2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/dm-kcopyd.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
18 #define DM_MSG_PREFIX "thin"
23 #define ENDIO_HOOK_POOL_SIZE 1024
24 #define DEFERRED_SET_SIZE 64
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
30 * The block size of the device holding pool data must be
31 * between 64KB and 1GB.
33 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
34 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
37 * Device id is restricted to 24 bits.
39 #define MAX_DEV_ID ((1 << 24) - 1)
42 * How do we handle breaking sharing of data blocks?
43 * =================================================
45 * We use a standard copy-on-write btree to store the mappings for the
46 * devices (note I'm talking about copy-on-write of the metadata here, not
47 * the data). When you take an internal snapshot you clone the root node
48 * of the origin btree. After this there is no concept of an origin or a
49 * snapshot. They are just two device trees that happen to point to the
52 * When we get a write in we decide if it's to a shared data block using
53 * some timestamp magic. If it is, we have to break sharing.
55 * Let's say we write to a shared block in what was the origin. The
58 * i) plug io further to this physical block. (see bio_prison code).
60 * ii) quiesce any read io to that shared data block. Obviously
61 * including all devices that share this block. (see deferred_set code)
63 * iii) copy the data block to a newly allocate block. This step can be
64 * missed out if the io covers the block. (schedule_copy).
66 * iv) insert the new mapping into the origin's btree
67 * (process_prepared_mapping). This act of inserting breaks some
68 * sharing of btree nodes between the two devices. Breaking sharing only
69 * effects the btree of that specific device. Btrees for the other
70 * devices that share the block never change. The btree for the origin
71 * device as it was after the last commit is untouched, ie. we're using
72 * persistent data structures in the functional programming sense.
74 * v) unplug io to this physical block, including the io that triggered
75 * the breaking of sharing.
77 * Steps (ii) and (iii) occur in parallel.
79 * The metadata _doesn't_ need to be committed before the io continues. We
80 * get away with this because the io is always written to a _new_ block.
81 * If there's a crash, then:
83 * - The origin mapping will point to the old origin block (the shared
84 * one). This will contain the data as it was before the io that triggered
85 * the breaking of sharing came in.
87 * - The snap mapping still points to the old block. As it would after
90 * The downside of this scheme is the timestamp magic isn't perfect, and
91 * will continue to think that data block in the snapshot device is shared
92 * even after the write to the origin has broken sharing. I suspect data
93 * blocks will typically be shared by many different devices, so we're
94 * breaking sharing n + 1 times, rather than n, where n is the number of
95 * devices that reference this data block. At the moment I think the
96 * benefits far, far outweigh the disadvantages.
99 /*----------------------------------------------------------------*/
102 * Sometimes we can't deal with a bio straight away. We put them in prison
103 * where they can't cause any mischief. Bios are put in a cell identified
104 * by a key, multiple bios can be in the same cell. When the cell is
105 * subsequently unlocked the bios become available.
115 struct dm_bio_prison_cell {
116 struct hlist_node list;
117 struct bio_prison *prison;
120 struct bio_list bios;
125 mempool_t *cell_pool;
129 struct hlist_head *cells;
132 static uint32_t calc_nr_buckets(unsigned nr_cells)
137 nr_cells = min(nr_cells, 8192u);
145 static struct kmem_cache *_cell_cache;
148 * @nr_cells should be the number of cells you want in use _concurrently_.
149 * Don't confuse it with the number of distinct keys.
151 static struct bio_prison *prison_create(unsigned nr_cells)
154 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
155 size_t len = sizeof(struct bio_prison) +
156 (sizeof(struct hlist_head) * nr_buckets);
157 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
162 spin_lock_init(&prison->lock);
163 prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
164 if (!prison->cell_pool) {
169 prison->nr_buckets = nr_buckets;
170 prison->hash_mask = nr_buckets - 1;
171 prison->cells = (struct hlist_head *) (prison + 1);
172 for (i = 0; i < nr_buckets; i++)
173 INIT_HLIST_HEAD(prison->cells + i);
178 static void prison_destroy(struct bio_prison *prison)
180 mempool_destroy(prison->cell_pool);
184 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
186 const unsigned long BIG_PRIME = 4294967291UL;
187 uint64_t hash = key->block * BIG_PRIME;
189 return (uint32_t) (hash & prison->hash_mask);
192 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
194 return (lhs->virtual == rhs->virtual) &&
195 (lhs->dev == rhs->dev) &&
196 (lhs->block == rhs->block);
199 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
200 struct cell_key *key)
202 struct dm_bio_prison_cell *cell;
203 struct hlist_node *tmp;
205 hlist_for_each_entry(cell, tmp, bucket, list)
206 if (keys_equal(&cell->key, key))
213 * This may block if a new cell needs allocating. You must ensure that
214 * cells will be unlocked even if the calling thread is blocked.
216 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
218 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
219 struct bio *inmate, struct dm_bio_prison_cell **ref)
223 uint32_t hash = hash_key(prison, key);
224 struct dm_bio_prison_cell *cell, *cell2;
226 BUG_ON(hash > prison->nr_buckets);
228 spin_lock_irqsave(&prison->lock, flags);
230 cell = __search_bucket(prison->cells + hash, key);
232 bio_list_add(&cell->bios, inmate);
237 * Allocate a new cell
239 spin_unlock_irqrestore(&prison->lock, flags);
240 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
241 spin_lock_irqsave(&prison->lock, flags);
244 * We've been unlocked, so we have to double check that
245 * nobody else has inserted this cell in the meantime.
247 cell = __search_bucket(prison->cells + hash, key);
249 mempool_free(cell2, prison->cell_pool);
250 bio_list_add(&cell->bios, inmate);
259 cell->prison = prison;
260 memcpy(&cell->key, key, sizeof(cell->key));
261 cell->holder = inmate;
262 bio_list_init(&cell->bios);
263 hlist_add_head(&cell->list, prison->cells + hash);
268 spin_unlock_irqrestore(&prison->lock, flags);
276 * @inmates must have been initialised prior to this call
278 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
280 struct bio_prison *prison = cell->prison;
282 hlist_del(&cell->list);
285 bio_list_add(inmates, cell->holder);
286 bio_list_merge(inmates, &cell->bios);
289 mempool_free(cell, prison->cell_pool);
292 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
295 struct bio_prison *prison = cell->prison;
297 spin_lock_irqsave(&prison->lock, flags);
298 __cell_release(cell, bios);
299 spin_unlock_irqrestore(&prison->lock, flags);
303 * There are a couple of places where we put a bio into a cell briefly
304 * before taking it out again. In these situations we know that no other
305 * bio may be in the cell. This function releases the cell, and also does
308 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
310 BUG_ON(cell->holder != bio);
311 BUG_ON(!bio_list_empty(&cell->bios));
313 __cell_release(cell, NULL);
316 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
319 struct bio_prison *prison = cell->prison;
321 spin_lock_irqsave(&prison->lock, flags);
322 __cell_release_singleton(cell, bio);
323 spin_unlock_irqrestore(&prison->lock, flags);
327 * Sometimes we don't want the holder, just the additional bios.
329 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
330 struct bio_list *inmates)
332 struct bio_prison *prison = cell->prison;
334 hlist_del(&cell->list);
335 bio_list_merge(inmates, &cell->bios);
337 mempool_free(cell, prison->cell_pool);
340 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
341 struct bio_list *inmates)
344 struct bio_prison *prison = cell->prison;
346 spin_lock_irqsave(&prison->lock, flags);
347 __cell_release_no_holder(cell, inmates);
348 spin_unlock_irqrestore(&prison->lock, flags);
351 static void cell_error(struct dm_bio_prison_cell *cell)
353 struct bio_prison *prison = cell->prison;
354 struct bio_list bios;
358 bio_list_init(&bios);
360 spin_lock_irqsave(&prison->lock, flags);
361 __cell_release(cell, &bios);
362 spin_unlock_irqrestore(&prison->lock, flags);
364 while ((bio = bio_list_pop(&bios)))
368 /*----------------------------------------------------------------*/
371 * We use the deferred set to keep track of pending reads to shared blocks.
372 * We do this to ensure the new mapping caused by a write isn't performed
373 * until these prior reads have completed. Otherwise the insertion of the
374 * new mapping could free the old block that the read bios are mapped to.
