Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[platform/kernel/linux-rpi.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16
17 #define DM_MSG_PREFIX   "thin"
18
19 /*
20  * Tunable constants
21  */
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
27
28 /*
29  * The block size of the device holding pool data must be
30  * between 64KB and 1GB.
31  */
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
35 /*
36  * Device id is restricted to 24 bits.
37  */
38 #define MAX_DEV_ID ((1 << 24) - 1)
39
40 /*
41  * How do we handle breaking sharing of data blocks?
42  * =================================================
43  *
44  * We use a standard copy-on-write btree to store the mappings for the
45  * devices (note I'm talking about copy-on-write of the metadata here, not
46  * the data).  When you take an internal snapshot you clone the root node
47  * of the origin btree.  After this there is no concept of an origin or a
48  * snapshot.  They are just two device trees that happen to point to the
49  * same data blocks.
50  *
51  * When we get a write in we decide if it's to a shared data block using
52  * some timestamp magic.  If it is, we have to break sharing.
53  *
54  * Let's say we write to a shared block in what was the origin.  The
55  * steps are:
56  *
57  * i) plug io further to this physical block. (see bio_prison code).
58  *
59  * ii) quiesce any read io to that shared data block.  Obviously
60  * including all devices that share this block.  (see deferred_set code)
61  *
62  * iii) copy the data block to a newly allocate block.  This step can be
63  * missed out if the io covers the block. (schedule_copy).
64  *
65  * iv) insert the new mapping into the origin's btree
66  * (process_prepared_mapping).  This act of inserting breaks some
67  * sharing of btree nodes between the two devices.  Breaking sharing only
68  * effects the btree of that specific device.  Btrees for the other
69  * devices that share the block never change.  The btree for the origin
70  * device as it was after the last commit is untouched, ie. we're using
71  * persistent data structures in the functional programming sense.
72  *
73  * v) unplug io to this physical block, including the io that triggered
74  * the breaking of sharing.
75  *
76  * Steps (ii) and (iii) occur in parallel.
77  *
78  * The metadata _doesn't_ need to be committed before the io continues.  We
79  * get away with this because the io is always written to a _new_ block.
80  * If there's a crash, then:
81  *
82  * - The origin mapping will point to the old origin block (the shared
83  * one).  This will contain the data as it was before the io that triggered
84  * the breaking of sharing came in.
85  *
86  * - The snap mapping still points to the old block.  As it would after
87  * the commit.
88  *
89  * The downside of this scheme is the timestamp magic isn't perfect, and
90  * will continue to think that data block in the snapshot device is shared
91  * even after the write to the origin has broken sharing.  I suspect data
92  * blocks will typically be shared by many different devices, so we're
93  * breaking sharing n + 1 times, rather than n, where n is the number of
94  * devices that reference this data block.  At the moment I think the
95  * benefits far, far outweigh the disadvantages.
96  */
97
98 /*----------------------------------------------------------------*/
99
100 /*
101  * Sometimes we can't deal with a bio straight away.  We put them in prison
102  * where they can't cause any mischief.  Bios are put in a cell identified
103  * by a key, multiple bios can be in the same cell.  When the cell is
104  * subsequently unlocked the bios become available.
105  */
106 struct bio_prison;
107
108 struct cell_key {
109         int virtual;
110         dm_thin_id dev;
111         dm_block_t block;
112 };
113
114 struct cell {
115         struct hlist_node list;
116         struct bio_prison *prison;
117         struct cell_key key;
118         struct bio *holder;
119         struct bio_list bios;
120 };
121
122 struct bio_prison {
123         spinlock_t lock;
124         mempool_t *cell_pool;
125
126         unsigned nr_buckets;
127         unsigned hash_mask;
128         struct hlist_head *cells;
129 };
130
131 static uint32_t calc_nr_buckets(unsigned nr_cells)
132 {
133         uint32_t n = 128;
134
135         nr_cells /= 4;
136         nr_cells = min(nr_cells, 8192u);
137
138         while (n < nr_cells)
139                 n <<= 1;
140
141         return n;
142 }
143
144 /*
145  * @nr_cells should be the number of cells you want in use _concurrently_.
146  * Don't confuse it with the number of distinct keys.
147  */
148 static struct bio_prison *prison_create(unsigned nr_cells)
149 {
150         unsigned i;
151         uint32_t nr_buckets = calc_nr_buckets(nr_cells);
152         size_t len = sizeof(struct bio_prison) +
153                 (sizeof(struct hlist_head) * nr_buckets);
154         struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
155
156         if (!prison)
157                 return NULL;
158
159         spin_lock_init(&prison->lock);
160         prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
161                                                         sizeof(struct cell));
162         if (!prison->cell_pool) {
163                 kfree(prison);
164                 return NULL;
165         }
166
167         prison->nr_buckets = nr_buckets;
168         prison->hash_mask = nr_buckets - 1;
169         prison->cells = (struct hlist_head *) (prison + 1);
170         for (i = 0; i < nr_buckets; i++)
171                 INIT_HLIST_HEAD(prison->cells + i);
172
173         return prison;
174 }
175
176 static void prison_destroy(struct bio_prison *prison)
177 {
178         mempool_destroy(prison->cell_pool);
179         kfree(prison);
180 }
181
182 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
183 {
184         const unsigned long BIG_PRIME = 4294967291UL;
185         uint64_t hash = key->block * BIG_PRIME;
186
187         return (uint32_t) (hash & prison->hash_mask);
188 }
189
190 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
191 {
192                return (lhs->virtual == rhs->virtual) &&
193                        (lhs->dev == rhs->dev) &&
194                        (lhs->block == rhs->block);
195 }
196
197 static struct cell *__search_bucket(struct hlist_head *bucket,
198                                     struct cell_key *key)
199 {
200         struct cell *cell;
201         struct hlist_node *tmp;
202
203         hlist_for_each_entry(cell, tmp, bucket, list)
204                 if (keys_equal(&cell->key, key))
205                         return cell;
206
207         return NULL;
208 }
209
210 /*
211  * This may block if a new cell needs allocating.  You must ensure that
212  * cells will be unlocked even if the calling thread is blocked.
213  *
214  * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
215  */
216 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
217                       struct bio *inmate, struct cell **ref)
218 {
219         int r = 1;
220         unsigned long flags;
221         uint32_t hash = hash_key(prison, key);
222         struct cell *cell, *cell2;
223
224         BUG_ON(hash > prison->nr_buckets);
225
226         spin_lock_irqsave(&prison->lock, flags);
227
228         cell = __search_bucket(prison->cells + hash, key);
229         if (cell) {
230                 bio_list_add(&cell->bios, inmate);
231                 goto out;
232         }
233
234         /*
235          * Allocate a new cell
236          */
237         spin_unlock_irqrestore(&prison->lock, flags);
238         cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
239         spin_lock_irqsave(&prison->lock, flags);
240
241         /*
242          * We've been unlocked, so we have to double check that
243          * nobody else has inserted this cell in the meantime.
244          */
245         cell = __search_bucket(prison->cells + hash, key);
246         if (cell) {
247                 mempool_free(cell2, prison->cell_pool);
248                 bio_list_add(&cell->bios, inmate);
249                 goto out;
250         }
251
252         /*
253          * Use new cell.
254          */
255         cell = cell2;
256
257         cell->prison = prison;
258         memcpy(&cell->key, key, sizeof(cell->key));
259         cell->holder = inmate;
260         bio_list_init(&cell->bios);
261         hlist_add_head(&cell->list, prison->cells + hash);
262
263         r = 0;
264
265 out:
266         spin_unlock_irqrestore(&prison->lock, flags);
267
268         *ref = cell;
269
270         return r;
271 }
272
273 /*
274  * @inmates must have been initialised prior to this call
275  */
276 static void __cell_release(struct cell *cell, struct bio_list *inmates)
277 {
278         struct bio_prison *prison = cell->prison;
279
280         hlist_del(&cell->list);
281
282         if (inmates) {
283                 bio_list_add(inmates, cell->holder);
284                 bio_list_merge(inmates, &cell->bios);
285         }
286
287         mempool_free(cell, prison->cell_pool);
288 }
289
290 static void cell_release(struct cell *cell, struct bio_list *bios)
291 {
292         unsigned long flags;
293         struct bio_prison *prison = cell->prison;
294
295         spin_lock_irqsave(&prison->lock, flags);
296         __cell_release(cell, bios);
297         spin_unlock_irqrestore(&prison->lock, flags);
298 }
299
300 /*
301  * There are a couple of places where we put a bio into a cell briefly
302  * before taking it out again.  In these situations we know that no other
303  * bio may be in the cell.  This function releases the cell, and also does
304  * a sanity check.
305  */
306 static void __cell_release_singleton(struct cell *cell, struct bio *bio)
307 {
308         BUG_ON(cell->holder != bio);
309         BUG_ON(!bio_list_empty(&cell->bios));
310
311         __cell_release(cell, NULL);
312 }
313
314 static void cell_release_singleton(struct cell *cell, struct bio *bio)
315 {
316         unsigned long flags;
317         struct bio_prison *prison = cell->prison;
318
319         spin_lock_irqsave(&prison->lock, flags);
320         __cell_release_singleton(cell, bio);
321         spin_unlock_irqrestore(&prison->lock, flags);
322 }
323
324 /*
325  * Sometimes we don't want the holder, just the additional bios.
326  */
327 static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
328 {
329         struct bio_prison *prison = cell->prison;
330
331         hlist_del(&cell->list);
332         bio_list_merge(inmates, &cell->bios);
333
334         mempool_free(cell, prison->cell_pool);
335 }
336
337 static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
338 {
339         unsigned long flags;
340         struct bio_prison *prison = cell->prison;
341
342         spin_lock_irqsave(&prison->lock, flags);
343         __cell_release_no_holder(cell, inmates);
344         spin_unlock_irqrestore(&prison->lock, flags);
345 }
346
347 static void cell_error(struct cell *cell)
348 {
349         struct bio_prison *prison = cell->prison;
350         struct bio_list bios;
351         struct bio *bio;
352         unsigned long flags;
353
354         bio_list_init(&bios);
355
356         spin_lock_irqsave(&prison->lock, flags);
357         __cell_release(cell, &bios);
358         spin_unlock_irqrestore(&prison->lock, flags);
359
360         while ((bio = bio_list_pop(&bios)))
361                 bio_io_error(bio);
362 }
363
364 /*----------------------------------------------------------------*/
365
366 /*
367  * We use the deferred set to keep track of pending reads to shared blocks.
