Merge tag 'devicetree-for-linus' of git://git.secretlab.ca/git/linux
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154         struct list_head list;
155         struct dm_target *ti;   /* Only set if a pool target is bound */
156
157         struct mapped_device *pool_md;
158         struct block_device *md_dev;
159         struct dm_pool_metadata *pmd;
160
161         dm_block_t low_water_blocks;
162         uint32_t sectors_per_block;
163         int sectors_per_block_shift;
164
165         struct pool_features pf;
166         unsigned low_water_triggered:1; /* A dm event has been sent */
167         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207         struct dm_target *ti;
208         struct pool *pool;
209         struct dm_dev *data_dev;
210         struct dm_dev *metadata_dev;
211         struct dm_target_callbacks callbacks;
212
213         dm_block_t low_water_blocks;
214         struct pool_features requested_pf; /* Features requested during table load */
215         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222         struct dm_dev *pool_dev;
223         struct dm_dev *origin_dev;
224         dm_thin_id dev_id;
225
226         struct pool *pool;
227         struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238         queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244                       struct dm_bio_prison_cell **cell_result)
245 {
246         int r;
247         struct dm_bio_prison_cell *cell_prealloc;
248
249         /*
250          * Allocate a cell from the prison's mempool.
251          * This might block but it can't fail.
252          */
253         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256         if (r)
257                 /*
258                  * We reused an old cell; we can get rid of
259                  * the new one.
260                  */
261                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263         return r;
264 }
265
266 static void cell_release(struct pool *pool,
267                          struct dm_bio_prison_cell *cell,
268                          struct bio_list *bios)
269 {
270         dm_cell_release(pool->prison, cell, bios);
271         dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275                                    struct dm_bio_prison_cell *cell,
276                                    struct bio_list *bios)
277 {
278         dm_cell_release_no_holder(pool->prison, cell, bios);
279         dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283                                          struct dm_bio_prison_cell *cell)
284 {
285         struct pool *pool = tc->pool;
286         unsigned long flags;
287
288         spin_lock_irqsave(&pool->lock, flags);
289         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290         spin_unlock_irqrestore(&pool->lock, flags);
291
292         wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296                        struct dm_bio_prison_cell *cell)
297 {
298         dm_cell_error(pool->prison, cell);
299         dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308         struct mutex mutex;
309         struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314         mutex_init(&dm_thin_pool_table.mutex);
315         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321         list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327         list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332         struct pool *pool = NULL, *tmp;
333
334         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337                 if (tmp->pool_md == md) {
338                         pool = tmp;
339                         break;
340                 }
341         }
342
343         return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348         struct pool *pool = NULL, *tmp;
349
350         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353                 if (tmp->md_dev == md_dev) {
354                         pool = tmp;
355                         break;
356                 }
357         }
358
359         return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365         struct thin_c *tc;
366         struct dm_deferred_entry *shared_read_entry;
367         struct dm_deferred_entry *all_io_entry;
368         struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373         struct bio *bio;
374         struct bio_list bios;
375
376         bio_list_init(&bios);
377         bio_list_merge(&bios, master);
378         bio_list_init(master);
379
380         while ((bio = bio_list_pop(&bios))) {
381                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383                 if (h->tc == tc)
384                         bio_endio(bio, DM_ENDIO_REQUEUE);
385                 else
386                         bio_list_add(master, bio);
387         }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392         struct pool *pool = tc->pool;
393         unsigned long flags;
394
395         spin_lock_irqsave(&pool->lock, flags);
396         __requeue_bio_list(tc, &pool->deferred_bios);
397         __requeue_bio_list(tc, &pool->retry_on_resume_list);
398         spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410         return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415         struct pool *pool = tc->pool;
416         sector_t block_nr = bio->bi_sector;
417
418         if (block_size_is_power_of_two(pool))
419                 block_nr >>= pool->sectors_per_block_shift;
420         else
421                 (void) sector_div(block_nr, pool->sectors_per_block);
422
423         return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428         struct pool *pool = tc->pool;
429         sector_t bi_sector = bio->bi_sector;
430
431         bio->bi_bdev = tc->pool_dev->bdev;
432         if (block_size_is_power_of_two(pool))
433                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434                                 (bi_sector & (pool->sectors_per_block - 1));
435         else
436                 bio->bi_sector = (block * pool->sectors_per_block) +
437                                  sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442         bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448                 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453         struct dm_thin_endio_hook *h;
454
455         if (bio->bi_rw & REQ_DISCARD)
456                 return;
457
458         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464         struct pool *pool = tc->pool;
465         unsigned long flags;
466
467         if (!bio_triggers_commit(tc, bio)) {
468                 generic_make_request(bio);
469                 return;
470         }
471
472         /*
473          * Complete bio with an error if earlier I/O caused changes to
474          * the metadata that can't be committed e.g, due to I/O errors
475          * on the metadata device.
476          */
477         if (dm_thin_aborted_changes(tc->td)) {
478                 bio_io_error(bio);
479                 return;
480         }
481
482         /*
483          * Batch together any bios that trigger commits and then issue a
484          * single commit for them in process_deferred_bios().
485          */
486         spin_lock_irqsave(&pool->lock, flags);
487         bio_list_add(&pool->deferred_flush_bios, bio);
488         spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493         remap_to_origin(tc, bio);
494         issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498                             dm_block_t block)
499 {
500         remap(tc, bio, block);
501         issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510         struct list_head list;
511
512         unsigned quiesced:1;
513         unsigned prepared:1;
514         unsigned pass_discard:1;
515
516         struct thin_c *tc;
517         dm_block_t virt_block;
518         dm_block_t data_block;
519         struct dm_bio_prison_cell *cell, *cell2;
520         int err;
521
522         /*
523          * If the bio covers the whole area of a block then we can avoid
524          * zeroing or copying.  Instead this bio is hooked.  The bio will
525          * still be in the cell, so care has to be taken to avoid issuing
526          * the bio twice.
527          */
528         struct bio *bio;
529         bio_end_io_t *saved_bi_end_io;
530 };
531
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534         struct pool *pool = m->tc->pool;
535
536         if (m->quiesced && m->prepared) {
537                 list_add(&m->list, &pool->prepared_mappings);
538                 wake_worker(pool);
539         }
540 }
541
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544         unsigned long flags;
545         struct dm_thin_new_mapping *m = context;
546         struct pool *pool = m->tc->pool;
547
548         m->err = read_err || write_err ? -EIO : 0;
549
550         spin_lock_irqsave(&pool->lock, flags);
551         m->prepared = 1;
552         __maybe_add_mapping(m);
553         spin_unlock_irqrestore(&pool->lock, flags);
554 }
555
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558         unsigned long flags;
559         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560         struct dm_thin_new_mapping *m = h->overwrite_mapping;
561         struct pool *pool = m->tc->pool;
562
563         m->err = err;
564
565         spin_lock_irqsave(&pool->lock, flags);
566         m->prepared = 1;
567         __maybe_add_mapping(m);
568         spin_unlock_irqrestore(&pool->lock, flags);
569 }
570
571 /*----------------------------------------------------------------*/
572
573 /*
574  * Workqueue.
575  */
576
577 /*
578  * Prepared mapping jobs.
579  */
580
581 /*
582  * This sends the bios in the cell back to the deferred_bios list.
583  */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586         struct pool *pool = tc->pool;
587         unsigned long flags;
588
589         spin_lock_irqsave(&pool->lock, flags);
590         cell_release(pool, cell, &pool->deferred_bios);
591         spin_unlock_irqrestore(&tc->pool->lock, flags);
592
593         wake_worker(pool);
594 }
595
596 /*
597  * Same as cell_defer above, except it omits the original holder of the cell.
598  */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601         struct pool *pool = tc->pool;
602         unsigned long flags;
603
604         spin_lock_irqsave(&pool->lock, flags);
605         cell_release_no_holder(pool, cell, &pool->deferred_bios);
606         spin_unlock_irqrestore(&pool->lock, flags);
607
608         wake_worker(pool);
609 }
610
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613         if (m->bio)
614                 m->bio->bi_end_io = m->saved_bi_end_io;
615         cell_error(m->tc->pool, m->cell);
616         list_del(&m->list);
617         mempool_free(m, m->tc->pool->mapping_pool);
618 }
619
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622         struct thin_c *tc = m->tc;
623         struct pool *pool = tc->pool;
624         struct bio *bio;
625         int r;
626
627         bio = m->bio;
628         if (bio)
629                 bio->bi_end_io = m->saved_bi_end_io;
630
631         if (m->err) {
632                 cell_error(pool, m->cell);
633                 goto out;
634         }
635
636         /*
637          * Commit the prepared block into the mapping btree.
638          * Any I/O for this block arriving after this point will get
639          * remapped to it directly.
640          */
641         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642         if (r) {
643                 DMERR_LIMIT("dm_thin_insert_block() failed");
644                 cell_error(pool, m->cell);
645                 goto out;
646         }
647
648         /*
649          * Release any bios held while the block was being provisioned.
650          * If we are processing a write bio that completely covers the block,
651          * we already processed it so can ignore it now when processing
652          * the bios in the cell.