378 struct deferred_entry {
379 struct deferred_set *ds;
381 struct list_head work_items;
384 struct deferred_set {
386 unsigned current_entry;
388 struct deferred_entry entries[DEFERRED_SET_SIZE];
391 static void ds_init(struct deferred_set *ds)
395 spin_lock_init(&ds->lock);
396 ds->current_entry = 0;
398 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
399 ds->entries[i].ds = ds;
400 ds->entries[i].count = 0;
401 INIT_LIST_HEAD(&ds->entries[i].work_items);
405 static struct deferred_entry *ds_inc(struct deferred_set *ds)
408 struct deferred_entry *entry;
410 spin_lock_irqsave(&ds->lock, flags);
411 entry = ds->entries + ds->current_entry;
413 spin_unlock_irqrestore(&ds->lock, flags);
418 static unsigned ds_next(unsigned index)
420 return (index + 1) % DEFERRED_SET_SIZE;
423 static void __sweep(struct deferred_set *ds, struct list_head *head)
425 while ((ds->sweeper != ds->current_entry) &&
426 !ds->entries[ds->sweeper].count) {
427 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
428 ds->sweeper = ds_next(ds->sweeper);
431 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
432 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
435 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
439 spin_lock_irqsave(&entry->ds->lock, flags);
440 BUG_ON(!entry->count);
442 __sweep(entry->ds, head);
443 spin_unlock_irqrestore(&entry->ds->lock, flags);
447 * Returns 1 if deferred or 0 if no pending items to delay job.
449 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
455 spin_lock_irqsave(&ds->lock, flags);
456 if ((ds->sweeper == ds->current_entry) &&
457 !ds->entries[ds->current_entry].count)
460 list_add(work, &ds->entries[ds->current_entry].work_items);
461 next_entry = ds_next(ds->current_entry);
462 if (!ds->entries[next_entry].count)
463 ds->current_entry = next_entry;
465 spin_unlock_irqrestore(&ds->lock, flags);
470 /*----------------------------------------------------------------*/
475 static void build_data_key(struct dm_thin_device *td,
476 dm_block_t b, struct cell_key *key)
479 key->dev = dm_thin_dev_id(td);
483 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
484 struct cell_key *key)
487 key->dev = dm_thin_dev_id(td);
491 /*----------------------------------------------------------------*/
494 * A pool device ties together a metadata device and a data device. It
495 * also provides the interface for creating and destroying internal
498 struct dm_thin_new_mapping;
501 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
504 PM_WRITE, /* metadata may be changed */
505 PM_READ_ONLY, /* metadata may not be changed */
506 PM_FAIL, /* all I/O fails */
509 struct pool_features {
512 bool zero_new_blocks:1;
513 bool discard_enabled:1;
514 bool discard_passdown:1;
518 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
519 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
522 struct list_head list;
523 struct dm_target *ti; /* Only set if a pool target is bound */
525 struct mapped_device *pool_md;
526 struct block_device *md_dev;
527 struct dm_pool_metadata *pmd;
529 dm_block_t low_water_blocks;
530 uint32_t sectors_per_block;
531 int sectors_per_block_shift;
533 struct pool_features pf;
534 unsigned low_water_triggered:1; /* A dm event has been sent */
535 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
537 struct bio_prison *prison;
538 struct dm_kcopyd_client *copier;
540 struct workqueue_struct *wq;
541 struct work_struct worker;
542 struct delayed_work waker;
544 unsigned long last_commit_jiffies;
548 struct bio_list deferred_bios;
549 struct bio_list deferred_flush_bios;
550 struct list_head prepared_mappings;
551 struct list_head prepared_discards;
553 struct bio_list retry_on_resume_list;
555 struct deferred_set shared_read_ds;
556 struct deferred_set all_io_ds;
558 struct dm_thin_new_mapping *next_mapping;
559 mempool_t *mapping_pool;
560 mempool_t *endio_hook_pool;
562 process_bio_fn process_bio;
563 process_bio_fn process_discard;
565 process_mapping_fn process_prepared_mapping;
566 process_mapping_fn process_prepared_discard;
569 static enum pool_mode get_pool_mode(struct pool *pool);
570 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
573 * Target context for a pool.
576 struct dm_target *ti;
578 struct dm_dev *data_dev;
579 struct dm_dev *metadata_dev;
580 struct dm_target_callbacks callbacks;
582 dm_block_t low_water_blocks;
583 struct pool_features requested_pf; /* Features requested during table load */
584 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
588 * Target context for a thin.
591 struct dm_dev *pool_dev;
592 struct dm_dev *origin_dev;
596 struct dm_thin_device *td;
599 /*----------------------------------------------------------------*/
602 * A global list of pools that uses a struct mapped_device as a key.
604 static struct dm_thin_pool_table {
606 struct list_head pools;
607 } dm_thin_pool_table;
609 static void pool_table_init(void)
611 mutex_init(&dm_thin_pool_table.mutex);
612 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
615 static void __pool_table_insert(struct pool *pool)
617 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
618 list_add(&pool->list, &dm_thin_pool_table.pools);
621 static void __pool_table_remove(struct pool *pool)
623 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
624 list_del(&pool->list);
627 static struct pool *__pool_table_lookup(struct mapped_device *md)
629 struct pool *pool = NULL, *tmp;
631 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
633 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
634 if (tmp->pool_md == md) {
643 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
645 struct pool *pool = NULL, *tmp;
647 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
649 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
650 if (tmp->md_dev == md_dev) {
659 /*----------------------------------------------------------------*/
661 struct dm_thin_endio_hook {
663 struct deferred_entry *shared_read_entry;
664 struct deferred_entry *all_io_entry;
665 struct dm_thin_new_mapping *overwrite_mapping;
668 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
671 struct bio_list bios;
673 bio_list_init(&bios);
674 bio_list_merge(&bios, master);
675 bio_list_init(master);
677 while ((bio = bio_list_pop(&bios))) {
678 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
681 bio_endio(bio, DM_ENDIO_REQUEUE);
683 bio_list_add(master, bio);
687 static void requeue_io(struct thin_c *tc)
689 struct pool *pool = tc->pool;
692 spin_lock_irqsave(&pool->lock, flags);
693 __requeue_bio_list(tc, &pool->deferred_bios);
694 __requeue_bio_list(tc, &pool->retry_on_resume_list);
695 spin_unlock_irqrestore(&pool->lock, flags);
699 * This section of code contains the logic for processing a thin device's IO.
700 * Much of the code depends on pool object resources (lists, workqueues, etc)
701 * but most is exclusively called from the thin target rather than the thin-pool
705 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
707 sector_t block_nr = bio->bi_sector;
709 if (tc->pool->sectors_per_block_shift < 0)
710 (void) sector_div(block_nr, tc->pool->sectors_per_block);
712 block_nr >>= tc->pool->sectors_per_block_shift;
717 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
719 struct pool *pool = tc->pool;
720 sector_t bi_sector = bio->bi_sector;
722 bio->bi_bdev = tc->pool_dev->bdev;
723 if (tc->pool->sectors_per_block_shift < 0)
724 bio->bi_sector = (block * pool->sectors_per_block) +
725 sector_div(bi_sector, pool->sectors_per_block);
727 bio->bi_sector = (block << pool->sectors_per_block_shift) |
728 (bi_sector & (pool->sectors_per_block - 1));
731 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
733 bio->bi_bdev = tc->origin_dev->bdev;
736 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
738 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
739 dm_thin_changed_this_transaction(tc->td);
742 static void issue(struct thin_c *tc, struct bio *bio)
744 struct pool *pool = tc->pool;
747 if (!bio_triggers_commit(tc, bio)) {
748 generic_make_request(bio);
753 * Complete bio with an error if earlier I/O caused changes to
754 * the metadata that can't be committed e.g, due to I/O errors
755 * on the metadata device.
757 if (dm_thin_aborted_changes(tc->td)) {
763 * Batch together any bios that trigger commits and then issue a
764 * single commit for them in process_deferred_bios().
766 spin_lock_irqsave(&pool->lock, flags);
767 bio_list_add(&pool->deferred_flush_bios, bio);
768 spin_unlock_irqrestore(&pool->lock, flags);
771 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
773 remap_to_origin(tc, bio);
777 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
780 remap(tc, bio, block);
785 * wake_worker() is used when new work is queued and when pool_resume is
786 * ready to continue deferred IO processing.
