2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
19 #define DM_MSG_PREFIX "thin"
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
40 * Device id is restricted to 24 bits.
42 #define MAX_DEV_ID ((1 << 24) - 1)
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
58 * Let's say we write to a shared block in what was the origin. The
61 * i) plug io further to this physical block. (see bio_prison code).
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
80 * Steps (ii) and (iii) occur in parallel.
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
90 * - The snap mapping still points to the old block. As it would after
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
102 /*----------------------------------------------------------------*/
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
111 key->dev = dm_thin_dev_id(td);
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
119 key->dev = dm_thin_dev_id(td);
123 /*----------------------------------------------------------------*/
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
130 struct dm_thin_new_mapping;
133 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
136 PM_WRITE, /* metadata may be changed */
137 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
138 PM_READ_ONLY, /* metadata may not be changed */
139 PM_FAIL, /* all I/O fails */
142 struct pool_features {
145 bool zero_new_blocks:1;
146 bool discard_enabled:1;
147 bool discard_passdown:1;
148 bool error_if_no_space:1;
152 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
153 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
156 struct list_head list;
157 struct dm_target *ti; /* Only set if a pool target is bound */
159 struct mapped_device *pool_md;
160 struct block_device *md_dev;
161 struct dm_pool_metadata *pmd;
163 dm_block_t low_water_blocks;
164 uint32_t sectors_per_block;
165 int sectors_per_block_shift;
167 struct pool_features pf;
168 bool low_water_triggered:1; /* A dm event has been sent */
170 struct dm_bio_prison *prison;
171 struct dm_kcopyd_client *copier;
173 struct workqueue_struct *wq;
174 struct work_struct worker;
175 struct delayed_work waker;
177 unsigned long last_commit_jiffies;
181 struct bio_list deferred_bios;
182 struct bio_list deferred_flush_bios;
183 struct list_head prepared_mappings;
184 struct list_head prepared_discards;
186 struct bio_list retry_on_resume_list;
188 struct dm_deferred_set *shared_read_ds;
189 struct dm_deferred_set *all_io_ds;
191 struct dm_thin_new_mapping *next_mapping;
192 mempool_t *mapping_pool;
194 process_bio_fn process_bio;
195 process_bio_fn process_discard;
197 process_mapping_fn process_prepared_mapping;
198 process_mapping_fn process_prepared_discard;
201 static enum pool_mode get_pool_mode(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
205 * Target context for a pool.
208 struct dm_target *ti;
210 struct dm_dev *data_dev;
211 struct dm_dev *metadata_dev;
212 struct dm_target_callbacks callbacks;
214 dm_block_t low_water_blocks;
215 struct pool_features requested_pf; /* Features requested during table load */
216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
220 * Target context for a thin.
223 struct dm_dev *pool_dev;
224 struct dm_dev *origin_dev;
228 struct dm_thin_device *td;
231 /*----------------------------------------------------------------*/
234 * wake_worker() is used when new work is queued and when pool_resume is
235 * ready to continue deferred IO processing.
237 static void wake_worker(struct pool *pool)
239 queue_work(pool->wq, &pool->worker);
242 /*----------------------------------------------------------------*/
244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245 struct dm_bio_prison_cell **cell_result)
248 struct dm_bio_prison_cell *cell_prealloc;
251 * Allocate a cell from the prison's mempool.
252 * This might block but it can't fail.
254 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
256 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
259 * We reused an old cell; we can get rid of
262 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
267 static void cell_release(struct pool *pool,
268 struct dm_bio_prison_cell *cell,
269 struct bio_list *bios)
271 dm_cell_release(pool->prison, cell, bios);
272 dm_bio_prison_free_cell(pool->prison, cell);
275 static void cell_release_no_holder(struct pool *pool,
276 struct dm_bio_prison_cell *cell,
277 struct bio_list *bios)
279 dm_cell_release_no_holder(pool->prison, cell, bios);
280 dm_bio_prison_free_cell(pool->prison, cell);
283 static void cell_defer_no_holder_no_free(struct thin_c *tc,
284 struct dm_bio_prison_cell *cell)
286 struct pool *pool = tc->pool;
289 spin_lock_irqsave(&pool->lock, flags);
290 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291 spin_unlock_irqrestore(&pool->lock, flags);
296 static void cell_error(struct pool *pool,
297 struct dm_bio_prison_cell *cell)
299 dm_cell_error(pool->prison, cell);
300 dm_bio_prison_free_cell(pool->prison, cell);
303 /*----------------------------------------------------------------*/
306 * A global list of pools that uses a struct mapped_device as a key.
308 static struct dm_thin_pool_table {
310 struct list_head pools;
311 } dm_thin_pool_table;
313 static void pool_table_init(void)
315 mutex_init(&dm_thin_pool_table.mutex);
316 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
319 static void __pool_table_insert(struct pool *pool)
321 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322 list_add(&pool->list, &dm_thin_pool_table.pools);
325 static void __pool_table_remove(struct pool *pool)
327 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328 list_del(&pool->list);
331 static struct pool *__pool_table_lookup(struct mapped_device *md)
333 struct pool *pool = NULL, *tmp;
335 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
337 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338 if (tmp->pool_md == md) {
347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
349 struct pool *pool = NULL, *tmp;
351 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
353 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354 if (tmp->md_dev == md_dev) {
363 /*----------------------------------------------------------------*/
365 struct dm_thin_endio_hook {
367 struct dm_deferred_entry *shared_read_entry;
368 struct dm_deferred_entry *all_io_entry;
369 struct dm_thin_new_mapping *overwrite_mapping;
372 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
375 struct bio_list bios;
378 bio_list_init(&bios);
380 spin_lock_irqsave(&tc->pool->lock, flags);
381 bio_list_merge(&bios, master);
382 bio_list_init(master);
383 spin_unlock_irqrestore(&tc->pool->lock, flags);
385 while ((bio = bio_list_pop(&bios))) {
386 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
389 bio_endio(bio, DM_ENDIO_REQUEUE);
391 bio_list_add(master, bio);
395 static void requeue_io(struct thin_c *tc)
397 struct pool *pool = tc->pool;
399 requeue_bio_list(tc, &pool->deferred_bios);
400 requeue_bio_list(tc, &pool->retry_on_resume_list);
403 static void error_retry_list(struct pool *pool)
407 struct bio_list bios;
409 bio_list_init(&bios);
411 spin_lock_irqsave(&pool->lock, flags);
412 bio_list_merge(&bios, &pool->retry_on_resume_list);
413 bio_list_init(&pool->retry_on_resume_list);
414 spin_unlock_irqrestore(&pool->lock, flags);
416 while ((bio = bio_list_pop(&bios)))
421 * This section of code contains the logic for processing a thin device's IO.
422 * Much of the code depends on pool object resources (lists, workqueues, etc)
423 * but most is exclusively called from the thin target rather than the thin-pool
427 static bool block_size_is_power_of_two(struct pool *pool)
429 return pool->sectors_per_block_shift >= 0;
432 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
434 struct pool *pool = tc->pool;
435 sector_t block_nr = bio->bi_iter.bi_sector;
437 if (block_size_is_power_of_two(pool))
438 block_nr >>= pool->sectors_per_block_shift;
440 (void) sector_div(block_nr, pool->sectors_per_block);
445 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
447 struct pool *pool = tc->pool;
448 sector_t bi_sector = bio->bi_iter.bi_sector;
450 bio->bi_bdev = tc->pool_dev->bdev;
451 if (block_size_is_power_of_two(pool))
452 bio->bi_iter.bi_sector =
453 (block << pool->sectors_per_block_shift) |
454 (bi_sector & (pool->sectors_per_block - 1));
456 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
457 sector_div(bi_sector, pool->sectors_per_block);
460 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
462 bio->bi_bdev = tc->origin_dev->bdev;
465 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
467 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
468 dm_thin_changed_this_transaction(tc->td);
471 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
473 struct dm_thin_endio_hook *h;
475 if (bio->bi_rw & REQ_DISCARD)
478 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
479 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
482 static void issue(struct thin_c *tc, struct bio *bio)
484 struct pool *pool = tc->pool;
487 if (!bio_triggers_commit(tc, bio)) {
488 generic_make_request(bio);
493 * Complete bio with an error if earlier I/O caused changes to
494 * the metadata that can't be committed e.g, due to I/O errors
495 * on the metadata device.
