dm thin: ensure user takes action to validate data and metadata consistency
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147         bool error_if_no_space:1;
148 };
149
150 struct thin_c;
151 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
152 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
153
154 struct pool {
155         struct list_head list;
156         struct dm_target *ti;   /* Only set if a pool target is bound */
157
158         struct mapped_device *pool_md;
159         struct block_device *md_dev;
160         struct dm_pool_metadata *pmd;
161
162         dm_block_t low_water_blocks;
163         uint32_t sectors_per_block;
164         int sectors_per_block_shift;
165
166         struct pool_features pf;
167         bool low_water_triggered:1;     /* A dm event has been sent */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void out_of_data_space(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205  * Target context for a pool.
206  */
207 struct pool_c {
208         struct dm_target *ti;
209         struct pool *pool;
210         struct dm_dev *data_dev;
211         struct dm_dev *metadata_dev;
212         struct dm_target_callbacks callbacks;
213
214         dm_block_t low_water_blocks;
215         struct pool_features requested_pf; /* Features requested during table load */
216         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220  * Target context for a thin.
221  */
222 struct thin_c {
223         struct dm_dev *pool_dev;
224         struct dm_dev *origin_dev;
225         dm_thin_id dev_id;
226
227         struct pool *pool;
228         struct dm_thin_device *td;
229 };
230
231 /*----------------------------------------------------------------*/
232
233 /*
234  * wake_worker() is used when new work is queued and when pool_resume is
235  * ready to continue deferred IO processing.
236  */
237 static void wake_worker(struct pool *pool)
238 {
239         queue_work(pool->wq, &pool->worker);
240 }
241
242 /*----------------------------------------------------------------*/
243
244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245                       struct dm_bio_prison_cell **cell_result)
246 {
247         int r;
248         struct dm_bio_prison_cell *cell_prealloc;
249
250         /*
251          * Allocate a cell from the prison's mempool.
252          * This might block but it can't fail.
253          */
254         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
255
256         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
257         if (r)
258                 /*
259                  * We reused an old cell; we can get rid of
260                  * the new one.
261                  */
262                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
263
264         return r;
265 }
266
267 static void cell_release(struct pool *pool,
268                          struct dm_bio_prison_cell *cell,
269                          struct bio_list *bios)
270 {
271         dm_cell_release(pool->prison, cell, bios);
272         dm_bio_prison_free_cell(pool->prison, cell);
273 }
274
275 static void cell_release_no_holder(struct pool *pool,
276                                    struct dm_bio_prison_cell *cell,
277                                    struct bio_list *bios)
278 {
279         dm_cell_release_no_holder(pool->prison, cell, bios);
280         dm_bio_prison_free_cell(pool->prison, cell);
281 }
282
283 static void cell_defer_no_holder_no_free(struct thin_c *tc,
284                                          struct dm_bio_prison_cell *cell)
285 {
286         struct pool *pool = tc->pool;
287         unsigned long flags;
288
289         spin_lock_irqsave(&pool->lock, flags);
290         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291         spin_unlock_irqrestore(&pool->lock, flags);
292
293         wake_worker(pool);
294 }
295
296 static void cell_error(struct pool *pool,
297                        struct dm_bio_prison_cell *cell)
298 {
299         dm_cell_error(pool->prison, cell);
300         dm_bio_prison_free_cell(pool->prison, cell);
301 }
302
303 /*----------------------------------------------------------------*/
304
305 /*
306  * A global list of pools that uses a struct mapped_device as a key.
307  */
308 static struct dm_thin_pool_table {
309         struct mutex mutex;
310         struct list_head pools;
311 } dm_thin_pool_table;
312
313 static void pool_table_init(void)
314 {
315         mutex_init(&dm_thin_pool_table.mutex);
316         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
317 }
318
319 static void __pool_table_insert(struct pool *pool)
320 {
321         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322         list_add(&pool->list, &dm_thin_pool_table.pools);
323 }
324
325 static void __pool_table_remove(struct pool *pool)
326 {
327         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328         list_del(&pool->list);
329 }
330
331 static struct pool *__pool_table_lookup(struct mapped_device *md)
332 {
333         struct pool *pool = NULL, *tmp;
334
335         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
336
337         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338                 if (tmp->pool_md == md) {
339                         pool = tmp;
340                         break;
341                 }
342         }
343
344         return pool;
345 }
346
347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
348 {
349         struct pool *pool = NULL, *tmp;
350
351         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
352
353         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354                 if (tmp->md_dev == md_dev) {
355                         pool = tmp;
356                         break;
357                 }
358         }
359
360         return pool;
361 }
362
363 /*----------------------------------------------------------------*/
364
365 struct dm_thin_endio_hook {
366         struct thin_c *tc;
367         struct dm_deferred_entry *shared_read_entry;
368         struct dm_deferred_entry *all_io_entry;
369         struct dm_thin_new_mapping *overwrite_mapping;
370 };
371
372 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
373 {
374         struct bio *bio;
375         struct bio_list bios;
376
377         bio_list_init(&bios);
378         bio_list_merge(&bios, master);
379         bio_list_init(master);
380
381         while ((bio = bio_list_pop(&bios))) {
382                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
383
384                 if (h->tc == tc)
385                         bio_endio(bio, DM_ENDIO_REQUEUE);
386                 else
387                         bio_list_add(master, bio);
388         }
389 }
390
391 static void requeue_io(struct thin_c *tc)
392 {
393         struct pool *pool = tc->pool;
394         unsigned long flags;
395
396         spin_lock_irqsave(&pool->lock, flags);
397         __requeue_bio_list(tc, &pool->deferred_bios);
398         __requeue_bio_list(tc, &pool->retry_on_resume_list);
399         spin_unlock_irqrestore(&pool->lock, flags);
400 }
401
402 /*
403  * This section of code contains the logic for processing a thin device's IO.
404  * Much of the code depends on pool object resources (lists, workqueues, etc)
405  * but most is exclusively called from the thin target rather than the thin-pool
406  * target.
407  */
408
409 static bool block_size_is_power_of_two(struct pool *pool)
410 {
411         return pool->sectors_per_block_shift >= 0;
412 }
413
414 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
415 {
416         struct pool *pool = tc->pool;
417         sector_t block_nr = bio->bi_iter.bi_sector;
418
419         if (block_size_is_power_of_two(pool))
420                 block_nr >>= pool->sectors_per_block_shift;
421         else
422                 (void) sector_div(block_nr, pool->sectors_per_block);
423
424         return block_nr;
425 }
426
427 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
428 {
429         struct pool *pool = tc->pool;
430         sector_t bi_sector = bio->bi_iter.bi_sector;
431
432         bio->bi_bdev = tc->pool_dev->bdev;
433         if (block_size_is_power_of_two(pool))
434                 bio->bi_iter.bi_sector =
435                         (block << pool->sectors_per_block_shift) |
436                         (bi_sector & (pool->sectors_per_block - 1));
437         else
438                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
439                                  sector_div(bi_sector, pool->sectors_per_block);
440 }
441
442 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
443 {
444         bio->bi_bdev = tc->origin_dev->bdev;
445 }
446
447 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
448 {
449         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
450                 dm_thin_changed_this_transaction(tc->td);
451 }
452
453 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
454 {
455         struct dm_thin_endio_hook *h;
456
457         if (bio->bi_rw & REQ_DISCARD)
458                 return;
459
460         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
461         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
462 }
463
464 static void issue(struct thin_c *tc, struct bio *bio)
465 {
466         struct pool *pool = tc->pool;
467         unsigned long flags;
468
469         if (!bio_triggers_commit(tc, bio)) {
470                 generic_make_request(bio);
471                 return;
472         }
473
474         /*
475          * Complete bio with an error if earlier I/O caused changes to
476          * the metadata that can't be committed e.g, due to I/O errors
477          * on the metadata device.
478          */
479         if (dm_thin_aborted_changes(tc->td)) {
480                 bio_io_error(bio);
481                 return;
482         }
483
484         /*
485          * Batch together any bios that trigger commits and then issue a
486          * single commit for them in process_deferred_bios().
487          */
488         spin_lock_irqsave(&pool->lock, flags);
489         bio_list_add(&pool->deferred_flush_bios, bio);
490         spin_unlock_irqrestore(&pool->lock, flags);
491 }
492
493 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
494 {
495         remap_to_origin(tc, bio);
496         issue(tc, bio);
497 }
498
499 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
500                             dm_block_t block)
501 {
502         remap(tc, bio, block);
503         issue(tc, bio);
504 }
505
506 /*----------------------------------------------------------------*/
507
508 /*
509  * Bio endio functions.
510  */
511 struct dm_thin_new_mapping {
512         struct list_head list;
513
514         bool quiesced:1;
515         bool prepared:1;
516         bool pass_discard:1;
517         bool definitely_not_shared:1;
518
519         int err;
520         struct thin_c *tc;
521         dm_block_t virt_block;
522         dm_block_t data_block;
523         struct dm_bio_prison_cell *cell, *cell2;
524
525         /*
526          * If the bio covers the whole area of a block then we can avoid
527          * zeroing or copying.  Instead this bio is hooked.  The bio will
528          * still be in the cell, so care has to be taken to avoid issuing
529          * the bio twice.