368  * We do this to ensure the new mapping caused by a write isn't performed
369  * until these prior reads have completed.  Otherwise the insertion of the
370  * new mapping could free the old block that the read bios are mapped to.
371  */
372
373 struct deferred_set;
374 struct deferred_entry {
375         struct deferred_set *ds;
376         unsigned count;
377         struct list_head work_items;
378 };
379
380 struct deferred_set {
381         spinlock_t lock;
382         unsigned current_entry;
383         unsigned sweeper;
384         struct deferred_entry entries[DEFERRED_SET_SIZE];
385 };
386
387 static void ds_init(struct deferred_set *ds)
388 {
389         int i;
390
391         spin_lock_init(&ds->lock);
392         ds->current_entry = 0;
393         ds->sweeper = 0;
394         for (i = 0; i < DEFERRED_SET_SIZE; i++) {
395                 ds->entries[i].ds = ds;
396                 ds->entries[i].count = 0;
397                 INIT_LIST_HEAD(&ds->entries[i].work_items);
398         }
399 }
400
401 static struct deferred_entry *ds_inc(struct deferred_set *ds)
402 {
403         unsigned long flags;
404         struct deferred_entry *entry;
405
406         spin_lock_irqsave(&ds->lock, flags);
407         entry = ds->entries + ds->current_entry;
408         entry->count++;
409         spin_unlock_irqrestore(&ds->lock, flags);
410
411         return entry;
412 }
413
414 static unsigned ds_next(unsigned index)
415 {
416         return (index + 1) % DEFERRED_SET_SIZE;
417 }
418
419 static void __sweep(struct deferred_set *ds, struct list_head *head)
420 {
421         while ((ds->sweeper != ds->current_entry) &&
422                !ds->entries[ds->sweeper].count) {
423                 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
424                 ds->sweeper = ds_next(ds->sweeper);
425         }
426
427         if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
428                 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
429 }
430
431 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
432 {
433         unsigned long flags;
434
435         spin_lock_irqsave(&entry->ds->lock, flags);
436         BUG_ON(!entry->count);
437         --entry->count;
438         __sweep(entry->ds, head);
439         spin_unlock_irqrestore(&entry->ds->lock, flags);
440 }
441
442 /*
443  * Returns 1 if deferred or 0 if no pending items to delay job.
444  */
445 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
446 {
447         int r = 1;
448         unsigned long flags;
449         unsigned next_entry;
450
451         spin_lock_irqsave(&ds->lock, flags);
452         if ((ds->sweeper == ds->current_entry) &&
453             !ds->entries[ds->current_entry].count)
454                 r = 0;
455         else {
456                 list_add(work, &ds->entries[ds->current_entry].work_items);
457                 next_entry = ds_next(ds->current_entry);
458                 if (!ds->entries[next_entry].count)
459                         ds->current_entry = next_entry;
460         }
461         spin_unlock_irqrestore(&ds->lock, flags);
462
463         return r;
464 }
465
466 /*----------------------------------------------------------------*/
467
468 /*
469  * Key building.
470  */
471 static void build_data_key(struct dm_thin_device *td,
472                            dm_block_t b, struct cell_key *key)
473 {
474         key->virtual = 0;
475         key->dev = dm_thin_dev_id(td);
476         key->block = b;
477 }
478
479 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
480                               struct cell_key *key)
481 {
482         key->virtual = 1;
483         key->dev = dm_thin_dev_id(td);
484         key->block = b;
485 }
486
487 /*----------------------------------------------------------------*/
488
489 /*
490  * A pool device ties together a metadata device and a data device.  It
491  * also provides the interface for creating and destroying internal
492  * devices.
493  */
494 struct new_mapping;
495
496 struct pool_features {
497         unsigned zero_new_blocks:1;
498         unsigned discard_enabled:1;
499         unsigned discard_passdown:1;
500 };
501
502 struct pool {
503         struct list_head list;
504         struct dm_target *ti;   /* Only set if a pool target is bound */
505
506         struct mapped_device *pool_md;
507         struct block_device *md_dev;
508         struct dm_pool_metadata *pmd;
509
510         uint32_t sectors_per_block;
511         unsigned block_shift;
512         dm_block_t offset_mask;
513         dm_block_t low_water_blocks;
514
515         struct pool_features pf;
516         unsigned low_water_triggered:1; /* A dm event has been sent */
517         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
518
519         struct bio_prison *prison;
520         struct dm_kcopyd_client *copier;
521
522         struct workqueue_struct *wq;
523         struct work_struct worker;
524         struct delayed_work waker;
525
526         unsigned ref_count;
527         unsigned long last_commit_jiffies;
528
529         spinlock_t lock;
530         struct bio_list deferred_bios;
531         struct bio_list deferred_flush_bios;
532         struct list_head prepared_mappings;
533         struct list_head prepared_discards;
534
535         struct bio_list retry_on_resume_list;
536
537         struct deferred_set shared_read_ds;
538         struct deferred_set all_io_ds;
539
540         struct new_mapping *next_mapping;
541         mempool_t *mapping_pool;
542         mempool_t *endio_hook_pool;
543 };
544
545 /*
546  * Target context for a pool.
547  */
548 struct pool_c {
549         struct dm_target *ti;
550         struct pool *pool;
551         struct dm_dev *data_dev;
552         struct dm_dev *metadata_dev;
553         struct dm_target_callbacks callbacks;
554
555         dm_block_t low_water_blocks;
556         struct pool_features pf;
557 };
558
559 /*
560  * Target context for a thin.
561  */
562 struct thin_c {
563         struct dm_dev *pool_dev;
564         struct dm_dev *origin_dev;
565         dm_thin_id dev_id;
566
567         struct pool *pool;
568         struct dm_thin_device *td;
569 };
570
571 /*----------------------------------------------------------------*/
572
573 /*
574  * A global list of pools that uses a struct mapped_device as a key.
575  */
576 static struct dm_thin_pool_table {
577         struct mutex mutex;
578         struct list_head pools;
579 } dm_thin_pool_table;
580
581 static void pool_table_init(void)
582 {
583         mutex_init(&dm_thin_pool_table.mutex);
584         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
585 }
586
587 static void __pool_table_insert(struct pool *pool)
588 {
589         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
590         list_add(&pool->list, &dm_thin_pool_table.pools);
591 }
592
593 static void __pool_table_remove(struct pool *pool)
594 {
595         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
596         list_del(&pool->list);
597 }
598
599 static struct pool *__pool_table_lookup(struct mapped_device *md)
600 {
601         struct pool *pool = NULL, *tmp;
602
603         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
604
605         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
606                 if (tmp->pool_md == md) {
607                         pool = tmp;
608                         break;
609                 }
610         }
611
612         return pool;
613 }
614
615 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
616 {
617         struct pool *pool = NULL, *tmp;
618
619         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
620
621         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
622                 if (tmp->md_dev == md_dev) {
623                         pool = tmp;
624                         break;
625                 }
626         }
627
628         return pool;
629 }
630
631 /*----------------------------------------------------------------*/
632
633 struct endio_hook {
634         struct thin_c *tc;
635         struct deferred_entry *shared_read_entry;
636         struct deferred_entry *all_io_entry;
637         struct new_mapping *overwrite_mapping;
638 };
639
640 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
641 {
642         struct bio *bio;
643         struct bio_list bios;
644
645         bio_list_init(&bios);
646         bio_list_merge(&bios, master);
647         bio_list_init(master);
648
649         while ((bio = bio_list_pop(&bios))) {
650                 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
651                 if (h->tc == tc)
652                         bio_endio(bio, DM_ENDIO_REQUEUE);
653                 else
654                         bio_list_add(master, bio);
655         }
656 }
657
658 static void requeue_io(struct thin_c *tc)
659 {
660         struct pool *pool = tc->pool;
661         unsigned long flags;
662
663         spin_lock_irqsave(&pool->lock, flags);
664         __requeue_bio_list(tc, &pool->deferred_bios);
665         __requeue_bio_list(tc, &pool->retry_on_resume_list);
666         spin_unlock_irqrestore(&pool->lock, flags);
667 }
668
669 /*
670  * This section of code contains the logic for processing a thin device's IO.
671  * Much of the code depends on pool object resources (lists, workqueues, etc)
672  * but most is exclusively called from the thin target rather than the thin-pool
673  * target.
674  */
675
676 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
677 {
678         return bio->bi_sector >> tc->pool->block_shift;
679 }
680
681 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
682 {
683         struct pool *pool = tc->pool;
684
685         bio->bi_bdev = tc->pool_dev->bdev;
686         bio->bi_sector = (block << pool->block_shift) +
687                 (bio->bi_sector & pool->offset_mask);
688 }
689
690 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
691 {
692         bio->bi_bdev = tc->origin_dev->bdev;
693 }
694
695 static void issue(struct thin_c *tc, struct bio *bio)
696 {
697         struct pool *pool = tc->pool;
698         unsigned long flags;
699
700         /*
701          * Batch together any FUA/FLUSH bios we find and then issue
702          * a single commit for them in process_deferred_bios().
703          */
704         if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
705                 spin_lock_irqsave(&pool->lock, flags);
706                 bio_list_add(&pool->deferred_flush_bios, bio);
707                 spin_unlock_irqrestore(&pool->lock, flags);
708         } else
709                 generic_make_request(bio);
710 }
711
712 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
713 {
714         remap_to_origin(tc, bio);
715         issue(tc, bio);
716 }
717
718 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
719                             dm_block_t block)
720 {
721         remap(tc, bio, block);
722         issue(tc, bio);
723 }
724
725 /*
726  * wake_worker() is used when new work is queued and when pool_resume is
727  * ready to continue deferred IO processing.
