->mapping_pool);
602 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
604 struct thin_c *tc = m->tc;
606 inc_all_io_entry(tc->pool, m->bio);
607 cell_defer_no_holder(tc, m->cell);
608 cell_defer_no_holder(tc, m->cell2);
611 remap_and_issue(tc, m->bio, m->data_block);
613 bio_endio(m->bio, 0);
615 mempool_free(m, tc->pool->mapping_pool);
618 static void process_prepared_discard(struct dm_thin_new_mapping *m)
621 struct thin_c *tc = m->tc;
623 r = dm_thin_remove_block(tc->td, m->virt_block);
625 DMERR_LIMIT("dm_thin_remove_block() failed");
627 process_prepared_discard_passdown(m);
630 static void process_prepared(struct pool *pool, struct list_head *head,
631 process_mapping_fn *fn)
634 struct list_head maps;
635 struct dm_thin_new_mapping *m, *tmp;
637 INIT_LIST_HEAD(&maps);
638 spin_lock_irqsave(&pool->lock, flags);
639 list_splice_init(head, &maps);
640 spin_unlock_irqrestore(&pool->lock, flags);
642 list_for_each_entry_safe(m, tmp, &maps, list)
649 static int io_overlaps_block(struct pool *pool, struct bio *bio)
651 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
654 static int io_overwrites_block(struct pool *pool, struct bio *bio)
656 return (bio_data_dir(bio) == WRITE) &&
657 io_overlaps_block(pool, bio);
660 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
663 *save = bio->bi_end_io;
667 static int ensure_next_mapping(struct pool *pool)
669 if (pool->next_mapping)
672 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
674 return pool->next_mapping ? 0 : -ENOMEM;
677 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
679 struct dm_thin_new_mapping *r = pool->next_mapping;
681 BUG_ON(!pool->next_mapping);
683 pool->next_mapping = NULL;
688 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
689 struct dm_dev *origin, dm_block_t data_origin,
690 dm_block_t data_dest,
691 struct dm_bio_prison_cell *cell, struct bio *bio)
694 struct pool *pool = tc->pool;
695 struct dm_thin_new_mapping *m = get_next_mapping(pool);
697 INIT_LIST_HEAD(&m->list);
701 m->virt_block = virt_block;
702 m->data_block = data_dest;
707 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
711 * IO to pool_dev remaps to the pool target's data_dev.
713 * If the whole block of data is being overwritten, we can issue the
714 * bio immediately. Otherwise we use kcopyd to clone the data first.
716 if (io_overwrites_block(pool, bio)) {
717 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
719 h->overwrite_mapping = m;
721 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
722 inc_all_io_entry(pool, bio);
723 remap_and_issue(tc, bio, data_dest);
725 struct dm_io_region from, to;
727 from.bdev = origin->bdev;
728 from.sector = data_origin * pool->sectors_per_block;
729 from.count = pool->sectors_per_block;
731 to.bdev = tc->pool_dev->bdev;
732 to.sector = data_dest * pool->sectors_per_block;
733 to.count = pool->sectors_per_block;
735 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
736 0, copy_complete, m);
738 mempool_free(m, pool->mapping_pool);
739 DMERR_LIMIT("dm_kcopyd_copy() failed");
745 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
746 dm_block_t data_origin, dm_block_t data_dest,
747 struct dm_bio_prison_cell *cell, struct bio *bio)
749 schedule_copy(tc, virt_block, tc->pool_dev,
750 data_origin, data_dest, cell, bio);
753 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
754 dm_block_t data_dest,
755 struct dm_bio_prison_cell *cell, struct bio *bio)
757 schedule_copy(tc, virt_block, tc->origin_dev,
758 virt_block, data_dest, cell, bio);
761 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
762 dm_block_t data_block, struct dm_bio_prison_cell *cell,
765 struct pool *pool = tc->pool;
766 struct dm_thin_new_mapping *m = get_next_mapping(pool);
768 INIT_LIST_HEAD(&m->list);
772 m->virt_block = virt_block;
773 m->data_block = data_block;
779 * If the whole block of data is being overwritten or we are not
780 * zeroing pre-existing data, we can issue the bio immediately.
781 * Otherwise we use kcopyd to zero the data first.
783 if (!pool->pf.zero_new_blocks)
784 process_prepared_mapping(m);
786 else if (io_overwrites_block(pool, bio)) {
787 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
789 h->overwrite_mapping = m;
791 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
792 inc_all_io_entry(pool, bio);
793 remap_and_issue(tc, bio, data_block);
796 struct dm_io_region to;
798 to.bdev = tc->pool_dev->bdev;
799 to.sector = data_block * pool->sectors_per_block;
800 to.count = pool->sectors_per_block;
802 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
804 mempool_free(m, pool->mapping_pool);
805 DMERR_LIMIT("dm_kcopyd_zero() failed");
811 static int commit(struct pool *pool)
815 r = dm_pool_commit_metadata(pool->pmd);
817 DMERR_LIMIT("commit failed: error = %d", r);
823 * A non-zero return indicates read_only or fail_io mode.
824 * Many callers don't care about the return value.
826 static int commit_or_fallback(struct pool *pool)
830 if (get_pool_mode(pool) != PM_WRITE)
835 set_pool_mode(pool, PM_READ_ONLY);
840 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
843 dm_block_t free_blocks;
845 struct pool *pool = tc->pool;
847 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
851 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
852 DMWARN("%s: reached low water mark, sending event.",
853 dm_device_name(pool->pool_md));
854 spin_lock_irqsave(&pool->lock, flags);
855 pool->low_water_triggered = 1;
856 spin_unlock_irqrestore(&pool->lock, flags);
857 dm_table_event(pool->ti->table);
861 if (pool->no_free_space)
865 * Try to commit to see if that will free up some
868 (void) commit_or_fallback(pool);
870 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
875 * If we still have no space we set a flag to avoid
876 * doing all this checking and return -ENOSPC.