788 static void wake_worker(struct pool *pool)
790 queue_work(pool->wq, &pool->worker);
793 /*----------------------------------------------------------------*/
796 * Bio endio functions.
798 struct dm_thin_new_mapping {
799 struct list_head list;
803 unsigned pass_discard:1;
806 dm_block_t virt_block;
807 dm_block_t data_block;
808 struct dm_bio_prison_cell *cell, *cell2;
812 * If the bio covers the whole area of a block then we can avoid
813 * zeroing or copying. Instead this bio is hooked. The bio will
814 * still be in the cell, so care has to be taken to avoid issuing
818 bio_end_io_t *saved_bi_end_io;
821 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
823 struct pool *pool = m->tc->pool;
825 if (m->quiesced && m->prepared) {
826 list_add(&m->list, &pool->prepared_mappings);
831 static void copy_complete(int read_err, unsigned long write_err, void *context)
834 struct dm_thin_new_mapping *m = context;
835 struct pool *pool = m->tc->pool;
837 m->err = read_err || write_err ? -EIO : 0;
839 spin_lock_irqsave(&pool->lock, flags);
841 __maybe_add_mapping(m);
842 spin_unlock_irqrestore(&pool->lock, flags);
845 static void overwrite_endio(struct bio *bio, int err)
848 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
849 struct dm_thin_new_mapping *m = h->overwrite_mapping;
850 struct pool *pool = m->tc->pool;
854 spin_lock_irqsave(&pool->lock, flags);
856 __maybe_add_mapping(m);
857 spin_unlock_irqrestore(&pool->lock, flags);
860 /*----------------------------------------------------------------*/
867 * Prepared mapping jobs.
871 * This sends the bios in the cell back to the deferred_bios list.
873 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
874 dm_block_t data_block)
876 struct pool *pool = tc->pool;
879 spin_lock_irqsave(&pool->lock, flags);
880 cell_release(cell, &pool->deferred_bios);
881 spin_unlock_irqrestore(&tc->pool->lock, flags);
887 * Same as cell_defer above, except it omits one particular detainee,
888 * a write bio that covers the block and has already been processed.
890 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
892 struct bio_list bios;
893 struct pool *pool = tc->pool;
896 bio_list_init(&bios);
898 spin_lock_irqsave(&pool->lock, flags);
899 cell_release_no_holder(cell, &pool->deferred_bios);
900 spin_unlock_irqrestore(&pool->lock, flags);
905 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
908 m->bio->bi_end_io = m->saved_bi_end_io;
911 mempool_free(m, m->tc->pool->mapping_pool);
913 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
915 struct thin_c *tc = m->tc;
921 bio->bi_end_io = m->saved_bi_end_io;
929 * Commit the prepared block into the mapping btree.
930 * Any I/O for this block arriving after this point will get
931 * remapped to it directly.
933 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
935 DMERR("dm_thin_insert_block() failed");
941 * Release any bios held while the block was being provisioned.
942 * If we are processing a write bio that completely covers the block,
943 * we already processed it so can ignore it now when processing
944 * the bios in the cell.
947 cell_defer_except(tc, m->cell);
950 cell_defer(tc, m->cell, m->data_block);
954 mempool_free(m, tc->pool->mapping_pool);
957 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
959 struct thin_c *tc = m->tc;
961 bio_io_error(m->bio);
962 cell_defer_except(tc, m->cell);
963 cell_defer_except(tc, m->cell2);
964 mempool_free(m, tc->pool->mapping_pool);
967 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
969 struct thin_c *tc = m->tc;
972 remap_and_issue(tc, m->bio, m->data_block);
974 bio_endio(m->bio, 0);
976 cell_defer_except(tc, m->cell);
977 cell_defer_except(tc, m->cell2);
978 mempool_free(m, tc->pool->mapping_pool);
981 static void process_prepared_discard(struct dm_thin_new_mapping *m)
984 struct thin_c *tc = m->tc;
986 r = dm_thin_remove_block(tc->td, m->virt_block);
988 DMERR("dm_thin_remove_block() failed");
990 process_prepared_discard_passdown(m);
993 static void process_prepared(struct pool *pool, struct list_head *head,
994 process_mapping_fn *fn)
997 struct list_head maps;
998 struct dm_thin_new_mapping *m, *tmp;
1000 INIT_LIST_HEAD(&maps);
1001 spin_lock_irqsave(&pool->lock, flags);
1002 list_splice_init(head, &maps);
1003 spin_unlock_irqrestore(&pool->lock, flags);
1005 list_for_each_entry_safe(m, tmp, &maps, list)
1010 * Deferred bio jobs.
1012 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1014 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
1017 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1019 return (bio_data_dir(bio) == WRITE) &&
1020 io_overlaps_block(pool, bio);
1023 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1026 *save = bio->bi_end_io;
1027 bio->bi_end_io = fn;
1030 static int ensure_next_mapping(struct pool *pool)
1032 if (pool->next_mapping)
1035 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1037 return pool->next_mapping ? 0 : -ENOMEM;
1040 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1042 struct dm_thin_new_mapping *r = pool->next_mapping;
1044 BUG_ON(!pool->next_mapping);
1046 pool->next_mapping = NULL;
1051 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1052 struct dm_dev *origin, dm_block_t data_origin,
1053 dm_block_t data_dest,
1054 struct dm_bio_prison_cell *cell, struct bio *bio)
1057 struct pool *pool = tc->pool;
1058 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1060 INIT_LIST_HEAD(&m->list);
1064 m->virt_block = virt_block;
1065 m->data_block = data_dest;
1070 if (!ds_add_work(&pool->shared_read_ds, &m->list))
1074 * IO to pool_dev remaps to the pool target's data_dev.
1076 * If the whole block of data is being overwritten, we can issue the
1077 * bio immediately. Otherwise we use kcopyd to clone the data first.
1079 if (io_overwrites_block(pool, bio)) {
1080 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1082 h->overwrite_mapping = m;
1084 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1085 remap_and_issue(tc, bio, data_dest);
1087 struct dm_io_region from, to;
1089 from.bdev = origin->bdev;
1090 from.sector = data_origin * pool->sectors_per_block;
1091 from.count = pool->sectors_per_block;
1093 to.bdev = tc->pool_dev->bdev;
1094 to.sector = data_dest * pool->sectors_per_block;
1095 to.count = pool->sectors_per_block;
1097 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1098 0, copy_complete, m);
1100 mempool_free(m, pool->mapping_pool);
1101 DMERR("dm_kcopyd_copy() failed");
1107 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1108 dm_block_t data_origin, dm_block_t data_dest,
1109 struct dm_bio_prison_cell *cell, struct bio *bio)
1111 schedule_copy(tc, virt_block, tc->pool_dev,
1112 data_origin, data_dest, cell, bio);
1115 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1116 dm_block_t data_dest,
1117 struct dm_bio_prison_cell *cell, struct bio *bio)
1119 schedule_copy(tc, virt_block, tc->origin_dev,
1120 virt_block, data_dest, cell, bio);
1123 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1124 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1127 struct pool *pool = tc->pool;
1128 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1130 INIT_LIST_HEAD(&m->list);
1134 m->virt_block = virt_block;
1135 m->data_block = data_block;
1141 * If the whole block of data is being overwritten or we are not
1142 * zeroing pre-existing data, we can issue the bio immediately.
1143 * Otherwise we use kcopyd to zero the data first.
1145 if (!pool->pf.zero_new_blocks)
1146 process_prepared_mapping(m);
1148 else if (io_overwrites_block(pool, bio)) {
1149 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1151 h->overwrite_mapping = m;
1153 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1154 remap_and_issue(tc, bio, data_block);
1157 struct dm_io_region to;
1159 to.bdev = tc->pool_dev->bdev;
1160 to.sector = data_block * pool->sectors_per_block;
1161 to.count = pool->sectors_per_block;
1163 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1165 mempool_free(m, pool->mapping_pool);
1166 DMERR("dm_kcopyd_zero() failed");
1172 static int commit(struct pool *pool)
1176 r = dm_pool_commit_metadata(pool->pmd);
1178 DMERR("commit failed, error = %d", r);
1184 * A non-zero return indicates read_only or fail_io mode.