497 if (dm_thin_aborted_changes(tc->td)) {
503 * Batch together any bios that trigger commits and then issue a
504 * single commit for them in process_deferred_bios().
506 spin_lock_irqsave(&pool->lock, flags);
507 bio_list_add(&pool->deferred_flush_bios, bio);
508 spin_unlock_irqrestore(&pool->lock, flags);
511 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
513 remap_to_origin(tc, bio);
517 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
520 remap(tc, bio, block);
524 /*----------------------------------------------------------------*/
527 * Bio endio functions.
529 struct dm_thin_new_mapping {
530 struct list_head list;
535 bool definitely_not_shared:1;
539 dm_block_t virt_block;
540 dm_block_t data_block;
541 struct dm_bio_prison_cell *cell, *cell2;
544 * If the bio covers the whole area of a block then we can avoid
545 * zeroing or copying. Instead this bio is hooked. The bio will
546 * still be in the cell, so care has to be taken to avoid issuing
550 bio_end_io_t *saved_bi_end_io;
553 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
555 struct pool *pool = m->tc->pool;
557 if (m->quiesced && m->prepared) {
558 list_add_tail(&m->list, &pool->prepared_mappings);
563 static void copy_complete(int read_err, unsigned long write_err, void *context)
566 struct dm_thin_new_mapping *m = context;
567 struct pool *pool = m->tc->pool;
569 m->err = read_err || write_err ? -EIO : 0;
571 spin_lock_irqsave(&pool->lock, flags);
573 __maybe_add_mapping(m);
574 spin_unlock_irqrestore(&pool->lock, flags);
577 static void overwrite_endio(struct bio *bio, int err)
580 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
581 struct dm_thin_new_mapping *m = h->overwrite_mapping;
582 struct pool *pool = m->tc->pool;
586 spin_lock_irqsave(&pool->lock, flags);
588 __maybe_add_mapping(m);
589 spin_unlock_irqrestore(&pool->lock, flags);
592 /*----------------------------------------------------------------*/
599 * Prepared mapping jobs.
603 * This sends the bios in the cell back to the deferred_bios list.
605 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
607 struct pool *pool = tc->pool;
610 spin_lock_irqsave(&pool->lock, flags);
611 cell_release(pool, cell, &pool->deferred_bios);
612 spin_unlock_irqrestore(&tc->pool->lock, flags);
618 * Same as cell_defer above, except it omits the original holder of the cell.
620 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
622 struct pool *pool = tc->pool;
625 spin_lock_irqsave(&pool->lock, flags);
626 cell_release_no_holder(pool, cell, &pool->deferred_bios);
627 spin_unlock_irqrestore(&pool->lock, flags);
632 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
635 m->bio->bi_end_io = m->saved_bi_end_io;
636 atomic_inc(&m->bio->bi_remaining);
638 cell_error(m->tc->pool, m->cell);
640 mempool_free(m, m->tc->pool->mapping_pool);
643 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
645 struct thin_c *tc = m->tc;
646 struct pool *pool = tc->pool;
652 bio->bi_end_io = m->saved_bi_end_io;
653 atomic_inc(&bio->bi_remaining);
657 cell_error(pool, m->cell);
662 * Commit the prepared block into the mapping btree.
663 * Any I/O for this block arriving after this point will get
664 * remapped to it directly.
666 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
668 metadata_operation_failed(pool, "dm_thin_insert_block", r);
669 cell_error(pool, m->cell);
674 * Release any bios held while the block was being provisioned.
675 * If we are processing a write bio that completely covers the block,
676 * we already processed it so can ignore it now when processing
677 * the bios in the cell.
680 cell_defer_no_holder(tc, m->cell);
683 cell_defer(tc, m->cell);
687 mempool_free(m, pool->mapping_pool);
690 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
692 struct thin_c *tc = m->tc;
694 bio_io_error(m->bio);
695 cell_defer_no_holder(tc, m->cell);
696 cell_defer_no_holder(tc, m->cell2);
697 mempool_free(m, tc->pool->mapping_pool);
700 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
702 struct thin_c *tc = m->tc;
704 inc_all_io_entry(tc->pool, m->bio);
705 cell_defer_no_holder(tc, m->cell);
706 cell_defer_no_holder(tc, m->cell2);
709 if (m->definitely_not_shared)
710 remap_and_issue(tc, m->bio, m->data_block);
713 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
714 bio_endio(m->bio, 0);
716 remap_and_issue(tc, m->bio, m->data_block);
719 bio_endio(m->bio, 0);
721 mempool_free(m, tc->pool->mapping_pool);
724 static void process_prepared_discard(struct dm_thin_new_mapping *m)
727 struct thin_c *tc = m->tc;
729 r = dm_thin_remove_block(tc->td, m->virt_block);
731 DMERR_LIMIT("dm_thin_remove_block() failed");
733 process_prepared_discard_passdown(m);
736 static void process_prepared(struct pool *pool, struct list_head *head,
737 process_mapping_fn *fn)
740 struct list_head maps;
741 struct dm_thin_new_mapping *m, *tmp;
743 INIT_LIST_HEAD(&maps);
744 spin_lock_irqsave(&pool->lock, flags);
745 list_splice_init(head, &maps);
746 spin_unlock_irqrestore(&pool->lock, flags);
748 list_for_each_entry_safe(m, tmp, &maps, list)
755 static int io_overlaps_block(struct pool *pool, struct bio *bio)
757 return bio->bi_iter.bi_size ==
758 (pool->sectors_per_block << SECTOR_SHIFT);
761 static int io_overwrites_block(struct pool *pool, struct bio *bio)
763 return (bio_data_dir(bio) == WRITE) &&
764 io_overlaps_block(pool, bio);
767 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
770 *save = bio->bi_end_io;
774 static int ensure_next_mapping(struct pool *pool)
776 if (pool->next_mapping)
779 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
781 return pool->next_mapping ? 0 : -ENOMEM;
784 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
786 struct dm_thin_new_mapping *m = pool->next_mapping;
788 BUG_ON(!pool->next_mapping);
790 memset(m, 0, sizeof(struct dm_thin_new_mapping));
791 INIT_LIST_HEAD(&m->list);
794 pool->next_mapping = NULL;
799 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
800 struct dm_dev *origin, dm_block_t data_origin,
801 dm_block_t data_dest,
802 struct dm_bio_prison_cell *cell, struct bio *bio)
805 struct pool *pool = tc->pool;
806 struct dm_thin_new_mapping *m = get_next_mapping(pool);
809 m->virt_block = virt_block;
810 m->data_block = data_dest;
813 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
817 * IO to pool_dev remaps to the pool target's data_dev.
819 * If the whole block of data is being overwritten, we can issue the
820 * bio immediately. Otherwise we use kcopyd to clone the data first.
822 if (io_overwrites_block(pool, bio)) {
823 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
825 h->overwrite_mapping = m;
827 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
828 inc_all_io_entry(pool, bio);
829 remap_and_issue(tc, bio, data_dest);
831 struct dm_io_region from, to;
833 from.bdev = origin->bdev;
834 from.sector = data_origin * pool->sectors_per_block;
835 from.count = pool->sectors_per_block;
837 to.bdev = tc->pool_dev->bdev;
838 to.sector = data_dest * pool->sectors_per_block;
839 to.count = pool->sectors_per_block;
841 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
842 0, copy_complete, m);
844 mempool_free(m, pool->mapping_pool);
845 DMERR_LIMIT("dm_kcopyd_copy() failed");
846 cell_error(pool, cell);
851 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
852 dm_block_t data_origin, dm_block_t data_dest,
853 struct dm_bio_prison_cell *cell, struct bio *bio)
855 schedule_copy(tc, virt_block, tc->pool_dev,
856 data_origin, data_dest, cell, bio);
859 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
860 dm_block_t data_dest,
861 struct dm_bio_prison_cell *cell, struct bio *bio)
863 schedule_copy(tc, virt_block, tc->origin_dev,
864 virt_block, data_dest, cell, bio);
867 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
868 dm_block_t data_block, struct dm_bio_prison_cell *cell,
871 struct pool *pool = tc->pool;
872 struct dm_thin_new_mapping *m = get_next_mapping(pool);
877 m->virt_block = virt_block;
878 m->data_block = data_block;
882 * If the whole block of data is being overwritten or we are not
883 * zeroing pre-existing data, we can issue the bio immediately.