728  */
729 static void wake_worker(struct pool *pool)
730 {
731         queue_work(pool->wq, &pool->worker);
732 }
733
734 /*----------------------------------------------------------------*/
735
736 /*
737  * Bio endio functions.
738  */
739 struct new_mapping {
740         struct list_head list;
741
742         unsigned quiesced:1;
743         unsigned prepared:1;
744         unsigned pass_discard:1;
745
746         struct thin_c *tc;
747         dm_block_t virt_block;
748         dm_block_t data_block;
749         struct cell *cell, *cell2;
750         int err;
751
752         /*
753          * If the bio covers the whole area of a block then we can avoid
754          * zeroing or copying.  Instead this bio is hooked.  The bio will
755          * still be in the cell, so care has to be taken to avoid issuing
756          * the bio twice.
757          */
758         struct bio *bio;
759         bio_end_io_t *saved_bi_end_io;
760 };
761
762 static void __maybe_add_mapping(struct new_mapping *m)
763 {
764         struct pool *pool = m->tc->pool;
765
766         if (m->quiesced && m->prepared) {
767                 list_add(&m->list, &pool->prepared_mappings);
768                 wake_worker(pool);
769         }
770 }
771
772 static void copy_complete(int read_err, unsigned long write_err, void *context)
773 {
774         unsigned long flags;
775         struct new_mapping *m = context;
776         struct pool *pool = m->tc->pool;
777
778         m->err = read_err || write_err ? -EIO : 0;
779
780         spin_lock_irqsave(&pool->lock, flags);
781         m->prepared = 1;
782         __maybe_add_mapping(m);
783         spin_unlock_irqrestore(&pool->lock, flags);
784 }
785
786 static void overwrite_endio(struct bio *bio, int err)
787 {
788         unsigned long flags;
789         struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
790         struct new_mapping *m = h->overwrite_mapping;
791         struct pool *pool = m->tc->pool;
792
793         m->err = err;
794
795         spin_lock_irqsave(&pool->lock, flags);
796         m->prepared = 1;
797         __maybe_add_mapping(m);
798         spin_unlock_irqrestore(&pool->lock, flags);
799 }
800
801 /*----------------------------------------------------------------*/
802
803 /*
804  * Workqueue.
805  */
806
807 /*
808  * Prepared mapping jobs.
809  */
810
811 /*
812  * This sends the bios in the cell back to the deferred_bios list.
813  */
814 static void cell_defer(struct thin_c *tc, struct cell *cell,
815                        dm_block_t data_block)
816 {
817         struct pool *pool = tc->pool;
818         unsigned long flags;
819
820         spin_lock_irqsave(&pool->lock, flags);
821         cell_release(cell, &pool->deferred_bios);
822         spin_unlock_irqrestore(&tc->pool->lock, flags);
823
824         wake_worker(pool);
825 }
826
827 /*
828  * Same as cell_defer above, except it omits one particular detainee,
829  * a write bio that covers the block and has already been processed.
830  */
831 static void cell_defer_except(struct thin_c *tc, struct cell *cell)
832 {
833         struct bio_list bios;
834         struct pool *pool = tc->pool;
835         unsigned long flags;
836
837         bio_list_init(&bios);
838
839         spin_lock_irqsave(&pool->lock, flags);
840         cell_release_no_holder(cell, &pool->deferred_bios);
841         spin_unlock_irqrestore(&pool->lock, flags);
842
843         wake_worker(pool);
844 }
845
846 static void process_prepared_mapping(struct new_mapping *m)
847 {
848         struct thin_c *tc = m->tc;
849         struct bio *bio;
850         int r;
851
852         bio = m->bio;
853         if (bio)
854                 bio->bi_end_io = m->saved_bi_end_io;
855
856         if (m->err) {
857                 cell_error(m->cell);
858                 return;
859         }
860
861         /*
862          * Commit the prepared block into the mapping btree.
863          * Any I/O for this block arriving after this point will get
864          * remapped to it directly.
865          */
866         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
867         if (r) {
868                 DMERR("dm_thin_insert_block() failed");
869                 cell_error(m->cell);
870                 return;
871         }
872
873         /*
874          * Release any bios held while the block was being provisioned.
875          * If we are processing a write bio that completely covers the block,
876          * we already processed it so can ignore it now when processing
877          * the bios in the cell.
878          */
879         if (bio) {
880                 cell_defer_except(tc, m->cell);
881                 bio_endio(bio, 0);
882         } else
883                 cell_defer(tc, m->cell, m->data_block);
884
885         list_del(&m->list);
886         mempool_free(m, tc->pool->mapping_pool);
887 }
888
889 static void process_prepared_discard(struct new_mapping *m)
890 {
891         int r;
892         struct thin_c *tc = m->tc;
893
894         r = dm_thin_remove_block(tc->td, m->virt_block);
895         if (r)
896                 DMERR("dm_thin_remove_block() failed");
897
898         /*
899          * Pass the discard down to the underlying device?
900          */
901         if (m->pass_discard)
902                 remap_and_issue(tc, m->bio, m->data_block);
903         else
904                 bio_endio(m->bio, 0);
905
906         cell_defer_except(tc, m->cell);
907         cell_defer_except(tc, m->cell2);
908         mempool_free(m, tc->pool->mapping_pool);
909 }
910
911 static void process_prepared(struct pool *pool, struct list_head *head,
912                              void (*fn)(struct new_mapping *))
913 {
914         unsigned long flags;
915         struct list_head maps;
916         struct new_mapping *m, *tmp;
917
918         INIT_LIST_HEAD(&maps);
919         spin_lock_irqsave(&pool->lock, flags);
920         list_splice_init(head, &maps);
921         spin_unlock_irqrestore(&pool->lock, flags);
922
923         list_for_each_entry_safe(m, tmp, &maps, list)
924                 fn(m);
925 }
926
927 /*
928  * Deferred bio jobs.
929  */
930 static int io_overlaps_block(struct pool *pool, struct bio *bio)
931 {
932         return !(bio->bi_sector & pool->offset_mask) &&
933                 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
934
935 }
936
937 static int io_overwrites_block(struct pool *pool, struct bio *bio)
938 {
939         return (bio_data_dir(bio) == WRITE) &&
940                 io_overlaps_block(pool, bio);
941 }
942
943 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
944                                bio_end_io_t *fn)
945 {
946         *save = bio->bi_end_io;
947         bio->bi_end_io = fn;
948 }
949
950 static int ensure_next_mapping(struct pool *pool)
951 {
952         if (pool->next_mapping)
953                 return 0;
954
955         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
956
957         return pool->next_mapping ? 0 : -ENOMEM;
958 }
959
960 static struct new_mapping *get_next_mapping(struct pool *pool)
961 {
962         struct new_mapping *r = pool->next_mapping;
963
964         BUG_ON(!pool->next_mapping);
965
966         pool->next_mapping = NULL;
967
968         return r;
969 }
970
971 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
972                           struct dm_dev *origin, dm_block_t data_origin,
973                           dm_block_t data_dest,
974                           struct cell *cell, struct bio *bio)
975 {
976         int r;
977         struct pool *pool = tc->pool;
978         struct new_mapping *m = get_next_mapping(pool);
979
980         INIT_LIST_HEAD(&m->list);
981         m->quiesced = 0;
982         m->prepared = 0;
983         m->tc = tc;
984         m->virt_block = virt_block;
985         m->data_block = data_dest;
986         m->cell = cell;
987         m->err = 0;
988         m->bio = NULL;
989
990         if (!ds_add_work(&pool->shared_read_ds, &m->list))
991                 m->quiesced = 1;
992
993         /*
994          * IO to pool_dev remaps to the pool target's data_dev.
995          *
996          * If the whole block of data is being overwritten, we can issue the
997          * bio immediately. Otherwise we use kcopyd to clone the data first.
998          */
999         if (io_overwrites_block(pool, bio)) {
1000                 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1001                 h->overwrite_mapping = m;
1002                 m->bio = bio;
1003                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1004                 remap_and_issue(tc, bio, data_dest);
1005         } else {
1006                 struct dm_io_region from, to;
1007
1008                 from.bdev = origin->bdev;
1009                 from.sector = data_origin * pool->sectors_per_block;
1010                 from.count = pool->sectors_per_block;
1011
1012                 to.bdev = tc->pool_dev->bdev;
1013                 to.sector = data_dest * pool->sectors_per_block;
1014                 to.count = pool->sectors_per_block;
1015
1016                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1017                                    0, copy_complete, m);
1018                 if (r < 0) {
1019                         mempool_free(m, pool->mapping_pool);
1020                         DMERR("dm_kcopyd_copy() failed");
1021                         cell_error(cell);
1022                 }
1023         }
1024 }
1025
1026 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1027                                    dm_block_t data_origin, dm_block_t data_dest,
1028                                    struct cell *cell, struct bio *bio)
1029 {
1030         schedule_copy(tc, virt_block, tc->pool_dev,
1031                       data_origin, data_dest, cell, bio);
1032 }
1033
1034 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1035                                    dm_block_t data_dest,
1036                                    struct cell *cell, struct bio *bio)
1037 {
1038         schedule_copy(tc, virt_block, tc->origin_dev,
1039                       virt_block, data_dest, cell, bio);
1040 }
1041
1042 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1043                           dm_block_t data_block, struct cell *cell,
1044                           struct bio *bio)
1045 {
1046         struct pool *pool = tc->pool;
1047         struct new_mapping *m = get_next_mapping(pool);
1048
1049         INIT_LIST_HEAD(&m->list);
1050         m->quiesced = 1;
1051         m->prepared = 0;
1052         m->tc = tc;
1053         m->virt_block = virt_block;
1054         m->data_block = data_block;
1055         m->cell = cell;
1056         m->err = 0;
1057         m->bio = NULL;
1058
1059         /*
1060          * If the whole block of data is being overwritten or we are not
1061          * zeroing pre-existing data, we can issue the bio immediately.
1062          * Otherwise we use kcopyd to zero the data first.