653          */
654         if (bio) {
655                 cell_defer_no_holder(tc, m->cell);
656                 bio_endio(bio, 0);
657         } else
658                 cell_defer(tc, m->cell);
659
660 out:
661         list_del(&m->list);
662         mempool_free(m, pool->mapping_pool);
663 }
664
665 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
666 {
667         struct thin_c *tc = m->tc;
668
669         bio_io_error(m->bio);
670         cell_defer_no_holder(tc, m->cell);
671         cell_defer_no_holder(tc, m->cell2);
672         mempool_free(m, tc->pool->mapping_pool);
673 }
674
675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
676 {
677         struct thin_c *tc = m->tc;
678
679         inc_all_io_entry(tc->pool, m->bio);
680         cell_defer_no_holder(tc, m->cell);
681         cell_defer_no_holder(tc, m->cell2);
682
683         if (m->pass_discard)
684                 remap_and_issue(tc, m->bio, m->data_block);
685         else
686                 bio_endio(m->bio, 0);
687
688         mempool_free(m, tc->pool->mapping_pool);
689 }
690
691 static void process_prepared_discard(struct dm_thin_new_mapping *m)
692 {
693         int r;
694         struct thin_c *tc = m->tc;
695
696         r = dm_thin_remove_block(tc->td, m->virt_block);
697         if (r)
698                 DMERR_LIMIT("dm_thin_remove_block() failed");
699
700         process_prepared_discard_passdown(m);
701 }
702
703 static void process_prepared(struct pool *pool, struct list_head *head,
704                              process_mapping_fn *fn)
705 {
706         unsigned long flags;
707         struct list_head maps;
708         struct dm_thin_new_mapping *m, *tmp;
709
710         INIT_LIST_HEAD(&maps);
711         spin_lock_irqsave(&pool->lock, flags);
712         list_splice_init(head, &maps);
713         spin_unlock_irqrestore(&pool->lock, flags);
714
715         list_for_each_entry_safe(m, tmp, &maps, list)
716                 (*fn)(m);
717 }
718
719 /*
720  * Deferred bio jobs.
721  */
722 static int io_overlaps_block(struct pool *pool, struct bio *bio)
723 {
724         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
725 }
726
727 static int io_overwrites_block(struct pool *pool, struct bio *bio)
728 {
729         return (bio_data_dir(bio) == WRITE) &&
730                 io_overlaps_block(pool, bio);
731 }
732
733 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
734                                bio_end_io_t *fn)
735 {
736         *save = bio->bi_end_io;
737         bio->bi_end_io = fn;
738 }
739
740 static int ensure_next_mapping(struct pool *pool)
741 {
742         if (pool->next_mapping)
743                 return 0;
744
745         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
746
747         return pool->next_mapping ? 0 : -ENOMEM;
748 }
749
750 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
751 {
752         struct dm_thin_new_mapping *r = pool->next_mapping;
753
754         BUG_ON(!pool->next_mapping);
755
756         pool->next_mapping = NULL;
757
758         return r;
759 }
760
761 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
762                           struct dm_dev *origin, dm_block_t data_origin,
763                           dm_block_t data_dest,
764                           struct dm_bio_prison_cell *cell, struct bio *bio)
765 {
766         int r;
767         struct pool *pool = tc->pool;
768         struct dm_thin_new_mapping *m = get_next_mapping(pool);
769
770         INIT_LIST_HEAD(&m->list);
771         m->quiesced = 0;
772         m->prepared = 0;
773         m->tc = tc;
774         m->virt_block = virt_block;
775         m->data_block = data_dest;
776         m->cell = cell;
777         m->err = 0;
778         m->bio = NULL;
779
780         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
781                 m->quiesced = 1;
782
783         /*
784          * IO to pool_dev remaps to the pool target's data_dev.
785          *
786          * If the whole block of data is being overwritten, we can issue the
787          * bio immediately. Otherwise we use kcopyd to clone the data first.
788          */
789         if (io_overwrites_block(pool, bio)) {
790                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
791
792                 h->overwrite_mapping = m;
793                 m->bio = bio;
794                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
795                 inc_all_io_entry(pool, bio);
796                 remap_and_issue(tc, bio, data_dest);
797         } else {
798                 struct dm_io_region from, to;
799
800                 from.bdev = origin->bdev;
801                 from.sector = data_origin * pool->sectors_per_block;
802                 from.count = pool->sectors_per_block;
803
804                 to.bdev = tc->pool_dev->bdev;
805                 to.sector = data_dest * pool->sectors_per_block;
806                 to.count = pool->sectors_per_block;
807
808                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
809                                    0, copy_complete, m);
810                 if (r < 0) {
811                         mempool_free(m, pool->mapping_pool);
812                         DMERR_LIMIT("dm_kcopyd_copy() failed");
813                         cell_error(pool, cell);
814                 }
815         }
816 }
817
818 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
819                                    dm_block_t data_origin, dm_block_t data_dest,
820                                    struct dm_bio_prison_cell *cell, struct bio *bio)
821 {
822         schedule_copy(tc, virt_block, tc->pool_dev,
823                       data_origin, data_dest, cell, bio);
824 }
825
826 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
827                                    dm_block_t data_dest,
828                                    struct dm_bio_prison_cell *cell, struct bio *bio)
829 {
830         schedule_copy(tc, virt_block, tc->origin_dev,
831                       virt_block, data_dest, cell, bio);
832 }
833
834 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
835                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
836                           struct bio *bio)
837 {
838         struct pool *pool = tc->pool;
839         struct dm_thin_new_mapping *m = get_next_mapping(pool);
840
841         INIT_LIST_HEAD(&m->list);
842         m->quiesced = 1;
843         m->prepared = 0;
844         m->tc = tc;
845         m->virt_block = virt_block;
846         m->data_block = data_block;
847         m->cell = cell;
848         m->err = 0;
849         m->bio = NULL;
850
851         /*
852          * If the whole block of data is being overwritten or we are not
853          * zeroing pre-existing data, we can issue the bio immediately.
854          * Otherwise we use kcopyd to zero the data first.
855          */
856         if (!pool->pf.zero_new_blocks)
857                 process_prepared_mapping(m);
858
859         else if (io_overwrites_block(pool, bio)) {
860                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861
862                 h->overwrite_mapping = m;
863                 m->bio = bio;
864                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
865                 inc_all_io_entry(pool, bio);
866                 remap_and_issue(tc, bio, data_block);
867         } else {
868                 int r;
869                 struct dm_io_region to;
870
871                 to.bdev = tc->pool_dev->bdev;
872                 to.sector = data_block * pool->sectors_per_block;
873                 to.count = pool->sectors_per_block;
874
875                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
876                 if (r < 0) {
877                         mempool_free(m, pool->mapping_pool);
878                         DMERR_LIMIT("dm_kcopyd_zero() failed");
879                         cell_error(pool, cell);
880                 }
881         }
882 }
883
884 static int commit(struct pool *pool)
885 {
886         int r;
887
888         r = dm_pool_commit_metadata(pool->pmd);
889         if (r)
890                 DMERR_LIMIT("%s: commit failed: error = %d",
891                             dm_device_name(pool->pool_md), r);
892
893         return r;
894 }
895
896 /*
897  * A non-zero return indicates read_only or fail_io mode.
898  * Many callers don't care about the return value.
899  */
900 static int commit_or_fallback(struct pool *pool)
901 {
902         int r;
903
904         if (get_pool_mode(pool) != PM_WRITE)
905                 return -EINVAL;
906
907         r = commit(pool);
908         if (r)
909                 set_pool_mode(pool, PM_READ_ONLY);
910
911         return r;
912 }
913
914 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
915 {
916         int r;
917         dm_block_t free_blocks;
918         unsigned long flags;
919         struct pool *pool = tc->pool;
920
921         /*
922          * Once no_free_space is set we must not allow allocation to succeed.
923          * Otherwise it is difficult to explain, debug, test and support.
924          */
925         if (pool->no_free_space)
926                 return -ENOSPC;
927
928         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
929         if (r)
930                 return r;
931
932         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
933                 DMWARN("%s: reached low water mark for data device: sending event.",
934                        dm_device_name(pool->pool_md));
935                 spin_lock_irqsave(&pool->lock, flags);
936                 pool->low_water_triggered = 1;
937                 spin_unlock_irqrestore(&pool->lock, flags);
938                 dm_table_event(pool->ti->table);
939         }
940
941         if (!free_blocks) {
942                 /*
943                  * Try to commit to see if that will free up some
944                  * more space.
945                  */
946                 (void) commit_or_fallback(pool);
947
948                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
949                 if (r)
950                         return r;
951
952                 /*
953                  * If we still have no space we set a flag to avoid
954                  * doing all this checking and return -ENOSPC.  This
955                  * flag serves as a latch that disallows allocations from
956                  * this pool until the admin takes action (e.g. resize or
957                  * table reload).
958                  */
959                 if (!free_blocks) {
960                         DMWARN("%s: no free space available.",
961                                dm_device_name(pool->pool_md));
962                         spin_lock_irqsave(&pool->lock, flags);
963                         pool->no_free_space = 1;
964                         spin_unlock_irqrestore(&pool->lock, flags);
965                         return -ENOSPC;
966                 }
967         }
968
969         r = dm_pool_alloc_data_block(pool->pmd, result);
970         if (r)
971                 return r;
972
973         return 0;
974 }
975
976 /*
977  * If we have run out of space, queue bios until the device is
978  * resumed, presumably after having been reloaded with more space.
979  */
980 static void retry_on_resume(struct bio *bio)
981 {
982         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
983         struct thin_c *tc = h->tc;
984         struct pool *pool = tc->pool;
985         unsigned long flags;
986
987         spin_lock_irqsave(&pool->lock, flags);
988         bio_list_add(&pool->retry_on_resume_list, bio);
989         spin_unlock_irqrestore(&pool->lock, flags);
990 }
991
992 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
993 {
994         struct bio *bio;
995         struct bio_list bios;
996
997         bio_list_init(&bios);
998         cell_release(pool, cell, &bios);
999
1000         while ((bio = bio_list_pop(&bios)))
1001                 retry_on_resume(bio);
1002 }
1003
1004 static void process_discard(struct thin_c *tc, struct bio *bio)
1005 {
1006         int r;
1007         unsigned long flags;
1008         struct pool *pool = tc->pool;
1009         struct dm_bio_prison_cell *cell, *cell2;
1010         struct dm_cell_key key, key2;
1011         dm_block_t block = get_bio_block(tc, bio);
1012         struct dm_thin_lookup_result lookup_result;
1013         struct dm_thin_new_mapping *m;
1014
1015         build_virtual_key(tc->td, block, &key);
1016         if (bio_detain(tc->pool, &key, bio, &cell))
1017                 return;
1018
1019         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1020         switch (r) {
1021         case 0:
1022                 /*
1023                  * Check nobody is fiddling with this pool block.  This can
1024                  * happen if someone's in the process of breaking sharing
1025                  * on this block.