879 DMWARN("%s: no free space available.",
880 dm_device_name(pool->pool_md));
881 spin_lock_irqsave(&pool->lock, flags);
882 pool->no_free_space = 1;
883 spin_unlock_irqrestore(&pool->lock, flags);
889 r = dm_pool_alloc_data_block(pool->pmd, result);
897 * If we have run out of space, queue bios until the device is
898 * resumed, presumably after having been reloaded with more space.
900 static void retry_on_resume(struct bio *bio)
902 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
903 struct thin_c *tc = h->tc;
904 struct pool *pool = tc->pool;
907 spin_lock_irqsave(&pool->lock, flags);
908 bio_list_add(&pool->retry_on_resume_list, bio);
909 spin_unlock_irqrestore(&pool->lock, flags);
912 static void no_space(struct dm_bio_prison_cell *cell)
915 struct bio_list bios;
917 bio_list_init(&bios);
918 dm_cell_release(cell, &bios);
920 while ((bio = bio_list_pop(&bios)))
921 retry_on_resume(bio);
924 static void process_discard(struct thin_c *tc, struct bio *bio)
928 struct pool *pool = tc->pool;
929 struct dm_bio_prison_cell *cell, *cell2;
930 struct dm_cell_key key, key2;
931 dm_block_t block = get_bio_block(tc, bio);
932 struct dm_thin_lookup_result lookup_result;
933 struct dm_thin_new_mapping *m;
935 build_virtual_key(tc->td, block, &key);
936 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
939 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
943 * Check nobody is fiddling with this pool block. This can
944 * happen if someone's in the process of breaking sharing
947 build_data_key(tc->td, lookup_result.block, &key2);
948 if (dm_bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
949 cell_defer_no_holder(tc, cell);
953 if (io_overlaps_block(pool, bio)) {
955 * IO may still be going to the destination block. We must
956 * quiesce before we can do the removal.
958 m = get_next_mapping(pool);
960 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
961 m->virt_block = block;
962 m->data_block = lookup_result.block;
968 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
969 spin_lock_irqsave(&pool->lock, flags);
970 list_add(&m->list, &pool->prepared_discards);
971 spin_unlock_irqrestore(&pool->lock, flags);
975 inc_all_io_entry(pool, bio);
976 cell_defer_no_holder(tc, cell);
977 cell_defer_no_holder(tc, cell2);
980 * The DM core makes sure that the discard doesn't span
981 * a block boundary. So we submit the discard of a
982 * partial block appropriately.
984 if ((!lookup_result.shared) && pool->pf.discard_passdown)
985 remap_and_issue(tc, bio, lookup_result.block);
993 * It isn't provisioned, just forget it.
995 cell_defer_no_holder(tc, cell);
1000 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1002 cell_defer_no_holder(tc, cell);
1008 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1009 struct dm_cell_key *key,
1010 struct dm_thin_lookup_result *lookup_result,
1011 struct dm_bio_prison_cell *cell)
1014 dm_block_t data_block;
1016 r = alloc_data_block(tc, &data_block);
1019 schedule_internal_copy(tc, block, lookup_result->block,
1020 data_block, cell, bio);
1028 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1030 dm_cell_error(cell);
1035 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1037 struct dm_thin_lookup_result *lookup_result)
1039 struct dm_bio_prison_cell *cell;
1040 struct pool *pool = tc->pool;
1041 struct dm_cell_key key;
1044 * If cell is already occupied, then sharing is already in the process
1045 * of being broken so we have nothing further to do here.
1047 build_data_key(tc->td, lookup_result->block, &key);
1048 if (dm_bio_detain(pool->prison, &key, bio, &cell))
1051 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1052 break_sharing(tc, bio, block, &key, lookup_result, cell);
1054 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1056 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1057 inc_all_io_entry(pool, bio);
1058 cell_defer_no_holder(tc, cell);
1060 remap_and_issue(tc, bio, lookup_result->block);
1064 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1065 struct dm_bio_prison_cell *cell)
1068 dm_block_t data_block;
1071 * Remap empty bios (flushes) immediately, without provisioning.
1073 if (!bio->bi_size) {
1074 inc_all_io_entry(tc->pool, bio);
1075 cell_defer_no_holder(tc, cell);
1077 remap_and_issue(tc, bio, 0);
1082 * Fill read bios with zeroes and complete them immediately.
1084 if (bio_data_dir(bio) == READ) {
1086 cell_defer_no_holder(tc, cell);
1091 r = alloc_data_block(tc, &data_block);
1095 schedule_external_copy(tc, block, data_block, cell, bio);
1097 schedule_zero(tc, block, data_block, cell, bio);
1105 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1107 set_pool_mode(tc->pool, PM_READ_ONLY);
1108 dm_cell_error(cell);
1113 static void process_bio(struct thin_c *tc, struct bio *bio)
1116 dm_block_t block = get_bio_block(tc, bio);
1117 struct dm_bio_prison_cell *cell;
1118 struct dm_cell_key key;
1119 struct dm_thin_lookup_result lookup_result;
1122 * If cell is already occupied, then the block is already
1123 * being provisioned so we have nothing further to do here.
1125 build_virtual_key(tc->td, block, &key);
1126 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
1129 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1132 if (lookup_result.shared) {
1133 process_shared_bio(tc, bio, block, &lookup_result);
1134 cell_defer_no_holder(tc, cell);
1136 inc_all_io_entry(tc->pool, bio);
1137 cell_defer_no_holder(tc, cell);
1139 remap_and_issue(tc, bio, lookup_result.block);
1144 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1145 inc_all_io_entry(tc->pool, bio);
1146 cell_defer_no_holder(tc, cell);
1148 remap_to_origin_and_issue(tc, bio);
1150 provision_block(tc, bio, block, cell);
1154 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1156 cell_defer_no_holder(tc, cell);
1162 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1165 int rw = bio_data_dir(bio);
1166 dm_block_t block = get_bio_block(tc, bio);
1167 struct dm_thin_lookup_result lookup_result;
1169 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1172 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1175 inc_all_io_entry(tc->pool, bio);
1176 remap_and_issue(tc, bio, lookup_result.block);
1186 if (tc->origin_dev) {
1187 inc_all_io_entry(tc->pool, bio);
1188 remap_to_origin_and_issue(tc, bio);
1197 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1204 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1209 static int need_commit_due_to_time(struct pool *pool)
1211 return jiffies < pool->last_commit_jiffies ||
1212 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1215 static void process_deferred_bios(struct pool *pool)
1217 unsigned long flags;
1219 struct bio_list bios;
1221 bio_list_init(&bios);
1223 spin_lock_irqsave(&pool->lock, flags);
1224 bio_list_merge(&bios, &pool->deferred_bios);
1225 bio_list_init(&pool->deferred_bios);
1226 spin_unlock_irqrestore(&pool->lock, flags);
1228 while ((bio = bio_list_pop(&bios))) {
1229 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1230 struct thin_c *tc = h->tc;
1233 * If we've got no free new_mapping structs, and processing
1234 * this bio might require one, we pause until there are some
1235 * prepared mappings to process.