530          */
531         struct bio *bio;
532         bio_end_io_t *saved_bi_end_io;
533 };
534
535 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
536 {
537         struct pool *pool = m->tc->pool;
538
539         if (m->quiesced && m->prepared) {
540                 list_add_tail(&m->list, &pool->prepared_mappings);
541                 wake_worker(pool);
542         }
543 }
544
545 static void copy_complete(int read_err, unsigned long write_err, void *context)
546 {
547         unsigned long flags;
548         struct dm_thin_new_mapping *m = context;
549         struct pool *pool = m->tc->pool;
550
551         m->err = read_err || write_err ? -EIO : 0;
552
553         spin_lock_irqsave(&pool->lock, flags);
554         m->prepared = true;
555         __maybe_add_mapping(m);
556         spin_unlock_irqrestore(&pool->lock, flags);
557 }
558
559 static void overwrite_endio(struct bio *bio, int err)
560 {
561         unsigned long flags;
562         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
563         struct dm_thin_new_mapping *m = h->overwrite_mapping;
564         struct pool *pool = m->tc->pool;
565
566         m->err = err;
567
568         spin_lock_irqsave(&pool->lock, flags);
569         m->prepared = true;
570         __maybe_add_mapping(m);
571         spin_unlock_irqrestore(&pool->lock, flags);
572 }
573
574 /*----------------------------------------------------------------*/
575
576 /*
577  * Workqueue.
578  */
579
580 /*
581  * Prepared mapping jobs.
582  */
583
584 /*
585  * This sends the bios in the cell back to the deferred_bios list.
586  */
587 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
588 {
589         struct pool *pool = tc->pool;
590         unsigned long flags;
591
592         spin_lock_irqsave(&pool->lock, flags);
593         cell_release(pool, cell, &pool->deferred_bios);
594         spin_unlock_irqrestore(&tc->pool->lock, flags);
595
596         wake_worker(pool);
597 }
598
599 /*
600  * Same as cell_defer above, except it omits the original holder of the cell.
601  */
602 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
603 {
604         struct pool *pool = tc->pool;
605         unsigned long flags;
606
607         spin_lock_irqsave(&pool->lock, flags);
608         cell_release_no_holder(pool, cell, &pool->deferred_bios);
609         spin_unlock_irqrestore(&pool->lock, flags);
610
611         wake_worker(pool);
612 }
613
614 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
615 {
616         if (m->bio) {
617                 m->bio->bi_end_io = m->saved_bi_end_io;
618                 atomic_inc(&m->bio->bi_remaining);
619         }
620         cell_error(m->tc->pool, m->cell);
621         list_del(&m->list);
622         mempool_free(m, m->tc->pool->mapping_pool);
623 }
624
625 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
626 {
627         struct thin_c *tc = m->tc;
628         struct pool *pool = tc->pool;
629         struct bio *bio;
630         int r;
631
632         bio = m->bio;
633         if (bio) {
634                 bio->bi_end_io = m->saved_bi_end_io;
635                 atomic_inc(&bio->bi_remaining);
636         }
637
638         if (m->err) {
639                 cell_error(pool, m->cell);
640                 goto out;
641         }
642
643         /*
644          * Commit the prepared block into the mapping btree.
645          * Any I/O for this block arriving after this point will get
646          * remapped to it directly.
647          */
648         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
649         if (r) {
650                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
651                 cell_error(pool, m->cell);
652                 goto out;
653         }
654
655         /*
656          * Release any bios held while the block was being provisioned.
657          * If we are processing a write bio that completely covers the block,
658          * we already processed it so can ignore it now when processing
659          * the bios in the cell.
660          */
661         if (bio) {
662                 cell_defer_no_holder(tc, m->cell);
663                 bio_endio(bio, 0);
664         } else
665                 cell_defer(tc, m->cell);
666
667 out:
668         list_del(&m->list);
669         mempool_free(m, pool->mapping_pool);
670 }
671
672 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
673 {
674         struct thin_c *tc = m->tc;
675
676         bio_io_error(m->bio);
677         cell_defer_no_holder(tc, m->cell);
678         cell_defer_no_holder(tc, m->cell2);
679         mempool_free(m, tc->pool->mapping_pool);
680 }
681
682 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
683 {
684         struct thin_c *tc = m->tc;
685
686         inc_all_io_entry(tc->pool, m->bio);
687         cell_defer_no_holder(tc, m->cell);
688         cell_defer_no_holder(tc, m->cell2);
689
690         if (m->pass_discard)
691                 if (m->definitely_not_shared)
692                         remap_and_issue(tc, m->bio, m->data_block);
693                 else {
694                         bool used = false;
695                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
696                                 bio_endio(m->bio, 0);
697                         else
698                                 remap_and_issue(tc, m->bio, m->data_block);
699                 }
700         else
701                 bio_endio(m->bio, 0);
702
703         mempool_free(m, tc->pool->mapping_pool);
704 }
705
706 static void process_prepared_discard(struct dm_thin_new_mapping *m)
707 {
708         int r;
709         struct thin_c *tc = m->tc;
710
711         r = dm_thin_remove_block(tc->td, m->virt_block);
712         if (r)
713                 DMERR_LIMIT("dm_thin_remove_block() failed");
714
715         process_prepared_discard_passdown(m);
716 }
717
718 static void process_prepared(struct pool *pool, struct list_head *head,
719                              process_mapping_fn *fn)
720 {
721         unsigned long flags;
722         struct list_head maps;
723         struct dm_thin_new_mapping *m, *tmp;
724
725         INIT_LIST_HEAD(&maps);
726         spin_lock_irqsave(&pool->lock, flags);
727         list_splice_init(head, &maps);
728         spin_unlock_irqrestore(&pool->lock, flags);
729
730         list_for_each_entry_safe(m, tmp, &maps, list)
731                 (*fn)(m);
732 }
733
734 /*
735  * Deferred bio jobs.
736  */
737 static int io_overlaps_block(struct pool *pool, struct bio *bio)
738 {
739         return bio->bi_iter.bi_size ==
740                 (pool->sectors_per_block << SECTOR_SHIFT);
741 }
742
743 static int io_overwrites_block(struct pool *pool, struct bio *bio)
744 {
745         return (bio_data_dir(bio) == WRITE) &&
746                 io_overlaps_block(pool, bio);
747 }
748
749 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
750                                bio_end_io_t *fn)
751 {
752         *save = bio->bi_end_io;
753         bio->bi_end_io = fn;
754 }
755
756 static int ensure_next_mapping(struct pool *pool)
757 {
758         if (pool->next_mapping)
759                 return 0;
760
761         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
762
763         return pool->next_mapping ? 0 : -ENOMEM;
764 }
765
766 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
767 {
768         struct dm_thin_new_mapping *m = pool->next_mapping;
769
770         BUG_ON(!pool->next_mapping);
771
772         memset(m, 0, sizeof(struct dm_thin_new_mapping));
773         INIT_LIST_HEAD(&m->list);
774         m->bio = NULL;
775
776         pool->next_mapping = NULL;
777
778         return m;
779 }
780
781 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
782                           struct dm_dev *origin, dm_block_t data_origin,
783                           dm_block_t data_dest,
784                           struct dm_bio_prison_cell *cell, struct bio *bio)
785 {
786         int r;
787         struct pool *pool = tc->pool;
788         struct dm_thin_new_mapping *m = get_next_mapping(pool);
789
790         m->tc = tc;
791         m->virt_block = virt_block;
792         m->data_block = data_dest;
793         m->cell = cell;
794
795         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
796                 m->quiesced = true;
797
798         /*
799          * IO to pool_dev remaps to the pool target's data_dev.
800          *
801          * If the whole block of data is being overwritten, we can issue the
802          * bio immediately. Otherwise we use kcopyd to clone the data first.
803          */
804         if (io_overwrites_block(pool, bio)) {
805                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
806
807                 h->overwrite_mapping = m;
808                 m->bio = bio;
809                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
810                 inc_all_io_entry(pool, bio);
811                 remap_and_issue(tc, bio, data_dest);
812         } else {
813                 struct dm_io_region from, to;
814
815                 from.bdev = origin->bdev;
816                 from.sector = data_origin * pool->sectors_per_block;
817                 from.count = pool->sectors_per_block;
818
819                 to.bdev = tc->pool_dev->bdev;
820                 to.sector = data_dest * pool->sectors_per_block;
821                 to.count = pool->sectors_per_block;
822
823                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
824                                    0, copy_complete, m);
825                 if (r < 0) {
826                         mempool_free(m, pool->mapping_pool);
827                         DMERR_LIMIT("dm_kcopyd_copy() failed");
828                         cell_error(pool, cell);
829                 }
830         }
831 }
832
833 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
834                                    dm_block_t data_origin, dm_block_t data_dest,
835                                    struct dm_bio_prison_cell *cell, struct bio *bio)
836 {
837         schedule_copy(tc, virt_block, tc->pool_dev,
838                       data_origin, data_dest, cell, bio);
839 }
840
841 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
842                                    dm_block_t data_dest,
843                                    struct dm_bio_prison_cell *cell, struct bio *bio)
844 {
845         schedule_copy(tc, virt_block, tc->origin_dev,
846                       virt_block, data_dest, cell, bio);
847 }
848
849 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
850                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
851                           struct bio *bio)
852 {
853         struct pool *pool = tc->pool;
854         struct dm_thin_new_mapping *m = get_next_mapping(pool);
855
856         m->quiesced = true;
857         m->prepared = false;
858         m->tc = tc;
859         m->virt_block = virt_block;
860         m->data_block = data_block;
861         m->cell = cell;
862
863         /*
864          * If the whole block of data is being overwritten or we are not
865          * zeroing pre-existing data, we can issue the bio immediately.