1026                  */
1027                 build_data_key(tc->td, lookup_result.block, &key2);
1028                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1029                         cell_defer_no_holder(tc, cell);
1030                         break;
1031                 }
1032
1033                 if (io_overlaps_block(pool, bio)) {
1034                         /*
1035                          * IO may still be going to the destination block.  We must
1036                          * quiesce before we can do the removal.
1037                          */
1038                         m = get_next_mapping(pool);
1039                         m->tc = tc;
1040                         m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1041                         m->virt_block = block;
1042                         m->data_block = lookup_result.block;
1043                         m->cell = cell;
1044                         m->cell2 = cell2;
1045                         m->err = 0;
1046                         m->bio = bio;
1047
1048                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1049                                 spin_lock_irqsave(&pool->lock, flags);
1050                                 list_add(&m->list, &pool->prepared_discards);
1051                                 spin_unlock_irqrestore(&pool->lock, flags);
1052                                 wake_worker(pool);
1053                         }
1054                 } else {
1055                         inc_all_io_entry(pool, bio);
1056                         cell_defer_no_holder(tc, cell);
1057                         cell_defer_no_holder(tc, cell2);
1058
1059                         /*
1060                          * The DM core makes sure that the discard doesn't span
1061                          * a block boundary.  So we submit the discard of a
1062                          * partial block appropriately.
1063                          */
1064                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1065                                 remap_and_issue(tc, bio, lookup_result.block);
1066                         else
1067                                 bio_endio(bio, 0);
1068                 }
1069                 break;
1070
1071         case -ENODATA:
1072                 /*
1073                  * It isn't provisioned, just forget it.
1074                  */
1075                 cell_defer_no_holder(tc, cell);
1076                 bio_endio(bio, 0);
1077                 break;
1078
1079         default:
1080                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1081                             __func__, r);
1082                 cell_defer_no_holder(tc, cell);
1083                 bio_io_error(bio);
1084                 break;
1085         }
1086 }
1087
1088 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1089                           struct dm_cell_key *key,
1090                           struct dm_thin_lookup_result *lookup_result,
1091                           struct dm_bio_prison_cell *cell)
1092 {
1093         int r;
1094         dm_block_t data_block;
1095         struct pool *pool = tc->pool;
1096
1097         r = alloc_data_block(tc, &data_block);
1098         switch (r) {
1099         case 0:
1100                 schedule_internal_copy(tc, block, lookup_result->block,
1101                                        data_block, cell, bio);
1102                 break;
1103
1104         case -ENOSPC:
1105                 no_space(pool, cell);
1106                 break;
1107
1108         default:
1109                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1110                             __func__, r);
1111                 set_pool_mode(pool, PM_READ_ONLY);
1112                 cell_error(pool, cell);
1113                 break;
1114         }
1115 }
1116
1117 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1118                                dm_block_t block,
1119                                struct dm_thin_lookup_result *lookup_result)
1120 {
1121         struct dm_bio_prison_cell *cell;
1122         struct pool *pool = tc->pool;
1123         struct dm_cell_key key;
1124
1125         /*
1126          * If cell is already occupied, then sharing is already in the process
1127          * of being broken so we have nothing further to do here.
1128          */
1129         build_data_key(tc->td, lookup_result->block, &key);
1130         if (bio_detain(pool, &key, bio, &cell))
1131                 return;
1132
1133         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1134                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1135         else {
1136                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1137
1138                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1139                 inc_all_io_entry(pool, bio);
1140                 cell_defer_no_holder(tc, cell);
1141
1142                 remap_and_issue(tc, bio, lookup_result->block);
1143         }
1144 }
1145
1146 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1147                             struct dm_bio_prison_cell *cell)
1148 {
1149         int r;
1150         dm_block_t data_block;
1151         struct pool *pool = tc->pool;
1152
1153         /*
1154          * Remap empty bios (flushes) immediately, without provisioning.
1155          */
1156         if (!bio->bi_size) {
1157                 inc_all_io_entry(pool, bio);
1158                 cell_defer_no_holder(tc, cell);
1159
1160                 remap_and_issue(tc, bio, 0);
1161                 return;
1162         }
1163
1164         /*
1165          * Fill read bios with zeroes and complete them immediately.
1166          */
1167         if (bio_data_dir(bio) == READ) {
1168                 zero_fill_bio(bio);
1169                 cell_defer_no_holder(tc, cell);
1170                 bio_endio(bio, 0);
1171                 return;
1172         }
1173
1174         r = alloc_data_block(tc, &data_block);
1175         switch (r) {
1176         case 0:
1177                 if (tc->origin_dev)
1178                         schedule_external_copy(tc, block, data_block, cell, bio);
1179                 else
1180                         schedule_zero(tc, block, data_block, cell, bio);
1181                 break;
1182
1183         case -ENOSPC:
1184                 no_space(pool, cell);
1185                 break;
1186
1187         default:
1188                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1189                             __func__, r);
1190                 set_pool_mode(pool, PM_READ_ONLY);
1191                 cell_error(pool, cell);
1192                 break;
1193         }
1194 }
1195
1196 static void process_bio(struct thin_c *tc, struct bio *bio)
1197 {
1198         int r;
1199         struct pool *pool = tc->pool;
1200         dm_block_t block = get_bio_block(tc, bio);
1201         struct dm_bio_prison_cell *cell;
1202         struct dm_cell_key key;
1203         struct dm_thin_lookup_result lookup_result;
1204
1205         /*
1206          * If cell is already occupied, then the block is already
1207          * being provisioned so we have nothing further to do here.
1208          */
1209         build_virtual_key(tc->td, block, &key);
1210         if (bio_detain(pool, &key, bio, &cell))
1211                 return;
1212
1213         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1214         switch (r) {
1215         case 0:
1216                 if (lookup_result.shared) {
1217                         process_shared_bio(tc, bio, block, &lookup_result);
1218                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1219                 } else {
1220                         inc_all_io_entry(pool, bio);
1221                         cell_defer_no_holder(tc, cell);
1222
1223                         remap_and_issue(tc, bio, lookup_result.block);
1224                 }
1225                 break;
1226
1227         case -ENODATA:
1228                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1229                         inc_all_io_entry(pool, bio);
1230                         cell_defer_no_holder(tc, cell);
1231
1232                         remap_to_origin_and_issue(tc, bio);
1233                 } else
1234                         provision_block(tc, bio, block, cell);
1235                 break;
1236
1237         default:
1238                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1239                             __func__, r);
1240                 cell_defer_no_holder(tc, cell);
1241                 bio_io_error(bio);
1242                 break;
1243         }
1244 }
1245
1246 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1247 {
1248         int r;
1249         int rw = bio_data_dir(bio);
1250         dm_block_t block = get_bio_block(tc, bio);
1251         struct dm_thin_lookup_result lookup_result;
1252
1253         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1254         switch (r) {
1255         case 0:
1256                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1257                         bio_io_error(bio);
1258                 else {
1259                         inc_all_io_entry(tc->pool, bio);
1260                         remap_and_issue(tc, bio, lookup_result.block);
1261                 }
1262                 break;
1263
1264         case -ENODATA:
1265                 if (rw != READ) {
1266                         bio_io_error(bio);
1267                         break;
1268                 }
1269
1270                 if (tc->origin_dev) {
1271                         inc_all_io_entry(tc->pool, bio);
1272                         remap_to_origin_and_issue(tc, bio);
1273                         break;
1274                 }
1275
1276                 zero_fill_bio(bio);
1277                 bio_endio(bio, 0);
1278                 break;
1279
1280         default:
1281                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1282                             __func__, r);
1283                 bio_io_error(bio);
1284                 break;
1285         }
1286 }
1287
1288 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1289 {
1290         bio_io_error(bio);
1291 }
1292
1293 /*
1294  * FIXME: should we also commit due to size of transaction, measured in
1295  * metadata blocks?
1296  */
1297 static int need_commit_due_to_time(struct pool *pool)
1298 {
1299         return jiffies < pool->last_commit_jiffies ||
1300                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1301 }
1302
1303 static void process_deferred_bios(struct pool *pool)
1304 {
1305         unsigned long flags;
1306         struct bio *bio;
1307         struct bio_list bios;
1308
1309         bio_list_init(&bios);
1310
1311         spin_lock_irqsave(&pool->lock, flags);
1312         bio_list_merge(&bios, &pool->deferred_bios);
1313         bio_list_init(&pool->deferred_bios);
1314         spin_unlock_irqrestore(&pool->lock, flags);
1315
1316         while ((bio = bio_list_pop(&bios))) {
1317                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1318                 struct thin_c *tc = h->tc;
1319
1320                 /*
1321                  * If we've got no free new_mapping structs, and processing
1322                  * this bio might require one, we pause until there are some
1323                  * prepared mappings to process.
1324                  */
1325                 if (ensure_next_mapping(pool)) {
1326                         spin_lock_irqsave(&pool->lock, flags);
1327                         bio_list_merge(&pool->deferred_bios, &bios);
1328                         spin_unlock_irqrestore(&pool->lock, flags);
1329
1330                         break;
1331                 }
1332
1333                 if (bio->bi_rw & REQ_DISCARD)
1334                         pool->process_discard(tc, bio);
1335                 else
1336                         pool->process_bio(tc, bio);
1337         }
1338
1339         /*
1340          * If there are any deferred flush bios, we must commit
1341          * the metadata before issuing them.