1237 if (ensure_next_mapping(pool)) {
1238 spin_lock_irqsave(&pool->lock, flags);
1239 bio_list_merge(&pool->deferred_bios, &bios);
1240 spin_unlock_irqrestore(&pool->lock, flags);
1245 if (bio->bi_rw & REQ_DISCARD)
1246 pool->process_discard(tc, bio);
1248 pool->process_bio(tc, bio);
1252 * If there are any deferred flush bios, we must commit
1253 * the metadata before issuing them.
1255 bio_list_init(&bios);
1256 spin_lock_irqsave(&pool->lock, flags);
1257 bio_list_merge(&bios, &pool->deferred_flush_bios);
1258 bio_list_init(&pool->deferred_flush_bios);
1259 spin_unlock_irqrestore(&pool->lock, flags);
1261 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1264 if (commit_or_fallback(pool)) {
1265 while ((bio = bio_list_pop(&bios)))
1269 pool->last_commit_jiffies = jiffies;
1271 while ((bio = bio_list_pop(&bios)))
1272 generic_make_request(bio);
1275 static void do_worker(struct work_struct *ws)
1277 struct pool *pool = container_of(ws, struct pool, worker);
1279 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1280 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1281 process_deferred_bios(pool);
1285 * We want to commit periodically so that not too much
1286 * unwritten data builds up.
1288 static void do_waker(struct work_struct *ws)
1290 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1292 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1295 /*----------------------------------------------------------------*/
1297 static enum pool_mode get_pool_mode(struct pool *pool)
1299 return pool->pf.mode;
1302 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1306 pool->pf.mode = mode;
1310 DMERR("switching pool to failure mode");
1311 pool->process_bio = process_bio_fail;
1312 pool->process_discard = process_bio_fail;
1313 pool->process_prepared_mapping = process_prepared_mapping_fail;
1314 pool->process_prepared_discard = process_prepared_discard_fail;
1318 DMERR("switching pool to read-only mode");
1319 r = dm_pool_abort_metadata(pool->pmd);
1321 DMERR("aborting transaction failed");
1322 set_pool_mode(pool, PM_FAIL);
1324 dm_pool_metadata_read_only(pool->pmd);
1325 pool->process_bio = process_bio_read_only;
1326 pool->process_discard = process_discard;
1327 pool->process_prepared_mapping = process_prepared_mapping_fail;
1328 pool->process_prepared_discard = process_prepared_discard_passdown;
1333 pool->process_bio = process_bio;
1334 pool->process_discard = process_discard;
1335 pool->process_prepared_mapping = process_prepared_mapping;
1336 pool->process_prepared_discard = process_prepared_discard;
1341 /*----------------------------------------------------------------*/
1344 * Mapping functions.
1348 * Called only while mapping a thin bio to hand it over to the workqueue.
1350 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1352 unsigned long flags;
1353 struct pool *pool = tc->pool;
1355 spin_lock_irqsave(&pool->lock, flags);
1356 bio_list_add(&pool->deferred_bios, bio);
1357 spin_unlock_irqrestore(&pool->lock, flags);
1362 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1364 struct pool *pool = tc->pool;
1365 struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1368 h->shared_read_entry = NULL;
1369 h->all_io_entry = NULL;
1370 h->overwrite_mapping = NULL;
1376 * Non-blocking function called from the thin target's map function.
1378 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1379 union map_info *map_context)
1382 struct thin_c *tc = ti->private;
1383 dm_block_t block = get_bio_block(tc, bio);
1384 struct dm_thin_device *td = tc->td;
1385 struct dm_thin_lookup_result result;
1386 struct dm_bio_prison_cell *cell1, *cell2;
1387 struct dm_cell_key key;
1389 map_context->ptr = thin_hook_bio(tc, bio);
1391 if (get_pool_mode(tc->pool) == PM_FAIL) {
1393 return DM_MAPIO_SUBMITTED;
1396 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1397 thin_defer_bio(tc, bio);
1398 return DM_MAPIO_SUBMITTED;
1401 r = dm_thin_find_block(td, block, 0, &result);
1404 * Note that we defer readahead too.
1408 if (unlikely(result.shared)) {
1410 * We have a race condition here between the
1411 * result.shared value returned by the lookup and
1412 * snapshot creation, which may cause new
1415 * To avoid this always quiesce the origin before
1416 * taking the snap. You want to do this anyway to
1417 * ensure a consistent application view
1420 * More distant ancestors are irrelevant. The
1421 * shared flag will be set in their case.
1423 thin_defer_bio(tc, bio);
1424 return DM_MAPIO_SUBMITTED;
1427 build_virtual_key(tc->td, block, &key);
1428 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1))
1429 return DM_MAPIO_SUBMITTED;
1431 build_data_key(tc->td, result.block, &key);
1432 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2)) {
1433 cell_defer_no_holder(tc, cell1);
1434 return DM_MAPIO_SUBMITTED;
1437 inc_all_io_entry(tc->pool, bio);
1438 cell_defer_no_holder(tc, cell2);
1439 cell_defer_no_holder(tc, cell1);
1441 remap(tc, bio, result.block);
1442 return DM_MAPIO_REMAPPED;
1445 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1447 * This block isn't provisioned, and we have no way
1448 * of doing so. Just error it.