1063          */
1064         if (!pool->pf.zero_new_blocks)
1065                 process_prepared_mapping(m);
1066
1067         else if (io_overwrites_block(pool, bio)) {
1068                 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1069                 h->overwrite_mapping = m;
1070                 m->bio = bio;
1071                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1072                 remap_and_issue(tc, bio, data_block);
1073
1074         } else {
1075                 int r;
1076                 struct dm_io_region to;
1077
1078                 to.bdev = tc->pool_dev->bdev;
1079                 to.sector = data_block * pool->sectors_per_block;
1080                 to.count = pool->sectors_per_block;
1081
1082                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1083                 if (r < 0) {
1084                         mempool_free(m, pool->mapping_pool);
1085                         DMERR("dm_kcopyd_zero() failed");
1086                         cell_error(cell);
1087                 }
1088         }
1089 }
1090
1091 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1092 {
1093         int r;
1094         dm_block_t free_blocks;
1095         unsigned long flags;
1096         struct pool *pool = tc->pool;
1097
1098         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1099         if (r)
1100                 return r;
1101
1102         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1103                 DMWARN("%s: reached low water mark, sending event.",
1104                        dm_device_name(pool->pool_md));
1105                 spin_lock_irqsave(&pool->lock, flags);
1106                 pool->low_water_triggered = 1;
1107                 spin_unlock_irqrestore(&pool->lock, flags);
1108                 dm_table_event(pool->ti->table);
1109         }
1110
1111         if (!free_blocks) {
1112                 if (pool->no_free_space)
1113                         return -ENOSPC;
1114                 else {
1115                         /*
1116                          * Try to commit to see if that will free up some
1117                          * more space.
1118                          */
1119                         r = dm_pool_commit_metadata(pool->pmd);
1120                         if (r) {
1121                                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1122                                       __func__, r);
1123                                 return r;
1124                         }
1125
1126                         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1127                         if (r)
1128                                 return r;
1129
1130                         /*
1131                          * If we still have no space we set a flag to avoid
1132                          * doing all this checking and return -ENOSPC.
1133                          */
1134                         if (!free_blocks) {
1135                                 DMWARN("%s: no free space available.",
1136                                        dm_device_name(pool->pool_md));
1137                                 spin_lock_irqsave(&pool->lock, flags);
1138                                 pool->no_free_space = 1;
1139                                 spin_unlock_irqrestore(&pool->lock, flags);
1140                                 return -ENOSPC;
1141                         }
1142                 }
1143         }
1144
1145         r = dm_pool_alloc_data_block(pool->pmd, result);
1146         if (r)
1147                 return r;
1148
1149         return 0;
1150 }
1151
1152 /*
1153  * If we have run out of space, queue bios until the device is
1154  * resumed, presumably after having been reloaded with more space.
1155  */
1156 static void retry_on_resume(struct bio *bio)
1157 {
1158         struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1159         struct thin_c *tc = h->tc;
1160         struct pool *pool = tc->pool;
1161         unsigned long flags;
1162
1163         spin_lock_irqsave(&pool->lock, flags);
1164         bio_list_add(&pool->retry_on_resume_list, bio);
1165         spin_unlock_irqrestore(&pool->lock, flags);
1166 }
1167
1168 static void no_space(struct cell *cell)
1169 {
1170         struct bio *bio;
1171         struct bio_list bios;
1172
1173         bio_list_init(&bios);
1174         cell_release(cell, &bios);
1175
1176         while ((bio = bio_list_pop(&bios)))
1177                 retry_on_resume(bio);
1178 }
1179
1180 static void process_discard(struct thin_c *tc, struct bio *bio)
1181 {
1182         int r;
1183         unsigned long flags;
1184         struct pool *pool = tc->pool;
1185         struct cell *cell, *cell2;
1186         struct cell_key key, key2;
1187         dm_block_t block = get_bio_block(tc, bio);
1188         struct dm_thin_lookup_result lookup_result;
1189         struct new_mapping *m;
1190
1191         build_virtual_key(tc->td, block, &key);
1192         if (bio_detain(tc->pool->prison, &key, bio, &cell))
1193                 return;
1194
1195         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1196         switch (r) {
1197         case 0:
1198                 /*
1199                  * Check nobody is fiddling with this pool block.  This can
1200                  * happen if someone's in the process of breaking sharing
1201                  * on this block.
1202                  */
1203                 build_data_key(tc->td, lookup_result.block, &key2);
1204                 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1205                         cell_release_singleton(cell, bio);
1206                         break;
1207                 }
1208
1209                 if (io_overlaps_block(pool, bio)) {
1210                         /*
1211                          * IO may still be going to the destination block.  We must
1212                          * quiesce before we can do the removal.
1213                          */
1214                         m = get_next_mapping(pool);
1215                         m->tc = tc;
1216                         m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1217                         m->virt_block = block;
1218                         m->data_block = lookup_result.block;
1219                         m->cell = cell;
1220                         m->cell2 = cell2;
1221                         m->err = 0;
1222                         m->bio = bio;
1223
1224                         if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1225                                 spin_lock_irqsave(&pool->lock, flags);
1226                                 list_add(&m->list, &pool->prepared_discards);
1227                                 spin_unlock_irqrestore(&pool->lock, flags);
1228                                 wake_worker(pool);
1229                         }
1230                 } else {
1231                         /*
1232                          * This path is hit if people are ignoring
1233                          * limits->discard_granularity.  It ignores any
1234                          * part of the discard that is in a subsequent
1235                          * block.
1236                          */
1237                         sector_t offset = bio->bi_sector - (block << pool->block_shift);
1238                         unsigned remaining = (pool->sectors_per_block - offset) << 9;
1239                         bio->bi_size = min(bio->bi_size, remaining);
1240
1241                         cell_release_singleton(cell, bio);
1242                         cell_release_singleton(cell2, bio);
1243                         remap_and_issue(tc, bio, lookup_result.block);
1244                 }
1245                 break;
1246
1247         case -ENODATA:
1248                 /*
1249                  * It isn't provisioned, just forget it.
1250                  */
1251                 cell_release_singleton(cell, bio);
1252                 bio_endio(bio, 0);
1253                 break;
1254
1255         default:
1256                 DMERR("discard: find block unexpectedly returned %d", r);
1257                 cell_release_singleton(cell, bio);
1258                 bio_io_error(bio);
1259                 break;
1260         }
1261 }
1262
1263 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1264                           struct cell_key *key,
1265                           struct dm_thin_lookup_result *lookup_result,
1266                           struct cell *cell)
1267 {
1268         int r;
1269         dm_block_t data_block;
1270
1271         r = alloc_data_block(tc, &data_block);
1272         switch (r) {
1273         case 0:
1274                 schedule_internal_copy(tc, block, lookup_result->block,
1275                                        data_block, cell, bio);
1276                 break;
1277
1278         case -ENOSPC:
1279                 no_space(cell);
1280                 break;
1281
1282         default:
1283                 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1284                 cell_error(cell);
1285                 break;
1286         }
1287 }
1288
1289 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1290                                dm_block_t block,
1291                                struct dm_thin_lookup_result *lookup_result)
1292 {
1293         struct cell *cell;
1294         struct pool *pool = tc->pool;
1295         struct cell_key key;
1296
1297         /*
1298          * If cell is already occupied, then sharing is already in the process
1299          * of being broken so we have nothing further to do here.
1300          */
1301         build_data_key(tc->td, lookup_result->block, &key);
1302         if (bio_detain(pool->prison, &key, bio, &cell))
1303                 return;
1304
1305         if (bio_data_dir(bio) == WRITE)
1306                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1307         else {
1308                 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1309
1310                 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1311
1312                 cell_release_singleton(cell, bio);
1313                 remap_and_issue(tc, bio, lookup_result->block);
1314         }
1315 }
1316
1317 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1318                             struct cell *cell)
1319 {
1320         int r;
1321         dm_block_t data_block;
1322
1323         /*
1324          * Remap empty bios (flushes) immediately, without provisioning.
1325          */
1326         if (!bio->bi_size) {
1327                 cell_release_singleton(cell, bio);
1328                 remap_and_issue(tc, bio, 0);
1329                 return;
1330         }
1331
1332         /*
1333          * Fill read bios with zeroes and complete them immediately.
1334          */
1335         if (bio_data_dir(bio) == READ) {
1336                 zero_fill_bio(bio);
1337                 cell_release_singleton(cell, bio);
1338                 bio_endio(bio, 0);
1339                 return;
1340         }
1341
1342         r = alloc_data_block(tc, &data_block);
1343         switch (r) {
1344         case 0:
1345                 if (tc->origin_dev)
1346                         schedule_external_copy(tc, block, data_block, cell, bio);
1347                 else
1348                         schedule_zero(tc, block, data_block, cell, bio);
1349                 break;
1350
1351         case -ENOSPC:
1352                 no_space(cell);
1353                 break;
1354
1355         default:
1356                 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1357                 cell_error(cell);
1358                 break;
1359         }
1360 }
1361
1362 static void process_bio(struct thin_c *tc, struct bio *bio)
1363 {
1364         int r;
1365         dm_block_t block = get_bio_block(tc, bio);
1366         struct cell *cell;
1367         struct cell_key key;
1368         struct dm_thin_lookup_result lookup_result;
1369
1370         /*
1371          * If cell is already occupied, then the block is already
1372          * being provisioned so we have nothing further to do here.
1373          */
1374         build_virtual_key(tc->td, block, &key);
1375         if (bio_detain(tc->pool->prison, &key, bio, &cell))
1376                 return;
1377
1378         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1379         switch (r) {
1380         case 0:
1381                 /*
1382                  * We can release this cell now.  This thread is the only
1383                  * one that puts bios into a cell, and we know there were
1384                  * no preceding bios.
1385                  */
1386                 /*
1387                  * TODO: this will probably have to change when discard goes
1388                  * back in.