1185 * Many callers don't care about the return value.
1187 static int commit_or_fallback(struct pool *pool)
1191 if (get_pool_mode(pool) != PM_WRITE)
1196 set_pool_mode(pool, PM_READ_ONLY);
1201 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1204 dm_block_t free_blocks;
1205 unsigned long flags;
1206 struct pool *pool = tc->pool;
1208 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1212 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1213 DMWARN("%s: reached low water mark, sending event.",
1214 dm_device_name(pool->pool_md));
1215 spin_lock_irqsave(&pool->lock, flags);
1216 pool->low_water_triggered = 1;
1217 spin_unlock_irqrestore(&pool->lock, flags);
1218 dm_table_event(pool->ti->table);
1222 if (pool->no_free_space)
1226 * Try to commit to see if that will free up some
1229 (void) commit_or_fallback(pool);
1231 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1236 * If we still have no space we set a flag to avoid
1237 * doing all this checking and return -ENOSPC.
1240 DMWARN("%s: no free space available.",
1241 dm_device_name(pool->pool_md));
1242 spin_lock_irqsave(&pool->lock, flags);
1243 pool->no_free_space = 1;
1244 spin_unlock_irqrestore(&pool->lock, flags);
1250 r = dm_pool_alloc_data_block(pool->pmd, result);
1258 * If we have run out of space, queue bios until the device is
1259 * resumed, presumably after having been reloaded with more space.
1261 static void retry_on_resume(struct bio *bio)
1263 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1264 struct thin_c *tc = h->tc;
1265 struct pool *pool = tc->pool;
1266 unsigned long flags;
1268 spin_lock_irqsave(&pool->lock, flags);
1269 bio_list_add(&pool->retry_on_resume_list, bio);
1270 spin_unlock_irqrestore(&pool->lock, flags);
1273 static void no_space(struct dm_bio_prison_cell *cell)
1276 struct bio_list bios;
1278 bio_list_init(&bios);
1279 cell_release(cell, &bios);
1281 while ((bio = bio_list_pop(&bios)))
1282 retry_on_resume(bio);
1285 static void process_discard(struct thin_c *tc, struct bio *bio)
1288 unsigned long flags;
1289 struct pool *pool = tc->pool;
1290 struct dm_bio_prison_cell *cell, *cell2;
1291 struct cell_key key, key2;
1292 dm_block_t block = get_bio_block(tc, bio);
1293 struct dm_thin_lookup_result lookup_result;
1294 struct dm_thin_new_mapping *m;
1296 build_virtual_key(tc->td, block, &key);
1297 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1300 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1304 * Check nobody is fiddling with this pool block. This can
1305 * happen if someone's in the process of breaking sharing
1308 build_data_key(tc->td, lookup_result.block, &key2);
1309 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1310 cell_release_singleton(cell, bio);
1314 if (io_overlaps_block(pool, bio)) {
1316 * IO may still be going to the destination block. We must
1317 * quiesce before we can do the removal.
1319 m = get_next_mapping(pool);
1321 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1322 m->virt_block = block;
1323 m->data_block = lookup_result.block;
1329 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1330 spin_lock_irqsave(&pool->lock, flags);
1331 list_add(&m->list, &pool->prepared_discards);
1332 spin_unlock_irqrestore(&pool->lock, flags);
1337 * The DM core makes sure that the discard doesn't span
1338 * a block boundary. So we submit the discard of a
1339 * partial block appropriately.
1341 cell_release_singleton(cell, bio);
1342 cell_release_singleton(cell2, bio);
1343 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1344 remap_and_issue(tc, bio, lookup_result.block);
1352 * It isn't provisioned, just forget it.
1354 cell_release_singleton(cell, bio);
1359 DMERR("discard: find block unexpectedly returned %d", r);
1360 cell_release_singleton(cell, bio);
1366 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1367 struct cell_key *key,
1368 struct dm_thin_lookup_result *lookup_result,
1369 struct dm_bio_prison_cell *cell)
1372 dm_block_t data_block;
1374 r = alloc_data_block(tc, &data_block);
1377 schedule_internal_copy(tc, block, lookup_result->block,
1378 data_block, cell, bio);
1386 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1392 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1394 struct dm_thin_lookup_result *lookup_result)
1396 struct dm_bio_prison_cell *cell;
1397 struct pool *pool = tc->pool;
1398 struct cell_key key;
1401 * If cell is already occupied, then sharing is already in the process
1402 * of being broken so we have nothing further to do here.
1404 build_data_key(tc->td, lookup_result->block, &key);
1405 if (bio_detain(pool->prison, &key, bio, &cell))
1408 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1409 break_sharing(tc, bio, block, &key, lookup_result, cell);
1411 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1413 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1415 cell_release_singleton(cell, bio);
1416 remap_and_issue(tc, bio, lookup_result->block);
1420 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1421 struct dm_bio_prison_cell *cell)
1424 dm_block_t data_block;
1427 * Remap empty bios (flushes) immediately, without provisioning.
1429 if (!bio->bi_size) {
1430 cell_release_singleton(cell, bio);
1431 remap_and_issue(tc, bio, 0);
1436 * Fill read bios with zeroes and complete them immediately.
1438 if (bio_data_dir(bio) == READ) {
1440 cell_release_singleton(cell, bio);
1445 r = alloc_data_block(tc, &data_block);
1449 schedule_external_copy(tc, block, data_block, cell, bio);
1451 schedule_zero(tc, block, data_block, cell, bio);
1459 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1460 set_pool_mode(tc->pool, PM_READ_ONLY);
1466 static void process_bio(struct thin_c *tc, struct bio *bio)
1469 dm_block_t block = get_bio_block(tc, bio);
1470 struct dm_bio_prison_cell *cell;
1471 struct cell_key key;
1472 struct dm_thin_lookup_result lookup_result;
1475 * If cell is already occupied, then the block is already
1476 * being provisioned so we have nothing further to do here.
1478 build_virtual_key(tc->td, block, &key);
1479 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1482 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1486 * We can release this cell now. This thread is the only
1487 * one that puts bios into a cell, and we know there were
1488 * no preceding bios.
1491 * TODO: this will probably have to change when discard goes
1494 cell_release_singleton(cell, bio);
1496 if (lookup_result.shared)
1497 process_shared_bio(tc, bio, block, &lookup_result);
1499 remap_and_issue(tc, bio, lookup_result.block);
1503 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1504 cell_release_singleton(cell, bio);
1505 remap_to_origin_and_issue(tc, bio);
1507 provision_block(tc, bio, block, cell);
1511 DMERR("dm_thin_find_block() failed, error = %d", r);
1512 cell_release_singleton(cell, bio);
1518 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1521 int rw = bio_data_dir(bio);
1522 dm_block_t block = get_bio_block(tc, bio);
1523 struct dm_thin_lookup_result lookup_result;
1525 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1528 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1531 remap_and_issue(tc, bio, lookup_result.block);
1540 if (tc->origin_dev) {
1541 remap_to_origin_and_issue(tc, bio);
1550 DMERR("dm_thin_find_block() failed, error = %d", r);
1556 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1561 static int need_commit_due_to_time(struct pool *pool)
1563 return jiffies < pool->last_commit_jiffies ||
1564 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1567 static void process_deferred_bios(struct pool *pool)
1569 unsigned long flags;
1571 struct bio_list bios;
1573 bio_list_init(&bios);
1575 spin_lock_irqsave(&pool->lock, flags);
1576 bio_list_merge(&bios, &pool->deferred_bios);
1577 bio_list_init(&pool->deferred_bios);
1578 spin_unlock_irqrestore(&pool->lock, flags);
1580 while ((bio = bio_list_pop(&bios))) {
1581 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1582 struct thin_c *tc = h->tc;
1585 * If we've got no free new_mapping structs, and processing
1586 * this bio might require one, we pause until there are some
1587 * prepared mappings to process.
1589 if (ensure_next_mapping(pool)) {
1590 spin_lock_irqsave(&pool->lock, flags);
1591 bio_list_merge(&pool->deferred_bios, &bios);
1592 spin_unlock_irqrestore(&pool->lock, flags);
1597 if (bio->bi_rw & REQ_DISCARD)
1598 pool->process_discard(tc, bio);
1600 pool->process_bio(tc, bio);
1604 * If there are any deferred flush bios, we must commit
1605 * the metadata before issuing them.