1451 return DM_MAPIO_SUBMITTED;
1457 * In future, the failed dm_thin_find_block above could
1458 * provide the hint to load the metadata into cache.
1460 thin_defer_bio(tc, bio);
1461 return DM_MAPIO_SUBMITTED;
1465 * Must always call bio_io_error on failure.
1466 * dm_thin_find_block can fail with -EINVAL if the
1467 * pool is switched to fail-io mode.
1470 return DM_MAPIO_SUBMITTED;
1474 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1477 unsigned long flags;
1478 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1480 spin_lock_irqsave(&pt->pool->lock, flags);
1481 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1482 spin_unlock_irqrestore(&pt->pool->lock, flags);
1485 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1486 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1492 static void __requeue_bios(struct pool *pool)
1494 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1495 bio_list_init(&pool->retry_on_resume_list);
1498 /*----------------------------------------------------------------
1499 * Binding of control targets to a pool object
1500 *--------------------------------------------------------------*/
1501 static bool data_dev_supports_discard(struct pool_c *pt)
1503 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1505 return q && blk_queue_discard(q);
1509 * If discard_passdown was enabled verify that the data device
1510 * supports discards. Disable discard_passdown if not.
1512 static void disable_passdown_if_not_supported(struct pool_c *pt)
1514 struct pool *pool = pt->pool;
1515 struct block_device *data_bdev = pt->data_dev->bdev;
1516 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1517 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1518 const char *reason = NULL;
1519 char buf[BDEVNAME_SIZE];
1521 if (!pt->adjusted_pf.discard_passdown)
1524 if (!data_dev_supports_discard(pt))
1525 reason = "discard unsupported";
1527 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1528 reason = "max discard sectors smaller than a block";
1530 else if (data_limits->discard_granularity > block_size)
1531 reason = "discard granularity larger than a block";
1533 else if (block_size & (data_limits->discard_granularity - 1))
1534 reason = "discard granularity not a factor of block size";
1537 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1538 pt->adjusted_pf.discard_passdown = false;
1542 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1544 struct pool_c *pt = ti->private;
1547 * We want to make sure that degraded pools are never upgraded.
1549 enum pool_mode old_mode = pool->pf.mode;
1550 enum pool_mode new_mode = pt->adjusted_pf.mode;
1552 if (old_mode > new_mode)
1553 new_mode = old_mode;
1556 pool->low_water_blocks = pt->low_water_blocks;
1557 pool->pf = pt->adjusted_pf;
1559 set_pool_mode(pool, new_mode);
1564 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1570 /*----------------------------------------------------------------
1572 *--------------------------------------------------------------*/
1573 /* Initialize pool features. */
1574 static void pool_features_init(struct pool_features *pf)
1576 pf->mode = PM_WRITE;
1577 pf->zero_new_blocks = true;
1578 pf->discard_enabled = true;
1579 pf->discard_passdown = true;
1582 static void __pool_destroy(struct pool *pool)
1584 __pool_table_remove(pool);
1586 if (dm_pool_metadata_close(pool->pmd) < 0)
1587 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1589 dm_bio_prison_destroy(pool->prison);
1590 dm_kcopyd_client_destroy(pool->copier);
1593 destroy_workqueue(pool->wq);
1595 if (pool->next_mapping)
1596 mempool_free(pool->next_mapping, pool->mapping_pool);
1597 mempool_destroy(pool->mapping_pool);
1598 mempool_destroy(pool->endio_hook_pool);
1599 dm_deferred_set_destroy(pool->shared_read_ds);
1600 dm_deferred_set_destroy(pool->all_io_ds);
1604 static struct kmem_cache *_new_mapping_cache;
1605 static struct kmem_cache *_endio_hook_cache;
1607 static struct pool *pool_create(struct mapped_device *pool_md,
1608 struct block_device *metadata_dev,
1609 unsigned long block_size,
1610 int read_only, char **error)
1615 struct dm_pool_metadata *pmd;
1616 bool format_device = read_only ? false : true;
1618 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1620 *error = "Error creating metadata object";
1621 return (struct pool *)pmd;
1624 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1626 *error = "Error allocating memory for pool";
1627 err_p = ERR_PTR(-ENOMEM);
1632 pool->sectors_per_block = block_size;
1633 if (block_size & (block_size - 1))
1634 pool->sectors_per_block_shift = -1;
1636 pool->sectors_per_block_shift = __ffs(block_size);
1637 pool->low_water_blocks = 0;
1638 pool_features_init(&pool->pf);
1639 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1640 if (!pool->prison) {
1641 *error = "Error creating pool's bio prison";
1642 err_p = ERR_PTR(-ENOMEM);
1646 pool->copier = dm_kcopyd_client_create();
1647 if (IS_ERR(pool->copier)) {
1648 r = PTR_ERR(pool->copier);
1649 *error = "Error creating pool's kcopyd client";
1651 goto bad_kcopyd_client;
1655 * Create singlethreaded workqueue that will service all devices
1656 * that use this metadata.