866          * Otherwise we use kcopyd to zero the data first.
867          */
868         if (!pool->pf.zero_new_blocks)
869                 process_prepared_mapping(m);
870
871         else if (io_overwrites_block(pool, bio)) {
872                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
873
874                 h->overwrite_mapping = m;
875                 m->bio = bio;
876                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
877                 inc_all_io_entry(pool, bio);
878                 remap_and_issue(tc, bio, data_block);
879         } else {
880                 int r;
881                 struct dm_io_region to;
882
883                 to.bdev = tc->pool_dev->bdev;
884                 to.sector = data_block * pool->sectors_per_block;
885                 to.count = pool->sectors_per_block;
886
887                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
888                 if (r < 0) {
889                         mempool_free(m, pool->mapping_pool);
890                         DMERR_LIMIT("dm_kcopyd_zero() failed");
891                         cell_error(pool, cell);
892                 }
893         }
894 }
895
896 /*
897  * A non-zero return indicates read_only or fail_io mode.
898  * Many callers don't care about the return value.
899  */
900 static int commit(struct pool *pool)
901 {
902         int r;
903
904         if (get_pool_mode(pool) != PM_WRITE)
905                 return -EINVAL;
906
907         r = dm_pool_commit_metadata(pool->pmd);
908         if (r)
909                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
910
911         return r;
912 }
913
914 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
915 {
916         unsigned long flags;
917
918         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
919                 DMWARN("%s: reached low water mark for data device: sending event.",
920                        dm_device_name(pool->pool_md));
921                 spin_lock_irqsave(&pool->lock, flags);
922                 pool->low_water_triggered = true;
923                 spin_unlock_irqrestore(&pool->lock, flags);
924                 dm_table_event(pool->ti->table);
925         }
926 }
927
928 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
929 {
930         int r;
931         dm_block_t free_blocks;
932         struct pool *pool = tc->pool;
933
934         if (get_pool_mode(pool) != PM_WRITE)
935                 return -EINVAL;
936
937         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
938         if (r) {
939                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
940                 return r;
941         }
942
943         check_low_water_mark(pool, free_blocks);
944
945         if (!free_blocks) {
946                 /*
947                  * Try to commit to see if that will free up some
948                  * more space.
949                  */
950                 r = commit(pool);
951                 if (r)
952                         return r;
953
954                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
955                 if (r) {
956                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
957                         return r;
958                 }
959
960                 if (!free_blocks) {
961                         out_of_data_space(pool);
962                         return -ENOSPC;
963                 }
964         }
965
966         r = dm_pool_alloc_data_block(pool->pmd, result);
967         if (r) {
968                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
969                 return r;
970         }
971
972         return 0;
973 }
974
975 /*
976  * If we have run out of space, queue bios until the device is
977  * resumed, presumably after having been reloaded with more space.
978  */
979 static void retry_on_resume(struct bio *bio)
980 {
981         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
982         struct thin_c *tc = h->tc;
983         struct pool *pool = tc->pool;
984         unsigned long flags;
985
986         spin_lock_irqsave(&pool->lock, flags);
987         bio_list_add(&pool->retry_on_resume_list, bio);
988         spin_unlock_irqrestore(&pool->lock, flags);
989 }
990
991 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
992 {
993         /*
994          * When pool is read-only, no cell locking is needed because
995          * nothing is changing.
996          */
997         WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
998
999         if (pool->pf.error_if_no_space)
1000                 bio_io_error(bio);
1001         else
1002                 retry_on_resume(bio);
1003 }
1004
1005 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1006 {
1007         struct bio *bio;
1008         struct bio_list bios;
1009
1010         bio_list_init(&bios);
1011         cell_release(pool, cell, &bios);
1012
1013         while ((bio = bio_list_pop(&bios)))
1014                 handle_unserviceable_bio(pool, bio);
1015 }
1016
1017 static void process_discard(struct thin_c *tc, struct bio *bio)
1018 {
1019         int r;
1020         unsigned long flags;
1021         struct pool *pool = tc->pool;
1022         struct dm_bio_prison_cell *cell, *cell2;
1023         struct dm_cell_key key, key2;
1024         dm_block_t block = get_bio_block(tc, bio);
1025         struct dm_thin_lookup_result lookup_result;
1026         struct dm_thin_new_mapping *m;
1027
1028         build_virtual_key(tc->td, block, &key);
1029         if (bio_detain(tc->pool, &key, bio, &cell))
1030                 return;
1031
1032         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1033         switch (r) {
1034         case 0:
1035                 /*
1036                  * Check nobody is fiddling with this pool block.  This can
1037                  * happen if someone's in the process of breaking sharing
1038                  * on this block.
1039                  */
1040                 build_data_key(tc->td, lookup_result.block, &key2);
1041                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1042                         cell_defer_no_holder(tc, cell);
1043                         break;
1044                 }
1045
1046                 if (io_overlaps_block(pool, bio)) {
1047                         /*
1048                          * IO may still be going to the destination block.  We must
1049                          * quiesce before we can do the removal.
1050                          */
1051                         m = get_next_mapping(pool);
1052                         m->tc = tc;
1053                         m->pass_discard = pool->pf.discard_passdown;
1054                         m->definitely_not_shared = !lookup_result.shared;
1055                         m->virt_block = block;
1056                         m->data_block = lookup_result.block;
1057                         m->cell = cell;
1058                         m->cell2 = cell2;
1059                         m->bio = bio;
1060
1061                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1062                                 spin_lock_irqsave(&pool->lock, flags);
1063                                 list_add_tail(&m->list, &pool->prepared_discards);
1064                                 spin_unlock_irqrestore(&pool->lock, flags);
1065                                 wake_worker(pool);
1066                         }
1067                 } else {
1068                         inc_all_io_entry(pool, bio);
1069                         cell_defer_no_holder(tc, cell);
1070                         cell_defer_no_holder(tc, cell2);
1071
1072                         /*
1073                          * The DM core makes sure that the discard doesn't span
1074                          * a block boundary.  So we submit the discard of a
1075                          * partial block appropriately.
1076                          */
1077                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1078                                 remap_and_issue(tc, bio, lookup_result.block);
1079                         else
1080                                 bio_endio(bio, 0);
1081                 }
1082                 break;
1083
1084         case -ENODATA:
1085                 /*
1086                  * It isn't provisioned, just forget it.
1087                  */
1088                 cell_defer_no_holder(tc, cell);
1089                 bio_endio(bio, 0);
1090                 break;
1091
1092         default:
1093                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1094                             __func__, r);
1095                 cell_defer_no_holder(tc, cell);
1096                 bio_io_error(bio);
1097                 break;
1098         }
1099 }
1100
1101 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1102                           struct dm_cell_key *key,
1103                           struct dm_thin_lookup_result *lookup_result,
1104                           struct dm_bio_prison_cell *cell)
1105 {
1106         int r;
1107         dm_block_t data_block;
1108         struct pool *pool = tc->pool;
1109
1110         r = alloc_data_block(tc, &data_block);
1111         switch (r) {
1112         case 0:
1113                 schedule_internal_copy(tc, block, lookup_result->block,
1114                                        data_block, cell, bio);
1115                 break;
1116
1117         case -ENOSPC:
1118                 retry_bios_on_resume(pool, cell);
1119                 break;
1120
1121         default:
1122                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1123                             __func__, r);
1124                 cell_error(pool, cell);
1125                 break;
1126         }
1127 }
1128
1129 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1130                                dm_block_t block,
1131                                struct dm_thin_lookup_result *lookup_result)
1132 {
1133         struct dm_bio_prison_cell *cell;
1134         struct pool *pool = tc->pool;
1135         struct dm_cell_key key;
1136
1137         /*
1138          * If cell is already occupied, then sharing is already in the process
1139          * of being broken so we have nothing further to do here.
1140          */
1141         build_data_key(tc->td, lookup_result->block, &key);
1142         if (bio_detain(pool, &key, bio, &cell))
1143                 return;
1144
1145         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1146                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1147         else {
1148                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1149
1150                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1151                 inc_all_io_entry(pool, bio);
1152                 cell_defer_no_holder(tc, cell);
1153
1154                 remap_and_issue(tc, bio, lookup_result->block);
1155         }
1156 }
1157
1158 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1159                             struct dm_bio_prison_cell *cell)
1160 {
1161         int r;
1162         dm_block_t data_block;
1163         struct pool *pool = tc->pool;
1164
1165         /*
1166          * Remap empty bios (flushes) immediately, without provisioning.
1167          */
1168         if (!bio->bi_iter.bi_size) {
1169                 inc_all_io_entry(pool, bio);
1170                 cell_defer_no_holder(tc, cell);
1171
1172                 remap_and_issue(tc, bio, 0);
1173                 return;
1174         }
1175
1176         /*
1177          * Fill read bios with zeroes and complete them immediately.