884 * Otherwise we use kcopyd to zero the data first.
886 if (!pool->pf.zero_new_blocks)
887 process_prepared_mapping(m);
889 else if (io_overwrites_block(pool, bio)) {
890 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
892 h->overwrite_mapping = m;
894 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
895 inc_all_io_entry(pool, bio);
896 remap_and_issue(tc, bio, data_block);
899 struct dm_io_region to;
901 to.bdev = tc->pool_dev->bdev;
902 to.sector = data_block * pool->sectors_per_block;
903 to.count = pool->sectors_per_block;
905 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
907 mempool_free(m, pool->mapping_pool);
908 DMERR_LIMIT("dm_kcopyd_zero() failed");
909 cell_error(pool, cell);
915 * A non-zero return indicates read_only or fail_io mode.
916 * Many callers don't care about the return value.
918 static int commit(struct pool *pool)
922 if (get_pool_mode(pool) != PM_WRITE)
925 r = dm_pool_commit_metadata(pool->pmd);
927 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
932 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
936 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
937 DMWARN("%s: reached low water mark for data device: sending event.",
938 dm_device_name(pool->pool_md));
939 spin_lock_irqsave(&pool->lock, flags);
940 pool->low_water_triggered = true;
941 spin_unlock_irqrestore(&pool->lock, flags);
942 dm_table_event(pool->ti->table);
946 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
948 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
951 dm_block_t free_blocks;
952 struct pool *pool = tc->pool;
954 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
957 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
959 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
963 check_low_water_mark(pool, free_blocks);
967 * Try to commit to see if that will free up some
974 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
976 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
981 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
986 r = dm_pool_alloc_data_block(pool->pmd, result);
988 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
996 * If we have run out of space, queue bios until the device is
997 * resumed, presumably after having been reloaded with more space.
999 static void retry_on_resume(struct bio *bio)
1001 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1002 struct thin_c *tc = h->tc;
1003 struct pool *pool = tc->pool;
1004 unsigned long flags;
1006 spin_lock_irqsave(&pool->lock, flags);
1007 bio_list_add(&pool->retry_on_resume_list, bio);
1008 spin_unlock_irqrestore(&pool->lock, flags);
1011 static bool should_error_unserviceable_bio(struct pool *pool)
1013 enum pool_mode m = get_pool_mode(pool);
1017 /* Shouldn't get here */
1018 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1021 case PM_OUT_OF_DATA_SPACE:
1022 return pool->pf.error_if_no_space;
1028 /* Shouldn't get here */
1029 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1034 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1036 if (should_error_unserviceable_bio(pool))
1039 retry_on_resume(bio);
1042 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1045 struct bio_list bios;
1047 if (should_error_unserviceable_bio(pool)) {
1048 cell_error(pool, cell);
1052 bio_list_init(&bios);
1053 cell_release(pool, cell, &bios);
1055 if (should_error_unserviceable_bio(pool))
1056 while ((bio = bio_list_pop(&bios)))
1059 while ((bio = bio_list_pop(&bios)))
1060 retry_on_resume(bio);
1063 static void process_discard(struct thin_c *tc, struct bio *bio)
1066 unsigned long flags;
1067 struct pool *pool = tc->pool;
1068 struct dm_bio_prison_cell *cell, *cell2;
1069 struct dm_cell_key key, key2;
1070 dm_block_t block = get_bio_block(tc, bio);
1071 struct dm_thin_lookup_result lookup_result;
1072 struct dm_thin_new_mapping *m;
1074 build_virtual_key(tc->td, block, &key);
1075 if (bio_detain(tc->pool, &key, bio, &cell))
1078 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1082 * Check nobody is fiddling with this pool block. This can
1083 * happen if someone's in the process of breaking sharing
1086 build_data_key(tc->td, lookup_result.block, &key2);
1087 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1088 cell_defer_no_holder(tc, cell);
1092 if (io_overlaps_block(pool, bio)) {
1094 * IO may still be going to the destination block. We must
1095 * quiesce before we can do the removal.
1097 m = get_next_mapping(pool);
1099 m->pass_discard = pool->pf.discard_passdown;
1100 m->definitely_not_shared = !lookup_result.shared;
1101 m->virt_block = block;
1102 m->data_block = lookup_result.block;
1107 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1108 spin_lock_irqsave(&pool->lock, flags);
1109 list_add_tail(&m->list, &pool->prepared_discards);
1110 spin_unlock_irqrestore(&pool->lock, flags);
1114 inc_all_io_entry(pool, bio);
1115 cell_defer_no_holder(tc, cell);
1116 cell_defer_no_holder(tc, cell2);
1119 * The DM core makes sure that the discard doesn't span
1120 * a block boundary. So we submit the discard of a
1121 * partial block appropriately.
1123 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1124 remap_and_issue(tc, bio, lookup_result.block);
1132 * It isn't provisioned, just forget it.
1134 cell_defer_no_holder(tc, cell);
1139 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1141 cell_defer_no_holder(tc, cell);
1147 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1148 struct dm_cell_key *key,
1149 struct dm_thin_lookup_result *lookup_result,
1150 struct dm_bio_prison_cell *cell)
1153 dm_block_t data_block;
1154 struct pool *pool = tc->pool;
1156 r = alloc_data_block(tc, &data_block);
1159 schedule_internal_copy(tc, block, lookup_result->block,
1160 data_block, cell, bio);
1164 retry_bios_on_resume(pool, cell);
1168 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1170 cell_error(pool, cell);
1175 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1177 struct dm_thin_lookup_result *lookup_result)
1179 struct dm_bio_prison_cell *cell;
1180 struct pool *pool = tc->pool;
1181 struct dm_cell_key key;
1184 * If cell is already occupied, then sharing is already in the process
1185 * of being broken so we have nothing further to do here.
1187 build_data_key(tc->td, lookup_result->block, &key);
1188 if (bio_detain(pool, &key, bio, &cell))
1191 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1192 break_sharing(tc, bio, block, &key, lookup_result, cell);
1194 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1196 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1197 inc_all_io_entry(pool, bio);
1198 cell_defer_no_holder(tc, cell);
1200 remap_and_issue(tc, bio, lookup_result->block);
1204 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1205 struct dm_bio_prison_cell *cell)
1208 dm_block_t data_block;
1209 struct pool *pool = tc->pool;
1212 * Remap empty bios (flushes) immediately, without provisioning.
1214 if (!bio->bi_iter.bi_size) {
1215 inc_all_io_entry(pool, bio);
1216 cell_defer_no_holder(tc, cell);
1218 remap_and_issue(tc, bio, 0);
1223 * Fill read bios with zeroes and complete them immediately.
1225 if (bio_data_dir(bio) == READ) {
1227 cell_defer_no_holder(tc, cell);
1232 r = alloc_data_block(tc, &data_block);
1236 schedule_external_copy(tc, block, data_block, cell, bio);
1238 schedule_zero(tc, block, data_block, cell, bio);
1242 retry_bios_on_resume(pool, cell);
1246 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1248 cell_error(pool, cell);
1253 static void process_bio(struct thin_c *tc, struct bio *bio)
1256 struct pool *pool = tc->pool;
1257 dm_block_t block = get_bio_block(tc, bio);
1258 struct dm_bio_prison_cell *cell;
1259 struct dm_cell_key key;
1260 struct dm_thin_lookup_result lookup_result;
1263 * If cell is already occupied, then the block is already
1264 * being provisioned so we have nothing further to do here.