1607 bio_list_init(&bios);
1608 spin_lock_irqsave(&pool->lock, flags);
1609 bio_list_merge(&bios, &pool->deferred_flush_bios);
1610 bio_list_init(&pool->deferred_flush_bios);
1611 spin_unlock_irqrestore(&pool->lock, flags);
1613 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1616 if (commit_or_fallback(pool)) {
1617 while ((bio = bio_list_pop(&bios)))
1621 pool->last_commit_jiffies = jiffies;
1623 while ((bio = bio_list_pop(&bios)))
1624 generic_make_request(bio);
1627 static void do_worker(struct work_struct *ws)
1629 struct pool *pool = container_of(ws, struct pool, worker);
1631 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1632 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1633 process_deferred_bios(pool);
1637 * We want to commit periodically so that not too much
1638 * unwritten data builds up.
1640 static void do_waker(struct work_struct *ws)
1642 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1644 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1647 /*----------------------------------------------------------------*/
1649 static enum pool_mode get_pool_mode(struct pool *pool)
1651 return pool->pf.mode;
1654 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1658 pool->pf.mode = mode;
1662 DMERR("switching pool to failure mode");
1663 pool->process_bio = process_bio_fail;
1664 pool->process_discard = process_bio_fail;
1665 pool->process_prepared_mapping = process_prepared_mapping_fail;
1666 pool->process_prepared_discard = process_prepared_discard_fail;
1670 DMERR("switching pool to read-only mode");
1671 r = dm_pool_abort_metadata(pool->pmd);
1673 DMERR("aborting transaction failed");
1674 set_pool_mode(pool, PM_FAIL);
1676 dm_pool_metadata_read_only(pool->pmd);
1677 pool->process_bio = process_bio_read_only;
1678 pool->process_discard = process_discard;
1679 pool->process_prepared_mapping = process_prepared_mapping_fail;
1680 pool->process_prepared_discard = process_prepared_discard_passdown;
1685 pool->process_bio = process_bio;
1686 pool->process_discard = process_discard;
1687 pool->process_prepared_mapping = process_prepared_mapping;
1688 pool->process_prepared_discard = process_prepared_discard;
1693 /*----------------------------------------------------------------*/
1696 * Mapping functions.
1700 * Called only while mapping a thin bio to hand it over to the workqueue.
1702 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1704 unsigned long flags;
1705 struct pool *pool = tc->pool;
1707 spin_lock_irqsave(&pool->lock, flags);
1708 bio_list_add(&pool->deferred_bios, bio);
1709 spin_unlock_irqrestore(&pool->lock, flags);
1714 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1716 struct pool *pool = tc->pool;
1717 struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1720 h->shared_read_entry = NULL;
1721 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1722 h->overwrite_mapping = NULL;
1728 * Non-blocking function called from the thin target's map function.
1730 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1731 union map_info *map_context)
1734 struct thin_c *tc = ti->private;
1735 dm_block_t block = get_bio_block(tc, bio);
1736 struct dm_thin_device *td = tc->td;
1737 struct dm_thin_lookup_result result;
1739 map_context->ptr = thin_hook_bio(tc, bio);
1741 if (get_pool_mode(tc->pool) == PM_FAIL) {
1743 return DM_MAPIO_SUBMITTED;
1746 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1747 thin_defer_bio(tc, bio);
1748 return DM_MAPIO_SUBMITTED;
1751 r = dm_thin_find_block(td, block, 0, &result);
1754 * Note that we defer readahead too.
1758 if (unlikely(result.shared)) {
1760 * We have a race condition here between the
1761 * result.shared value returned by the lookup and
1762 * snapshot creation, which may cause new
1765 * To avoid this always quiesce the origin before
1766 * taking the snap. You want to do this anyway to
1767 * ensure a consistent application view
1770 * More distant ancestors are irrelevant. The
1771 * shared flag will be set in their case.
1773 thin_defer_bio(tc, bio);
1774 r = DM_MAPIO_SUBMITTED;
1776 remap(tc, bio, result.block);
1777 r = DM_MAPIO_REMAPPED;
1782 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1784 * This block isn't provisioned, and we have no way
1785 * of doing so. Just error it.
1788 r = DM_MAPIO_SUBMITTED;
1795 * In future, the failed dm_thin_find_block above could
1796 * provide the hint to load the metadata into cache.
1798 thin_defer_bio(tc, bio);
1799 r = DM_MAPIO_SUBMITTED;
1804 * Must always call bio_io_error on failure.
1805 * dm_thin_find_block can fail with -EINVAL if the
1806 * pool is switched to fail-io mode.
1809 r = DM_MAPIO_SUBMITTED;
1816 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1819 unsigned long flags;
1820 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1822 spin_lock_irqsave(&pt->pool->lock, flags);
1823 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1824 spin_unlock_irqrestore(&pt->pool->lock, flags);
1827 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1828 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1834 static void __requeue_bios(struct pool *pool)
1836 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1837 bio_list_init(&pool->retry_on_resume_list);
1840 /*----------------------------------------------------------------
1841 * Binding of control targets to a pool object
1842 *--------------------------------------------------------------*/
1843 static bool data_dev_supports_discard(struct pool_c *pt)
1845 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1847 return q && blk_queue_discard(q);
1851 * If discard_passdown was enabled verify that the data device
1852 * supports discards. Disable discard_passdown if not.
1854 static void disable_passdown_if_not_supported(struct pool_c *pt)
1856 struct pool *pool = pt->pool;
1857 struct block_device *data_bdev = pt->data_dev->bdev;
1858 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1859 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1860 const char *reason = NULL;
1861 char buf[BDEVNAME_SIZE];
1863 if (!pt->adjusted_pf.discard_passdown)
1866 if (!data_dev_supports_discard(pt))
1867 reason = "discard unsupported";
1869 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1870 reason = "max discard sectors smaller than a block";
1872 else if (data_limits->discard_granularity > block_size)
1873 reason = "discard granularity larger than a block";
1875 else if (block_size & (data_limits->discard_granularity - 1))
1876 reason = "discard granularity not a factor of block size";
1879 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1880 pt->adjusted_pf.discard_passdown = false;
1884 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1886 struct pool_c *pt = ti->private;
1889 * We want to make sure that degraded pools are never upgraded.
1891 enum pool_mode old_mode = pool->pf.mode;
1892 enum pool_mode new_mode = pt->adjusted_pf.mode;
1894 if (old_mode > new_mode)
1895 new_mode = old_mode;
1898 pool->low_water_blocks = pt->low_water_blocks;
1899 pool->pf = pt->adjusted_pf;
1901 set_pool_mode(pool, new_mode);
1906 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1912 /*----------------------------------------------------------------
1914 *--------------------------------------------------------------*/
1915 /* Initialize pool features. */
1916 static void pool_features_init(struct pool_features *pf)
1918 pf->mode = PM_WRITE;
1919 pf->zero_new_blocks = true;
1920 pf->discard_enabled = true;
1921 pf->discard_passdown = true;
1924 static void __pool_destroy(struct pool *pool)
1926 __pool_table_remove(pool);
1928 if (dm_pool_metadata_close(pool->pmd) < 0)
1929 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1931 prison_destroy(pool->prison);
1932 dm_kcopyd_client_destroy(pool->copier);
1935 destroy_workqueue(pool->wq);
1937 if (pool->next_mapping)
1938 mempool_free(pool->next_mapping, pool->mapping_pool);
1939 mempool_destroy(pool->mapping_pool);
1940 mempool_destroy(pool->endio_hook_pool);
1944 static struct kmem_cache *_new_mapping_cache;
1945 static struct kmem_cache *_endio_hook_cache;
1947 static struct pool *pool_create(struct mapped_device *pool_md,
1948 struct block_device *metadata_dev,
1949 unsigned long block_size,
1950 int read_only, char **error)
1955 struct dm_pool_metadata *pmd;
1956 bool format_device = read_only ? false : true;
1958 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1960 *error = "Error creating metadata object";
1961 return (struct pool *)pmd;
1964 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1966 *error = "Error allocating memory for pool";
1967 err_p = ERR_PTR(-ENOMEM);
1972 pool->sectors_per_block = block_size;
1973 if (block_size & (block_size - 1))
1974 pool->sectors_per_block_shift = -1;
1976 pool->sectors_per_block_shift = __ffs(block_size);
1977 pool->low_water_blocks = 0;
1978 pool_features_init(&pool->pf);
1979 pool->prison = prison_create(PRISON_CELLS);
1980 if (!pool->prison) {
1981 *error = "Error creating pool's bio prison";
1982 err_p = ERR_PTR(-ENOMEM);
1986 pool->copier = dm_kcopyd_client_create();
1987 if (IS_ERR(pool->copier)) {
1988 r = PTR_ERR(pool->copier);
1989 *error = "Error creating pool's kcopyd client";
1991 goto bad_kcopyd_client;
1995 * Create singlethreaded workqueue that will service all devices
1996 * that use this metadata.