1178          */
1179         if (bio_data_dir(bio) == READ) {
1180                 zero_fill_bio(bio);
1181                 cell_defer_no_holder(tc, cell);
1182                 bio_endio(bio, 0);
1183                 return;
1184         }
1185
1186         r = alloc_data_block(tc, &data_block);
1187         switch (r) {
1188         case 0:
1189                 if (tc->origin_dev)
1190                         schedule_external_copy(tc, block, data_block, cell, bio);
1191                 else
1192                         schedule_zero(tc, block, data_block, cell, bio);
1193                 break;
1194
1195         case -ENOSPC:
1196                 retry_bios_on_resume(pool, cell);
1197                 break;
1198
1199         default:
1200                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1201                             __func__, r);
1202                 cell_error(pool, cell);
1203                 break;
1204         }
1205 }
1206
1207 static void process_bio(struct thin_c *tc, struct bio *bio)
1208 {
1209         int r;
1210         struct pool *pool = tc->pool;
1211         dm_block_t block = get_bio_block(tc, bio);
1212         struct dm_bio_prison_cell *cell;
1213         struct dm_cell_key key;
1214         struct dm_thin_lookup_result lookup_result;
1215
1216         /*
1217          * If cell is already occupied, then the block is already
1218          * being provisioned so we have nothing further to do here.
1219          */
1220         build_virtual_key(tc->td, block, &key);
1221         if (bio_detain(pool, &key, bio, &cell))
1222                 return;
1223
1224         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1225         switch (r) {
1226         case 0:
1227                 if (lookup_result.shared) {
1228                         process_shared_bio(tc, bio, block, &lookup_result);
1229                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1230                 } else {
1231                         inc_all_io_entry(pool, bio);
1232                         cell_defer_no_holder(tc, cell);
1233
1234                         remap_and_issue(tc, bio, lookup_result.block);
1235                 }
1236                 break;
1237
1238         case -ENODATA:
1239                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1240                         inc_all_io_entry(pool, bio);
1241                         cell_defer_no_holder(tc, cell);
1242
1243                         remap_to_origin_and_issue(tc, bio);
1244                 } else
1245                         provision_block(tc, bio, block, cell);
1246                 break;
1247
1248         default:
1249                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1250                             __func__, r);
1251                 cell_defer_no_holder(tc, cell);
1252                 bio_io_error(bio);
1253                 break;
1254         }
1255 }
1256
1257 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1258 {
1259         int r;
1260         int rw = bio_data_dir(bio);
1261         dm_block_t block = get_bio_block(tc, bio);
1262         struct dm_thin_lookup_result lookup_result;
1263
1264         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1265         switch (r) {
1266         case 0:
1267                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1268                         handle_unserviceable_bio(tc->pool, bio);
1269                 else {
1270                         inc_all_io_entry(tc->pool, bio);
1271                         remap_and_issue(tc, bio, lookup_result.block);
1272                 }
1273                 break;
1274
1275         case -ENODATA:
1276                 if (rw != READ) {
1277                         handle_unserviceable_bio(tc->pool, bio);
1278                         break;
1279                 }
1280
1281                 if (tc->origin_dev) {
1282                         inc_all_io_entry(tc->pool, bio);
1283                         remap_to_origin_and_issue(tc, bio);
1284                         break;
1285                 }
1286
1287                 zero_fill_bio(bio);
1288                 bio_endio(bio, 0);
1289                 break;
1290
1291         default:
1292                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1293                             __func__, r);
1294                 bio_io_error(bio);
1295                 break;
1296         }
1297 }
1298
1299 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1300 {
1301         bio_io_error(bio);
1302 }
1303
1304 /*
1305  * FIXME: should we also commit due to size of transaction, measured in
1306  * metadata blocks?
1307  */
1308 static int need_commit_due_to_time(struct pool *pool)
1309 {
1310         return jiffies < pool->last_commit_jiffies ||
1311                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1312 }
1313
1314 static void process_deferred_bios(struct pool *pool)
1315 {
1316         unsigned long flags;
1317         struct bio *bio;
1318         struct bio_list bios;
1319
1320         bio_list_init(&bios);
1321
1322         spin_lock_irqsave(&pool->lock, flags);
1323         bio_list_merge(&bios, &pool->deferred_bios);
1324         bio_list_init(&pool->deferred_bios);
1325         spin_unlock_irqrestore(&pool->lock, flags);
1326
1327         while ((bio = bio_list_pop(&bios))) {
1328                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1329                 struct thin_c *tc = h->tc;
1330
1331                 /*
1332                  * If we've got no free new_mapping structs, and processing
1333                  * this bio might require one, we pause until there are some
1334                  * prepared mappings to process.
1335                  */
1336                 if (ensure_next_mapping(pool)) {
1337                         spin_lock_irqsave(&pool->lock, flags);
1338                         bio_list_merge(&pool->deferred_bios, &bios);
1339                         spin_unlock_irqrestore(&pool->lock, flags);
1340
1341                         break;
1342                 }
1343
1344                 if (bio->bi_rw & REQ_DISCARD)
1345                         pool->process_discard(tc, bio);
1346                 else
1347                         pool->process_bio(tc, bio);
1348         }
1349
1350         /*
1351          * If there are any deferred flush bios, we must commit
1352          * the metadata before issuing them.
1353          */
1354         bio_list_init(&bios);
1355         spin_lock_irqsave(&pool->lock, flags);
1356         bio_list_merge(&bios, &pool->deferred_flush_bios);
1357         bio_list_init(&pool->deferred_flush_bios);
1358         spin_unlock_irqrestore(&pool->lock, flags);
1359
1360         if (bio_list_empty(&bios) &&
1361             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1362                 return;
1363
1364         if (commit(pool)) {
1365                 while ((bio = bio_list_pop(&bios)))
1366                         bio_io_error(bio);
1367                 return;
1368         }
1369         pool->last_commit_jiffies = jiffies;
1370
1371         while ((bio = bio_list_pop(&bios)))
1372                 generic_make_request(bio);
1373 }
1374
1375 static void do_worker(struct work_struct *ws)
1376 {
1377         struct pool *pool = container_of(ws, struct pool, worker);
1378
1379         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1380         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1381         process_deferred_bios(pool);
1382 }
1383
1384 /*
1385  * We want to commit periodically so that not too much
1386  * unwritten data builds up.
1387  */
1388 static void do_waker(struct work_struct *ws)
1389 {
1390         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1391         wake_worker(pool);
1392         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1393 }
1394
1395 /*----------------------------------------------------------------*/
1396
1397 static enum pool_mode get_pool_mode(struct pool *pool)
1398 {
1399         return pool->pf.mode;
1400 }
1401
1402 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1403 {
1404         int r;
1405         struct pool_c *pt = pool->ti->private;
1406         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1407         enum pool_mode old_mode = get_pool_mode(pool);
1408
1409         /*
1410          * Never allow the pool to transition to PM_WRITE mode if user
1411          * intervention is required to verify metadata and data consistency.
1412          */
1413         if (new_mode == PM_WRITE && needs_check) {
1414                 DMERR("%s: unable to switch pool to write mode until repaired.",
1415                       dm_device_name(pool->pool_md));
1416                 if (old_mode != new_mode)
1417                         new_mode = old_mode;
1418                 else
1419                         new_mode = PM_READ_ONLY;
1420         }
1421         /*
1422          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1423          * not going to recover without a thin_repair.  So we never let the
1424          * pool move out of the old mode.
1425          */
1426         if (old_mode == PM_FAIL)
1427                 new_mode = old_mode;
1428
1429         switch (new_mode) {
1430         case PM_FAIL:
1431                 if (old_mode != new_mode)
1432                         DMERR("%s: switching pool to failure mode",
1433                               dm_device_name(pool->pool_md));
1434                 dm_pool_metadata_read_only(pool->pmd);
1435                 pool->process_bio = process_bio_fail;
1436                 pool->process_discard = process_bio_fail;
1437                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1438                 pool->process_prepared_discard = process_prepared_discard_fail;
1439                 break;
1440
1441         case PM_READ_ONLY:
1442                 if (old_mode != new_mode)
1443                         DMERR("%s: switching pool to read-only mode",
1444                               dm_device_name(pool->pool_md));
1445                 r = dm_pool_abort_metadata(pool->pmd);
1446                 if (r) {
1447                         DMERR("%s: aborting transaction failed",
1448                               dm_device_name(pool->pool_md));
1449                         new_mode = PM_FAIL;
1450                         set_pool_mode(pool, new_mode);
1451                 } else {
1452                         dm_pool_metadata_read_only(pool->pmd);
1453                         pool->process_bio = process_bio_read_only;
1454                         pool->process_discard = process_discard;
1455                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1456                         pool->process_prepared_discard = process_prepared_discard_passdown;
1457                 }
1458                 break;
1459
1460         case PM_WRITE:
1461                 if (old_mode != new_mode)
1462                         DMINFO("%s: switching pool to write mode",
1463                                dm_device_name(pool->pool_md));
1464                 dm_pool_metadata_read_write(pool->pmd);
1465                 pool->process_bio = process_bio;
1466                 pool->process_discard = process_discard;
1467                 pool->process_prepared_mapping = process_prepared_mapping;
1468                 pool->process_prepared_discard = process_prepared_discard;
1469                 break;
1470         }
1471
1472         pool->pf.mode = new_mode;
1473         /*
1474          * The pool mode may have changed, sync it so bind_control_target()
1475          * doesn't cause an unexpected mode transition on resume.