1266 build_virtual_key(tc->td, block, &key);
1267 if (bio_detain(pool, &key, bio, &cell))
1270 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1273 if (lookup_result.shared) {
1274 process_shared_bio(tc, bio, block, &lookup_result);
1275 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1277 inc_all_io_entry(pool, bio);
1278 cell_defer_no_holder(tc, cell);
1280 remap_and_issue(tc, bio, lookup_result.block);
1285 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1286 inc_all_io_entry(pool, bio);
1287 cell_defer_no_holder(tc, cell);
1289 remap_to_origin_and_issue(tc, bio);
1291 provision_block(tc, bio, block, cell);
1295 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1297 cell_defer_no_holder(tc, cell);
1303 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1306 int rw = bio_data_dir(bio);
1307 dm_block_t block = get_bio_block(tc, bio);
1308 struct dm_thin_lookup_result lookup_result;
1310 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1313 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1314 handle_unserviceable_bio(tc->pool, bio);
1316 inc_all_io_entry(tc->pool, bio);
1317 remap_and_issue(tc, bio, lookup_result.block);
1323 handle_unserviceable_bio(tc->pool, bio);
1327 if (tc->origin_dev) {
1328 inc_all_io_entry(tc->pool, bio);
1329 remap_to_origin_and_issue(tc, bio);
1338 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1345 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1350 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1356 * FIXME: should we also commit due to size of transaction, measured in
1359 static int need_commit_due_to_time(struct pool *pool)
1361 return jiffies < pool->last_commit_jiffies ||
1362 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1365 static void process_deferred_bios(struct pool *pool)
1367 unsigned long flags;
1369 struct bio_list bios;
1371 bio_list_init(&bios);
1373 spin_lock_irqsave(&pool->lock, flags);
1374 bio_list_merge(&bios, &pool->deferred_bios);
1375 bio_list_init(&pool->deferred_bios);
1376 spin_unlock_irqrestore(&pool->lock, flags);
1378 while ((bio = bio_list_pop(&bios))) {
1379 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1380 struct thin_c *tc = h->tc;
1383 * If we've got no free new_mapping structs, and processing
1384 * this bio might require one, we pause until there are some
1385 * prepared mappings to process.
1387 if (ensure_next_mapping(pool)) {
1388 spin_lock_irqsave(&pool->lock, flags);
1389 bio_list_merge(&pool->deferred_bios, &bios);
1390 spin_unlock_irqrestore(&pool->lock, flags);
1395 if (bio->bi_rw & REQ_DISCARD)
1396 pool->process_discard(tc, bio);
1398 pool->process_bio(tc, bio);
1402 * If there are any deferred flush bios, we must commit
1403 * the metadata before issuing them.
1405 bio_list_init(&bios);
1406 spin_lock_irqsave(&pool->lock, flags);
1407 bio_list_merge(&bios, &pool->deferred_flush_bios);
1408 bio_list_init(&pool->deferred_flush_bios);
1409 spin_unlock_irqrestore(&pool->lock, flags);
1411 if (bio_list_empty(&bios) &&
1412 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1416 while ((bio = bio_list_pop(&bios)))
1420 pool->last_commit_jiffies = jiffies;
1422 while ((bio = bio_list_pop(&bios)))
1423 generic_make_request(bio);
1426 static void do_worker(struct work_struct *ws)
1428 struct pool *pool = container_of(ws, struct pool, worker);
1430 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1431 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1432 process_deferred_bios(pool);
1436 * We want to commit periodically so that not too much
1437 * unwritten data builds up.
1439 static void do_waker(struct work_struct *ws)
1441 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1443 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1446 /*----------------------------------------------------------------*/
1448 static enum pool_mode get_pool_mode(struct pool *pool)
1450 return pool->pf.mode;
1453 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1455 dm_table_event(pool->ti->table);
1456 DMINFO("%s: switching pool to %s mode",
1457 dm_device_name(pool->pool_md), new_mode);
1460 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1462 struct pool_c *pt = pool->ti->private;
1463 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1464 enum pool_mode old_mode = get_pool_mode(pool);
1467 * Never allow the pool to transition to PM_WRITE mode if user
1468 * intervention is required to verify metadata and data consistency.
1470 if (new_mode == PM_WRITE && needs_check) {
1471 DMERR("%s: unable to switch pool to write mode until repaired.",
1472 dm_device_name(pool->pool_md));
1473 if (old_mode != new_mode)
1474 new_mode = old_mode;
1476 new_mode = PM_READ_ONLY;
1479 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1480 * not going to recover without a thin_repair. So we never let the
1481 * pool move out of the old mode.
1483 if (old_mode == PM_FAIL)
1484 new_mode = old_mode;
1488 if (old_mode != new_mode)
1489 notify_of_pool_mode_change(pool, "failure");
1490 dm_pool_metadata_read_only(pool->pmd);
1491 pool->process_bio = process_bio_fail;
1492 pool->process_discard = process_bio_fail;
1493 pool->process_prepared_mapping = process_prepared_mapping_fail;
1494 pool->process_prepared_discard = process_prepared_discard_fail;
1496 error_retry_list(pool);
1500 if (old_mode != new_mode)
1501 notify_of_pool_mode_change(pool, "read-only");
1502 dm_pool_metadata_read_only(pool->pmd);
1503 pool->process_bio = process_bio_read_only;
1504 pool->process_discard = process_bio_success;
1505 pool->process_prepared_mapping = process_prepared_mapping_fail;
1506 pool->process_prepared_discard = process_prepared_discard_passdown;
1508 error_retry_list(pool);
1511 case PM_OUT_OF_DATA_SPACE:
1513 * Ideally we'd never hit this state; the low water mark
1514 * would trigger userland to extend the pool before we
1515 * completely run out of data space. However, many small
1516 * IOs to unprovisioned space can consume data space at an
1517 * alarming rate. Adjust your low water mark if you're
1518 * frequently seeing this mode.
1520 if (old_mode != new_mode)
1521 notify_of_pool_mode_change(pool, "out-of-data-space");
1522 pool->process_bio = process_bio_read_only;
1523 pool->process_discard = process_discard;
1524 pool->process_prepared_mapping = process_prepared_mapping;
1525 pool->process_prepared_discard = process_prepared_discard_passdown;
1529 if (old_mode != new_mode)
1530 notify_of_pool_mode_change(pool, "write");
1531 dm_pool_metadata_read_write(pool->pmd);
1532 pool->process_bio = process_bio;
1533 pool->process_discard = process_discard;
1534 pool->process_prepared_mapping = process_prepared_mapping;
1535 pool->process_prepared_discard = process_prepared_discard;
1539 pool->pf.mode = new_mode;
1541 * The pool mode may have changed, sync it so bind_control_target()
1542 * doesn't cause an unexpected mode transition on resume.
1544 pt->adjusted_pf.mode = new_mode;
1547 static void abort_transaction(struct pool *pool)
1549 const char *dev_name = dm_device_name(pool->pool_md);
1551 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1552 if (dm_pool_abort_metadata(pool->pmd)) {
1553 DMERR("%s: failed to abort metadata transaction", dev_name);
1554 set_pool_mode(pool, PM_FAIL);
1557 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1558 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1559 set_pool_mode(pool, PM_FAIL);
1563 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1565 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1566 dm_device_name(pool->pool_md), op, r);
1568 abort_transaction(pool);
1569 set_pool_mode(pool, PM_READ_ONLY);
1572 /*----------------------------------------------------------------*/
1575 * Mapping functions.
1579 * Called only while mapping a thin bio to hand it over to the workqueue.
1581 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1583 unsigned long flags;
1584 struct pool *pool = tc->pool;
1586 spin_lock_irqsave(&pool->lock, flags);
1587 bio_list_add(&pool->deferred_bios, bio);
1588 spin_unlock_irqrestore(&pool->lock, flags);
1593 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1595 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1598 h->shared_read_entry = NULL;
1599 h->all_io_entry = NULL;
1600 h->overwrite_mapping = NULL;
1604 * Non-blocking function called from the thin target's map function.
1606 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1609 struct thin_c *tc = ti->private;
1610 dm_block_t block = get_bio_block(tc, bio);
1611 struct dm_thin_device *td = tc->td;
1612 struct dm_thin_lookup_result result;
1613 struct dm_bio_prison_cell cell1, cell2;
1614 struct dm_bio_prison_cell *cell_result;
1615 struct dm_cell_key key;
1617 thin_hook_bio(tc, bio);
1619 if (get_pool_mode(tc->pool) == PM_FAIL) {
1621 return DM_MAPIO_SUBMITTED;
1624 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1625 thin_defer_bio(tc, bio);
1626 return DM_MAPIO_SUBMITTED;
1629 r = dm_thin_find_block(td, block, 0, &result);
1632 * Note that we defer readahead too.
1636 if (unlikely(result.shared)) {
1638 * We have a race condition here between the
1639 * result.shared value returned by the lookup and
1640 * snapshot creation, which may cause new
1643 * To avoid this always quiesce the origin before
1644 * taking the snap. You want to do this anyway to
1645 * ensure a consistent application view
1648 * More distant ancestors are irrelevant. The
1649 * shared flag will be set in their case.