1658 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1660 *error = "Error creating pool's workqueue";
1661 err_p = ERR_PTR(-ENOMEM);
1665 INIT_WORK(&pool->worker, do_worker);
1666 INIT_DELAYED_WORK(&pool->waker, do_waker);
1667 spin_lock_init(&pool->lock);
1668 bio_list_init(&pool->deferred_bios);
1669 bio_list_init(&pool->deferred_flush_bios);
1670 INIT_LIST_HEAD(&pool->prepared_mappings);
1671 INIT_LIST_HEAD(&pool->prepared_discards);
1672 pool->low_water_triggered = 0;
1673 pool->no_free_space = 0;
1674 bio_list_init(&pool->retry_on_resume_list);
1676 pool->shared_read_ds = dm_deferred_set_create();
1677 if (!pool->shared_read_ds) {
1678 *error = "Error creating pool's shared read deferred set";
1679 err_p = ERR_PTR(-ENOMEM);
1680 goto bad_shared_read_ds;
1683 pool->all_io_ds = dm_deferred_set_create();
1684 if (!pool->all_io_ds) {
1685 *error = "Error creating pool's all io deferred set";
1686 err_p = ERR_PTR(-ENOMEM);
1690 pool->next_mapping = NULL;
1691 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1692 _new_mapping_cache);
1693 if (!pool->mapping_pool) {
1694 *error = "Error creating pool's mapping mempool";
1695 err_p = ERR_PTR(-ENOMEM);
1696 goto bad_mapping_pool;
1699 pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1701 if (!pool->endio_hook_pool) {
1702 *error = "Error creating pool's endio_hook mempool";
1703 err_p = ERR_PTR(-ENOMEM);
1704 goto bad_endio_hook_pool;
1706 pool->ref_count = 1;
1707 pool->last_commit_jiffies = jiffies;
1708 pool->pool_md = pool_md;
1709 pool->md_dev = metadata_dev;
1710 __pool_table_insert(pool);
1714 bad_endio_hook_pool:
1715 mempool_destroy(pool->mapping_pool);
1717 dm_deferred_set_destroy(pool->all_io_ds);
1719 dm_deferred_set_destroy(pool->shared_read_ds);
1721 destroy_workqueue(pool->wq);
1723 dm_kcopyd_client_destroy(pool->copier);
1725 dm_bio_prison_destroy(pool->prison);
1729 if (dm_pool_metadata_close(pmd))
1730 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1735 static void __pool_inc(struct pool *pool)
1737 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1741 static void __pool_dec(struct pool *pool)
1743 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1744 BUG_ON(!pool->ref_count);
1745 if (!--pool->ref_count)
1746 __pool_destroy(pool);
1749 static struct pool *__pool_find(struct mapped_device *pool_md,
1750 struct block_device *metadata_dev,
1751 unsigned long block_size, int read_only,
1752 char **error, int *created)
1754 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1757 if (pool->pool_md != pool_md) {
1758 *error = "metadata device already in use by a pool";
1759 return ERR_PTR(-EBUSY);
1764 pool = __pool_table_lookup(pool_md);
1766 if (pool->md_dev != metadata_dev) {
1767 *error = "different pool cannot replace a pool";
1768 return ERR_PTR(-EINVAL);
1773 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1781 /*----------------------------------------------------------------
1782 * Pool target methods
1783 *--------------------------------------------------------------*/
1784 static void pool_dtr(struct dm_target *ti)
1786 struct pool_c *pt = ti->private;
1788 mutex_lock(&dm_thin_pool_table.mutex);
1790 unbind_control_target(pt->pool, ti);
1791 __pool_dec(pt->pool);
1792 dm_put_device(ti, pt->metadata_dev);
1793 dm_put_device(ti, pt->data_dev);
1796 mutex_unlock(&dm_thin_pool_table.mutex);
1799 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1800 struct dm_target *ti)
1804 const char *arg_name;
1806 static struct dm_arg _args[] = {
1807 {0, 3, "Invalid number of pool feature arguments"},
1811 * No feature arguments supplied.
1816 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1820 while (argc && !r) {
1821 arg_name = dm_shift_arg(as);
1824 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1825 pf->zero_new_blocks = false;
1827 else if (!strcasecmp(arg_name, "ignore_discard"))
1828 pf->discard_enabled = false;
1830 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1831 pf->discard_passdown = false;
1833 else if (!strcasecmp(arg_name, "read_only"))
1834 pf->mode = PM_READ_ONLY;
1837 ti->error = "Unrecognised pool feature requested";
1847 * thin-pool <metadata dev> <data dev>
1848 * <data block size (sectors)>
1849 * <low water mark (blocks)>
1850 * [<#feature args> [<arg>]*]
1852 * Optional feature arguments are:
1853 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1854 * ignore_discard: disable discard
1855 * no_discard_passdown: don't pass discards down to the data device
1857 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1859 int r, pool_created = 0;
1862 struct pool_features pf;
1863 struct dm_arg_set as;
1864 struct dm_dev *data_dev;
1865 unsigned long block_size;
1866 dm_block_t low_water_blocks;
1867 struct dm_dev *metadata_dev;
1868 sector_t metadata_dev_size;
1869 char b[BDEVNAME_SIZE];
1872 * FIXME Remove validation from scope of lock.
1874 mutex_lock(&dm_thin_pool_table.mutex);
1877 ti->error = "Invalid argument count";
1884 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1886 ti->error = "Error opening metadata block device";
1890 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1891 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1892 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1893 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1895 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1897 ti->error = "Error getting data device";
1901 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1902 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1903 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1904 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1905 ti->error = "Invalid block size";
1910 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1911 ti->error = "Invalid low water mark";
1917 * Set default pool features.
1919 pool_features_init(&pf);
1921 dm_consume_args(&as, 4);
1922 r = parse_pool_features(&as, &pf, ti);
1926 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1932 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1933 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
1940 * 'pool_created' reflects whether this is the first table load.
1941 * Top level discard support is not allowed to be changed after
1942 * initial load. This would require a pool reload to trigger thin
1945 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
1946 ti->error = "Discard support cannot be disabled once enabled";
1948 goto out_flags_changed;
1953 pt->metadata_dev = metadata_dev;
1954 pt->data_dev = data_dev;
1955 pt->low_water_blocks = low_water_blocks;
1956 pt->adjusted_pf = pt->requested_pf = pf;
1957 ti->num_flush_requests = 1;
1960 * Only need to enable discards if the pool should pass
1961 * them down to the data device. The thin device's discard
1962 * processing will cause mappings to be removed from the btree.
1964 if (pf.discard_enabled && pf.discard_passdown) {
1965 ti->num_discard_requests = 1;
1968 * Setting 'discards_supported' circumvents the normal
1969 * stacking of discard limits (this keeps the pool and
1970 * thin devices' discard limits consistent).