1389                  */
1390                 cell_release_singleton(cell, bio);
1391
1392                 if (lookup_result.shared)
1393                         process_shared_bio(tc, bio, block, &lookup_result);
1394                 else
1395                         remap_and_issue(tc, bio, lookup_result.block);
1396                 break;
1397
1398         case -ENODATA:
1399                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1400                         cell_release_singleton(cell, bio);
1401                         remap_to_origin_and_issue(tc, bio);
1402                 } else
1403                         provision_block(tc, bio, block, cell);
1404                 break;
1405
1406         default:
1407                 DMERR("dm_thin_find_block() failed, error = %d", r);
1408                 cell_release_singleton(cell, bio);
1409                 bio_io_error(bio);
1410                 break;
1411         }
1412 }
1413
1414 static int need_commit_due_to_time(struct pool *pool)
1415 {
1416         return jiffies < pool->last_commit_jiffies ||
1417                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1418 }
1419
1420 static void process_deferred_bios(struct pool *pool)
1421 {
1422         unsigned long flags;
1423         struct bio *bio;
1424         struct bio_list bios;
1425         int r;
1426
1427         bio_list_init(&bios);
1428
1429         spin_lock_irqsave(&pool->lock, flags);
1430         bio_list_merge(&bios, &pool->deferred_bios);
1431         bio_list_init(&pool->deferred_bios);
1432         spin_unlock_irqrestore(&pool->lock, flags);
1433
1434         while ((bio = bio_list_pop(&bios))) {
1435                 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1436                 struct thin_c *tc = h->tc;
1437
1438                 /*
1439                  * If we've got no free new_mapping structs, and processing
1440                  * this bio might require one, we pause until there are some
1441                  * prepared mappings to process.
1442                  */
1443                 if (ensure_next_mapping(pool)) {
1444                         spin_lock_irqsave(&pool->lock, flags);
1445                         bio_list_merge(&pool->deferred_bios, &bios);
1446                         spin_unlock_irqrestore(&pool->lock, flags);
1447
1448                         break;
1449                 }
1450
1451                 if (bio->bi_rw & REQ_DISCARD)
1452                         process_discard(tc, bio);
1453                 else
1454                         process_bio(tc, bio);
1455         }
1456
1457         /*
1458          * If there are any deferred flush bios, we must commit
1459          * the metadata before issuing them.
1460          */
1461         bio_list_init(&bios);
1462         spin_lock_irqsave(&pool->lock, flags);
1463         bio_list_merge(&bios, &pool->deferred_flush_bios);
1464         bio_list_init(&pool->deferred_flush_bios);
1465         spin_unlock_irqrestore(&pool->lock, flags);
1466
1467         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1468                 return;
1469
1470         r = dm_pool_commit_metadata(pool->pmd);
1471         if (r) {
1472                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1473                       __func__, r);
1474                 while ((bio = bio_list_pop(&bios)))
1475                         bio_io_error(bio);
1476                 return;
1477         }
1478         pool->last_commit_jiffies = jiffies;
1479
1480         while ((bio = bio_list_pop(&bios)))
1481                 generic_make_request(bio);
1482 }
1483
1484 static void do_worker(struct work_struct *ws)
1485 {
1486         struct pool *pool = container_of(ws, struct pool, worker);
1487
1488         process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1489         process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
1490         process_deferred_bios(pool);
1491 }
1492
1493 /*
1494  * We want to commit periodically so that not too much
1495  * unwritten data builds up.
1496  */
1497 static void do_waker(struct work_struct *ws)
1498 {
1499         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1500         wake_worker(pool);
1501         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1502 }
1503
1504 /*----------------------------------------------------------------*/
1505
1506 /*
1507  * Mapping functions.
1508  */
1509
1510 /*
1511  * Called only while mapping a thin bio to hand it over to the workqueue.
1512  */
1513 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1514 {
1515         unsigned long flags;
1516         struct pool *pool = tc->pool;
1517
1518         spin_lock_irqsave(&pool->lock, flags);
1519         bio_list_add(&pool->deferred_bios, bio);
1520         spin_unlock_irqrestore(&pool->lock, flags);
1521
1522         wake_worker(pool);
1523 }
1524
1525 static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1526 {
1527         struct pool *pool = tc->pool;
1528         struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1529
1530         h->tc = tc;
1531         h->shared_read_entry = NULL;
1532         h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1533         h->overwrite_mapping = NULL;
1534
1535         return h;
1536 }
1537
1538 /*
1539  * Non-blocking function called from the thin target's map function.
1540  */
1541 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1542                         union map_info *map_context)
1543 {
1544         int r;
1545         struct thin_c *tc = ti->private;
1546         dm_block_t block = get_bio_block(tc, bio);
1547         struct dm_thin_device *td = tc->td;
1548         struct dm_thin_lookup_result result;
1549
1550         map_context->ptr = thin_hook_bio(tc, bio);
1551         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1552                 thin_defer_bio(tc, bio);
1553                 return DM_MAPIO_SUBMITTED;
1554         }
1555
1556         r = dm_thin_find_block(td, block, 0, &result);
1557
1558         /*
1559          * Note that we defer readahead too.
1560          */
1561         switch (r) {
1562         case 0:
1563                 if (unlikely(result.shared)) {
1564                         /*
1565                          * We have a race condition here between the
1566                          * result.shared value returned by the lookup and
1567                          * snapshot creation, which may cause new
1568                          * sharing.
1569                          *
1570                          * To avoid this always quiesce the origin before
1571                          * taking the snap.  You want to do this anyway to
1572                          * ensure a consistent application view
1573                          * (i.e. lockfs).
1574                          *
1575                          * More distant ancestors are irrelevant. The
1576                          * shared flag will be set in their case.
1577                          */
1578                         thin_defer_bio(tc, bio);
1579                         r = DM_MAPIO_SUBMITTED;
1580                 } else {
1581                         remap(tc, bio, result.block);
1582                         r = DM_MAPIO_REMAPPED;
1583                 }
1584                 break;
1585
1586         case -ENODATA:
1587                 /*
1588                  * In future, the failed dm_thin_find_block above could
1589                  * provide the hint to load the metadata into cache.
1590                  */
1591         case -EWOULDBLOCK:
1592                 thin_defer_bio(tc, bio);
1593                 r = DM_MAPIO_SUBMITTED;
1594                 break;
1595         }
1596
1597         return r;
1598 }
1599
1600 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1601 {
1602         int r;
1603         unsigned long flags;
1604         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1605
1606         spin_lock_irqsave(&pt->pool->lock, flags);
1607         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1608         spin_unlock_irqrestore(&pt->pool->lock, flags);
1609
1610         if (!r) {
1611                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1612                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1613         }
1614
1615         return r;
1616 }
1617
1618 static void __requeue_bios(struct pool *pool)
1619 {
1620         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1621         bio_list_init(&pool->retry_on_resume_list);
1622 }
1623
1624 /*----------------------------------------------------------------
1625  * Binding of control targets to a pool object
1626  *--------------------------------------------------------------*/
1627 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1628 {
1629         struct pool_c *pt = ti->private;
1630
1631         pool->ti = ti;
1632         pool->low_water_blocks = pt->low_water_blocks;
1633         pool->pf = pt->pf;
1634
1635         return 0;
1636 }
1637
1638 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1639 {
1640         if (pool->ti == ti)
1641                 pool->ti = NULL;
1642 }
1643
1644 /*----------------------------------------------------------------
1645  * Pool creation
1646  *--------------------------------------------------------------*/
1647 /* Initialize pool features. */
1648 static void pool_features_init(struct pool_features *pf)
1649 {
1650         pf->zero_new_blocks = 1;
1651         pf->discard_enabled = 1;
1652         pf->discard_passdown = 1;
1653 }
1654
1655 static void __pool_destroy(struct pool *pool)
1656 {
1657         __pool_table_remove(pool);
1658
1659         if (dm_pool_metadata_close(pool->pmd) < 0)
1660                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1661
1662         prison_destroy(pool->prison);
1663         dm_kcopyd_client_destroy(pool->copier);
1664
1665         if (pool->wq)
1666                 destroy_workqueue(pool->wq);
1667
1668         if (pool->next_mapping)
1669                 mempool_free(pool->next_mapping, pool->mapping_pool);
1670         mempool_destroy(pool->mapping_pool);
1671         mempool_destroy(pool->endio_hook_pool);
1672         kfree(pool);
1673 }
1674
1675 static struct pool *pool_create(struct mapped_device *pool_md,
1676                                 struct block_device *metadata_dev,
1677                                 unsigned long block_size, char **error)
1678 {
1679         int r;
1680         void *err_p;
1681         struct pool *pool;
1682         struct dm_pool_metadata *pmd;
1683
1684         pmd = dm_pool_metadata_open(metadata_dev, block_size);
1685         if (IS_ERR(pmd)) {
1686                 *error = "Error creating metadata object";
1687                 return (struct pool *)pmd;
1688         }
1689
1690         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1691         if (!pool) {
1692                 *error = "Error allocating memory for pool";
1693                 err_p = ERR_PTR(-ENOMEM);
1694                 goto bad_pool;
1695         }
1696
1697         pool->pmd = pmd;
1698         pool->sectors_per_block = block_size;
1699         pool->block_shift = ffs(block_size) - 1;
1700         pool->offset_mask = block_size - 1;
1701         pool->low_water_blocks = 0;
1702         pool_features_init(&pool->pf);
1703         pool->prison = prison_create(PRISON_CELLS);
1704         if (!pool->prison) {
1705                 *error = "Error creating pool's bio prison";
1706                 err_p = ERR_PTR(-ENOMEM);
1707                 goto bad_prison;
1708         }
1709
1710         pool->copier = dm_kcopyd_client_create();
1711         if (IS_ERR(pool->copier)) {
1712                 r = PTR_ERR(pool->copier);
1713                 *error = "Error creating pool's kcopyd client";
1714                 err_p = ERR_PTR(r);
1715                 goto bad_kcopyd_client;
1716         }
1717
1718         /*
1719          * Create singlethreaded workqueue that will service all devices
1720          * that use this metadata.