1476          */
1477         pt->adjusted_pf.mode = new_mode;
1478 }
1479
1480 /*
1481  * Rather than calling set_pool_mode directly, use these which describe the
1482  * reason for mode degradation.
1483  */
1484 static void out_of_data_space(struct pool *pool)
1485 {
1486         DMERR_LIMIT("%s: no free data space available.",
1487                     dm_device_name(pool->pool_md));
1488         set_pool_mode(pool, PM_READ_ONLY);
1489 }
1490
1491 static void abort_transaction(struct pool *pool)
1492 {
1493         const char *dev_name = dm_device_name(pool->pool_md);
1494
1495         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1496         if (dm_pool_abort_metadata(pool->pmd)) {
1497                 DMERR("%s: failed to abort metadata transaction", dev_name);
1498                 set_pool_mode(pool, PM_FAIL);
1499         }
1500
1501         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1502                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1503                 set_pool_mode(pool, PM_FAIL);
1504         }
1505 }
1506
1507 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1508 {
1509         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1510                     dm_device_name(pool->pool_md), op, r);
1511
1512         abort_transaction(pool);
1513         set_pool_mode(pool, PM_READ_ONLY);
1514 }
1515
1516 /*----------------------------------------------------------------*/
1517
1518 /*
1519  * Mapping functions.
1520  */
1521
1522 /*
1523  * Called only while mapping a thin bio to hand it over to the workqueue.
1524  */
1525 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1526 {
1527         unsigned long flags;
1528         struct pool *pool = tc->pool;
1529
1530         spin_lock_irqsave(&pool->lock, flags);
1531         bio_list_add(&pool->deferred_bios, bio);
1532         spin_unlock_irqrestore(&pool->lock, flags);
1533
1534         wake_worker(pool);
1535 }
1536
1537 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1538 {
1539         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1540
1541         h->tc = tc;
1542         h->shared_read_entry = NULL;
1543         h->all_io_entry = NULL;
1544         h->overwrite_mapping = NULL;
1545 }
1546
1547 /*
1548  * Non-blocking function called from the thin target's map function.
1549  */
1550 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1551 {
1552         int r;
1553         struct thin_c *tc = ti->private;
1554         dm_block_t block = get_bio_block(tc, bio);
1555         struct dm_thin_device *td = tc->td;
1556         struct dm_thin_lookup_result result;
1557         struct dm_bio_prison_cell cell1, cell2;
1558         struct dm_bio_prison_cell *cell_result;
1559         struct dm_cell_key key;
1560
1561         thin_hook_bio(tc, bio);
1562
1563         if (get_pool_mode(tc->pool) == PM_FAIL) {
1564                 bio_io_error(bio);
1565                 return DM_MAPIO_SUBMITTED;
1566         }
1567
1568         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1569                 thin_defer_bio(tc, bio);
1570                 return DM_MAPIO_SUBMITTED;
1571         }
1572
1573         r = dm_thin_find_block(td, block, 0, &result);
1574
1575         /*
1576          * Note that we defer readahead too.
1577          */
1578         switch (r) {
1579         case 0:
1580                 if (unlikely(result.shared)) {
1581                         /*
1582                          * We have a race condition here between the
1583                          * result.shared value returned by the lookup and
1584                          * snapshot creation, which may cause new
1585                          * sharing.
1586                          *
1587                          * To avoid this always quiesce the origin before
1588                          * taking the snap.  You want to do this anyway to
1589                          * ensure a consistent application view
1590                          * (i.e. lockfs).
1591                          *
1592                          * More distant ancestors are irrelevant. The
1593                          * shared flag will be set in their case.
1594                          */
1595                         thin_defer_bio(tc, bio);
1596                         return DM_MAPIO_SUBMITTED;
1597                 }
1598
1599                 build_virtual_key(tc->td, block, &key);
1600                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1601                         return DM_MAPIO_SUBMITTED;
1602
1603                 build_data_key(tc->td, result.block, &key);
1604                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1605                         cell_defer_no_holder_no_free(tc, &cell1);
1606                         return DM_MAPIO_SUBMITTED;
1607                 }
1608
1609                 inc_all_io_entry(tc->pool, bio);
1610                 cell_defer_no_holder_no_free(tc, &cell2);
1611                 cell_defer_no_holder_no_free(tc, &cell1);
1612
1613                 remap(tc, bio, result.block);
1614                 return DM_MAPIO_REMAPPED;
1615
1616         case -ENODATA:
1617                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1618                         /*
1619                          * This block isn't provisioned, and we have no way
1620                          * of doing so.
1621                          */
1622                         handle_unserviceable_bio(tc->pool, bio);
1623                         return DM_MAPIO_SUBMITTED;
1624                 }
1625                 /* fall through */
1626
1627         case -EWOULDBLOCK:
1628                 /*
1629                  * In future, the failed dm_thin_find_block above could
1630                  * provide the hint to load the metadata into cache.
1631                  */
1632                 thin_defer_bio(tc, bio);
1633                 return DM_MAPIO_SUBMITTED;
1634
1635         default:
1636                 /*
1637                  * Must always call bio_io_error on failure.
1638                  * dm_thin_find_block can fail with -EINVAL if the
1639                  * pool is switched to fail-io mode.
1640                  */
1641                 bio_io_error(bio);
1642                 return DM_MAPIO_SUBMITTED;
1643         }
1644 }
1645
1646 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1647 {
1648         int r;
1649         unsigned long flags;
1650         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1651
1652         spin_lock_irqsave(&pt->pool->lock, flags);
1653         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1654         spin_unlock_irqrestore(&pt->pool->lock, flags);
1655
1656         if (!r) {
1657                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1658                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1659         }
1660
1661         return r;
1662 }
1663
1664 static void __requeue_bios(struct pool *pool)
1665 {
1666         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1667         bio_list_init(&pool->retry_on_resume_list);
1668 }
1669
1670 /*----------------------------------------------------------------
1671  * Binding of control targets to a pool object
1672  *--------------------------------------------------------------*/
1673 static bool data_dev_supports_discard(struct pool_c *pt)
1674 {
1675         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1676
1677         return q && blk_queue_discard(q);
1678 }
1679
1680 static bool is_factor(sector_t block_size, uint32_t n)
1681 {
1682         return !sector_div(block_size, n);
1683 }
1684
1685 /*
1686  * If discard_passdown was enabled verify that the data device
1687  * supports discards.  Disable discard_passdown if not.
1688  */
1689 static void disable_passdown_if_not_supported(struct pool_c *pt)
1690 {
1691         struct pool *pool = pt->pool;
1692         struct block_device *data_bdev = pt->data_dev->bdev;
1693         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1694         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1695         const char *reason = NULL;
1696         char buf[BDEVNAME_SIZE];
1697
1698         if (!pt->adjusted_pf.discard_passdown)
1699                 return;
1700
1701         if (!data_dev_supports_discard(pt))
1702                 reason = "discard unsupported";
1703
1704         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1705                 reason = "max discard sectors smaller than a block";
1706
1707         else if (data_limits->discard_granularity > block_size)
1708                 reason = "discard granularity larger than a block";
1709
1710         else if (!is_factor(block_size, data_limits->discard_granularity))
1711                 reason = "discard granularity not a factor of block size";
1712
1713         if (reason) {
1714                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1715                 pt->adjusted_pf.discard_passdown = false;
1716         }
1717 }
1718
1719 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1720 {
1721         struct pool_c *pt = ti->private;
1722
1723         /*
1724          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1725          */
1726         enum pool_mode old_mode = get_pool_mode(pool);
1727         enum pool_mode new_mode = pt->adjusted_pf.mode;
1728
1729         /*
1730          * Don't change the pool's mode until set_pool_mode() below.
1731          * Otherwise the pool's process_* function pointers may
1732          * not match the desired pool mode.