1972 ti->discards_supported = true;
1973 ti->discard_zeroes_data_unsupported = true;
1977 pt->callbacks.congested_fn = pool_is_congested;
1978 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
1980 mutex_unlock(&dm_thin_pool_table.mutex);
1989 dm_put_device(ti, data_dev);
1991 dm_put_device(ti, metadata_dev);
1993 mutex_unlock(&dm_thin_pool_table.mutex);
1998 static int pool_map(struct dm_target *ti, struct bio *bio,
1999 union map_info *map_context)
2002 struct pool_c *pt = ti->private;
2003 struct pool *pool = pt->pool;
2004 unsigned long flags;
2007 * As this is a singleton target, ti->begin is always zero.
2009 spin_lock_irqsave(&pool->lock, flags);
2010 bio->bi_bdev = pt->data_dev->bdev;
2011 r = DM_MAPIO_REMAPPED;
2012 spin_unlock_irqrestore(&pool->lock, flags);
2018 * Retrieves the number of blocks of the data device from
2019 * the superblock and compares it to the actual device size,
2020 * thus resizing the data device in case it has grown.
2022 * This both copes with opening preallocated data devices in the ctr
2023 * being followed by a resume
2025 * calling the resume method individually after userspace has
2026 * grown the data device in reaction to a table event.
2028 static int pool_preresume(struct dm_target *ti)
2031 struct pool_c *pt = ti->private;
2032 struct pool *pool = pt->pool;
2033 sector_t data_size = ti->len;
2034 dm_block_t sb_data_size;
2037 * Take control of the pool object.
2039 r = bind_control_target(pool, ti);
2043 (void) sector_div(data_size, pool->sectors_per_block);
2045 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2047 DMERR("failed to retrieve data device size");
2051 if (data_size < sb_data_size) {
2052 DMERR("pool target too small, is %llu blocks (expected %llu)",
2053 (unsigned long long)data_size, sb_data_size);
2056 } else if (data_size > sb_data_size) {
2057 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2059 DMERR("failed to resize data device");
2060 /* FIXME Stricter than necessary: Rollback transaction instead here */
2061 set_pool_mode(pool, PM_READ_ONLY);
2065 (void) commit_or_fallback(pool);
2071 static void pool_resume(struct dm_target *ti)
2073 struct pool_c *pt = ti->private;
2074 struct pool *pool = pt->pool;
2075 unsigned long flags;
2077 spin_lock_irqsave(&pool->lock, flags);
2078 pool->low_water_triggered = 0;
2079 pool->no_free_space = 0;
2080 __requeue_bios(pool);
2081 spin_unlock_irqrestore(&pool->lock, flags);
2083 do_waker(&pool->waker.work);
2086 static void pool_postsuspend(struct dm_target *ti)
2088 struct pool_c *pt = ti->private;
2089 struct pool *pool = pt->pool;
2091 cancel_delayed_work(&pool->waker);
2092 flush_workqueue(pool->wq);
2093 (void) commit_or_fallback(pool);
2096 static int check_arg_count(unsigned argc, unsigned args_required)
2098 if (argc != args_required) {
2099 DMWARN("Message received with %u arguments instead of %u.",
2100 argc, args_required);
2107 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2109 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2110 *dev_id <= MAX_DEV_ID)
2114 DMWARN("Message received with invalid device id: %s", arg);
2119 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2124 r = check_arg_count(argc, 2);
2128 r = read_dev_id(argv[1], &dev_id, 1);
2132 r = dm_pool_create_thin(pool->pmd, dev_id);
2134 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2142 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2145 dm_thin_id origin_dev_id;
2148 r = check_arg_count(argc, 3);
2152 r = read_dev_id(argv[1], &dev_id, 1);
2156 r = read_dev_id(argv[2], &origin_dev_id, 1);
2160 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2162 DMWARN("Creation of new snapshot %s of device %s failed.",
2170 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2175 r = check_arg_count(argc, 2);
2179 r = read_dev_id(argv[1], &dev_id, 1);
2183 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2185 DMWARN("Deletion of thin device %s failed.", argv[1]);
2190 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2192 dm_thin_id old_id, new_id;
2195 r = check_arg_count(argc, 3);
2199 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2200 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2204 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2205 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2209 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2211 DMWARN("Failed to change transaction id from %s to %s.",
2219 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2223 r = check_arg_count(argc, 1);
2227 (void) commit_or_fallback(pool);
2229 r = dm_pool_reserve_metadata_snap(pool->pmd);
2231 DMWARN("reserve_metadata_snap message failed.");
2236 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2240 r = check_arg_count(argc, 1);
2244 r = dm_pool_release_metadata_snap(pool->pmd);
2246 DMWARN("release_metadata_snap message failed.");
2252 * Messages supported:
2253 * create_thin <dev_id>
2254 * create_snap <dev_id> <origin_id>
2256 * trim <dev_id> <new_size_in_sectors>
2257 * set_transaction_id <current_trans_id> <new_trans_id>
2258 * reserve_metadata_snap
2259 * release_metadata_snap
2261 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2264 struct pool_c *pt = ti->private;
2265 struct pool *pool = pt->pool;
2267 if (!strcasecmp(argv[0], "create_thin"))
2268 r = process_create_thin_mesg(argc, argv, pool);
2270 else if (!strcasecmp(argv[0], "create_snap"))
2271 r = process_create_snap_mesg(argc, argv, pool);
2273 else if (!strcasecmp(argv[0], "delete"))
2274 r = process_delete_mesg(argc, argv, pool);
2276 else if (!strcasecmp(argv[0], "set_transaction_id"))
2277 r = process_set_transaction_id_mesg(argc, argv, pool);
2279 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2280 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2282 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2283 r = process_release_metadata_snap_mesg(argc, argv, pool);
2286 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2289 (void) commit_or_fallback(pool);