1342          */
1343         bio_list_init(&bios);
1344         spin_lock_irqsave(&pool->lock, flags);
1345         bio_list_merge(&bios, &pool->deferred_flush_bios);
1346         bio_list_init(&pool->deferred_flush_bios);
1347         spin_unlock_irqrestore(&pool->lock, flags);
1348
1349         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1350                 return;
1351
1352         if (commit_or_fallback(pool)) {
1353                 while ((bio = bio_list_pop(&bios)))
1354                         bio_io_error(bio);
1355                 return;
1356         }
1357         pool->last_commit_jiffies = jiffies;
1358
1359         while ((bio = bio_list_pop(&bios)))
1360                 generic_make_request(bio);
1361 }
1362
1363 static void do_worker(struct work_struct *ws)
1364 {
1365         struct pool *pool = container_of(ws, struct pool, worker);
1366
1367         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1368         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1369         process_deferred_bios(pool);
1370 }
1371
1372 /*
1373  * We want to commit periodically so that not too much
1374  * unwritten data builds up.
1375  */
1376 static void do_waker(struct work_struct *ws)
1377 {
1378         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1379         wake_worker(pool);
1380         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1381 }
1382
1383 /*----------------------------------------------------------------*/
1384
1385 static enum pool_mode get_pool_mode(struct pool *pool)
1386 {
1387         return pool->pf.mode;
1388 }
1389
1390 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1391 {
1392         int r;
1393
1394         pool->pf.mode = mode;
1395
1396         switch (mode) {
1397         case PM_FAIL:
1398                 DMERR("%s: switching pool to failure mode",
1399                       dm_device_name(pool->pool_md));
1400                 pool->process_bio = process_bio_fail;
1401                 pool->process_discard = process_bio_fail;
1402                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1403                 pool->process_prepared_discard = process_prepared_discard_fail;
1404                 break;
1405
1406         case PM_READ_ONLY:
1407                 DMERR("%s: switching pool to read-only mode",
1408                       dm_device_name(pool->pool_md));
1409                 r = dm_pool_abort_metadata(pool->pmd);
1410                 if (r) {
1411                         DMERR("%s: aborting transaction failed",
1412                               dm_device_name(pool->pool_md));
1413                         set_pool_mode(pool, PM_FAIL);
1414                 } else {
1415                         dm_pool_metadata_read_only(pool->pmd);
1416                         pool->process_bio = process_bio_read_only;
1417                         pool->process_discard = process_discard;
1418                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1419                         pool->process_prepared_discard = process_prepared_discard_passdown;
1420                 }
1421                 break;
1422
1423         case PM_WRITE:
1424                 pool->process_bio = process_bio;
1425                 pool->process_discard = process_discard;
1426                 pool->process_prepared_mapping = process_prepared_mapping;
1427                 pool->process_prepared_discard = process_prepared_discard;
1428                 break;
1429         }
1430 }
1431
1432 /*----------------------------------------------------------------*/
1433
1434 /*
1435  * Mapping functions.
1436  */
1437
1438 /*
1439  * Called only while mapping a thin bio to hand it over to the workqueue.
1440  */
1441 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1442 {
1443         unsigned long flags;
1444         struct pool *pool = tc->pool;
1445
1446         spin_lock_irqsave(&pool->lock, flags);
1447         bio_list_add(&pool->deferred_bios, bio);
1448         spin_unlock_irqrestore(&pool->lock, flags);
1449
1450         wake_worker(pool);
1451 }
1452
1453 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1454 {
1455         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1456
1457         h->tc = tc;
1458         h->shared_read_entry = NULL;
1459         h->all_io_entry = NULL;
1460         h->overwrite_mapping = NULL;
1461 }
1462
1463 /*
1464  * Non-blocking function called from the thin target's map function.
1465  */
1466 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1467 {
1468         int r;
1469         struct thin_c *tc = ti->private;
1470         dm_block_t block = get_bio_block(tc, bio);
1471         struct dm_thin_device *td = tc->td;
1472         struct dm_thin_lookup_result result;
1473         struct dm_bio_prison_cell cell1, cell2;
1474         struct dm_bio_prison_cell *cell_result;
1475         struct dm_cell_key key;
1476
1477         thin_hook_bio(tc, bio);
1478
1479         if (get_pool_mode(tc->pool) == PM_FAIL) {
1480                 bio_io_error(bio);
1481                 return DM_MAPIO_SUBMITTED;
1482         }
1483
1484         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1485                 thin_defer_bio(tc, bio);
1486                 return DM_MAPIO_SUBMITTED;
1487         }
1488
1489         r = dm_thin_find_block(td, block, 0, &result);
1490
1491         /*
1492          * Note that we defer readahead too.
1493          */
1494         switch (r) {
1495         case 0:
1496                 if (unlikely(result.shared)) {
1497                         /*
1498                          * We have a race condition here between the
1499                          * result.shared value returned by the lookup and
1500                          * snapshot creation, which may cause new
1501                          * sharing.
1502                          *
1503                          * To avoid this always quiesce the origin before
1504                          * taking the snap.  You want to do this anyway to
1505                          * ensure a consistent application view
1506                          * (i.e. lockfs).
1507                          *
1508                          * More distant ancestors are irrelevant. The
1509                          * shared flag will be set in their case.
1510                          */
1511                         thin_defer_bio(tc, bio);
1512                         return DM_MAPIO_SUBMITTED;
1513                 }
1514
1515                 build_virtual_key(tc->td, block, &key);
1516                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1517                         return DM_MAPIO_SUBMITTED;
1518
1519                 build_data_key(tc->td, result.block, &key);
1520                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1521                         cell_defer_no_holder_no_free(tc, &cell1);
1522                         return DM_MAPIO_SUBMITTED;
1523                 }
1524
1525                 inc_all_io_entry(tc->pool, bio);
1526                 cell_defer_no_holder_no_free(tc, &cell2);
1527                 cell_defer_no_holder_no_free(tc, &cell1);
1528
1529                 remap(tc, bio, result.block);
1530                 return DM_MAPIO_REMAPPED;
1531
1532         case -ENODATA:
1533                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1534                         /*
1535                          * This block isn't provisioned, and we have no way
1536                          * of doing so.  Just error it.
1537                          */
1538                         bio_io_error(bio);
1539                         return DM_MAPIO_SUBMITTED;
1540                 }
1541                 /* fall through */
1542
1543         case -EWOULDBLOCK:
1544                 /*
1545                  * In future, the failed dm_thin_find_block above could
1546                  * provide the hint to load the metadata into cache.
1547                  */
1548                 thin_defer_bio(tc, bio);
1549                 return DM_MAPIO_SUBMITTED;
1550
1551         default:
1552                 /*
1553                  * Must always call bio_io_error on failure.
1554                  * dm_thin_find_block can fail with -EINVAL if the
1555                  * pool is switched to fail-io mode.
1556                  */
1557                 bio_io_error(bio);
1558                 return DM_MAPIO_SUBMITTED;
1559         }
1560 }
1561
1562 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1563 {
1564         int r;
1565         unsigned long flags;
1566         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1567
1568         spin_lock_irqsave(&pt->pool->lock, flags);
1569         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1570         spin_unlock_irqrestore(&pt->pool->lock, flags);
1571
1572         if (!r) {
1573                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1574                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1575         }
1576
1577         return r;
1578 }
1579
1580 static void __requeue_bios(struct pool *pool)
1581 {
1582         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1583         bio_list_init(&pool->retry_on_resume_list);
1584 }
1585
1586 /*----------------------------------------------------------------
1587  * Binding of control targets to a pool object
1588  *--------------------------------------------------------------*/
1589 static bool data_dev_supports_discard(struct pool_c *pt)
1590 {
1591         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1592
1593         return q && blk_queue_discard(q);
1594 }
1595
1596 static bool is_factor(sector_t block_size, uint32_t n)
1597 {
1598         return !sector_div(block_size, n);
1599 }
1600
1601 /*
1602  * If discard_passdown was enabled verify that the data device
1603  * supports discards.  Disable discard_passdown if not.
1604  */
1605 static void disable_passdown_if_not_supported(struct pool_c *pt)
1606 {
1607         struct pool *pool = pt->pool;
1608         struct block_device *data_bdev = pt->data_dev->bdev;
1609         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1610         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1611         const char *reason = NULL;
1612         char buf[BDEVNAME_SIZE];
1613
1614         if (!pt->adjusted_pf.discard_passdown)
1615                 return;
1616
1617         if (!data_dev_supports_discard(pt))
1618                 reason = "discard unsupported";
1619
1620         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1621                 reason = "max discard sectors smaller than a block";
1622
1623         else if (data_limits->discard_granularity > block_size)
1624                 reason = "discard granularity larger than a block";
1625
1626         else if (!is_factor(block_size, data_limits->discard_granularity))
1627                 reason = "discard granularity not a factor of block size";
1628
1629         if (reason) {
1630                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1631                 pt->adjusted_pf.discard_passdown = false;
1632         }
1633 }
1634
1635 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1636 {
1637         struct pool_c *pt = ti->private;
1638
1639         /*
1640          * We want to make sure that degraded pools are never upgraded.