1651 thin_defer_bio(tc, bio);
1652 return DM_MAPIO_SUBMITTED;
1655 build_virtual_key(tc->td, block, &key);
1656 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1657 return DM_MAPIO_SUBMITTED;
1659 build_data_key(tc->td, result.block, &key);
1660 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1661 cell_defer_no_holder_no_free(tc, &cell1);
1662 return DM_MAPIO_SUBMITTED;
1665 inc_all_io_entry(tc->pool, bio);
1666 cell_defer_no_holder_no_free(tc, &cell2);
1667 cell_defer_no_holder_no_free(tc, &cell1);
1669 remap(tc, bio, result.block);
1670 return DM_MAPIO_REMAPPED;
1673 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1675 * This block isn't provisioned, and we have no way
1678 handle_unserviceable_bio(tc->pool, bio);
1679 return DM_MAPIO_SUBMITTED;
1685 * In future, the failed dm_thin_find_block above could
1686 * provide the hint to load the metadata into cache.
1688 thin_defer_bio(tc, bio);
1689 return DM_MAPIO_SUBMITTED;
1693 * Must always call bio_io_error on failure.
1694 * dm_thin_find_block can fail with -EINVAL if the
1695 * pool is switched to fail-io mode.
1698 return DM_MAPIO_SUBMITTED;
1702 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1705 unsigned long flags;
1706 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1708 spin_lock_irqsave(&pt->pool->lock, flags);
1709 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1710 spin_unlock_irqrestore(&pt->pool->lock, flags);
1713 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1714 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1720 static void __requeue_bios(struct pool *pool)
1722 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1723 bio_list_init(&pool->retry_on_resume_list);
1726 /*----------------------------------------------------------------
1727 * Binding of control targets to a pool object
1728 *--------------------------------------------------------------*/
1729 static bool data_dev_supports_discard(struct pool_c *pt)
1731 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1733 return q && blk_queue_discard(q);
1736 static bool is_factor(sector_t block_size, uint32_t n)
1738 return !sector_div(block_size, n);
1742 * If discard_passdown was enabled verify that the data device
1743 * supports discards. Disable discard_passdown if not.
1745 static void disable_passdown_if_not_supported(struct pool_c *pt)
1747 struct pool *pool = pt->pool;
1748 struct block_device *data_bdev = pt->data_dev->bdev;
1749 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1750 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1751 const char *reason = NULL;
1752 char buf[BDEVNAME_SIZE];
1754 if (!pt->adjusted_pf.discard_passdown)
1757 if (!data_dev_supports_discard(pt))
1758 reason = "discard unsupported";
1760 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1761 reason = "max discard sectors smaller than a block";
1763 else if (data_limits->discard_granularity > block_size)
1764 reason = "discard granularity larger than a block";
1766 else if (!is_factor(block_size, data_limits->discard_granularity))
1767 reason = "discard granularity not a factor of block size";
1770 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1771 pt->adjusted_pf.discard_passdown = false;
1775 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1777 struct pool_c *pt = ti->private;
1780 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1782 enum pool_mode old_mode = get_pool_mode(pool);
1783 enum pool_mode new_mode = pt->adjusted_pf.mode;
1786 * Don't change the pool's mode until set_pool_mode() below.
1787 * Otherwise the pool's process_* function pointers may
1788 * not match the desired pool mode.
1790 pt->adjusted_pf.mode = old_mode;
1793 pool->pf = pt->adjusted_pf;
1794 pool->low_water_blocks = pt->low_water_blocks;
1796 set_pool_mode(pool, new_mode);
1801 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1807 /*----------------------------------------------------------------
1809 *--------------------------------------------------------------*/
1810 /* Initialize pool features. */
1811 static void pool_features_init(struct pool_features *pf)
1813 pf->mode = PM_WRITE;
1814 pf->zero_new_blocks = true;
1815 pf->discard_enabled = true;
1816 pf->discard_passdown = true;
1817 pf->error_if_no_space = false;
1820 static void __pool_destroy(struct pool *pool)
1822 __pool_table_remove(pool);
1824 if (dm_pool_metadata_close(pool->pmd) < 0)
1825 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1827 dm_bio_prison_destroy(pool->prison);
1828 dm_kcopyd_client_destroy(pool->copier);
1831 destroy_workqueue(pool->wq);
1833 if (pool->next_mapping)
1834 mempool_free(pool->next_mapping, pool->mapping_pool);
1835 mempool_destroy(pool->mapping_pool);
1836 dm_deferred_set_destroy(pool->shared_read_ds);
1837 dm_deferred_set_destroy(pool->all_io_ds);
1841 static struct kmem_cache *_new_mapping_cache;
1843 static struct pool *pool_create(struct mapped_device *pool_md,
1844 struct block_device *metadata_dev,
1845 unsigned long block_size,
1846 int read_only, char **error)
1851 struct dm_pool_metadata *pmd;
1852 bool format_device = read_only ? false : true;
1854 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1856 *error = "Error creating metadata object";
1857 return (struct pool *)pmd;
1860 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1862 *error = "Error allocating memory for pool";
1863 err_p = ERR_PTR(-ENOMEM);
1868 pool->sectors_per_block = block_size;
1869 if (block_size & (block_size - 1))
1870 pool->sectors_per_block_shift = -1;
1872 pool->sectors_per_block_shift = __ffs(block_size);
1873 pool->low_water_blocks = 0;
1874 pool_features_init(&pool->pf);
1875 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1876 if (!pool->prison) {
1877 *error = "Error creating pool's bio prison";
1878 err_p = ERR_PTR(-ENOMEM);
1882 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1883 if (IS_ERR(pool->copier)) {
1884 r = PTR_ERR(pool->copier);
1885 *error = "Error creating pool's kcopyd client";
1887 goto bad_kcopyd_client;
1891 * Create singlethreaded workqueue that will service all devices
1892 * that use this metadata.
1894 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1896 *error = "Error creating pool's workqueue";
1897 err_p = ERR_PTR(-ENOMEM);
1901 INIT_WORK(&pool->worker, do_worker);
1902 INIT_DELAYED_WORK(&pool->waker, do_waker);
1903 spin_lock_init(&pool->lock);
1904 bio_list_init(&pool->deferred_bios);
1905 bio_list_init(&pool->deferred_flush_bios);
1906 INIT_LIST_HEAD(&pool->prepared_mappings);
1907 INIT_LIST_HEAD(&pool->prepared_discards);
1908 pool->low_water_triggered = false;
1909 bio_list_init(&pool->retry_on_resume_list);
1911 pool->shared_read_ds = dm_deferred_set_create();
1912 if (!pool->shared_read_ds) {
1913 *error = "Error creating pool's shared read deferred set";
1914 err_p = ERR_PTR(-ENOMEM);
1915 goto bad_shared_read_ds;
1918 pool->all_io_ds = dm_deferred_set_create();
1919 if (!pool->all_io_ds) {
1920 *error = "Error creating pool's all io deferred set";
1921 err_p = ERR_PTR(-ENOMEM);
1925 pool->next_mapping = NULL;
1926 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1927 _new_mapping_cache);
1928 if (!pool->mapping_pool) {
1929 *error = "Error creating pool's mapping mempool";
1930 err_p = ERR_PTR(-ENOMEM);
1931 goto bad_mapping_pool;
1934 pool->ref_count = 1;
1935 pool->last_commit_jiffies = jiffies;
1936 pool->pool_md = pool_md;
1937 pool->md_dev = metadata_dev;
1938 __pool_table_insert(pool);
1943 dm_deferred_set_destroy(pool->all_io_ds);
1945 dm_deferred_set_destroy(pool->shared_read_ds);
1947 destroy_workqueue(pool->wq);
1949 dm_kcopyd_client_destroy(pool->copier);
1951 dm_bio_prison_destroy(pool->prison);
1955 if (dm_pool_metadata_close(pmd))
1956 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1961 static void __pool_inc(struct pool *pool)
1963 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1967 static void __pool_dec(struct pool *pool)
1969 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1970 BUG_ON(!pool->ref_count);
1971 if (!--pool->ref_count)
1972 __pool_destroy(pool);
1975 static struct pool *__pool_find(struct mapped_device *pool_md,
1976 struct block_device *metadata_dev,
1977 unsigned long block_size, int read_only,
1978 char **error, int *created)
1980 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1983 if (pool->pool_md != pool_md) {
1984 *error = "metadata device already in use by a pool";
1985 return ERR_PTR(-EBUSY);
1990 pool = __pool_table_lookup(pool_md);
1992 if (pool->md_dev != metadata_dev) {
1993 *error = "different pool cannot replace a pool";
1994 return ERR_PTR(-EINVAL);
1999 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2007 /*----------------------------------------------------------------
2008 * Pool target methods
2009 *--------------------------------------------------------------*/
2010 static void pool_dtr(struct dm_target *ti)
2012 struct pool_c *pt = ti->private;
2014 mutex_lock(&dm_thin_pool_table.mutex);
2016 unbind_control_target(pt->pool, ti);
2017 __pool_dec(pt->pool);
2018 dm_put_device(ti, pt->metadata_dev);
2019 dm_put_device(ti, pt->data_dev);
2022 mutex_unlock(&dm_thin_pool_table.mutex);
2025 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2026 struct dm_target *ti)
2030 const char *arg_name;
2032 static struct dm_arg _args[] = {
2033 {0, 4, "Invalid number of pool feature arguments"},
2037 * No feature arguments supplied.