1733          */
1734         pt->adjusted_pf.mode = old_mode;
1735
1736         pool->ti = ti;
1737         pool->pf = pt->adjusted_pf;
1738         pool->low_water_blocks = pt->low_water_blocks;
1739
1740         set_pool_mode(pool, new_mode);
1741
1742         return 0;
1743 }
1744
1745 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1746 {
1747         if (pool->ti == ti)
1748                 pool->ti = NULL;
1749 }
1750
1751 /*----------------------------------------------------------------
1752  * Pool creation
1753  *--------------------------------------------------------------*/
1754 /* Initialize pool features. */
1755 static void pool_features_init(struct pool_features *pf)
1756 {
1757         pf->mode = PM_WRITE;
1758         pf->zero_new_blocks = true;
1759         pf->discard_enabled = true;
1760         pf->discard_passdown = true;
1761         pf->error_if_no_space = false;
1762 }
1763
1764 static void __pool_destroy(struct pool *pool)
1765 {
1766         __pool_table_remove(pool);
1767
1768         if (dm_pool_metadata_close(pool->pmd) < 0)
1769                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1770
1771         dm_bio_prison_destroy(pool->prison);
1772         dm_kcopyd_client_destroy(pool->copier);
1773
1774         if (pool->wq)
1775                 destroy_workqueue(pool->wq);
1776
1777         if (pool->next_mapping)
1778                 mempool_free(pool->next_mapping, pool->mapping_pool);
1779         mempool_destroy(pool->mapping_pool);
1780         dm_deferred_set_destroy(pool->shared_read_ds);
1781         dm_deferred_set_destroy(pool->all_io_ds);
1782         kfree(pool);
1783 }
1784
1785 static struct kmem_cache *_new_mapping_cache;
1786
1787 static struct pool *pool_create(struct mapped_device *pool_md,
1788                                 struct block_device *metadata_dev,
1789                                 unsigned long block_size,
1790                                 int read_only, char **error)
1791 {
1792         int r;
1793         void *err_p;
1794         struct pool *pool;
1795         struct dm_pool_metadata *pmd;
1796         bool format_device = read_only ? false : true;
1797
1798         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1799         if (IS_ERR(pmd)) {
1800                 *error = "Error creating metadata object";
1801                 return (struct pool *)pmd;
1802         }
1803
1804         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1805         if (!pool) {
1806                 *error = "Error allocating memory for pool";
1807                 err_p = ERR_PTR(-ENOMEM);
1808                 goto bad_pool;
1809         }
1810
1811         pool->pmd = pmd;
1812         pool->sectors_per_block = block_size;
1813         if (block_size & (block_size - 1))
1814                 pool->sectors_per_block_shift = -1;
1815         else
1816                 pool->sectors_per_block_shift = __ffs(block_size);
1817         pool->low_water_blocks = 0;
1818         pool_features_init(&pool->pf);
1819         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1820         if (!pool->prison) {
1821                 *error = "Error creating pool's bio prison";
1822                 err_p = ERR_PTR(-ENOMEM);
1823                 goto bad_prison;
1824         }
1825
1826         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1827         if (IS_ERR(pool->copier)) {
1828                 r = PTR_ERR(pool->copier);
1829                 *error = "Error creating pool's kcopyd client";
1830                 err_p = ERR_PTR(r);
1831                 goto bad_kcopyd_client;
1832         }
1833
1834         /*
1835          * Create singlethreaded workqueue that will service all devices
1836          * that use this metadata.
1837          */
1838         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1839         if (!pool->wq) {
1840                 *error = "Error creating pool's workqueue";
1841                 err_p = ERR_PTR(-ENOMEM);
1842                 goto bad_wq;
1843         }
1844
1845         INIT_WORK(&pool->worker, do_worker);
1846         INIT_DELAYED_WORK(&pool->waker, do_waker);
1847         spin_lock_init(&pool->lock);
1848         bio_list_init(&pool->deferred_bios);
1849         bio_list_init(&pool->deferred_flush_bios);
1850         INIT_LIST_HEAD(&pool->prepared_mappings);
1851         INIT_LIST_HEAD(&pool->prepared_discards);
1852         pool->low_water_triggered = false;
1853         bio_list_init(&pool->retry_on_resume_list);
1854
1855         pool->shared_read_ds = dm_deferred_set_create();
1856         if (!pool->shared_read_ds) {
1857                 *error = "Error creating pool's shared read deferred set";
1858                 err_p = ERR_PTR(-ENOMEM);
1859                 goto bad_shared_read_ds;
1860         }
1861
1862         pool->all_io_ds = dm_deferred_set_create();
1863         if (!pool->all_io_ds) {
1864                 *error = "Error creating pool's all io deferred set";
1865                 err_p = ERR_PTR(-ENOMEM);
1866                 goto bad_all_io_ds;
1867         }
1868
1869         pool->next_mapping = NULL;
1870         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1871                                                       _new_mapping_cache);
1872         if (!pool->mapping_pool) {
1873                 *error = "Error creating pool's mapping mempool";
1874                 err_p = ERR_PTR(-ENOMEM);
1875                 goto bad_mapping_pool;
1876         }
1877
1878         pool->ref_count = 1;
1879         pool->last_commit_jiffies = jiffies;
1880         pool->pool_md = pool_md;
1881         pool->md_dev = metadata_dev;
1882         __pool_table_insert(pool);
1883
1884         return pool;
1885
1886 bad_mapping_pool:
1887         dm_deferred_set_destroy(pool->all_io_ds);
1888 bad_all_io_ds:
1889         dm_deferred_set_destroy(pool->shared_read_ds);
1890 bad_shared_read_ds:
1891         destroy_workqueue(pool->wq);
1892 bad_wq:
1893         dm_kcopyd_client_destroy(pool->copier);
1894 bad_kcopyd_client:
1895         dm_bio_prison_destroy(pool->prison);
1896 bad_prison:
1897         kfree(pool);
1898 bad_pool:
1899         if (dm_pool_metadata_close(pmd))
1900                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1901
1902         return err_p;
1903 }
1904
1905 static void __pool_inc(struct pool *pool)
1906 {
1907         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1908         pool->ref_count++;
1909 }
1910
1911 static void __pool_dec(struct pool *pool)
1912 {
1913         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1914         BUG_ON(!pool->ref_count);
1915         if (!--pool->ref_count)
1916                 __pool_destroy(pool);
1917 }
1918
1919 static struct pool *__pool_find(struct mapped_device *pool_md,
1920                                 struct block_device *metadata_dev,
1921                                 unsigned long block_size, int read_only,
1922                                 char **error, int *created)
1923 {
1924         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1925
1926         if (pool) {
1927                 if (pool->pool_md != pool_md) {
1928                         *error = "metadata device already in use by a pool";
1929                         return ERR_PTR(-EBUSY);
1930                 }
1931                 __pool_inc(pool);
1932
1933         } else {
1934                 pool = __pool_table_lookup(pool_md);
1935                 if (pool) {
1936                         if (pool->md_dev != metadata_dev) {
1937                                 *error = "different pool cannot replace a pool";
1938                                 return ERR_PTR(-EINVAL);
1939                         }
1940                         __pool_inc(pool);
1941
1942                 } else {
1943                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1944                         *created = 1;
1945                 }
1946         }
1947
1948         return pool;
1949 }
1950
1951 /*----------------------------------------------------------------
1952  * Pool target methods
1953  *--------------------------------------------------------------*/
1954 static void pool_dtr(struct dm_target *ti)
1955 {
1956         struct pool_c *pt = ti->private;
1957
1958         mutex_lock(&dm_thin_pool_table.mutex);
1959
1960         unbind_control_target(pt->pool, ti);
1961         __pool_dec(pt->pool);
1962         dm_put_device(ti, pt->metadata_dev);
1963         dm_put_device(ti, pt->data_dev);
1964         kfree(pt);
1965
1966         mutex_unlock(&dm_thin_pool_table.mutex);
1967 }
1968
1969 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1970                                struct dm_target *ti)
1971 {
1972         int r;
1973         unsigned argc;
1974         const char *arg_name;
1975
1976         static struct dm_arg _args[] = {
1977                 {0, 4, "Invalid number of pool feature arguments"},
1978         };
1979
1980         /*
1981          * No feature arguments supplied.
1982          */
1983         if (!as->argc)
1984                 return 0;
1985
1986         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1987         if (r)
1988                 return -EINVAL;
1989
1990         while (argc && !r) {
1991                 arg_name = dm_shift_arg(as);
1992                 argc--;
1993
1994                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1995                         pf->zero_new_blocks = false;
1996
1997                 else if (!strcasecmp(arg_name, "ignore_discard"))
1998                         pf->discard_enabled = false;
1999
2000                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2001                         pf->discard_passdown = false;
2002
2003                 else if (!strcasecmp(arg_name, "read_only"))
2004                         pf->mode = PM_READ_ONLY;
2005
2006                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2007                         pf->error_if_no_space = true;
2008
2009                 else {
2010                         ti->error = "Unrecognised pool feature requested";
2011                         r = -EINVAL;
2012                         break;
2013                 }
2014         }
2015
2016         return r;
2017 }
2018
2019 static void metadata_low_callback(void *context)
2020 {
2021         struct pool *pool = context;
2022
2023         DMWARN("%s: reached low water mark for metadata device: sending event.",
2024                dm_device_name(pool->pool_md));
2025
2026         dm_table_event(pool->ti->table);
2027 }
2028
2029 static sector_t get_dev_size(struct block_device *bdev)
2030 {
2031         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2032 }
2033
2034 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2035 {
2036         sector_t metadata_dev_size = get_dev_size(bdev);
2037         char buffer[BDEVNAME_SIZE];
2038
2039         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2040                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2041                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2042 }
2043
2044 static sector_t get_metadata_dev_size(struct block_device *bdev)
2045 {
2046         sector_t metadata_dev_size = get_dev_size(bdev);
2047
2048         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2049                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2050
2051         return metadata_dev_size;
2052 }
2053
2054 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2055 {
2056         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2057
2058         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2059
2060         return metadata_dev_size;
2061 }
2062
2063 /*
2064  * When a metadata threshold is crossed a dm event is triggered, and
2065  * userland should respond by growing the metadata device.  We could let
2066  * userland set the threshold, like we do with the data threshold, but I'm
2067  * not sure they know enough to do this well.
2068  */
2069 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2070 {
2071         /*
2072          * 4M is ample for all ops with the possible exception of thin
2073          * device deletion which is harmless if it fails (just retry the
2074          * delete after you've grown the device).
2075          */
2076         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2077         return min((dm_block_t)1024ULL /* 4M */, quarter);
2078 }
2079
2080 /*
2081  * thin-pool <metadata dev> <data dev>
2082  *           <data block size (sectors)>
2083  *           <low water mark (blocks)>
2084  *           [<#feature args> [<arg>]*]
2085  *
2086  * Optional feature arguments are:
2087  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2088  *           ignore_discard: disable discard
2089  *           no_discard_passdown: don't pass discards down to the data device
2090  *           read_only: Don't allow any changes to be made to the pool metadata.