1641          */
1642         enum pool_mode old_mode = pool->pf.mode;
1643         enum pool_mode new_mode = pt->adjusted_pf.mode;
1644
1645         if (old_mode > new_mode)
1646                 new_mode = old_mode;
1647
1648         pool->ti = ti;
1649         pool->low_water_blocks = pt->low_water_blocks;
1650         pool->pf = pt->adjusted_pf;
1651
1652         set_pool_mode(pool, new_mode);
1653
1654         return 0;
1655 }
1656
1657 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1658 {
1659         if (pool->ti == ti)
1660                 pool->ti = NULL;
1661 }
1662
1663 /*----------------------------------------------------------------
1664  * Pool creation
1665  *--------------------------------------------------------------*/
1666 /* Initialize pool features. */
1667 static void pool_features_init(struct pool_features *pf)
1668 {
1669         pf->mode = PM_WRITE;
1670         pf->zero_new_blocks = true;
1671         pf->discard_enabled = true;
1672         pf->discard_passdown = true;
1673 }
1674
1675 static void __pool_destroy(struct pool *pool)
1676 {
1677         __pool_table_remove(pool);
1678
1679         if (dm_pool_metadata_close(pool->pmd) < 0)
1680                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1681
1682         dm_bio_prison_destroy(pool->prison);
1683         dm_kcopyd_client_destroy(pool->copier);
1684
1685         if (pool->wq)
1686                 destroy_workqueue(pool->wq);
1687
1688         if (pool->next_mapping)
1689                 mempool_free(pool->next_mapping, pool->mapping_pool);
1690         mempool_destroy(pool->mapping_pool);
1691         dm_deferred_set_destroy(pool->shared_read_ds);
1692         dm_deferred_set_destroy(pool->all_io_ds);
1693         kfree(pool);
1694 }
1695
1696 static struct kmem_cache *_new_mapping_cache;
1697
1698 static struct pool *pool_create(struct mapped_device *pool_md,
1699                                 struct block_device *metadata_dev,
1700                                 unsigned long block_size,
1701                                 int read_only, char **error)
1702 {
1703         int r;
1704         void *err_p;
1705         struct pool *pool;
1706         struct dm_pool_metadata *pmd;
1707         bool format_device = read_only ? false : true;
1708
1709         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1710         if (IS_ERR(pmd)) {
1711                 *error = "Error creating metadata object";
1712                 return (struct pool *)pmd;
1713         }
1714
1715         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1716         if (!pool) {
1717                 *error = "Error allocating memory for pool";
1718                 err_p = ERR_PTR(-ENOMEM);
1719                 goto bad_pool;
1720         }
1721
1722         pool->pmd = pmd;
1723         pool->sectors_per_block = block_size;
1724         if (block_size & (block_size - 1))
1725                 pool->sectors_per_block_shift = -1;
1726         else
1727                 pool->sectors_per_block_shift = __ffs(block_size);
1728         pool->low_water_blocks = 0;
1729         pool_features_init(&pool->pf);
1730         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1731         if (!pool->prison) {
1732                 *error = "Error creating pool's bio prison";
1733                 err_p = ERR_PTR(-ENOMEM);
1734                 goto bad_prison;
1735         }
1736
1737         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1738         if (IS_ERR(pool->copier)) {
1739                 r = PTR_ERR(pool->copier);
1740                 *error = "Error creating pool's kcopyd client";
1741                 err_p = ERR_PTR(r);
1742                 goto bad_kcopyd_client;
1743         }
1744
1745         /*
1746          * Create singlethreaded workqueue that will service all devices
1747          * that use this metadata.
1748          */
1749         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1750         if (!pool->wq) {
1751                 *error = "Error creating pool's workqueue";
1752                 err_p = ERR_PTR(-ENOMEM);
1753                 goto bad_wq;
1754         }
1755
1756         INIT_WORK(&pool->worker, do_worker);
1757         INIT_DELAYED_WORK(&pool->waker, do_waker);
1758         spin_lock_init(&pool->lock);
1759         bio_list_init(&pool->deferred_bios);
1760         bio_list_init(&pool->deferred_flush_bios);
1761         INIT_LIST_HEAD(&pool->prepared_mappings);
1762         INIT_LIST_HEAD(&pool->prepared_discards);
1763         pool->low_water_triggered = 0;
1764         pool->no_free_space = 0;
1765         bio_list_init(&pool->retry_on_resume_list);
1766
1767         pool->shared_read_ds = dm_deferred_set_create();
1768         if (!pool->shared_read_ds) {
1769                 *error = "Error creating pool's shared read deferred set";
1770                 err_p = ERR_PTR(-ENOMEM);
1771                 goto bad_shared_read_ds;
1772         }
1773
1774         pool->all_io_ds = dm_deferred_set_create();
1775         if (!pool->all_io_ds) {
1776                 *error = "Error creating pool's all io deferred set";
1777                 err_p = ERR_PTR(-ENOMEM);
1778                 goto bad_all_io_ds;
1779         }
1780
1781         pool->next_mapping = NULL;
1782         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1783                                                       _new_mapping_cache);
1784         if (!pool->mapping_pool) {
1785                 *error = "Error creating pool's mapping mempool";
1786                 err_p = ERR_PTR(-ENOMEM);
1787                 goto bad_mapping_pool;
1788         }
1789
1790         pool->ref_count = 1;
1791         pool->last_commit_jiffies = jiffies;
1792         pool->pool_md = pool_md;
1793         pool->md_dev = metadata_dev;
1794         __pool_table_insert(pool);
1795
1796         return pool;
1797
1798 bad_mapping_pool:
1799         dm_deferred_set_destroy(pool->all_io_ds);
1800 bad_all_io_ds:
1801         dm_deferred_set_destroy(pool->shared_read_ds);
1802 bad_shared_read_ds:
1803         destroy_workqueue(pool->wq);
1804 bad_wq:
1805         dm_kcopyd_client_destroy(pool->copier);
1806 bad_kcopyd_client:
1807         dm_bio_prison_destroy(pool->prison);
1808 bad_prison:
1809         kfree(pool);
1810 bad_pool:
1811         if (dm_pool_metadata_close(pmd))
1812                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1813
1814         return err_p;
1815 }
1816
1817 static void __pool_inc(struct pool *pool)
1818 {
1819         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1820         pool->ref_count++;
1821 }
1822
1823 static void __pool_dec(struct pool *pool)
1824 {
1825         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1826         BUG_ON(!pool->ref_count);
1827         if (!--pool->ref_count)
1828                 __pool_destroy(pool);
1829 }
1830
1831 static struct pool *__pool_find(struct mapped_device *pool_md,
1832                                 struct block_device *metadata_dev,
1833                                 unsigned long block_size, int read_only,
1834                                 char **error, int *created)
1835 {
1836         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1837
1838         if (pool) {
1839                 if (pool->pool_md != pool_md) {
1840                         *error = "metadata device already in use by a pool";
1841                         return ERR_PTR(-EBUSY);
1842                 }
1843                 __pool_inc(pool);
1844
1845         } else {
1846                 pool = __pool_table_lookup(pool_md);
1847                 if (pool) {
1848                         if (pool->md_dev != metadata_dev) {
1849                                 *error = "different pool cannot replace a pool";
1850                                 return ERR_PTR(-EINVAL);
1851                         }
1852                         __pool_inc(pool);
1853
1854                 } else {
1855                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1856                         *created = 1;
1857                 }
1858         }
1859
1860         return pool;
1861 }
1862
1863 /*----------------------------------------------------------------
1864  * Pool target methods
1865  *--------------------------------------------------------------*/
1866 static void pool_dtr(struct dm_target *ti)
1867 {
1868         struct pool_c *pt = ti->private;
1869
1870         mutex_lock(&dm_thin_pool_table.mutex);
1871
1872         unbind_control_target(pt->pool, ti);
1873         __pool_dec(pt->pool);
1874         dm_put_device(ti, pt->metadata_dev);
1875         dm_put_device(ti, pt->data_dev);
1876         kfree(pt);
1877
1878         mutex_unlock(&dm_thin_pool_table.mutex);
1879 }
1880
1881 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1882                                struct dm_target *ti)
1883 {
1884         int r;
1885         unsigned argc;
1886         const char *arg_name;
1887
1888         static struct dm_arg _args[] = {
1889                 {0, 3, "Invalid number of pool feature arguments"},
1890         };
1891
1892         /*
1893          * No feature arguments supplied.
1894          */
1895         if (!as->argc)
1896                 return 0;
1897
1898         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1899         if (r)
1900                 return -EINVAL;
1901
1902         while (argc && !r) {
1903                 arg_name = dm_shift_arg(as);
1904                 argc--;
1905
1906                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1907                         pf->zero_new_blocks = false;
1908
1909                 else if (!strcasecmp(arg_name, "ignore_discard"))
1910                         pf->discard_enabled = false;
1911
1912                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1913                         pf->discard_passdown = false;
1914
1915                 else if (!strcasecmp(arg_name, "read_only"))
1916                         pf->mode = PM_READ_ONLY;
1917
1918                 else {
1919                         ti->error = "Unrecognised pool feature requested";
1920                         r = -EINVAL;
1921                         break;
1922                 }
1923         }
1924
1925         return r;
1926 }
1927
1928 static void metadata_low_callback(void *context)
1929 {
1930         struct pool *pool = context;
1931
1932         DMWARN("%s: reached low water mark for metadata device: sending event.",
1933                dm_device_name(pool->pool_md));
1934
1935         dm_table_event(pool->ti->table);
1936 }
1937
1938 static sector_t get_metadata_dev_size(struct block_device *bdev)
1939 {
1940         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1941         char buffer[BDEVNAME_SIZE];
1942
1943         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1944                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1945                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1946                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1947         }
1948
1949         return metadata_dev_size;
1950 }
1951
1952 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1953 {
1954         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1955
1956         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1957
1958         return metadata_dev_size;
1959 }
1960
1961 /*
1962  * When a metadata threshold is crossed a dm event is triggered, and
1963  * userland should respond by growing the metadata device.  We could let
1964  * userland set the threshold, like we do with the data threshold, but I'm
1965  * not sure they know enough to do this well.
1966  */
1967 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1968 {
1969         /*
1970          * 4M is ample for all ops with the possible exception of thin
1971          * device deletion which is harmless if it fails (just retry the
1972          * delete after you've grown the device).
1973          */
1974         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1975         return min((dm_block_t)1024ULL /* 4M */, quarter);
1976 }
1977
1978 /*
1979  * thin-pool <metadata dev> <data dev>
1980  *           <data block size (sectors)>
1981  *           <low water mark (blocks)>
1982  *           [<#feature args> [<arg>]*]
1983  *
1984  * Optional feature arguments are:
1985  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1986  *           ignore_discard: disable discard
1987  *           no_discard_passdown: don't pass discards down to the data device
1988  */
1989 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1990 {
1991         int r, pool_created = 0;
1992         struct pool_c *pt;
1993         struct pool *pool;
1994         struct pool_features pf;
1995         struct dm_arg_set as;
1996         struct dm_dev *data_dev;
1997         unsigned long block_size;
1998         dm_block_t low_water_blocks;
1999         struct dm_dev *metadata_dev;
2000         fmode_t metadata_mode;
2001
2002         /*
2003          * FIXME Remove validation from scope of lock.