2042 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2046 while (argc && !r) {
2047 arg_name = dm_shift_arg(as);
2050 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2051 pf->zero_new_blocks = false;
2053 else if (!strcasecmp(arg_name, "ignore_discard"))
2054 pf->discard_enabled = false;
2056 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2057 pf->discard_passdown = false;
2059 else if (!strcasecmp(arg_name, "read_only"))
2060 pf->mode = PM_READ_ONLY;
2062 else if (!strcasecmp(arg_name, "error_if_no_space"))
2063 pf->error_if_no_space = true;
2066 ti->error = "Unrecognised pool feature requested";
2075 static void metadata_low_callback(void *context)
2077 struct pool *pool = context;
2079 DMWARN("%s: reached low water mark for metadata device: sending event.",
2080 dm_device_name(pool->pool_md));
2082 dm_table_event(pool->ti->table);
2085 static sector_t get_dev_size(struct block_device *bdev)
2087 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2090 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2092 sector_t metadata_dev_size = get_dev_size(bdev);
2093 char buffer[BDEVNAME_SIZE];
2095 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2096 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2097 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2100 static sector_t get_metadata_dev_size(struct block_device *bdev)
2102 sector_t metadata_dev_size = get_dev_size(bdev);
2104 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2105 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2107 return metadata_dev_size;
2110 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2112 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2114 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2116 return metadata_dev_size;
2120 * When a metadata threshold is crossed a dm event is triggered, and
2121 * userland should respond by growing the metadata device. We could let
2122 * userland set the threshold, like we do with the data threshold, but I'm
2123 * not sure they know enough to do this well.
2125 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2128 * 4M is ample for all ops with the possible exception of thin
2129 * device deletion which is harmless if it fails (just retry the
2130 * delete after you've grown the device).
2132 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2133 return min((dm_block_t)1024ULL /* 4M */, quarter);
2137 * thin-pool <metadata dev> <data dev>
2138 * <data block size (sectors)>
2139 * <low water mark (blocks)>
2140 * [<#feature args> [<arg>]*]
2142 * Optional feature arguments are:
2143 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2144 * ignore_discard: disable discard
2145 * no_discard_passdown: don't pass discards down to the data device
2146 * read_only: Don't allow any changes to be made to the pool metadata.
2147 * error_if_no_space: error IOs, instead of queueing, if no space.
2149 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2151 int r, pool_created = 0;
2154 struct pool_features pf;
2155 struct dm_arg_set as;
2156 struct dm_dev *data_dev;
2157 unsigned long block_size;
2158 dm_block_t low_water_blocks;
2159 struct dm_dev *metadata_dev;
2160 fmode_t metadata_mode;
2163 * FIXME Remove validation from scope of lock.
2165 mutex_lock(&dm_thin_pool_table.mutex);
2168 ti->error = "Invalid argument count";
2177 * Set default pool features.
2179 pool_features_init(&pf);
2181 dm_consume_args(&as, 4);
2182 r = parse_pool_features(&as, &pf, ti);
2186 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2187 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2189 ti->error = "Error opening metadata block device";
2192 warn_if_metadata_device_too_big(metadata_dev->bdev);
2194 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2196 ti->error = "Error getting data device";
2200 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2201 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2202 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2203 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2204 ti->error = "Invalid block size";
2209 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2210 ti->error = "Invalid low water mark";
2215 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2221 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2222 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2229 * 'pool_created' reflects whether this is the first table load.
2230 * Top level discard support is not allowed to be changed after
2231 * initial load. This would require a pool reload to trigger thin
2234 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2235 ti->error = "Discard support cannot be disabled once enabled";
2237 goto out_flags_changed;
2242 pt->metadata_dev = metadata_dev;
2243 pt->data_dev = data_dev;
2244 pt->low_water_blocks = low_water_blocks;
2245 pt->adjusted_pf = pt->requested_pf = pf;
2246 ti->num_flush_bios = 1;
2249 * Only need to enable discards if the pool should pass
2250 * them down to the data device. The thin device's discard
2251 * processing will cause mappings to be removed from the btree.
2253 ti->discard_zeroes_data_unsupported = true;
2254 if (pf.discard_enabled && pf.discard_passdown) {
2255 ti->num_discard_bios = 1;
2258 * Setting 'discards_supported' circumvents the normal
2259 * stacking of discard limits (this keeps the pool and
2260 * thin devices' discard limits consistent).
2262 ti->discards_supported = true;
2266 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2267 calc_metadata_threshold(pt),
2268 metadata_low_callback,
2273 pt->callbacks.congested_fn = pool_is_congested;
2274 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2276 mutex_unlock(&dm_thin_pool_table.mutex);
2285 dm_put_device(ti, data_dev);
2287 dm_put_device(ti, metadata_dev);
2289 mutex_unlock(&dm_thin_pool_table.mutex);
2294 static int pool_map(struct dm_target *ti, struct bio *bio)
2297 struct pool_c *pt = ti->private;
2298 struct pool *pool = pt->pool;
2299 unsigned long flags;
2302 * As this is a singleton target, ti->begin is always zero.
2304 spin_lock_irqsave(&pool->lock, flags);
2305 bio->bi_bdev = pt->data_dev->bdev;
2306 r = DM_MAPIO_REMAPPED;
2307 spin_unlock_irqrestore(&pool->lock, flags);
2312 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2315 struct pool_c *pt = ti->private;
2316 struct pool *pool = pt->pool;
2317 sector_t data_size = ti->len;
2318 dm_block_t sb_data_size;
2320 *need_commit = false;
2322 (void) sector_div(data_size, pool->sectors_per_block);
2324 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2326 DMERR("%s: failed to retrieve data device size",
2327 dm_device_name(pool->pool_md));
2331 if (data_size < sb_data_size) {
2332 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2333 dm_device_name(pool->pool_md),
2334 (unsigned long long)data_size, sb_data_size);
2337 } else if (data_size > sb_data_size) {
2338 if (dm_pool_metadata_needs_check(pool->pmd)) {
2339 DMERR("%s: unable to grow the data device until repaired.",
2340 dm_device_name(pool->pool_md));
2345 DMINFO("%s: growing the data device from %llu to %llu blocks",
2346 dm_device_name(pool->pool_md),
2347 sb_data_size, (unsigned long long)data_size);
2348 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2350 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2354 *need_commit = true;
2360 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2363 struct pool_c *pt = ti->private;
2364 struct pool *pool = pt->pool;
2365 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2367 *need_commit = false;
2369 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2371 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2373 DMERR("%s: failed to retrieve metadata device size",
2374 dm_device_name(pool->pool_md));
2378 if (metadata_dev_size < sb_metadata_dev_size) {
2379 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2380 dm_device_name(pool->pool_md),
2381 metadata_dev_size, sb_metadata_dev_size);
2384 } else if (metadata_dev_size > sb_metadata_dev_size) {
2385 if (dm_pool_metadata_needs_check(pool->pmd)) {
2386 DMERR("%s: unable to grow the metadata device until repaired.",
2387 dm_device_name(pool->pool_md));
2391 warn_if_metadata_device_too_big(pool->md_dev);
2392 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2393 dm_device_name(pool->pool_md),
2394 sb_metadata_dev_size, metadata_dev_size);
2395 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2397 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2401 *need_commit = true;
2408 * Retrieves the number of blocks of the data device from
2409 * the superblock and compares it to the actual device size,
2410 * thus resizing the data device in case it has grown.