2091  *           error_if_no_space: error IOs, instead of queueing, if no space.
2092  */
2093 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2094 {
2095         int r, pool_created = 0;
2096         struct pool_c *pt;
2097         struct pool *pool;
2098         struct pool_features pf;
2099         struct dm_arg_set as;
2100         struct dm_dev *data_dev;
2101         unsigned long block_size;
2102         dm_block_t low_water_blocks;
2103         struct dm_dev *metadata_dev;
2104         fmode_t metadata_mode;
2105
2106         /*
2107          * FIXME Remove validation from scope of lock.
2108          */
2109         mutex_lock(&dm_thin_pool_table.mutex);
2110
2111         if (argc < 4) {
2112                 ti->error = "Invalid argument count";
2113                 r = -EINVAL;
2114                 goto out_unlock;
2115         }
2116
2117         as.argc = argc;
2118         as.argv = argv;
2119
2120         /*
2121          * Set default pool features.
2122          */
2123         pool_features_init(&pf);
2124
2125         dm_consume_args(&as, 4);
2126         r = parse_pool_features(&as, &pf, ti);
2127         if (r)
2128                 goto out_unlock;
2129
2130         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2131         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2132         if (r) {
2133                 ti->error = "Error opening metadata block device";
2134                 goto out_unlock;
2135         }
2136         warn_if_metadata_device_too_big(metadata_dev->bdev);
2137
2138         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2139         if (r) {
2140                 ti->error = "Error getting data device";
2141                 goto out_metadata;
2142         }
2143
2144         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2145             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2146             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2147             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2148                 ti->error = "Invalid block size";
2149                 r = -EINVAL;
2150                 goto out;
2151         }
2152
2153         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2154                 ti->error = "Invalid low water mark";
2155                 r = -EINVAL;
2156                 goto out;
2157         }
2158
2159         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2160         if (!pt) {
2161                 r = -ENOMEM;
2162                 goto out;
2163         }
2164
2165         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2166                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2167         if (IS_ERR(pool)) {
2168                 r = PTR_ERR(pool);
2169                 goto out_free_pt;
2170         }
2171
2172         /*
2173          * 'pool_created' reflects whether this is the first table load.
2174          * Top level discard support is not allowed to be changed after
2175          * initial load.  This would require a pool reload to trigger thin
2176          * device changes.
2177          */
2178         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2179                 ti->error = "Discard support cannot be disabled once enabled";
2180                 r = -EINVAL;
2181                 goto out_flags_changed;
2182         }
2183
2184         pt->pool = pool;
2185         pt->ti = ti;
2186         pt->metadata_dev = metadata_dev;
2187         pt->data_dev = data_dev;
2188         pt->low_water_blocks = low_water_blocks;
2189         pt->adjusted_pf = pt->requested_pf = pf;
2190         ti->num_flush_bios = 1;
2191
2192         /*
2193          * Only need to enable discards if the pool should pass
2194          * them down to the data device.  The thin device's discard
2195          * processing will cause mappings to be removed from the btree.
2196          */
2197         ti->discard_zeroes_data_unsupported = true;
2198         if (pf.discard_enabled && pf.discard_passdown) {
2199                 ti->num_discard_bios = 1;
2200
2201                 /*
2202                  * Setting 'discards_supported' circumvents the normal
2203                  * stacking of discard limits (this keeps the pool and
2204                  * thin devices' discard limits consistent).
2205                  */
2206                 ti->discards_supported = true;
2207         }
2208         ti->private = pt;
2209
2210         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2211                                                 calc_metadata_threshold(pt),
2212                                                 metadata_low_callback,
2213                                                 pool);
2214         if (r)
2215                 goto out_free_pt;
2216
2217         pt->callbacks.congested_fn = pool_is_congested;
2218         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2219
2220         mutex_unlock(&dm_thin_pool_table.mutex);
2221
2222         return 0;
2223
2224 out_flags_changed:
2225         __pool_dec(pool);
2226 out_free_pt:
2227         kfree(pt);
2228 out:
2229         dm_put_device(ti, data_dev);
2230 out_metadata:
2231         dm_put_device(ti, metadata_dev);
2232 out_unlock:
2233         mutex_unlock(&dm_thin_pool_table.mutex);
2234
2235         return r;
2236 }
2237
2238 static int pool_map(struct dm_target *ti, struct bio *bio)
2239 {
2240         int r;
2241         struct pool_c *pt = ti->private;
2242         struct pool *pool = pt->pool;
2243         unsigned long flags;
2244
2245         /*
2246          * As this is a singleton target, ti->begin is always zero.
2247          */
2248         spin_lock_irqsave(&pool->lock, flags);
2249         bio->bi_bdev = pt->data_dev->bdev;
2250         r = DM_MAPIO_REMAPPED;
2251         spin_unlock_irqrestore(&pool->lock, flags);
2252
2253         return r;
2254 }
2255
2256 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2257 {
2258         int r;
2259         struct pool_c *pt = ti->private;
2260         struct pool *pool = pt->pool;
2261         sector_t data_size = ti->len;
2262         dm_block_t sb_data_size;
2263
2264         *need_commit = false;
2265
2266         (void) sector_div(data_size, pool->sectors_per_block);
2267
2268         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2269         if (r) {
2270                 DMERR("%s: failed to retrieve data device size",
2271                       dm_device_name(pool->pool_md));
2272                 return r;
2273         }
2274
2275         if (data_size < sb_data_size) {
2276                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2277                       dm_device_name(pool->pool_md),
2278                       (unsigned long long)data_size, sb_data_size);
2279                 return -EINVAL;
2280
2281         } else if (data_size > sb_data_size) {
2282                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2283                         DMERR("%s: unable to grow the data device until repaired.",
2284                               dm_device_name(pool->pool_md));
2285                         return 0;
2286                 }
2287
2288                 if (sb_data_size)
2289                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2290                                dm_device_name(pool->pool_md),
2291                                sb_data_size, (unsigned long long)data_size);
2292                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2293                 if (r) {
2294                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2295                         return r;
2296                 }
2297
2298                 *need_commit = true;
2299         }
2300
2301         return 0;
2302 }
2303
2304 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2305 {
2306         int r;
2307         struct pool_c *pt = ti->private;
2308         struct pool *pool = pt->pool;
2309         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2310
2311         *need_commit = false;
2312
2313         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2314
2315         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2316         if (r) {
2317                 DMERR("%s: failed to retrieve metadata device size",
2318                       dm_device_name(pool->pool_md));
2319                 return r;
2320         }
2321
2322         if (metadata_dev_size < sb_metadata_dev_size) {
2323                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2324                       dm_device_name(pool->pool_md),
2325                       metadata_dev_size, sb_metadata_dev_size);
2326                 return -EINVAL;
2327
2328         } else if (metadata_dev_size > sb_metadata_dev_size) {
2329                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2330                         DMERR("%s: unable to grow the metadata device until repaired.",
2331                               dm_device_name(pool->pool_md));
2332                         return 0;
2333                 }
2334
2335                 warn_if_metadata_device_too_big(pool->md_dev);
2336                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2337                        dm_device_name(pool->pool_md),
2338                        sb_metadata_dev_size, metadata_dev_size);
2339                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2340                 if (r) {
2341                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2342                         return r;
2343                 }
2344
2345                 *need_commit = true;
2346         }
2347
2348         return 0;
2349 }
2350
2351 /*
2352  * Retrieves the number of blocks of the data device from
2353  * the superblock and compares it to the actual device size,
2354  * thus resizing the data device in case it has grown.
2355  *
2356  * This both copes with opening preallocated data devices in the ctr
2357  * being followed by a resume
2358  * -and-
2359  * calling the resume method individually after userspace has
2360  * grown the data device in reaction to a table event.
2361  */
2362 static int pool_preresume(struct dm_target *ti)
2363 {
2364         int r;
2365         bool need_commit1, need_commit2;
2366         struct pool_c *pt = ti->private;
2367         struct pool *pool = pt->pool;
2368
2369         /*
2370          * Take control of the pool object.