2004          */
2005         mutex_lock(&dm_thin_pool_table.mutex);
2006
2007         if (argc < 4) {
2008                 ti->error = "Invalid argument count";
2009                 r = -EINVAL;
2010                 goto out_unlock;
2011         }
2012
2013         as.argc = argc;
2014         as.argv = argv;
2015
2016         /*
2017          * Set default pool features.
2018          */
2019         pool_features_init(&pf);
2020
2021         dm_consume_args(&as, 4);
2022         r = parse_pool_features(&as, &pf, ti);
2023         if (r)
2024                 goto out_unlock;
2025
2026         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2027         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2028         if (r) {
2029                 ti->error = "Error opening metadata block device";
2030                 goto out_unlock;
2031         }
2032
2033         /*
2034          * Run for the side-effect of possibly issuing a warning if the
2035          * device is too big.
2036          */
2037         (void) get_metadata_dev_size(metadata_dev->bdev);
2038
2039         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2040         if (r) {
2041                 ti->error = "Error getting data device";
2042                 goto out_metadata;
2043         }
2044
2045         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2046             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2047             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2048             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2049                 ti->error = "Invalid block size";
2050                 r = -EINVAL;
2051                 goto out;
2052         }
2053
2054         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2055                 ti->error = "Invalid low water mark";
2056                 r = -EINVAL;
2057                 goto out;
2058         }
2059
2060         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2061         if (!pt) {
2062                 r = -ENOMEM;
2063                 goto out;
2064         }
2065
2066         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2067                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2068         if (IS_ERR(pool)) {
2069                 r = PTR_ERR(pool);
2070                 goto out_free_pt;
2071         }
2072
2073         /*
2074          * 'pool_created' reflects whether this is the first table load.
2075          * Top level discard support is not allowed to be changed after
2076          * initial load.  This would require a pool reload to trigger thin
2077          * device changes.
2078          */
2079         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2080                 ti->error = "Discard support cannot be disabled once enabled";
2081                 r = -EINVAL;
2082                 goto out_flags_changed;
2083         }
2084
2085         pt->pool = pool;
2086         pt->ti = ti;
2087         pt->metadata_dev = metadata_dev;
2088         pt->data_dev = data_dev;
2089         pt->low_water_blocks = low_water_blocks;
2090         pt->adjusted_pf = pt->requested_pf = pf;
2091         ti->num_flush_bios = 1;
2092
2093         /*
2094          * Only need to enable discards if the pool should pass
2095          * them down to the data device.  The thin device's discard
2096          * processing will cause mappings to be removed from the btree.
2097          */
2098         if (pf.discard_enabled && pf.discard_passdown) {
2099                 ti->num_discard_bios = 1;
2100
2101                 /*
2102                  * Setting 'discards_supported' circumvents the normal
2103                  * stacking of discard limits (this keeps the pool and
2104                  * thin devices' discard limits consistent).
2105                  */
2106                 ti->discards_supported = true;
2107                 ti->discard_zeroes_data_unsupported = true;
2108         }
2109         ti->private = pt;
2110
2111         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2112                                                 calc_metadata_threshold(pt),
2113                                                 metadata_low_callback,
2114                                                 pool);
2115         if (r)
2116                 goto out_free_pt;
2117
2118         pt->callbacks.congested_fn = pool_is_congested;
2119         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2120
2121         mutex_unlock(&dm_thin_pool_table.mutex);
2122
2123         return 0;
2124
2125 out_flags_changed:
2126         __pool_dec(pool);
2127 out_free_pt:
2128         kfree(pt);
2129 out:
2130         dm_put_device(ti, data_dev);
2131 out_metadata:
2132         dm_put_device(ti, metadata_dev);
2133 out_unlock:
2134         mutex_unlock(&dm_thin_pool_table.mutex);
2135
2136         return r;
2137 }
2138
2139 static int pool_map(struct dm_target *ti, struct bio *bio)
2140 {
2141         int r;
2142         struct pool_c *pt = ti->private;
2143         struct pool *pool = pt->pool;
2144         unsigned long flags;
2145
2146         /*
2147          * As this is a singleton target, ti->begin is always zero.
2148          */
2149         spin_lock_irqsave(&pool->lock, flags);
2150         bio->bi_bdev = pt->data_dev->bdev;
2151         r = DM_MAPIO_REMAPPED;
2152         spin_unlock_irqrestore(&pool->lock, flags);
2153
2154         return r;
2155 }
2156
2157 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2158 {
2159         int r;
2160         struct pool_c *pt = ti->private;
2161         struct pool *pool = pt->pool;
2162         sector_t data_size = ti->len;
2163         dm_block_t sb_data_size;
2164
2165         *need_commit = false;
2166
2167         (void) sector_div(data_size, pool->sectors_per_block);
2168
2169         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2170         if (r) {
2171                 DMERR("%s: failed to retrieve data device size",
2172                       dm_device_name(pool->pool_md));
2173                 return r;
2174         }
2175
2176         if (data_size < sb_data_size) {
2177                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2178                       dm_device_name(pool->pool_md),
2179                       (unsigned long long)data_size, sb_data_size);
2180                 return -EINVAL;
2181
2182         } else if (data_size > sb_data_size) {
2183                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2184                 if (r) {
2185                         DMERR("%s: failed to resize data device",
2186                               dm_device_name(pool->pool_md));
2187                         set_pool_mode(pool, PM_READ_ONLY);
2188                         return r;
2189                 }
2190
2191                 *need_commit = true;
2192         }
2193
2194         return 0;
2195 }
2196
2197 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2198 {
2199         int r;
2200         struct pool_c *pt = ti->private;
2201         struct pool *pool = pt->pool;
2202         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2203
2204         *need_commit = false;
2205
2206         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2207
2208         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2209         if (r) {
2210                 DMERR("%s: failed to retrieve metadata device size",
2211                       dm_device_name(pool->pool_md));
2212                 return r;
2213         }
2214
2215         if (metadata_dev_size < sb_metadata_dev_size) {
2216                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2217                       dm_device_name(pool->pool_md),
2218                       metadata_dev_size, sb_metadata_dev_size);
2219                 return -EINVAL;
2220
2221         } else if (metadata_dev_size > sb_metadata_dev_size) {
2222                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2223                 if (r) {
2224                         DMERR("%s: failed to resize metadata device",
2225                               dm_device_name(pool->pool_md));
2226                         return r;
2227                 }
2228
2229                 *need_commit = true;
2230         }
2231
2232         return 0;
2233 }
2234
2235 /*
2236  * Retrieves the number of blocks of the data device from
2237  * the superblock and compares it to the actual device size,
2238  * thus resizing the data device in case it has grown.
2239  *
2240  * This both copes with opening preallocated data devices in the ctr
2241  * being followed by a resume
2242  * -and-
2243  * calling the resume method individually after userspace has
2244  * grown the data device in reaction to a table event.
2245  */
2246 static int pool_preresume(struct dm_target *ti)
2247 {
2248         int r;
2249         bool need_commit1, need_commit2;
2250         struct pool_c *pt = ti->private;
2251         struct pool *pool = pt->pool;
2252
2253         /*
2254          * Take control of the pool object.