1721          */
1722         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1723         if (!pool->wq) {
1724                 *error = "Error creating pool's workqueue";
1725                 err_p = ERR_PTR(-ENOMEM);
1726                 goto bad_wq;
1727         }
1728
1729         INIT_WORK(&pool->worker, do_worker);
1730         INIT_DELAYED_WORK(&pool->waker, do_waker);
1731         spin_lock_init(&pool->lock);
1732         bio_list_init(&pool->deferred_bios);
1733         bio_list_init(&pool->deferred_flush_bios);
1734         INIT_LIST_HEAD(&pool->prepared_mappings);
1735         INIT_LIST_HEAD(&pool->prepared_discards);
1736         pool->low_water_triggered = 0;
1737         pool->no_free_space = 0;
1738         bio_list_init(&pool->retry_on_resume_list);
1739         ds_init(&pool->shared_read_ds);
1740         ds_init(&pool->all_io_ds);
1741
1742         pool->next_mapping = NULL;
1743         pool->mapping_pool =
1744                 mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
1745         if (!pool->mapping_pool) {
1746                 *error = "Error creating pool's mapping mempool";
1747                 err_p = ERR_PTR(-ENOMEM);
1748                 goto bad_mapping_pool;
1749         }
1750
1751         pool->endio_hook_pool =
1752                 mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
1753         if (!pool->endio_hook_pool) {
1754                 *error = "Error creating pool's endio_hook mempool";
1755                 err_p = ERR_PTR(-ENOMEM);
1756                 goto bad_endio_hook_pool;
1757         }
1758         pool->ref_count = 1;
1759         pool->last_commit_jiffies = jiffies;
1760         pool->pool_md = pool_md;
1761         pool->md_dev = metadata_dev;
1762         __pool_table_insert(pool);
1763
1764         return pool;
1765
1766 bad_endio_hook_pool:
1767         mempool_destroy(pool->mapping_pool);
1768 bad_mapping_pool:
1769         destroy_workqueue(pool->wq);
1770 bad_wq:
1771         dm_kcopyd_client_destroy(pool->copier);
1772 bad_kcopyd_client:
1773         prison_destroy(pool->prison);
1774 bad_prison:
1775         kfree(pool);
1776 bad_pool:
1777         if (dm_pool_metadata_close(pmd))
1778                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1779
1780         return err_p;
1781 }
1782
1783 static void __pool_inc(struct pool *pool)
1784 {
1785         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1786         pool->ref_count++;
1787 }
1788
1789 static void __pool_dec(struct pool *pool)
1790 {
1791         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1792         BUG_ON(!pool->ref_count);
1793         if (!--pool->ref_count)
1794                 __pool_destroy(pool);
1795 }
1796
1797 static struct pool *__pool_find(struct mapped_device *pool_md,
1798                                 struct block_device *metadata_dev,
1799                                 unsigned long block_size, char **error,
1800                                 int *created)
1801 {
1802         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1803
1804         if (pool) {
1805                 if (pool->pool_md != pool_md)
1806                         return ERR_PTR(-EBUSY);
1807                 __pool_inc(pool);
1808
1809         } else {
1810                 pool = __pool_table_lookup(pool_md);
1811                 if (pool) {
1812                         if (pool->md_dev != metadata_dev)
1813                                 return ERR_PTR(-EINVAL);
1814                         __pool_inc(pool);
1815
1816                 } else {
1817                         pool = pool_create(pool_md, metadata_dev, block_size, error);
1818                         *created = 1;
1819                 }
1820         }
1821
1822         return pool;
1823 }
1824
1825 /*----------------------------------------------------------------
1826  * Pool target methods
1827  *--------------------------------------------------------------*/
1828 static void pool_dtr(struct dm_target *ti)
1829 {
1830         struct pool_c *pt = ti->private;
1831
1832         mutex_lock(&dm_thin_pool_table.mutex);
1833
1834         unbind_control_target(pt->pool, ti);
1835         __pool_dec(pt->pool);
1836         dm_put_device(ti, pt->metadata_dev);
1837         dm_put_device(ti, pt->data_dev);
1838         kfree(pt);
1839
1840         mutex_unlock(&dm_thin_pool_table.mutex);
1841 }
1842
1843 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1844                                struct dm_target *ti)
1845 {
1846         int r;
1847         unsigned argc;
1848         const char *arg_name;
1849
1850         static struct dm_arg _args[] = {
1851                 {0, 3, "Invalid number of pool feature arguments"},
1852         };
1853
1854         /*
1855          * No feature arguments supplied.
1856          */
1857         if (!as->argc)
1858                 return 0;
1859
1860         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1861         if (r)
1862                 return -EINVAL;
1863
1864         while (argc && !r) {
1865                 arg_name = dm_shift_arg(as);
1866                 argc--;
1867
1868                 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1869                         pf->zero_new_blocks = 0;
1870                         continue;
1871                 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1872                         pf->discard_enabled = 0;
1873                         continue;
1874                 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1875                         pf->discard_passdown = 0;
1876                         continue;
1877                 }
1878
1879                 ti->error = "Unrecognised pool feature requested";
1880                 r = -EINVAL;
1881         }
1882
1883         return r;
1884 }
1885
1886 /*
1887  * thin-pool <metadata dev> <data dev>
1888  *           <data block size (sectors)>
1889  *           <low water mark (blocks)>
1890  *           [<#feature args> [<arg>]*]
1891  *
1892  * Optional feature arguments are:
1893  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1894  *           ignore_discard: disable discard
1895  *           no_discard_passdown: don't pass discards down to the data device
1896  */
1897 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1898 {
1899         int r, pool_created = 0;
1900         struct pool_c *pt;
1901         struct pool *pool;
1902         struct pool_features pf;
1903         struct dm_arg_set as;
1904         struct dm_dev *data_dev;
1905         unsigned long block_size;
1906         dm_block_t low_water_blocks;
1907         struct dm_dev *metadata_dev;
1908         sector_t metadata_dev_size;
1909         char b[BDEVNAME_SIZE];
1910
1911         /*
1912          * FIXME Remove validation from scope of lock.
1913          */
1914         mutex_lock(&dm_thin_pool_table.mutex);
1915
1916         if (argc < 4) {
1917                 ti->error = "Invalid argument count";
1918                 r = -EINVAL;
1919                 goto out_unlock;
1920         }
1921         as.argc = argc;
1922         as.argv = argv;
1923
1924         r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1925         if (r) {
1926                 ti->error = "Error opening metadata block device";
1927                 goto out_unlock;
1928         }
1929
1930         metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1931         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1932                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1933                        bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1934
1935         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1936         if (r) {
1937                 ti->error = "Error getting data device";
1938                 goto out_metadata;
1939         }
1940
1941         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1942             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1943             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1944             !is_power_of_2(block_size)) {
1945                 ti->error = "Invalid block size";
1946                 r = -EINVAL;
1947                 goto out;
1948         }
1949
1950         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1951                 ti->error = "Invalid low water mark";
1952                 r = -EINVAL;
1953                 goto out;
1954         }
1955
1956         /*
1957          * Set default pool features.
1958          */
1959         pool_features_init(&pf);
1960
1961         dm_consume_args(&as, 4);
1962         r = parse_pool_features(&as, &pf, ti);
1963         if (r)
1964                 goto out;
1965
1966         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1967         if (!pt) {
1968                 r = -ENOMEM;
1969                 goto out;
1970         }
1971
1972         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1973                            block_size, &ti->error, &pool_created);
1974         if (IS_ERR(pool)) {
1975                 r = PTR_ERR(pool);
1976                 goto out_free_pt;
1977         }
1978
1979         /*
1980          * 'pool_created' reflects whether this is the first table load.
1981          * Top level discard support is not allowed to be changed after
1982          * initial load.  This would require a pool reload to trigger thin
1983          * device changes.
1984          */
1985         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
1986                 ti->error = "Discard support cannot be disabled once enabled";
1987                 r = -EINVAL;
1988                 goto out_flags_changed;
1989         }
1990
1991         /*
1992          * If discard_passdown was enabled verify that the data device
1993          * supports discards.  Disable discard_passdown if not; otherwise
1994          * -EOPNOTSUPP will be returned.
1995          */
1996         if (pf.discard_passdown) {
1997                 struct request_queue *q = bdev_get_queue(data_dev->bdev);
1998                 if (!q || !blk_queue_discard(q)) {
1999                         DMWARN("Discard unsupported by data device: Disabling discard passdown.");
2000                         pf.discard_passdown = 0;
2001                 }
2002         }
2003
2004         pt->pool = pool;
2005         pt->ti = ti;
2006         pt->metadata_dev = metadata_dev;
2007         pt->data_dev = data_dev;
2008         pt->low_water_blocks = low_water_blocks;
2009         pt->pf = pf;
2010         ti->num_flush_requests = 1;
2011         /*
2012          * Only need to enable discards if the pool should pass
2013          * them down to the data device.  The thin device's discard
2014          * processing will cause mappings to be removed from the btree.
2015          */
2016         if (pf.discard_enabled && pf.discard_passdown) {
2017                 ti->num_discard_requests = 1;
2018                 /*
2019                  * Setting 'discards_supported' circumvents the normal
2020                  * stacking of discard limits (this keeps the pool and
2021                  * thin devices' discard limits consistent).
2022                  */
2023                 ti->discards_supported = 1;
2024         }
2025         ti->private = pt;
2026
2027         pt->callbacks.congested_fn = pool_is_congested;
2028         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2029
2030         mutex_unlock(&dm_thin_pool_table.mutex);
2031
2032         return 0;
2033
2034 out_flags_changed:
2035         __pool_dec(pool);
2036 out_free_pt:
2037         kfree(pt);
2038 out:
2039         dm_put_device(ti, data_dev);
2040 out_metadata:
2041         dm_put_device(ti, metadata_dev);
2042 out_unlock:
2043         mutex_unlock(&dm_thin_pool_table.mutex);
2044
2045         return r;
2046 }
2047
2048 static int pool_map(struct dm_target *ti, struct bio *bio,
2049                     union map_info *map_context)
2050 {
2051         int r;
2052         struct pool_c *pt = ti->private;
2053         struct pool *pool = pt->pool;
2054         unsigned long flags;
2055
2056         /*
2057          * As this is a singleton target, ti->begin is always zero.