1998 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2000 *error = "Error creating pool's workqueue";
2001 err_p = ERR_PTR(-ENOMEM);
2005 INIT_WORK(&pool->worker, do_worker);
2006 INIT_DELAYED_WORK(&pool->waker, do_waker);
2007 spin_lock_init(&pool->lock);
2008 bio_list_init(&pool->deferred_bios);
2009 bio_list_init(&pool->deferred_flush_bios);
2010 INIT_LIST_HEAD(&pool->prepared_mappings);
2011 INIT_LIST_HEAD(&pool->prepared_discards);
2012 pool->low_water_triggered = 0;
2013 pool->no_free_space = 0;
2014 bio_list_init(&pool->retry_on_resume_list);
2015 ds_init(&pool->shared_read_ds);
2016 ds_init(&pool->all_io_ds);
2018 pool->next_mapping = NULL;
2019 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2020 _new_mapping_cache);
2021 if (!pool->mapping_pool) {
2022 *error = "Error creating pool's mapping mempool";
2023 err_p = ERR_PTR(-ENOMEM);
2024 goto bad_mapping_pool;
2027 pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
2029 if (!pool->endio_hook_pool) {
2030 *error = "Error creating pool's endio_hook mempool";
2031 err_p = ERR_PTR(-ENOMEM);
2032 goto bad_endio_hook_pool;
2034 pool->ref_count = 1;
2035 pool->last_commit_jiffies = jiffies;
2036 pool->pool_md = pool_md;
2037 pool->md_dev = metadata_dev;
2038 __pool_table_insert(pool);
2042 bad_endio_hook_pool:
2043 mempool_destroy(pool->mapping_pool);
2045 destroy_workqueue(pool->wq);
2047 dm_kcopyd_client_destroy(pool->copier);
2049 prison_destroy(pool->prison);
2053 if (dm_pool_metadata_close(pmd))
2054 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2059 static void __pool_inc(struct pool *pool)
2061 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2065 static void __pool_dec(struct pool *pool)
2067 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2068 BUG_ON(!pool->ref_count);
2069 if (!--pool->ref_count)
2070 __pool_destroy(pool);
2073 static struct pool *__pool_find(struct mapped_device *pool_md,
2074 struct block_device *metadata_dev,
2075 unsigned long block_size, int read_only,
2076 char **error, int *created)
2078 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2081 if (pool->pool_md != pool_md) {
2082 *error = "metadata device already in use by a pool";
2083 return ERR_PTR(-EBUSY);
2088 pool = __pool_table_lookup(pool_md);
2090 if (pool->md_dev != metadata_dev) {
2091 *error = "different pool cannot replace a pool";
2092 return ERR_PTR(-EINVAL);
2097 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2105 /*----------------------------------------------------------------
2106 * Pool target methods
2107 *--------------------------------------------------------------*/
2108 static void pool_dtr(struct dm_target *ti)
2110 struct pool_c *pt = ti->private;
2112 mutex_lock(&dm_thin_pool_table.mutex);
2114 unbind_control_target(pt->pool, ti);
2115 __pool_dec(pt->pool);
2116 dm_put_device(ti, pt->metadata_dev);
2117 dm_put_device(ti, pt->data_dev);
2120 mutex_unlock(&dm_thin_pool_table.mutex);
2123 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2124 struct dm_target *ti)
2128 const char *arg_name;
2130 static struct dm_arg _args[] = {
2131 {0, 3, "Invalid number of pool feature arguments"},
2135 * No feature arguments supplied.
2140 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2144 while (argc && !r) {
2145 arg_name = dm_shift_arg(as);
2148 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2149 pf->zero_new_blocks = false;
2151 else if (!strcasecmp(arg_name, "ignore_discard"))
2152 pf->discard_enabled = false;
2154 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2155 pf->discard_passdown = false;
2157 else if (!strcasecmp(arg_name, "read_only"))
2158 pf->mode = PM_READ_ONLY;
2161 ti->error = "Unrecognised pool feature requested";
2171 * thin-pool <metadata dev> <data dev>
2172 * <data block size (sectors)>
2173 * <low water mark (blocks)>
2174 * [<#feature args> [<arg>]*]
2176 * Optional feature arguments are:
2177 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2178 * ignore_discard: disable discard
2179 * no_discard_passdown: don't pass discards down to the data device
2181 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2183 int r, pool_created = 0;
2186 struct pool_features pf;
2187 struct dm_arg_set as;
2188 struct dm_dev *data_dev;
2189 unsigned long block_size;
2190 dm_block_t low_water_blocks;
2191 struct dm_dev *metadata_dev;
2192 sector_t metadata_dev_size;
2193 char b[BDEVNAME_SIZE];
2196 * FIXME Remove validation from scope of lock.
2198 mutex_lock(&dm_thin_pool_table.mutex);
2201 ti->error = "Invalid argument count";
2208 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
2210 ti->error = "Error opening metadata block device";
2214 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
2215 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2216 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2217 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2219 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2221 ti->error = "Error getting data device";
2225 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2226 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2227 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2228 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2229 ti->error = "Invalid block size";
2234 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2235 ti->error = "Invalid low water mark";
2241 * Set default pool features.
2243 pool_features_init(&pf);
2245 dm_consume_args(&as, 4);
2246 r = parse_pool_features(&as, &pf, ti);
2250 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2256 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2257 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2264 * 'pool_created' reflects whether this is the first table load.
2265 * Top level discard support is not allowed to be changed after
2266 * initial load. This would require a pool reload to trigger thin
2269 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2270 ti->error = "Discard support cannot be disabled once enabled";
2272 goto out_flags_changed;
2276 * The block layer requires discard_granularity to be a power of 2.
2278 if (pf.discard_enabled && !is_power_of_2(block_size)) {
2279 ti->error = "Discard support must be disabled when the block size is not a power of 2";
2281 goto out_flags_changed;
2286 pt->metadata_dev = metadata_dev;
2287 pt->data_dev = data_dev;
2288 pt->low_water_blocks = low_water_blocks;
2289 pt->adjusted_pf = pt->requested_pf = pf;
2290 ti->num_flush_requests = 1;
2293 * Only need to enable discards if the pool should pass
2294 * them down to the data device. The thin device's discard
2295 * processing will cause mappings to be removed from the btree.
2297 if (pf.discard_enabled && pf.discard_passdown) {
2298 ti->num_discard_requests = 1;
2301 * Setting 'discards_supported' circumvents the normal
2302 * stacking of discard limits (this keeps the pool and
2303 * thin devices' discard limits consistent).
2305 ti->discards_supported = true;
2306 ti->discard_zeroes_data_unsupported = true;
2310 pt->callbacks.congested_fn = pool_is_congested;
2311 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2313 mutex_unlock(&dm_thin_pool_table.mutex);
2322 dm_put_device(ti, data_dev);
2324 dm_put_device(ti, metadata_dev);
2326 mutex_unlock(&dm_thin_pool_table.mutex);
2331 static int pool_map(struct dm_target *ti, struct bio *bio,
2332 union map_info *map_context)
2335 struct pool_c *pt = ti->private;
2336 struct pool *pool = pt->pool;
2337 unsigned long flags;
2340 * As this is a singleton target, ti->begin is always zero.
2342 spin_lock_irqsave(&pool->lock, flags);
2343 bio->bi_bdev = pt->data_dev->bdev;
2344 r = DM_MAPIO_REMAPPED;
2345 spin_unlock_irqrestore(&pool->lock, flags);
2351 * Retrieves the number of blocks of the data device from
2352 * the superblock and compares it to the actual device size,
2353 * thus resizing the data device in case it has grown.