2412 * This both copes with opening preallocated data devices in the ctr
2413 * being followed by a resume
2415 * calling the resume method individually after userspace has
2416 * grown the data device in reaction to a table event.
2418 static int pool_preresume(struct dm_target *ti)
2421 bool need_commit1, need_commit2;
2422 struct pool_c *pt = ti->private;
2423 struct pool *pool = pt->pool;
2426 * Take control of the pool object.
2428 r = bind_control_target(pool, ti);
2432 r = maybe_resize_data_dev(ti, &need_commit1);
2436 r = maybe_resize_metadata_dev(ti, &need_commit2);
2440 if (need_commit1 || need_commit2)
2441 (void) commit(pool);
2446 static void pool_resume(struct dm_target *ti)
2448 struct pool_c *pt = ti->private;
2449 struct pool *pool = pt->pool;
2450 unsigned long flags;
2452 spin_lock_irqsave(&pool->lock, flags);
2453 pool->low_water_triggered = false;
2454 __requeue_bios(pool);
2455 spin_unlock_irqrestore(&pool->lock, flags);
2457 do_waker(&pool->waker.work);
2460 static void pool_postsuspend(struct dm_target *ti)
2462 struct pool_c *pt = ti->private;
2463 struct pool *pool = pt->pool;
2465 cancel_delayed_work(&pool->waker);
2466 flush_workqueue(pool->wq);
2467 (void) commit(pool);
2470 static int check_arg_count(unsigned argc, unsigned args_required)
2472 if (argc != args_required) {
2473 DMWARN("Message received with %u arguments instead of %u.",
2474 argc, args_required);
2481 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2483 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2484 *dev_id <= MAX_DEV_ID)
2488 DMWARN("Message received with invalid device id: %s", arg);
2493 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2498 r = check_arg_count(argc, 2);
2502 r = read_dev_id(argv[1], &dev_id, 1);
2506 r = dm_pool_create_thin(pool->pmd, dev_id);
2508 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2516 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2519 dm_thin_id origin_dev_id;
2522 r = check_arg_count(argc, 3);
2526 r = read_dev_id(argv[1], &dev_id, 1);
2530 r = read_dev_id(argv[2], &origin_dev_id, 1);
2534 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2536 DMWARN("Creation of new snapshot %s of device %s failed.",
2544 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2549 r = check_arg_count(argc, 2);
2553 r = read_dev_id(argv[1], &dev_id, 1);
2557 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2559 DMWARN("Deletion of thin device %s failed.", argv[1]);
2564 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2566 dm_thin_id old_id, new_id;
2569 r = check_arg_count(argc, 3);
2573 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2574 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2578 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2579 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2583 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2585 DMWARN("Failed to change transaction id from %s to %s.",
2593 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2597 r = check_arg_count(argc, 1);
2601 (void) commit(pool);
2603 r = dm_pool_reserve_metadata_snap(pool->pmd);
2605 DMWARN("reserve_metadata_snap message failed.");
2610 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2614 r = check_arg_count(argc, 1);
2618 r = dm_pool_release_metadata_snap(pool->pmd);
2620 DMWARN("release_metadata_snap message failed.");
2626 * Messages supported:
2627 * create_thin <dev_id>
2628 * create_snap <dev_id> <origin_id>
2630 * trim <dev_id> <new_size_in_sectors>
2631 * set_transaction_id <current_trans_id> <new_trans_id>
2632 * reserve_metadata_snap
2633 * release_metadata_snap
2635 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2638 struct pool_c *pt = ti->private;
2639 struct pool *pool = pt->pool;
2641 if (!strcasecmp(argv[0], "create_thin"))
2642 r = process_create_thin_mesg(argc, argv, pool);
2644 else if (!strcasecmp(argv[0], "create_snap"))
2645 r = process_create_snap_mesg(argc, argv, pool);
2647 else if (!strcasecmp(argv[0], "delete"))
2648 r = process_delete_mesg(argc, argv, pool);
2650 else if (!strcasecmp(argv[0], "set_transaction_id"))
2651 r = process_set_transaction_id_mesg(argc, argv, pool);
2653 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2654 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2656 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2657 r = process_release_metadata_snap_mesg(argc, argv, pool);
2660 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2663 (void) commit(pool);
2668 static void emit_flags(struct pool_features *pf, char *result,
2669 unsigned sz, unsigned maxlen)
2671 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2672 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2673 pf->error_if_no_space;
2674 DMEMIT("%u ", count);
2676 if (!pf->zero_new_blocks)
2677 DMEMIT("skip_block_zeroing ");
2679 if (!pf->discard_enabled)
2680 DMEMIT("ignore_discard ");
2682 if (!pf->discard_passdown)
2683 DMEMIT("no_discard_passdown ");
2685 if (pf->mode == PM_READ_ONLY)
2686 DMEMIT("read_only ");
2688 if (pf->error_if_no_space)
2689 DMEMIT("error_if_no_space ");
2694 * <transaction id> <used metadata sectors>/<total metadata sectors>
2695 * <used data sectors>/<total data sectors> <held metadata root>
2697 static void pool_status(struct dm_target *ti, status_type_t type,
2698 unsigned status_flags, char *result, unsigned maxlen)
2702 uint64_t transaction_id;
2703 dm_block_t nr_free_blocks_data;
2704 dm_block_t nr_free_blocks_metadata;
2705 dm_block_t nr_blocks_data;
2706 dm_block_t nr_blocks_metadata;
2707 dm_block_t held_root;
2708 char buf[BDEVNAME_SIZE];
2709 char buf2[BDEVNAME_SIZE];
2710 struct pool_c *pt = ti->private;
2711 struct pool *pool = pt->pool;
2714 case STATUSTYPE_INFO:
2715 if (get_pool_mode(pool) == PM_FAIL) {
2720 /* Commit to ensure statistics aren't out-of-date */
2721 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2722 (void) commit(pool);
2724 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2726 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2727 dm_device_name(pool->pool_md), r);
2731 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2733 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2734 dm_device_name(pool->pool_md), r);
2738 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2740 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2741 dm_device_name(pool->pool_md), r);
2745 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2747 DMERR("%s: dm_pool_get_free_block_count returned %d",
2748 dm_device_name(pool->pool_md), r);
2752 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2754 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2755 dm_device_name(pool->pool_md), r);
2759 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2761 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2762 dm_device_name(pool->pool_md), r);
2766 DMEMIT("%llu %llu/%llu %llu/%llu ",
2767 (unsigned long long)transaction_id,
2768 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2769 (unsigned long long)nr_blocks_metadata,
2770 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2771 (unsigned long long)nr_blocks_data);
2774 DMEMIT("%llu ", held_root);
2778 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
2779 DMEMIT("out_of_data_space ");
2780 else if (pool->pf.mode == PM_READ_ONLY)
2785 if (!pool->pf.discard_enabled)
2786 DMEMIT("ignore_discard ");
2787 else if (pool->pf.discard_passdown)
2788 DMEMIT("discard_passdown ");
2790 DMEMIT("no_discard_passdown ");
2792 if (pool->pf.error_if_no_space)
2793 DMEMIT("error_if_no_space ");
2795 DMEMIT("queue_if_no_space ");
2799 case STATUSTYPE_TABLE:
2800 DMEMIT("%s %s %lu %llu ",
2801 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2802 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2803 (unsigned long)pool->sectors_per_block,
2804 (unsigned long long)pt->low_water_blocks);
2805 emit_flags(&pt->requested_pf, result, sz, maxlen);
2814 static int pool_iterate_devices(struct dm_target *ti,
2815 iterate_devices_callout_fn fn, void *data)
2817 struct pool_c *pt = ti->private;
2819 return fn(ti, pt->data_dev, 0, ti->len, data);
2822 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2823 struct bio_vec *biovec, int max_size)
2825 struct pool_c *pt = ti->private;
2826 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2828 if (!q->merge_bvec_fn)
2831 bvm->bi_bdev = pt->data_dev->bdev;
2833 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2836 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2838 struct pool *pool = pt->pool;
2839 struct queue_limits *data_limits;
2841 limits->max_discard_sectors = pool->sectors_per_block;
2844 * discard_granularity is just a hint, and not enforced.