2255          */
2256         r = bind_control_target(pool, ti);
2257         if (r)
2258                 return r;
2259
2260         r = maybe_resize_data_dev(ti, &need_commit1);
2261         if (r)
2262                 return r;
2263
2264         r = maybe_resize_metadata_dev(ti, &need_commit2);
2265         if (r)
2266                 return r;
2267
2268         if (need_commit1 || need_commit2)
2269                 (void) commit_or_fallback(pool);
2270
2271         return 0;
2272 }
2273
2274 static void pool_resume(struct dm_target *ti)
2275 {
2276         struct pool_c *pt = ti->private;
2277         struct pool *pool = pt->pool;
2278         unsigned long flags;
2279
2280         spin_lock_irqsave(&pool->lock, flags);
2281         pool->low_water_triggered = 0;
2282         pool->no_free_space = 0;
2283         __requeue_bios(pool);
2284         spin_unlock_irqrestore(&pool->lock, flags);
2285
2286         do_waker(&pool->waker.work);
2287 }
2288
2289 static void pool_postsuspend(struct dm_target *ti)
2290 {
2291         struct pool_c *pt = ti->private;
2292         struct pool *pool = pt->pool;
2293
2294         cancel_delayed_work(&pool->waker);
2295         flush_workqueue(pool->wq);
2296         (void) commit_or_fallback(pool);
2297 }
2298
2299 static int check_arg_count(unsigned argc, unsigned args_required)
2300 {
2301         if (argc != args_required) {
2302                 DMWARN("Message received with %u arguments instead of %u.",
2303                        argc, args_required);
2304                 return -EINVAL;
2305         }
2306
2307         return 0;
2308 }
2309
2310 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2311 {
2312         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2313             *dev_id <= MAX_DEV_ID)
2314                 return 0;
2315
2316         if (warning)
2317                 DMWARN("Message received with invalid device id: %s", arg);
2318
2319         return -EINVAL;
2320 }
2321
2322 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2323 {
2324         dm_thin_id dev_id;
2325         int r;
2326
2327         r = check_arg_count(argc, 2);
2328         if (r)
2329                 return r;
2330
2331         r = read_dev_id(argv[1], &dev_id, 1);
2332         if (r)
2333                 return r;
2334
2335         r = dm_pool_create_thin(pool->pmd, dev_id);
2336         if (r) {
2337                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2338                        argv[1]);
2339                 return r;
2340         }
2341
2342         return 0;
2343 }
2344
2345 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2346 {
2347         dm_thin_id dev_id;
2348         dm_thin_id origin_dev_id;
2349         int r;
2350
2351         r = check_arg_count(argc, 3);
2352         if (r)
2353                 return r;
2354
2355         r = read_dev_id(argv[1], &dev_id, 1);
2356         if (r)
2357                 return r;
2358
2359         r = read_dev_id(argv[2], &origin_dev_id, 1);
2360         if (r)
2361                 return r;
2362
2363         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2364         if (r) {
2365                 DMWARN("Creation of new snapshot %s of device %s failed.",
2366                        argv[1], argv[2]);
2367                 return r;
2368         }
2369
2370         return 0;
2371 }
2372
2373 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2374 {
2375         dm_thin_id dev_id;
2376         int r;
2377
2378         r = check_arg_count(argc, 2);
2379         if (r)
2380                 return r;
2381
2382         r = read_dev_id(argv[1], &dev_id, 1);
2383         if (r)
2384                 return r;
2385
2386         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2387         if (r)
2388                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2389
2390         return r;
2391 }
2392
2393 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2394 {
2395         dm_thin_id old_id, new_id;
2396         int r;
2397
2398         r = check_arg_count(argc, 3);
2399         if (r)
2400                 return r;
2401
2402         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2403                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2404                 return -EINVAL;
2405         }
2406
2407         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2408                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2409                 return -EINVAL;
2410         }
2411
2412         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2413         if (r) {
2414                 DMWARN("Failed to change transaction id from %s to %s.",
2415                        argv[1], argv[2]);
2416                 return r;
2417         }
2418
2419         return 0;
2420 }
2421
2422 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2423 {
2424         int r;
2425
2426         r = check_arg_count(argc, 1);
2427         if (r)
2428                 return r;
2429
2430         (void) commit_or_fallback(pool);
2431
2432         r = dm_pool_reserve_metadata_snap(pool->pmd);
2433         if (r)
2434                 DMWARN("reserve_metadata_snap message failed.");
2435
2436         return r;
2437 }
2438
2439 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2440 {
2441         int r;
2442
2443         r = check_arg_count(argc, 1);
2444         if (r)
2445                 return r;
2446
2447         r = dm_pool_release_metadata_snap(pool->pmd);
2448         if (r)
2449                 DMWARN("release_metadata_snap message failed.");
2450
2451         return r;
2452 }
2453
2454 /*
2455  * Messages supported:
2456  *   create_thin        <dev_id>
2457  *   create_snap        <dev_id> <origin_id>
2458  *   delete             <dev_id>
2459  *   trim               <dev_id> <new_size_in_sectors>
2460  *   set_transaction_id <current_trans_id> <new_trans_id>
2461  *   reserve_metadata_snap
2462  *   release_metadata_snap
2463  */
2464 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2465 {
2466         int r = -EINVAL;
2467         struct pool_c *pt = ti->private;
2468         struct pool *pool = pt->pool;
2469
2470         if (!strcasecmp(argv[0], "create_thin"))
2471                 r = process_create_thin_mesg(argc, argv, pool);
2472
2473         else if (!strcasecmp(argv[0], "create_snap"))
2474                 r = process_create_snap_mesg(argc, argv, pool);
2475
2476         else if (!strcasecmp(argv[0], "delete"))
2477                 r = process_delete_mesg(argc, argv, pool);
2478
2479         else if (!strcasecmp(argv[0], "set_transaction_id"))
2480                 r = process_set_transaction_id_mesg(argc, argv, pool);
2481
2482         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2483                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2484
2485         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2486                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2487
2488         else
2489                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2490
2491         if (!r)
2492                 (void) commit_or_fallback(pool);
2493
2494         return r;
2495 }
2496
2497 static void emit_flags(struct pool_features *pf, char *result,
2498                        unsigned sz, unsigned maxlen)
2499 {
2500         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2501                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2502         DMEMIT("%u ", count);
2503
2504         if (!pf->zero_new_blocks)
2505                 DMEMIT("skip_block_zeroing ");
2506
2507         if (!pf->discard_enabled)
2508                 DMEMIT("ignore_discard ");
2509
2510         if (!pf->discard_passdown)
2511                 DMEMIT("no_discard_passdown ");
2512
2513         if (pf->mode == PM_READ_ONLY)
2514                 DMEMIT("read_only ");
2515 }
2516
2517 /*
2518  * Status line is:
2519  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2520  *    <used data sectors>/<total data sectors> <held metadata root>
2521  */
2522 static void pool_status(struct dm_target *ti, status_type_t type,
2523                         unsigned status_flags, char *result, unsigned maxlen)
2524 {
2525         int r;
2526         unsigned sz = 0;
2527         uint64_t transaction_id;
2528         dm_block_t nr_free_blocks_data;
2529         dm_block_t nr_free_blocks_metadata;
2530         dm_block_t nr_blocks_data;
2531         dm_block_t nr_blocks_metadata;
2532         dm_block_t held_root;
2533         char buf[BDEVNAME_SIZE];
2534         char buf2[BDEVNAME_SIZE];
2535         struct pool_c *pt = ti->private;
2536         struct pool *pool = pt->pool;
2537
2538         switch (type) {
2539         case STATUSTYPE_INFO:
2540                 if (get_pool_mode(pool) == PM_FAIL) {
2541                         DMEMIT("Fail");
2542                         break;
2543                 }
2544
2545                 /* Commit to ensure statistics aren't out-of-date */
2546                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2547                         (void) commit_or_fallback(pool);
2548
2549                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2550                 if (r) {
2551                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2552                               dm_device_name(pool->pool_md), r);
2553                         goto err;
2554                 }
2555
2556                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2557                 if (r) {
2558                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2559                               dm_device_name(pool->pool_md), r);
2560                         goto err;
2561                 }
2562
2563                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2564                 if (r) {
2565                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2566                               dm_device_name(pool->pool_md), r);
2567                         goto err;
2568                 }
2569
2570                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2571                 if (r) {
2572                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2573                               dm_device_name(pool->pool_md), r);
2574                         goto err;
2575                 }
2576
2577                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2578                 if (r) {
2579                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2580                               dm_device_name(pool->pool_md), r);
2581                         goto err;
2582                 }
2583
2584                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2585                 if (r) {
2586                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2587                               dm_device_name(pool->pool_md), r);
2588                         goto err;
2589                 }
2590
2591                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2592                        (unsigned long long)transaction_id,
2593                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2594                        (unsigned long long)nr_blocks_metadata,
2595                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2596                        (unsigned long long)nr_blocks_data);
2597
2598                 if (held_root)
2599                         DMEMIT("%llu ", held_root);
2600                 else
2601                         DMEMIT("- ");
2602
2603                 if (pool->pf.mode == PM_READ_ONLY)
2604                         DMEMIT("ro ");
2605                 else
2606                         DMEMIT("rw ");
2607
2608                 if (!pool->pf.discard_enabled)
2609                         DMEMIT("ignore_discard");
2610                 else if (pool->pf.discard_passdown)
2611                         DMEMIT("discard_passdown");
2612                 else
2613                         DMEMIT("no_discard_passdown");
2614
2615                 break;
2616
2617         case STATUSTYPE_TABLE:
2618                 DMEMIT("%s %s %lu %llu ",
2619                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2620                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2621                        (unsigned long)pool->sectors_per_block,
2622                        (unsigned long long)pt->low_water_blocks);
2623                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2624                 break;
2625         }
2626         return;
2627
2628 err:
2629         DMEMIT("Error");
2630 }
2631
2632 static int pool_iterate_devices(struct dm_target *ti,
2633                                 iterate_devices_callout_fn fn, void *data)
2634 {
2635         struct pool_c *pt = ti->private;
2636
2637         return fn(ti, pt->data_dev, 0, ti->len, data);
2638 }
2639
2640 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2641                       struct bio_vec *biovec, int max_size)
2642 {
2643         struct pool_c *pt = ti->private;
2644         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2645
2646         if (!q->merge_bvec_fn)
2647                 return max_size;
2648
2649         bvm->bi_bdev = pt->data_dev->bdev;
2650
2651         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2652 }
2653
2654 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2655 {
2656         struct pool *pool = pt->pool;
2657         struct queue_limits *data_limits;
2658
2659         limits->max_discard_sectors = pool->sectors_per_block;
2660
2661         /*
2662          * discard_granularity is just a hint, and not enforced.
2663          */
2664         if (pt->adjusted_pf.discard_passdown) {
2665                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2666                 limits->discard_granularity = data_limits->discard_granularity;
2667         } else
2668                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2669 }
2670
2671 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2672 {
2673         struct pool_c *pt = ti->private;
2674         struct pool *pool = pt->pool;
2675         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2676
2677         /*
2678          * If the system-determined stacked limits are compatible with the
2679          * pool's blocksize (io_opt is a factor) do not override them.
2680          */
2681         if (io_opt_sectors < pool->sectors_per_block ||
2682             do_div(io_opt_sectors, pool->sectors_per_block)) {
2683                 blk_limits_io_min(limits, 0);
2684                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2685         }
2686
2687         /*
2688          * pt->adjusted_pf is a staging area for the actual features to use.
2689          * They get transferred to the live pool in bind_control_target()
2690          * called from pool_preresume().