2294 static void emit_flags(struct pool_features *pf, char *result,
2295 unsigned sz, unsigned maxlen)
2297 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2298 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2299 DMEMIT("%u ", count);
2301 if (!pf->zero_new_blocks)
2302 DMEMIT("skip_block_zeroing ");
2304 if (!pf->discard_enabled)
2305 DMEMIT("ignore_discard ");
2307 if (!pf->discard_passdown)
2308 DMEMIT("no_discard_passdown ");
2310 if (pf->mode == PM_READ_ONLY)
2311 DMEMIT("read_only ");
2316 * <transaction id> <used metadata sectors>/<total metadata sectors>
2317 * <used data sectors>/<total data sectors> <held metadata root>
2319 static int pool_status(struct dm_target *ti, status_type_t type,
2320 unsigned status_flags, char *result, unsigned maxlen)
2324 uint64_t transaction_id;
2325 dm_block_t nr_free_blocks_data;
2326 dm_block_t nr_free_blocks_metadata;
2327 dm_block_t nr_blocks_data;
2328 dm_block_t nr_blocks_metadata;
2329 dm_block_t held_root;
2330 char buf[BDEVNAME_SIZE];
2331 char buf2[BDEVNAME_SIZE];
2332 struct pool_c *pt = ti->private;
2333 struct pool *pool = pt->pool;
2336 case STATUSTYPE_INFO:
2337 if (get_pool_mode(pool) == PM_FAIL) {
2342 /* Commit to ensure statistics aren't out-of-date */
2343 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2344 (void) commit_or_fallback(pool);
2346 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2351 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2352 &nr_free_blocks_metadata);
2356 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2360 r = dm_pool_get_free_block_count(pool->pmd,
2361 &nr_free_blocks_data);
2365 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2369 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2373 DMEMIT("%llu %llu/%llu %llu/%llu ",
2374 (unsigned long long)transaction_id,
2375 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2376 (unsigned long long)nr_blocks_metadata,
2377 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2378 (unsigned long long)nr_blocks_data);
2381 DMEMIT("%llu ", held_root);
2385 if (pool->pf.mode == PM_READ_ONLY)
2390 if (!pool->pf.discard_enabled)
2391 DMEMIT("ignore_discard");
2392 else if (pool->pf.discard_passdown)
2393 DMEMIT("discard_passdown");
2395 DMEMIT("no_discard_passdown");
2399 case STATUSTYPE_TABLE:
2400 DMEMIT("%s %s %lu %llu ",
2401 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2402 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2403 (unsigned long)pool->sectors_per_block,
2404 (unsigned long long)pt->low_water_blocks);
2405 emit_flags(&pt->requested_pf, result, sz, maxlen);
2412 static int pool_iterate_devices(struct dm_target *ti,
2413 iterate_devices_callout_fn fn, void *data)
2415 struct pool_c *pt = ti->private;
2417 return fn(ti, pt->data_dev, 0, ti->len, data);
2420 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2421 struct bio_vec *biovec, int max_size)
2423 struct pool_c *pt = ti->private;
2424 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2426 if (!q->merge_bvec_fn)
2429 bvm->bi_bdev = pt->data_dev->bdev;
2431 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2434 static bool block_size_is_power_of_two(struct pool *pool)
2436 return pool->sectors_per_block_shift >= 0;
2439 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2441 struct pool *pool = pt->pool;
2442 struct queue_limits *data_limits;
2444 limits->max_discard_sectors = pool->sectors_per_block;
2447 * discard_granularity is just a hint, and not enforced.
2449 if (pt->adjusted_pf.discard_passdown) {
2450 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2451 limits->discard_granularity = data_limits->discard_granularity;
2452 } else if (block_size_is_power_of_two(pool))
2453 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2456 * Use largest power of 2 that is a factor of sectors_per_block
2457 * but at least DATA_DEV_BLOCK_SIZE_MIN_SECTORS.
2459 limits->discard_granularity = max(1 << (ffs(pool->sectors_per_block) - 1),
2460 DATA_DEV_BLOCK_SIZE_MIN_SECTORS) << SECTOR_SHIFT;
2463 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2465 struct pool_c *pt = ti->private;
2466 struct pool *pool = pt->pool;
2468 blk_limits_io_min(limits, 0);
2469 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2472 * pt->adjusted_pf is a staging area for the actual features to use.
2473 * They get transferred to the live pool in bind_control_target()
2474 * called from pool_preresume().
2476 if (!pt->adjusted_pf.discard_enabled)
2479 disable_passdown_if_not_supported(pt);
2481 set_discard_limits(pt, limits);
2484 static struct target_type pool_target = {
2485 .name = "thin-pool",
2486 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2487 DM_TARGET_IMMUTABLE,
2488 .version = {1, 6, 0},
2489 .module = THIS_MODULE,
2493 .postsuspend = pool_postsuspend,
2494 .preresume = pool_preresume,
2495 .resume = pool_resume,
2496 .message = pool_message,
2497 .status = pool_status,
2498 .merge = pool_merge,
2499 .iterate_devices = pool_iterate_devices,
2500 .io_hints = pool_io_hints,
2503 /*----------------------------------------------------------------
2504 * Thin target methods
2505 *--------------------------------------------------------------*/
2506 static void thin_dtr(struct dm_target *ti)
2508 struct thin_c *tc = ti->private;
2510 mutex_lock(&dm_thin_pool_table.mutex);
2512 __pool_dec(tc->pool);
2513 dm_pool_close_thin_device(tc->td);
2514 dm_put_device(ti, tc->pool_dev);
2516 dm_put_device(ti, tc->origin_dev);
2519 mutex_unlock(&dm_thin_pool_table.mutex);
2523 * Thin target parameters:
2525 * <pool_dev> <dev_id> [origin_dev]
2527 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2528 * dev_id: the internal device identifier
2529 * origin_dev: a device external to the pool that should act as the origin
2531 * If the pool device has discards disabled, they get disabled for the thin
2534 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2538 struct dm_dev *pool_dev, *origin_dev;