2355 * This both copes with opening preallocated data devices in the ctr
2356 * being followed by a resume
2358 * calling the resume method individually after userspace has
2359 * grown the data device in reaction to a table event.
2361 static int pool_preresume(struct dm_target *ti)
2364 struct pool_c *pt = ti->private;
2365 struct pool *pool = pt->pool;
2366 sector_t data_size = ti->len;
2367 dm_block_t sb_data_size;
2370 * Take control of the pool object.
2372 r = bind_control_target(pool, ti);
2376 (void) sector_div(data_size, pool->sectors_per_block);
2378 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2380 DMERR("failed to retrieve data device size");
2384 if (data_size < sb_data_size) {
2385 DMERR("pool target too small, is %llu blocks (expected %llu)",
2386 (unsigned long long)data_size, sb_data_size);
2389 } else if (data_size > sb_data_size) {
2390 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2392 DMERR("failed to resize data device");
2393 /* FIXME Stricter than necessary: Rollback transaction instead here */
2394 set_pool_mode(pool, PM_READ_ONLY);
2398 (void) commit_or_fallback(pool);
2404 static void pool_resume(struct dm_target *ti)
2406 struct pool_c *pt = ti->private;
2407 struct pool *pool = pt->pool;
2408 unsigned long flags;
2410 spin_lock_irqsave(&pool->lock, flags);
2411 pool->low_water_triggered = 0;
2412 pool->no_free_space = 0;
2413 __requeue_bios(pool);
2414 spin_unlock_irqrestore(&pool->lock, flags);
2416 do_waker(&pool->waker.work);
2419 static void pool_postsuspend(struct dm_target *ti)
2421 struct pool_c *pt = ti->private;
2422 struct pool *pool = pt->pool;
2424 cancel_delayed_work(&pool->waker);
2425 flush_workqueue(pool->wq);
2426 (void) commit_or_fallback(pool);
2429 static int check_arg_count(unsigned argc, unsigned args_required)
2431 if (argc != args_required) {
2432 DMWARN("Message received with %u arguments instead of %u.",
2433 argc, args_required);
2440 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2442 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2443 *dev_id <= MAX_DEV_ID)
2447 DMWARN("Message received with invalid device id: %s", arg);
2452 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2457 r = check_arg_count(argc, 2);
2461 r = read_dev_id(argv[1], &dev_id, 1);
2465 r = dm_pool_create_thin(pool->pmd, dev_id);
2467 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2475 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2478 dm_thin_id origin_dev_id;
2481 r = check_arg_count(argc, 3);
2485 r = read_dev_id(argv[1], &dev_id, 1);
2489 r = read_dev_id(argv[2], &origin_dev_id, 1);
2493 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2495 DMWARN("Creation of new snapshot %s of device %s failed.",
2503 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2508 r = check_arg_count(argc, 2);
2512 r = read_dev_id(argv[1], &dev_id, 1);
2516 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2518 DMWARN("Deletion of thin device %s failed.", argv[1]);
2523 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2525 dm_thin_id old_id, new_id;
2528 r = check_arg_count(argc, 3);
2532 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2533 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2537 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2538 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2542 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2544 DMWARN("Failed to change transaction id from %s to %s.",
2552 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2556 r = check_arg_count(argc, 1);
2560 (void) commit_or_fallback(pool);
2562 r = dm_pool_reserve_metadata_snap(pool->pmd);
2564 DMWARN("reserve_metadata_snap message failed.");
2569 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2573 r = check_arg_count(argc, 1);
2577 r = dm_pool_release_metadata_snap(pool->pmd);
2579 DMWARN("release_metadata_snap message failed.");
2585 * Messages supported:
2586 * create_thin <dev_id>
2587 * create_snap <dev_id> <origin_id>
2589 * trim <dev_id> <new_size_in_sectors>
2590 * set_transaction_id <current_trans_id> <new_trans_id>
2591 * reserve_metadata_snap
2592 * release_metadata_snap
2594 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2597 struct pool_c *pt = ti->private;
2598 struct pool *pool = pt->pool;
2600 if (!strcasecmp(argv[0], "create_thin"))
2601 r = process_create_thin_mesg(argc, argv, pool);
2603 else if (!strcasecmp(argv[0], "create_snap"))
2604 r = process_create_snap_mesg(argc, argv, pool);
2606 else if (!strcasecmp(argv[0], "delete"))
2607 r = process_delete_mesg(argc, argv, pool);
2609 else if (!strcasecmp(argv[0], "set_transaction_id"))
2610 r = process_set_transaction_id_mesg(argc, argv, pool);
2612 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2613 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2615 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2616 r = process_release_metadata_snap_mesg(argc, argv, pool);
2619 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2622 (void) commit_or_fallback(pool);
2627 static void emit_flags(struct pool_features *pf, char *result,
2628 unsigned sz, unsigned maxlen)
2630 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2631 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2632 DMEMIT("%u ", count);
2634 if (!pf->zero_new_blocks)
2635 DMEMIT("skip_block_zeroing ");
2637 if (!pf->discard_enabled)
2638 DMEMIT("ignore_discard ");
2640 if (!pf->discard_passdown)
2641 DMEMIT("no_discard_passdown ");
2643 if (pf->mode == PM_READ_ONLY)
2644 DMEMIT("read_only ");
2649 * <transaction id> <used metadata sectors>/<total metadata sectors>
2650 * <used data sectors>/<total data sectors> <held metadata root>
2652 static int pool_status(struct dm_target *ti, status_type_t type,
2653 unsigned status_flags, char *result, unsigned maxlen)
2657 uint64_t transaction_id;
2658 dm_block_t nr_free_blocks_data;
2659 dm_block_t nr_free_blocks_metadata;
2660 dm_block_t nr_blocks_data;
2661 dm_block_t nr_blocks_metadata;
2662 dm_block_t held_root;
2663 char buf[BDEVNAME_SIZE];
2664 char buf2[BDEVNAME_SIZE];
2665 struct pool_c *pt = ti->private;
2666 struct pool *pool = pt->pool;
2669 case STATUSTYPE_INFO:
2670 if (get_pool_mode(pool) == PM_FAIL) {
2675 /* Commit to ensure statistics aren't out-of-date */
2676 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2677 (void) commit_or_fallback(pool);
2679 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2684 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2685 &nr_free_blocks_metadata);
2689 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2693 r = dm_pool_get_free_block_count(pool->pmd,
2694 &nr_free_blocks_data);
2698 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2702 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2706 DMEMIT("%llu %llu/%llu %llu/%llu ",
2707 (unsigned long long)transaction_id,
2708 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2709 (unsigned long long)nr_blocks_metadata,
2710 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2711 (unsigned long long)nr_blocks_data);
2714 DMEMIT("%llu ", held_root);
2718 if (pool->pf.mode == PM_READ_ONLY)
2723 if (pool->pf.discard_enabled && pool->pf.discard_passdown)
2724 DMEMIT("discard_passdown");
2726 DMEMIT("no_discard_passdown");
2730 case STATUSTYPE_TABLE:
2731 DMEMIT("%s %s %lu %llu ",
2732 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2733 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2734 (unsigned long)pool->sectors_per_block,
2735 (unsigned long long)pt->low_water_blocks);
2736 emit_flags(&pt->requested_pf, result, sz, maxlen);
2743 static int pool_iterate_devices(struct dm_target *ti,
2744 iterate_devices_callout_fn fn, void *data)
2746 struct pool_c *pt = ti->private;
2748 return fn(ti, pt->data_dev, 0, ti->len, data);
2751 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2752 struct bio_vec *biovec, int max_size)
2754 struct pool_c *pt = ti->private;
2755 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2757 if (!q->merge_bvec_fn)
2760 bvm->bi_bdev = pt->data_dev->bdev;
2762 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2765 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2767 struct pool *pool = pt->pool;
2768 struct queue_limits *data_limits;
2770 limits->max_discard_sectors = pool->sectors_per_block;
2773 * discard_granularity is just a hint, and not enforced.