2058          */
2059         spin_lock_irqsave(&pool->lock, flags);
2060         bio->bi_bdev = pt->data_dev->bdev;
2061         r = DM_MAPIO_REMAPPED;
2062         spin_unlock_irqrestore(&pool->lock, flags);
2063
2064         return r;
2065 }
2066
2067 /*
2068  * Retrieves the number of blocks of the data device from
2069  * the superblock and compares it to the actual device size,
2070  * thus resizing the data device in case it has grown.
2071  *
2072  * This both copes with opening preallocated data devices in the ctr
2073  * being followed by a resume
2074  * -and-
2075  * calling the resume method individually after userspace has
2076  * grown the data device in reaction to a table event.
2077  */
2078 static int pool_preresume(struct dm_target *ti)
2079 {
2080         int r;
2081         struct pool_c *pt = ti->private;
2082         struct pool *pool = pt->pool;
2083         dm_block_t data_size, sb_data_size;
2084
2085         /*
2086          * Take control of the pool object.
2087          */
2088         r = bind_control_target(pool, ti);
2089         if (r)
2090                 return r;
2091
2092         data_size = ti->len >> pool->block_shift;
2093         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2094         if (r) {
2095                 DMERR("failed to retrieve data device size");
2096                 return r;
2097         }
2098
2099         if (data_size < sb_data_size) {
2100                 DMERR("pool target too small, is %llu blocks (expected %llu)",
2101                       data_size, sb_data_size);
2102                 return -EINVAL;
2103
2104         } else if (data_size > sb_data_size) {
2105                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2106                 if (r) {
2107                         DMERR("failed to resize data device");
2108                         return r;
2109                 }
2110
2111                 r = dm_pool_commit_metadata(pool->pmd);
2112                 if (r) {
2113                         DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2114                               __func__, r);
2115                         return r;
2116                 }
2117         }
2118
2119         return 0;
2120 }
2121
2122 static void pool_resume(struct dm_target *ti)
2123 {
2124         struct pool_c *pt = ti->private;
2125         struct pool *pool = pt->pool;
2126         unsigned long flags;
2127
2128         spin_lock_irqsave(&pool->lock, flags);
2129         pool->low_water_triggered = 0;
2130         pool->no_free_space = 0;
2131         __requeue_bios(pool);
2132         spin_unlock_irqrestore(&pool->lock, flags);
2133
2134         do_waker(&pool->waker.work);
2135 }
2136
2137 static void pool_postsuspend(struct dm_target *ti)
2138 {
2139         int r;
2140         struct pool_c *pt = ti->private;
2141         struct pool *pool = pt->pool;
2142
2143         cancel_delayed_work(&pool->waker);
2144         flush_workqueue(pool->wq);
2145
2146         r = dm_pool_commit_metadata(pool->pmd);
2147         if (r < 0) {
2148                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2149                       __func__, r);
2150                 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2151         }
2152 }
2153
2154 static int check_arg_count(unsigned argc, unsigned args_required)
2155 {
2156         if (argc != args_required) {
2157                 DMWARN("Message received with %u arguments instead of %u.",
2158                        argc, args_required);
2159                 return -EINVAL;
2160         }
2161
2162         return 0;
2163 }
2164
2165 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2166 {
2167         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2168             *dev_id <= MAX_DEV_ID)
2169                 return 0;
2170
2171         if (warning)
2172                 DMWARN("Message received with invalid device id: %s", arg);
2173
2174         return -EINVAL;
2175 }
2176
2177 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2178 {
2179         dm_thin_id dev_id;
2180         int r;
2181
2182         r = check_arg_count(argc, 2);
2183         if (r)
2184                 return r;
2185
2186         r = read_dev_id(argv[1], &dev_id, 1);
2187         if (r)
2188                 return r;
2189
2190         r = dm_pool_create_thin(pool->pmd, dev_id);
2191         if (r) {
2192                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2193                        argv[1]);
2194                 return r;
2195         }
2196
2197         return 0;
2198 }
2199
2200 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2201 {
2202         dm_thin_id dev_id;
2203         dm_thin_id origin_dev_id;
2204         int r;
2205
2206         r = check_arg_count(argc, 3);
2207         if (r)
2208                 return r;
2209
2210         r = read_dev_id(argv[1], &dev_id, 1);
2211         if (r)
2212                 return r;
2213
2214         r = read_dev_id(argv[2], &origin_dev_id, 1);
2215         if (r)
2216                 return r;
2217
2218         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2219         if (r) {
2220                 DMWARN("Creation of new snapshot %s of device %s failed.",
2221                        argv[1], argv[2]);
2222                 return r;
2223         }
2224
2225         return 0;
2226 }
2227
2228 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2229 {
2230         dm_thin_id dev_id;
2231         int r;
2232
2233         r = check_arg_count(argc, 2);
2234         if (r)
2235                 return r;
2236
2237         r = read_dev_id(argv[1], &dev_id, 1);
2238         if (r)
2239                 return r;
2240
2241         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2242         if (r)
2243                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2244
2245         return r;
2246 }
2247
2248 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2249 {
2250         dm_thin_id old_id, new_id;
2251         int r;
2252
2253         r = check_arg_count(argc, 3);
2254         if (r)
2255                 return r;
2256
2257         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2258                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2259                 return -EINVAL;
2260         }
2261
2262         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2263                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2264                 return -EINVAL;
2265         }
2266
2267         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2268         if (r) {
2269                 DMWARN("Failed to change transaction id from %s to %s.",
2270                        argv[1], argv[2]);
2271                 return r;
2272         }
2273
2274         return 0;
2275 }
2276
2277 /*
2278  * Messages supported:
2279  *   create_thin        <dev_id>
2280  *   create_snap        <dev_id> <origin_id>
2281  *   delete             <dev_id>
2282  *   trim               <dev_id> <new_size_in_sectors>
2283  *   set_transaction_id <current_trans_id> <new_trans_id>
2284  */
2285 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2286 {
2287         int r = -EINVAL;
2288         struct pool_c *pt = ti->private;
2289         struct pool *pool = pt->pool;
2290
2291         if (!strcasecmp(argv[0], "create_thin"))
2292                 r = process_create_thin_mesg(argc, argv, pool);
2293
2294         else if (!strcasecmp(argv[0], "create_snap"))
2295                 r = process_create_snap_mesg(argc, argv, pool);
2296
2297         else if (!strcasecmp(argv[0], "delete"))
2298                 r = process_delete_mesg(argc, argv, pool);
2299
2300         else if (!strcasecmp(argv[0], "set_transaction_id"))
2301                 r = process_set_transaction_id_mesg(argc, argv, pool);
2302
2303         else
2304                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2305
2306         if (!r) {
2307                 r = dm_pool_commit_metadata(pool->pmd);
2308                 if (r)
2309                         DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2310                               argv[0], r);
2311         }
2312
2313         return r;
2314 }
2315
2316 /*
2317  * Status line is:
2318  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2319  *    <used data sectors>/<total data sectors> <held metadata root>
2320  */
2321 static int pool_status(struct dm_target *ti, status_type_t type,
2322                        char *result, unsigned maxlen)
2323 {
2324         int r, count;
2325         unsigned sz = 0;
2326         uint64_t transaction_id;
2327         dm_block_t nr_free_blocks_data;
2328         dm_block_t nr_free_blocks_metadata;
2329         dm_block_t nr_blocks_data;
2330         dm_block_t nr_blocks_metadata;
2331         dm_block_t held_root;
2332         char buf[BDEVNAME_SIZE];
2333         char buf2[BDEVNAME_SIZE];
2334         struct pool_c *pt = ti->private;
2335         struct pool *pool = pt->pool;
2336
2337         switch (type) {
2338         case STATUSTYPE_INFO:
2339                 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2340                                                         &transaction_id);
2341                 if (r)
2342                         return r;
2343
2344                 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2345                                                           &nr_free_blocks_metadata);
2346                 if (r)
2347                         return r;
2348
2349                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2350                 if (r)
2351                         return r;
2352
2353                 r = dm_pool_get_free_block_count(pool->pmd,
2354                                                  &nr_free_blocks_data);
2355                 if (r)
2356                         return r;
2357
2358                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2359                 if (r)
2360                         return r;
2361
2362                 r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
2363                 if (r)
2364                         return r;
2365
2366                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2367                        (unsigned long long)transaction_id,
2368                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2369                        (unsigned long long)nr_blocks_metadata,
2370                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2371                        (unsigned long long)nr_blocks_data);
2372
2373                 if (held_root)
2374                         DMEMIT("%llu", held_root);
2375                 else
2376                         DMEMIT("-");
2377
2378                 break;
2379
2380         case STATUSTYPE_TABLE:
2381                 DMEMIT("%s %s %lu %llu ",
2382                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2383                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2384                        (unsigned long)pool->sectors_per_block,
2385                        (unsigned long long)pt->low_water_blocks);
2386
2387                 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2388                         !pool->pf.discard_passdown;
2389                 DMEMIT("%u ", count);
2390
2391                 if (!pool->pf.zero_new_blocks)
2392                         DMEMIT("skip_block_zeroing ");
2393
2394                 if (!pool->pf.discard_enabled)
2395                         DMEMIT("ignore_discard ");
2396
2397                 if (!pool->pf.discard_passdown)
2398                         DMEMIT("no_discard_passdown ");
2399
2400                 break;
2401         }
2402
2403         return 0;
2404 }
2405
2406 static int pool_iterate_devices(struct dm_target *ti,
2407                                 iterate_devices_callout_fn fn, void *data)
2408 {
2409         struct pool_c *pt = ti->private;
2410
2411         return fn(ti, pt->data_dev, 0, ti->len, data);
2412 }
2413
2414 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2415                       struct bio_vec *biovec, int max_size)
2416 {
2417         struct pool_c *pt = ti->private;
2418         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2419
2420         if (!q->merge_bvec_fn)
2421                 return max_size;
2422
2423         bvm->bi_bdev = pt->data_dev->bdev;
2424
2425         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2426 }
2427
2428 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2429 {
2430         /*
2431          * FIXME: these limits may be incompatible with the pool's data device
2432          */
2433         limits->max_discard_sectors = pool->sectors_per_block;
2434
2435         /*
2436          * This is just a hint, and not enforced.  We have to cope with
2437          * bios that overlap 2 blocks.