2539 struct mapped_device *pool_md;
2541 mutex_lock(&dm_thin_pool_table.mutex);
2543 if (argc != 2 && argc != 3) {
2544 ti->error = "Invalid argument count";
2549 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2551 ti->error = "Out of memory";
2557 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2559 ti->error = "Error opening origin device";
2560 goto bad_origin_dev;
2562 tc->origin_dev = origin_dev;
2565 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2567 ti->error = "Error opening pool device";
2570 tc->pool_dev = pool_dev;
2572 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2573 ti->error = "Invalid device id";
2578 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2580 ti->error = "Couldn't get pool mapped device";
2585 tc->pool = __pool_table_lookup(pool_md);
2587 ti->error = "Couldn't find pool object";
2589 goto bad_pool_lookup;
2591 __pool_inc(tc->pool);
2593 if (get_pool_mode(tc->pool) == PM_FAIL) {
2594 ti->error = "Couldn't open thin device, Pool is in fail mode";
2598 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2600 ti->error = "Couldn't open thin internal device";
2604 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2608 ti->num_flush_requests = 1;
2609 ti->flush_supported = true;
2611 /* In case the pool supports discards, pass them on. */
2612 if (tc->pool->pf.discard_enabled) {
2613 ti->discards_supported = true;
2614 ti->num_discard_requests = 1;
2615 ti->discard_zeroes_data_unsupported = true;
2616 /* Discard requests must be split on a block boundary */
2617 ti->split_discard_requests = true;
2622 mutex_unlock(&dm_thin_pool_table.mutex);
2627 __pool_dec(tc->pool);
2631 dm_put_device(ti, tc->pool_dev);
2634 dm_put_device(ti, tc->origin_dev);
2638 mutex_unlock(&dm_thin_pool_table.mutex);
2643 static int thin_map(struct dm_target *ti, struct bio *bio,
2644 union map_info *map_context)
2646 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2648 return thin_bio_map(ti, bio, map_context);
2651 static int thin_endio(struct dm_target *ti,
2652 struct bio *bio, int err,
2653 union map_info *map_context)
2655 unsigned long flags;
2656 struct dm_thin_endio_hook *h = map_context->ptr;
2657 struct list_head work;
2658 struct dm_thin_new_mapping *m, *tmp;
2659 struct pool *pool = h->tc->pool;
2661 if (h->shared_read_entry) {
2662 INIT_LIST_HEAD(&work);
2663 dm_deferred_entry_dec(h->shared_read_entry, &work);
2665 spin_lock_irqsave(&pool->lock, flags);
2666 list_for_each_entry_safe(m, tmp, &work, list) {
2669 __maybe_add_mapping(m);
2671 spin_unlock_irqrestore(&pool->lock, flags);
2674 if (h->all_io_entry) {
2675 INIT_LIST_HEAD(&work);
2676 dm_deferred_entry_dec(h->all_io_entry, &work);
2677 if (!list_empty(&work)) {
2678 spin_lock_irqsave(&pool->lock, flags);
2679 list_for_each_entry_safe(m, tmp, &work, list)
2680 list_add(&m->list, &pool->prepared_discards);
2681 spin_unlock_irqrestore(&pool->lock, flags);
2686 mempool_free(h, pool->endio_hook_pool);
2691 static void thin_postsuspend(struct dm_target *ti)
2693 if (dm_noflush_suspending(ti))
2694 requeue_io((struct thin_c *)ti->private);
2698 * <nr mapped sectors> <highest mapped sector>
2700 static int thin_status(struct dm_target *ti, status_type_t type,
2701 unsigned status_flags, char *result, unsigned maxlen)
2705 dm_block_t mapped, highest;
2706 char buf[BDEVNAME_SIZE];
2707 struct thin_c *tc = ti->private;
2709 if (get_pool_mode(tc->pool) == PM_FAIL) {
2718 case STATUSTYPE_INFO:
2719 r = dm_thin_get_mapped_count(tc->td, &mapped);
2723 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2727 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2729 DMEMIT("%llu", ((highest + 1) *
2730 tc->pool->sectors_per_block) - 1);
2735 case STATUSTYPE_TABLE:
2737 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2738 (unsigned long) tc->dev_id);
2740 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2748 static int thin_iterate_devices(struct dm_target *ti,
2749 iterate_devices_callout_fn fn, void *data)
2752 struct thin_c *tc = ti->private;
2753 struct pool *pool = tc->pool;
2756 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2757 * we follow a more convoluted path through to the pool's target.
2760 return 0; /* nothing is bound */
2762 blocks = pool->ti->len;
2763 (void) sector_div(blocks, pool->sectors_per_block);
2765 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2771 * A thin device always inherits its queue limits from its pool.
2773 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2775 struct thin_c *tc = ti->private;
2777 *limits = bdev_get_queue(tc->pool_dev->bdev)->limits;
2780 static struct target_type thin_target = {
2782 .version = {1, 6, 0},
2783 .module = THIS_MODULE,
2787 .end_io = thin_endio,
2788 .postsuspend = thin_postsuspend,
2789 .status = thin_status,
2790 .iterate_devices = thin_iterate_devices,
2791 .io_hints = thin_io_hints,
2794 /*----------------------------------------------------------------*/
2796 static int __init dm_thin_init(void)
2802 r = dm_register_target(&thin_target);
2806 r = dm_register_target(&pool_target);
2808 goto bad_pool_target;
2812 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2813 if (!_new_mapping_cache)
2814 goto bad_new_mapping_cache;
2816 _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2817 if (!_endio_hook_cache)
2818 goto bad_endio_hook_cache;
2822 bad_endio_hook_cache:
2823 kmem_cache_destroy(_new_mapping_cache);
2824 bad_new_mapping_cache:
2825 dm_unregister_target(&pool_target);
2827 dm_unregister_target(&thin_target);
2832 static void dm_thin_exit(void)
2834 dm_unregister_target(&thin_target);
2835 dm_unregister_target(&pool_target);
2837 kmem_cache_destroy(_new_mapping_cache);
2838 kmem_cache_destroy(_endio_hook_cache);
2841 module_init(dm_thin_init);
2842 module_exit(dm_thin_exit);
2844 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2845 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2846 MODULE_LICENSE("GPL");