2846 if (pt->adjusted_pf.discard_passdown) {
2847 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2848 limits->discard_granularity = data_limits->discard_granularity;
2850 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2853 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2855 struct pool_c *pt = ti->private;
2856 struct pool *pool = pt->pool;
2857 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2860 * If the system-determined stacked limits are compatible with the
2861 * pool's blocksize (io_opt is a factor) do not override them.
2863 if (io_opt_sectors < pool->sectors_per_block ||
2864 do_div(io_opt_sectors, pool->sectors_per_block)) {
2865 blk_limits_io_min(limits, 0);
2866 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2870 * pt->adjusted_pf is a staging area for the actual features to use.
2871 * They get transferred to the live pool in bind_control_target()
2872 * called from pool_preresume().
2874 if (!pt->adjusted_pf.discard_enabled) {
2876 * Must explicitly disallow stacking discard limits otherwise the
2877 * block layer will stack them if pool's data device has support.
2878 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2879 * user to see that, so make sure to set all discard limits to 0.
2881 limits->discard_granularity = 0;
2885 disable_passdown_if_not_supported(pt);
2887 set_discard_limits(pt, limits);
2890 static struct target_type pool_target = {
2891 .name = "thin-pool",
2892 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2893 DM_TARGET_IMMUTABLE,
2894 .version = {1, 11, 0},
2895 .module = THIS_MODULE,
2899 .postsuspend = pool_postsuspend,
2900 .preresume = pool_preresume,
2901 .resume = pool_resume,
2902 .message = pool_message,
2903 .status = pool_status,
2904 .merge = pool_merge,
2905 .iterate_devices = pool_iterate_devices,
2906 .io_hints = pool_io_hints,
2909 /*----------------------------------------------------------------
2910 * Thin target methods
2911 *--------------------------------------------------------------*/
2912 static void thin_dtr(struct dm_target *ti)
2914 struct thin_c *tc = ti->private;
2916 mutex_lock(&dm_thin_pool_table.mutex);
2918 __pool_dec(tc->pool);
2919 dm_pool_close_thin_device(tc->td);
2920 dm_put_device(ti, tc->pool_dev);
2922 dm_put_device(ti, tc->origin_dev);
2925 mutex_unlock(&dm_thin_pool_table.mutex);
2929 * Thin target parameters:
2931 * <pool_dev> <dev_id> [origin_dev]
2933 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2934 * dev_id: the internal device identifier
2935 * origin_dev: a device external to the pool that should act as the origin
2937 * If the pool device has discards disabled, they get disabled for the thin
2940 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2944 struct dm_dev *pool_dev, *origin_dev;
2945 struct mapped_device *pool_md;
2947 mutex_lock(&dm_thin_pool_table.mutex);
2949 if (argc != 2 && argc != 3) {
2950 ti->error = "Invalid argument count";
2955 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2957 ti->error = "Out of memory";
2963 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2965 ti->error = "Error opening origin device";
2966 goto bad_origin_dev;
2968 tc->origin_dev = origin_dev;
2971 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2973 ti->error = "Error opening pool device";
2976 tc->pool_dev = pool_dev;
2978 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2979 ti->error = "Invalid device id";
2984 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2986 ti->error = "Couldn't get pool mapped device";
2991 tc->pool = __pool_table_lookup(pool_md);
2993 ti->error = "Couldn't find pool object";
2995 goto bad_pool_lookup;
2997 __pool_inc(tc->pool);
2999 if (get_pool_mode(tc->pool) == PM_FAIL) {
3000 ti->error = "Couldn't open thin device, Pool is in fail mode";
3005 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3007 ti->error = "Couldn't open thin internal device";
3011 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3013 goto bad_target_max_io_len;
3015 ti->num_flush_bios = 1;
3016 ti->flush_supported = true;
3017 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3019 /* In case the pool supports discards, pass them on. */
3020 ti->discard_zeroes_data_unsupported = true;
3021 if (tc->pool->pf.discard_enabled) {
3022 ti->discards_supported = true;
3023 ti->num_discard_bios = 1;
3024 /* Discard bios must be split on a block boundary */
3025 ti->split_discard_bios = true;
3030 mutex_unlock(&dm_thin_pool_table.mutex);
3034 bad_target_max_io_len:
3035 dm_pool_close_thin_device(tc->td);
3037 __pool_dec(tc->pool);
3041 dm_put_device(ti, tc->pool_dev);
3044 dm_put_device(ti, tc->origin_dev);
3048 mutex_unlock(&dm_thin_pool_table.mutex);
3053 static int thin_map(struct dm_target *ti, struct bio *bio)
3055 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3057 return thin_bio_map(ti, bio);
3060 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3062 unsigned long flags;
3063 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3064 struct list_head work;
3065 struct dm_thin_new_mapping *m, *tmp;
3066 struct pool *pool = h->tc->pool;
3068 if (h->shared_read_entry) {
3069 INIT_LIST_HEAD(&work);
3070 dm_deferred_entry_dec(h->shared_read_entry, &work);
3072 spin_lock_irqsave(&pool->lock, flags);
3073 list_for_each_entry_safe(m, tmp, &work, list) {
3076 __maybe_add_mapping(m);
3078 spin_unlock_irqrestore(&pool->lock, flags);
3081 if (h->all_io_entry) {
3082 INIT_LIST_HEAD(&work);
3083 dm_deferred_entry_dec(h->all_io_entry, &work);
3084 if (!list_empty(&work)) {
3085 spin_lock_irqsave(&pool->lock, flags);
3086 list_for_each_entry_safe(m, tmp, &work, list)
3087 list_add_tail(&m->list, &pool->prepared_discards);
3088 spin_unlock_irqrestore(&pool->lock, flags);
3096 static void thin_postsuspend(struct dm_target *ti)
3098 if (dm_noflush_suspending(ti))
3099 requeue_io((struct thin_c *)ti->private);
3103 * <nr mapped sectors> <highest mapped sector>
3105 static void thin_status(struct dm_target *ti, status_type_t type,
3106 unsigned status_flags, char *result, unsigned maxlen)
3110 dm_block_t mapped, highest;
3111 char buf[BDEVNAME_SIZE];
3112 struct thin_c *tc = ti->private;
3114 if (get_pool_mode(tc->pool) == PM_FAIL) {
3123 case STATUSTYPE_INFO:
3124 r = dm_thin_get_mapped_count(tc->td, &mapped);
3126 DMERR("dm_thin_get_mapped_count returned %d", r);
3130 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3132 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3136 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3138 DMEMIT("%llu", ((highest + 1) *
3139 tc->pool->sectors_per_block) - 1);
3144 case STATUSTYPE_TABLE:
3146 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3147 (unsigned long) tc->dev_id);
3149 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3160 static int thin_iterate_devices(struct dm_target *ti,
3161 iterate_devices_callout_fn fn, void *data)
3164 struct thin_c *tc = ti->private;
3165 struct pool *pool = tc->pool;
3168 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3169 * we follow a more convoluted path through to the pool's target.
3172 return 0; /* nothing is bound */
3174 blocks = pool->ti->len;
3175 (void) sector_div(blocks, pool->sectors_per_block);
3177 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3182 static struct target_type thin_target = {
3184 .version = {1, 11, 0},
3185 .module = THIS_MODULE,
3189 .end_io = thin_endio,
3190 .postsuspend = thin_postsuspend,
3191 .status = thin_status,
3192 .iterate_devices = thin_iterate_devices,
3195 /*----------------------------------------------------------------*/
3197 static int __init dm_thin_init(void)
3203 r = dm_register_target(&thin_target);
3207 r = dm_register_target(&pool_target);
3209 goto bad_pool_target;
3213 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3214 if (!_new_mapping_cache)
3215 goto bad_new_mapping_cache;
3219 bad_new_mapping_cache:
3220 dm_unregister_target(&pool_target);
3222 dm_unregister_target(&thin_target);
3227 static void dm_thin_exit(void)
3229 dm_unregister_target(&thin_target);
3230 dm_unregister_target(&pool_target);
3232 kmem_cache_destroy(_new_mapping_cache);
3235 module_init(dm_thin_init);
3236 module_exit(dm_thin_exit);
3238 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3239 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3240 MODULE_LICENSE("GPL");