2438          */
2439         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2440         limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2441 }
2442
2443 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2444 {
2445         struct pool_c *pt = ti->private;
2446         struct pool *pool = pt->pool;
2447
2448         blk_limits_io_min(limits, 0);
2449         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2450         if (pool->pf.discard_enabled)
2451                 set_discard_limits(pool, limits);
2452 }
2453
2454 static struct target_type pool_target = {
2455         .name = "thin-pool",
2456         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2457                     DM_TARGET_IMMUTABLE,
2458         .version = {1, 1, 0},
2459         .module = THIS_MODULE,
2460         .ctr = pool_ctr,
2461         .dtr = pool_dtr,
2462         .map = pool_map,
2463         .postsuspend = pool_postsuspend,
2464         .preresume = pool_preresume,
2465         .resume = pool_resume,
2466         .message = pool_message,
2467         .status = pool_status,
2468         .merge = pool_merge,
2469         .iterate_devices = pool_iterate_devices,
2470         .io_hints = pool_io_hints,
2471 };
2472
2473 /*----------------------------------------------------------------
2474  * Thin target methods
2475  *--------------------------------------------------------------*/
2476 static void thin_dtr(struct dm_target *ti)
2477 {
2478         struct thin_c *tc = ti->private;
2479
2480         mutex_lock(&dm_thin_pool_table.mutex);
2481
2482         __pool_dec(tc->pool);
2483         dm_pool_close_thin_device(tc->td);
2484         dm_put_device(ti, tc->pool_dev);
2485         if (tc->origin_dev)
2486                 dm_put_device(ti, tc->origin_dev);
2487         kfree(tc);
2488
2489         mutex_unlock(&dm_thin_pool_table.mutex);
2490 }
2491
2492 /*
2493  * Thin target parameters:
2494  *
2495  * <pool_dev> <dev_id> [origin_dev]
2496  *
2497  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2498  * dev_id: the internal device identifier
2499  * origin_dev: a device external to the pool that should act as the origin
2500  *
2501  * If the pool device has discards disabled, they get disabled for the thin
2502  * device as well.
2503  */
2504 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2505 {
2506         int r;
2507         struct thin_c *tc;
2508         struct dm_dev *pool_dev, *origin_dev;
2509         struct mapped_device *pool_md;
2510
2511         mutex_lock(&dm_thin_pool_table.mutex);
2512
2513         if (argc != 2 && argc != 3) {
2514                 ti->error = "Invalid argument count";
2515                 r = -EINVAL;
2516                 goto out_unlock;
2517         }
2518
2519         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2520         if (!tc) {
2521                 ti->error = "Out of memory";
2522                 r = -ENOMEM;
2523                 goto out_unlock;
2524         }
2525
2526         if (argc == 3) {
2527                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2528                 if (r) {
2529                         ti->error = "Error opening origin device";
2530                         goto bad_origin_dev;
2531                 }
2532                 tc->origin_dev = origin_dev;
2533         }
2534
2535         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2536         if (r) {
2537                 ti->error = "Error opening pool device";
2538                 goto bad_pool_dev;
2539         }
2540         tc->pool_dev = pool_dev;
2541
2542         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2543                 ti->error = "Invalid device id";
2544                 r = -EINVAL;
2545                 goto bad_common;
2546         }
2547
2548         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2549         if (!pool_md) {
2550                 ti->error = "Couldn't get pool mapped device";
2551                 r = -EINVAL;
2552                 goto bad_common;
2553         }
2554
2555         tc->pool = __pool_table_lookup(pool_md);
2556         if (!tc->pool) {
2557                 ti->error = "Couldn't find pool object";
2558                 r = -EINVAL;
2559                 goto bad_pool_lookup;
2560         }
2561         __pool_inc(tc->pool);
2562
2563         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2564         if (r) {
2565                 ti->error = "Couldn't open thin internal device";
2566                 goto bad_thin_open;
2567         }
2568
2569         ti->split_io = tc->pool->sectors_per_block;
2570         ti->num_flush_requests = 1;
2571
2572         /* In case the pool supports discards, pass them on. */
2573         if (tc->pool->pf.discard_enabled) {
2574                 ti->discards_supported = 1;
2575                 ti->num_discard_requests = 1;
2576         }
2577
2578         dm_put(pool_md);
2579
2580         mutex_unlock(&dm_thin_pool_table.mutex);
2581
2582         return 0;
2583
2584 bad_thin_open:
2585         __pool_dec(tc->pool);
2586 bad_pool_lookup:
2587         dm_put(pool_md);
2588 bad_common:
2589         dm_put_device(ti, tc->pool_dev);
2590 bad_pool_dev:
2591         if (tc->origin_dev)
2592                 dm_put_device(ti, tc->origin_dev);
2593 bad_origin_dev:
2594         kfree(tc);
2595 out_unlock:
2596         mutex_unlock(&dm_thin_pool_table.mutex);
2597
2598         return r;
2599 }
2600
2601 static int thin_map(struct dm_target *ti, struct bio *bio,
2602                     union map_info *map_context)
2603 {
2604         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2605
2606         return thin_bio_map(ti, bio, map_context);
2607 }
2608
2609 static int thin_endio(struct dm_target *ti,
2610                       struct bio *bio, int err,
2611                       union map_info *map_context)
2612 {
2613         unsigned long flags;
2614         struct endio_hook *h = map_context->ptr;
2615         struct list_head work;
2616         struct new_mapping *m, *tmp;
2617         struct pool *pool = h->tc->pool;
2618
2619         if (h->shared_read_entry) {
2620                 INIT_LIST_HEAD(&work);
2621                 ds_dec(h->shared_read_entry, &work);
2622
2623                 spin_lock_irqsave(&pool->lock, flags);
2624                 list_for_each_entry_safe(m, tmp, &work, list) {
2625                         list_del(&m->list);
2626                         m->quiesced = 1;
2627                         __maybe_add_mapping(m);
2628                 }
2629                 spin_unlock_irqrestore(&pool->lock, flags);
2630         }
2631
2632         if (h->all_io_entry) {
2633                 INIT_LIST_HEAD(&work);
2634                 ds_dec(h->all_io_entry, &work);
2635                 spin_lock_irqsave(&pool->lock, flags);
2636                 list_for_each_entry_safe(m, tmp, &work, list)
2637                         list_add(&m->list, &pool->prepared_discards);
2638                 spin_unlock_irqrestore(&pool->lock, flags);
2639         }
2640
2641         mempool_free(h, pool->endio_hook_pool);
2642
2643         return 0;
2644 }
2645
2646 static void thin_postsuspend(struct dm_target *ti)
2647 {
2648         if (dm_noflush_suspending(ti))
2649                 requeue_io((struct thin_c *)ti->private);
2650 }
2651
2652 /*
2653  * <nr mapped sectors> <highest mapped sector>
2654  */
2655 static int thin_status(struct dm_target *ti, status_type_t type,
2656                        char *result, unsigned maxlen)
2657 {
2658         int r;
2659         ssize_t sz = 0;
2660         dm_block_t mapped, highest;
2661         char buf[BDEVNAME_SIZE];
2662         struct thin_c *tc = ti->private;
2663
2664         if (!tc->td)
2665                 DMEMIT("-");
2666         else {
2667                 switch (type) {
2668                 case STATUSTYPE_INFO:
2669                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2670                         if (r)
2671                                 return r;
2672
2673                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2674                         if (r < 0)
2675                                 return r;
2676
2677                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2678                         if (r)
2679                                 DMEMIT("%llu", ((highest + 1) *
2680                                                 tc->pool->sectors_per_block) - 1);
2681                         else
2682                                 DMEMIT("-");
2683                         break;
2684
2685                 case STATUSTYPE_TABLE:
2686                         DMEMIT("%s %lu",
2687                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2688                                (unsigned long) tc->dev_id);
2689                         if (tc->origin_dev)
2690                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2691                         break;
2692                 }
2693         }
2694
2695         return 0;
2696 }
2697
2698 static int thin_iterate_devices(struct dm_target *ti,
2699                                 iterate_devices_callout_fn fn, void *data)
2700 {
2701         dm_block_t blocks;
2702         struct thin_c *tc = ti->private;
2703
2704         /*
2705          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2706          * we follow a more convoluted path through to the pool's target.
2707          */
2708         if (!tc->pool->ti)
2709                 return 0;       /* nothing is bound */
2710
2711         blocks = tc->pool->ti->len >> tc->pool->block_shift;
2712         if (blocks)
2713                 return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2714
2715         return 0;
2716 }
2717
2718 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2719 {
2720         struct thin_c *tc = ti->private;
2721         struct pool *pool = tc->pool;
2722
2723         blk_limits_io_min(limits, 0);
2724         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2725         set_discard_limits(pool, limits);
2726 }
2727
2728 static struct target_type thin_target = {
2729         .name = "thin",
2730         .version = {1, 1, 0},
2731         .module = THIS_MODULE,
2732         .ctr = thin_ctr,
2733         .dtr = thin_dtr,
2734         .map = thin_map,
2735         .end_io = thin_endio,
2736         .postsuspend = thin_postsuspend,
2737         .status = thin_status,
2738         .iterate_devices = thin_iterate_devices,
2739         .io_hints = thin_io_hints,
2740 };
2741
2742 /*----------------------------------------------------------------*/
2743
2744 static int __init dm_thin_init(void)
2745 {
2746         int r;
2747
2748         pool_table_init();
2749
2750         r = dm_register_target(&thin_target);
2751         if (r)
2752                 return r;
2753
2754         r = dm_register_target(&pool_target);
2755         if (r)
2756                 dm_unregister_target(&thin_target);
2757
2758         return r;
2759 }
2760
2761 static void dm_thin_exit(void)
2762 {
2763         dm_unregister_target(&thin_target);
2764         dm_unregister_target(&pool_target);
2765 }
2766
2767 module_init(dm_thin_init);
2768 module_exit(dm_thin_exit);
2769
2770 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2771 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772 MODULE_LICENSE("GPL");