2691          */
2692         if (!pt->adjusted_pf.discard_enabled)
2693                 return;
2694
2695         disable_passdown_if_not_supported(pt);
2696
2697         set_discard_limits(pt, limits);
2698 }
2699
2700 static struct target_type pool_target = {
2701         .name = "thin-pool",
2702         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2703                     DM_TARGET_IMMUTABLE,
2704         .version = {1, 9, 0},
2705         .module = THIS_MODULE,
2706         .ctr = pool_ctr,
2707         .dtr = pool_dtr,
2708         .map = pool_map,
2709         .postsuspend = pool_postsuspend,
2710         .preresume = pool_preresume,
2711         .resume = pool_resume,
2712         .message = pool_message,
2713         .status = pool_status,
2714         .merge = pool_merge,
2715         .iterate_devices = pool_iterate_devices,
2716         .io_hints = pool_io_hints,
2717 };
2718
2719 /*----------------------------------------------------------------
2720  * Thin target methods
2721  *--------------------------------------------------------------*/
2722 static void thin_dtr(struct dm_target *ti)
2723 {
2724         struct thin_c *tc = ti->private;
2725
2726         mutex_lock(&dm_thin_pool_table.mutex);
2727
2728         __pool_dec(tc->pool);
2729         dm_pool_close_thin_device(tc->td);
2730         dm_put_device(ti, tc->pool_dev);
2731         if (tc->origin_dev)
2732                 dm_put_device(ti, tc->origin_dev);
2733         kfree(tc);
2734
2735         mutex_unlock(&dm_thin_pool_table.mutex);
2736 }
2737
2738 /*
2739  * Thin target parameters:
2740  *
2741  * <pool_dev> <dev_id> [origin_dev]
2742  *
2743  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2744  * dev_id: the internal device identifier
2745  * origin_dev: a device external to the pool that should act as the origin
2746  *
2747  * If the pool device has discards disabled, they get disabled for the thin
2748  * device as well.
2749  */
2750 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2751 {
2752         int r;
2753         struct thin_c *tc;
2754         struct dm_dev *pool_dev, *origin_dev;
2755         struct mapped_device *pool_md;
2756
2757         mutex_lock(&dm_thin_pool_table.mutex);
2758
2759         if (argc != 2 && argc != 3) {
2760                 ti->error = "Invalid argument count";
2761                 r = -EINVAL;
2762                 goto out_unlock;
2763         }
2764
2765         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2766         if (!tc) {
2767                 ti->error = "Out of memory";
2768                 r = -ENOMEM;
2769                 goto out_unlock;
2770         }
2771
2772         if (argc == 3) {
2773                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2774                 if (r) {
2775                         ti->error = "Error opening origin device";
2776                         goto bad_origin_dev;
2777                 }
2778                 tc->origin_dev = origin_dev;
2779         }
2780
2781         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2782         if (r) {
2783                 ti->error = "Error opening pool device";
2784                 goto bad_pool_dev;
2785         }
2786         tc->pool_dev = pool_dev;
2787
2788         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2789                 ti->error = "Invalid device id";
2790                 r = -EINVAL;
2791                 goto bad_common;
2792         }
2793
2794         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2795         if (!pool_md) {
2796                 ti->error = "Couldn't get pool mapped device";
2797                 r = -EINVAL;
2798                 goto bad_common;
2799         }
2800
2801         tc->pool = __pool_table_lookup(pool_md);
2802         if (!tc->pool) {
2803                 ti->error = "Couldn't find pool object";
2804                 r = -EINVAL;
2805                 goto bad_pool_lookup;
2806         }
2807         __pool_inc(tc->pool);
2808
2809         if (get_pool_mode(tc->pool) == PM_FAIL) {
2810                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2811                 goto bad_thin_open;
2812         }
2813
2814         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2815         if (r) {
2816                 ti->error = "Couldn't open thin internal device";
2817                 goto bad_thin_open;
2818         }
2819
2820         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2821         if (r)
2822                 goto bad_thin_open;
2823
2824         ti->num_flush_bios = 1;
2825         ti->flush_supported = true;
2826         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2827
2828         /* In case the pool supports discards, pass them on. */
2829         if (tc->pool->pf.discard_enabled) {
2830                 ti->discards_supported = true;
2831                 ti->num_discard_bios = 1;
2832                 ti->discard_zeroes_data_unsupported = true;
2833                 /* Discard bios must be split on a block boundary */
2834                 ti->split_discard_bios = true;
2835         }
2836
2837         dm_put(pool_md);
2838
2839         mutex_unlock(&dm_thin_pool_table.mutex);
2840
2841         return 0;
2842
2843 bad_thin_open:
2844         __pool_dec(tc->pool);
2845 bad_pool_lookup:
2846         dm_put(pool_md);
2847 bad_common:
2848         dm_put_device(ti, tc->pool_dev);
2849 bad_pool_dev:
2850         if (tc->origin_dev)
2851                 dm_put_device(ti, tc->origin_dev);
2852 bad_origin_dev:
2853         kfree(tc);
2854 out_unlock:
2855         mutex_unlock(&dm_thin_pool_table.mutex);
2856
2857         return r;
2858 }
2859
2860 static int thin_map(struct dm_target *ti, struct bio *bio)
2861 {
2862         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2863
2864         return thin_bio_map(ti, bio);
2865 }
2866
2867 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2868 {
2869         unsigned long flags;
2870         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2871         struct list_head work;
2872         struct dm_thin_new_mapping *m, *tmp;
2873         struct pool *pool = h->tc->pool;
2874
2875         if (h->shared_read_entry) {
2876                 INIT_LIST_HEAD(&work);
2877                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2878
2879                 spin_lock_irqsave(&pool->lock, flags);
2880                 list_for_each_entry_safe(m, tmp, &work, list) {
2881                         list_del(&m->list);
2882                         m->quiesced = 1;
2883                         __maybe_add_mapping(m);
2884                 }
2885                 spin_unlock_irqrestore(&pool->lock, flags);
2886         }
2887
2888         if (h->all_io_entry) {
2889                 INIT_LIST_HEAD(&work);
2890                 dm_deferred_entry_dec(h->all_io_entry, &work);
2891                 if (!list_empty(&work)) {
2892                         spin_lock_irqsave(&pool->lock, flags);
2893                         list_for_each_entry_safe(m, tmp, &work, list)
2894                                 list_add(&m->list, &pool->prepared_discards);
2895                         spin_unlock_irqrestore(&pool->lock, flags);
2896                         wake_worker(pool);
2897                 }
2898         }
2899
2900         return 0;
2901 }
2902
2903 static void thin_postsuspend(struct dm_target *ti)
2904 {
2905         if (dm_noflush_suspending(ti))
2906                 requeue_io((struct thin_c *)ti->private);
2907 }
2908
2909 /*
2910  * <nr mapped sectors> <highest mapped sector>
2911  */
2912 static void thin_status(struct dm_target *ti, status_type_t type,
2913                         unsigned status_flags, char *result, unsigned maxlen)
2914 {
2915         int r;
2916         ssize_t sz = 0;
2917         dm_block_t mapped, highest;
2918         char buf[BDEVNAME_SIZE];
2919         struct thin_c *tc = ti->private;
2920
2921         if (get_pool_mode(tc->pool) == PM_FAIL) {
2922                 DMEMIT("Fail");
2923                 return;
2924         }
2925
2926         if (!tc->td)
2927                 DMEMIT("-");
2928         else {
2929                 switch (type) {
2930                 case STATUSTYPE_INFO:
2931                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2932                         if (r) {
2933                                 DMERR("dm_thin_get_mapped_count returned %d", r);
2934                                 goto err;
2935                         }
2936
2937                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2938                         if (r < 0) {
2939                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2940                                 goto err;
2941                         }
2942
2943                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2944                         if (r)
2945                                 DMEMIT("%llu", ((highest + 1) *
2946                                                 tc->pool->sectors_per_block) - 1);
2947                         else
2948                                 DMEMIT("-");
2949                         break;
2950
2951                 case STATUSTYPE_TABLE:
2952                         DMEMIT("%s %lu",
2953                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2954                                (unsigned long) tc->dev_id);
2955                         if (tc->origin_dev)
2956                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2957                         break;
2958                 }
2959         }
2960
2961         return;
2962
2963 err:
2964         DMEMIT("Error");
2965 }
2966
2967 static int thin_iterate_devices(struct dm_target *ti,
2968                                 iterate_devices_callout_fn fn, void *data)
2969 {
2970         sector_t blocks;
2971         struct thin_c *tc = ti->private;
2972         struct pool *pool = tc->pool;
2973
2974         /*
2975          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2976          * we follow a more convoluted path through to the pool's target.
2977          */
2978         if (!pool->ti)
2979                 return 0;       /* nothing is bound */
2980
2981         blocks = pool->ti->len;
2982         (void) sector_div(blocks, pool->sectors_per_block);
2983         if (blocks)
2984                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2985
2986         return 0;
2987 }
2988
2989 static struct target_type thin_target = {
2990         .name = "thin",
2991         .version = {1, 9, 0},
2992         .module = THIS_MODULE,
2993         .ctr = thin_ctr,
2994         .dtr = thin_dtr,
2995         .map = thin_map,
2996         .end_io = thin_endio,
2997         .postsuspend = thin_postsuspend,
2998         .status = thin_status,
2999         .iterate_devices = thin_iterate_devices,
3000 };
3001
3002 /*----------------------------------------------------------------*/
3003
3004 static int __init dm_thin_init(void)
3005 {
3006         int r;
3007
3008         pool_table_init();
3009
3010         r = dm_register_target(&thin_target);
3011         if (r)
3012                 return r;
3013
3014         r = dm_register_target(&pool_target);
3015         if (r)
3016                 goto bad_pool_target;
3017
3018         r = -ENOMEM;
3019
3020         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3021         if (!_new_mapping_cache)
3022                 goto bad_new_mapping_cache;
3023
3024         return 0;
3025
3026 bad_new_mapping_cache:
3027         dm_unregister_target(&pool_target);
3028 bad_pool_target:
3029         dm_unregister_target(&thin_target);
3030
3031         return r;
3032 }
3033
3034 static void dm_thin_exit(void)
3035 {
3036         dm_unregister_target(&thin_target);
3037         dm_unregister_target(&pool_target);
3038
3039         kmem_cache_destroy(_new_mapping_cache);
3040 }
3041
3042 module_init(dm_thin_init);
3043 module_exit(dm_thin_exit);
3044
3045 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3046 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3047 MODULE_LICENSE("GPL");