2775 if (pt->adjusted_pf.discard_passdown) {
2776 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2777 limits->discard_granularity = data_limits->discard_granularity;
2779 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2782 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2784 struct pool_c *pt = ti->private;
2785 struct pool *pool = pt->pool;
2787 blk_limits_io_min(limits, 0);
2788 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2791 * pt->adjusted_pf is a staging area for the actual features to use.
2792 * They get transferred to the live pool in bind_control_target()
2793 * called from pool_preresume().
2795 if (!pt->adjusted_pf.discard_enabled)
2798 disable_passdown_if_not_supported(pt);
2800 set_discard_limits(pt, limits);
2803 static struct target_type pool_target = {
2804 .name = "thin-pool",
2805 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2806 DM_TARGET_IMMUTABLE,
2807 .version = {1, 4, 0},
2808 .module = THIS_MODULE,
2812 .postsuspend = pool_postsuspend,
2813 .preresume = pool_preresume,
2814 .resume = pool_resume,
2815 .message = pool_message,
2816 .status = pool_status,
2817 .merge = pool_merge,
2818 .iterate_devices = pool_iterate_devices,
2819 .io_hints = pool_io_hints,
2822 /*----------------------------------------------------------------
2823 * Thin target methods
2824 *--------------------------------------------------------------*/
2825 static void thin_dtr(struct dm_target *ti)
2827 struct thin_c *tc = ti->private;
2829 mutex_lock(&dm_thin_pool_table.mutex);
2831 __pool_dec(tc->pool);
2832 dm_pool_close_thin_device(tc->td);
2833 dm_put_device(ti, tc->pool_dev);
2835 dm_put_device(ti, tc->origin_dev);
2838 mutex_unlock(&dm_thin_pool_table.mutex);
2842 * Thin target parameters:
2844 * <pool_dev> <dev_id> [origin_dev]
2846 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2847 * dev_id: the internal device identifier
2848 * origin_dev: a device external to the pool that should act as the origin
2850 * If the pool device has discards disabled, they get disabled for the thin
2853 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2857 struct dm_dev *pool_dev, *origin_dev;
2858 struct mapped_device *pool_md;
2860 mutex_lock(&dm_thin_pool_table.mutex);
2862 if (argc != 2 && argc != 3) {
2863 ti->error = "Invalid argument count";
2868 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2870 ti->error = "Out of memory";
2876 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2878 ti->error = "Error opening origin device";
2879 goto bad_origin_dev;
2881 tc->origin_dev = origin_dev;
2884 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2886 ti->error = "Error opening pool device";
2889 tc->pool_dev = pool_dev;
2891 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2892 ti->error = "Invalid device id";
2897 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2899 ti->error = "Couldn't get pool mapped device";
2904 tc->pool = __pool_table_lookup(pool_md);
2906 ti->error = "Couldn't find pool object";
2908 goto bad_pool_lookup;
2910 __pool_inc(tc->pool);
2912 if (get_pool_mode(tc->pool) == PM_FAIL) {
2913 ti->error = "Couldn't open thin device, Pool is in fail mode";
2917 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2919 ti->error = "Couldn't open thin internal device";
2923 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2927 ti->num_flush_requests = 1;
2928 ti->flush_supported = true;
2930 /* In case the pool supports discards, pass them on. */
2931 if (tc->pool->pf.discard_enabled) {
2932 ti->discards_supported = true;
2933 ti->num_discard_requests = 1;
2934 ti->discard_zeroes_data_unsupported = true;
2935 /* Discard requests must be split on a block boundary */
2936 ti->split_discard_requests = true;
2941 mutex_unlock(&dm_thin_pool_table.mutex);
2946 __pool_dec(tc->pool);
2950 dm_put_device(ti, tc->pool_dev);
2953 dm_put_device(ti, tc->origin_dev);
2957 mutex_unlock(&dm_thin_pool_table.mutex);
2962 static int thin_map(struct dm_target *ti, struct bio *bio,
2963 union map_info *map_context)
2965 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2967 return thin_bio_map(ti, bio, map_context);
2970 static int thin_endio(struct dm_target *ti,
2971 struct bio *bio, int err,
2972 union map_info *map_context)
2974 unsigned long flags;
2975 struct dm_thin_endio_hook *h = map_context->ptr;
2976 struct list_head work;
2977 struct dm_thin_new_mapping *m, *tmp;
2978 struct pool *pool = h->tc->pool;
2980 if (h->shared_read_entry) {
2981 INIT_LIST_HEAD(&work);
2982 ds_dec(h->shared_read_entry, &work);
2984 spin_lock_irqsave(&pool->lock, flags);
2985 list_for_each_entry_safe(m, tmp, &work, list) {
2988 __maybe_add_mapping(m);
2990 spin_unlock_irqrestore(&pool->lock, flags);
2993 if (h->all_io_entry) {
2994 INIT_LIST_HEAD(&work);
2995 ds_dec(h->all_io_entry, &work);
2996 spin_lock_irqsave(&pool->lock, flags);
2997 list_for_each_entry_safe(m, tmp, &work, list)
2998 list_add(&m->list, &pool->prepared_discards);
2999 spin_unlock_irqrestore(&pool->lock, flags);
3002 mempool_free(h, pool->endio_hook_pool);
3007 static void thin_postsuspend(struct dm_target *ti)
3009 if (dm_noflush_suspending(ti))
3010 requeue_io((struct thin_c *)ti->private);
3014 * <nr mapped sectors> <highest mapped sector>
3016 static int thin_status(struct dm_target *ti, status_type_t type,
3017 unsigned status_flags, char *result, unsigned maxlen)
3021 dm_block_t mapped, highest;
3022 char buf[BDEVNAME_SIZE];
3023 struct thin_c *tc = ti->private;
3025 if (get_pool_mode(tc->pool) == PM_FAIL) {
3034 case STATUSTYPE_INFO:
3035 r = dm_thin_get_mapped_count(tc->td, &mapped);
3039 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3043 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3045 DMEMIT("%llu", ((highest + 1) *
3046 tc->pool->sectors_per_block) - 1);
3051 case STATUSTYPE_TABLE:
3053 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3054 (unsigned long) tc->dev_id);
3056 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3064 static int thin_iterate_devices(struct dm_target *ti,
3065 iterate_devices_callout_fn fn, void *data)
3068 struct thin_c *tc = ti->private;
3069 struct pool *pool = tc->pool;
3072 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3073 * we follow a more convoluted path through to the pool's target.
3076 return 0; /* nothing is bound */
3078 blocks = pool->ti->len;
3079 (void) sector_div(blocks, pool->sectors_per_block);
3081 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3087 * A thin device always inherits its queue limits from its pool.
3089 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
3091 struct thin_c *tc = ti->private;
3093 *limits = bdev_get_queue(tc->pool_dev->bdev)->limits;
3096 static struct target_type thin_target = {
3098 .version = {1, 4, 0},
3099 .module = THIS_MODULE,
3103 .end_io = thin_endio,
3104 .postsuspend = thin_postsuspend,
3105 .status = thin_status,
3106 .iterate_devices = thin_iterate_devices,
3107 .io_hints = thin_io_hints,
3110 /*----------------------------------------------------------------*/
3112 static int __init dm_thin_init(void)
3118 r = dm_register_target(&thin_target);
3122 r = dm_register_target(&pool_target);
3124 goto bad_pool_target;
3128 _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
3130 goto bad_cell_cache;
3132 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3133 if (!_new_mapping_cache)
3134 goto bad_new_mapping_cache;
3136 _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
3137 if (!_endio_hook_cache)
3138 goto bad_endio_hook_cache;
3142 bad_endio_hook_cache:
3143 kmem_cache_destroy(_new_mapping_cache);
3144 bad_new_mapping_cache:
3145 kmem_cache_destroy(_cell_cache);
3147 dm_unregister_target(&pool_target);
3149 dm_unregister_target(&thin_target);
3154 static void dm_thin_exit(void)
3156 dm_unregister_target(&thin_target);
3157 dm_unregister_target(&pool_target);
3159 kmem_cache_destroy(_cell_cache);
3160 kmem_cache_destroy(_new_mapping_cache);
3161 kmem_cache_destroy(_endio_hook_cache);
3164 module_init(dm_thin_init);
3165 module_exit(dm_thin_exit);
3167 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3168 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3169 MODULE_LICENSE("GPL");