2371          */
2372         r = bind_control_target(pool, ti);
2373         if (r)
2374                 return r;
2375
2376         r = maybe_resize_data_dev(ti, &need_commit1);
2377         if (r)
2378                 return r;
2379
2380         r = maybe_resize_metadata_dev(ti, &need_commit2);
2381         if (r)
2382                 return r;
2383
2384         if (need_commit1 || need_commit2)
2385                 (void) commit(pool);
2386
2387         return 0;
2388 }
2389
2390 static void pool_resume(struct dm_target *ti)
2391 {
2392         struct pool_c *pt = ti->private;
2393         struct pool *pool = pt->pool;
2394         unsigned long flags;
2395
2396         spin_lock_irqsave(&pool->lock, flags);
2397         pool->low_water_triggered = false;
2398         __requeue_bios(pool);
2399         spin_unlock_irqrestore(&pool->lock, flags);
2400
2401         do_waker(&pool->waker.work);
2402 }
2403
2404 static void pool_postsuspend(struct dm_target *ti)
2405 {
2406         struct pool_c *pt = ti->private;
2407         struct pool *pool = pt->pool;
2408
2409         cancel_delayed_work(&pool->waker);
2410         flush_workqueue(pool->wq);
2411         (void) commit(pool);
2412 }
2413
2414 static int check_arg_count(unsigned argc, unsigned args_required)
2415 {
2416         if (argc != args_required) {
2417                 DMWARN("Message received with %u arguments instead of %u.",
2418                        argc, args_required);
2419                 return -EINVAL;
2420         }
2421
2422         return 0;
2423 }
2424
2425 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2426 {
2427         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2428             *dev_id <= MAX_DEV_ID)
2429                 return 0;
2430
2431         if (warning)
2432                 DMWARN("Message received with invalid device id: %s", arg);
2433
2434         return -EINVAL;
2435 }
2436
2437 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2438 {
2439         dm_thin_id dev_id;
2440         int r;
2441
2442         r = check_arg_count(argc, 2);
2443         if (r)
2444                 return r;
2445
2446         r = read_dev_id(argv[1], &dev_id, 1);
2447         if (r)
2448                 return r;
2449
2450         r = dm_pool_create_thin(pool->pmd, dev_id);
2451         if (r) {
2452                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2453                        argv[1]);
2454                 return r;
2455         }
2456
2457         return 0;
2458 }
2459
2460 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2461 {
2462         dm_thin_id dev_id;
2463         dm_thin_id origin_dev_id;
2464         int r;
2465
2466         r = check_arg_count(argc, 3);
2467         if (r)
2468                 return r;
2469
2470         r = read_dev_id(argv[1], &dev_id, 1);
2471         if (r)
2472                 return r;
2473
2474         r = read_dev_id(argv[2], &origin_dev_id, 1);
2475         if (r)
2476                 return r;
2477
2478         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2479         if (r) {
2480                 DMWARN("Creation of new snapshot %s of device %s failed.",
2481                        argv[1], argv[2]);
2482                 return r;
2483         }
2484
2485         return 0;
2486 }
2487
2488 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2489 {
2490         dm_thin_id dev_id;
2491         int r;
2492
2493         r = check_arg_count(argc, 2);
2494         if (r)
2495                 return r;
2496
2497         r = read_dev_id(argv[1], &dev_id, 1);
2498         if (r)
2499                 return r;
2500
2501         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2502         if (r)
2503                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2504
2505         return r;
2506 }
2507
2508 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2509 {
2510         dm_thin_id old_id, new_id;
2511         int r;
2512
2513         r = check_arg_count(argc, 3);
2514         if (r)
2515                 return r;
2516
2517         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2518                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2519                 return -EINVAL;
2520         }
2521
2522         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2523                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2524                 return -EINVAL;
2525         }
2526
2527         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2528         if (r) {
2529                 DMWARN("Failed to change transaction id from %s to %s.",
2530                        argv[1], argv[2]);
2531                 return r;
2532         }
2533
2534         return 0;
2535 }
2536
2537 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2538 {
2539         int r;
2540
2541         r = check_arg_count(argc, 1);
2542         if (r)
2543                 return r;
2544
2545         (void) commit(pool);
2546
2547         r = dm_pool_reserve_metadata_snap(pool->pmd);
2548         if (r)
2549                 DMWARN("reserve_metadata_snap message failed.");
2550
2551         return r;
2552 }
2553
2554 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2555 {
2556         int r;
2557
2558         r = check_arg_count(argc, 1);
2559         if (r)
2560                 return r;
2561
2562         r = dm_pool_release_metadata_snap(pool->pmd);
2563         if (r)
2564                 DMWARN("release_metadata_snap message failed.");
2565
2566         return r;
2567 }
2568
2569 /*
2570  * Messages supported:
2571  *   create_thin        <dev_id>
2572  *   create_snap        <dev_id> <origin_id>
2573  *   delete             <dev_id>
2574  *   trim               <dev_id> <new_size_in_sectors>
2575  *   set_transaction_id <current_trans_id> <new_trans_id>
2576  *   reserve_metadata_snap
2577  *   release_metadata_snap
2578  */
2579 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2580 {
2581         int r = -EINVAL;
2582         struct pool_c *pt = ti->private;
2583         struct pool *pool = pt->pool;
2584
2585         if (!strcasecmp(argv[0], "create_thin"))
2586                 r = process_create_thin_mesg(argc, argv, pool);
2587
2588         else if (!strcasecmp(argv[0], "create_snap"))
2589                 r = process_create_snap_mesg(argc, argv, pool);
2590
2591         else if (!strcasecmp(argv[0], "delete"))
2592                 r = process_delete_mesg(argc, argv, pool);
2593
2594         else if (!strcasecmp(argv[0], "set_transaction_id"))
2595                 r = process_set_transaction_id_mesg(argc, argv, pool);
2596
2597         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2598                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2599
2600         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2601                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2602
2603         else
2604                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2605
2606         if (!r)
2607                 (void) commit(pool);
2608
2609         return r;
2610 }
2611
2612 static void emit_flags(struct pool_features *pf, char *result,
2613                        unsigned sz, unsigned maxlen)
2614 {
2615         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2616                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2617                 pf->error_if_no_space;
2618         DMEMIT("%u ", count);
2619
2620         if (!pf->zero_new_blocks)
2621                 DMEMIT("skip_block_zeroing ");
2622
2623         if (!pf->discard_enabled)
2624                 DMEMIT("ignore_discard ");
2625
2626         if (!pf->discard_passdown)
2627                 DMEMIT("no_discard_passdown ");
2628
2629         if (pf->mode == PM_READ_ONLY)
2630                 DMEMIT("read_only ");
2631
2632         if (pf->error_if_no_space)
2633                 DMEMIT("error_if_no_space ");
2634 }
2635
2636 /*
2637  * Status line is:
2638  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2639  *    <used data sectors>/<total data sectors> <held metadata root>
2640  */
2641 static void pool_status(struct dm_target *ti, status_type_t type,
2642                         unsigned status_flags, char *result, unsigned maxlen)
2643 {
2644         int r;
2645         unsigned sz = 0;
2646         uint64_t transaction_id;
2647         dm_block_t nr_free_blocks_data;
2648         dm_block_t nr_free_blocks_metadata;
2649         dm_block_t nr_blocks_data;
2650         dm_block_t nr_blocks_metadata;
2651         dm_block_t held_root;
2652         char buf[BDEVNAME_SIZE];
2653         char buf2[BDEVNAME_SIZE];
2654         struct pool_c *pt = ti->private;
2655         struct pool *pool = pt->pool;
2656
2657         switch (type) {
2658         case STATUSTYPE_INFO:
2659                 if (get_pool_mode(pool) == PM_FAIL) {
2660                         DMEMIT("Fail");
2661                         break;
2662                 }
2663
2664                 /* Commit to ensure statistics aren't out-of-date */
2665                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2666                         (void) commit(pool);
2667
2668                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2669                 if (r) {
2670                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2671                               dm_device_name(pool->pool_md), r);
2672                         goto err;
2673                 }
2674
2675                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2676                 if (r) {
2677                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2678                               dm_device_name(pool->pool_md), r);
2679                         goto err;
2680                 }
2681
2682                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2683                 if (r) {
2684                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2685                               dm_device_name(pool->pool_md), r);
2686                         goto err;
2687                 }
2688
2689                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2690                 if (r) {
2691                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2692                               dm_device_name(pool->pool_md), r);
2693                         goto err;
2694                 }
2695
2696                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2697                 if (r) {
2698                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2699                               dm_device_name(pool->pool_md), r);
2700                         goto err;
2701                 }
2702
2703                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2704                 if (r) {
2705                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2706                               dm_device_name(pool->pool_md), r);
2707                         goto err;
2708                 }
2709
2710                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2711                        (unsigned long long)transaction_id,
2712                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2713                        (unsigned long long)nr_blocks_metadata,
2714                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2715                        (unsigned long long)nr_blocks_data);
2716
2717                 if (held_root)
2718                         DMEMIT("%llu ", held_root);
2719                 else
2720                         DMEMIT("- ");
2721
2722                 if (pool->pf.mode == PM_READ_ONLY)
2723                         DMEMIT("ro ");
2724                 else
2725                         DMEMIT("rw ");
2726
2727                 if (!pool->pf.discard_enabled)
2728                         DMEMIT("ignore_discard ");
2729                 else if (pool->pf.discard_passdown)
2730                         DMEMIT("discard_passdown ");
2731                 else
2732                         DMEMIT("no_discard_passdown ");
2733
2734                 if (pool->pf.error_if_no_space)
2735                         DMEMIT("error_if_no_space ");
2736                 else
2737                         DMEMIT("queue_if_no_space ");
2738
2739                 break;
2740
2741         case STATUSTYPE_TABLE:
2742                 DMEMIT("%s %s %lu %llu ",
2743                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2744                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2745                        (unsigned long)pool->sectors_per_block,
2746                        (unsigned long long)pt->low_water_blocks);
2747                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2748                 break;
2749         }
2750         return;
2751
2752 err:
2753         DMEMIT("Error");
2754 }
2755
2756 static int pool_iterate_devices(struct dm_target *ti,
2757                                 iterate_devices_callout_fn fn, void *data)
2758 {
2759         struct pool_c *pt = ti->private;
2760
2761         return fn(ti, pt->data_dev, 0, ti->len, data);
2762 }
2763
2764 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2765                       struct bio_vec *biovec, int max_size)
2766 {
2767         struct pool_c *pt = ti->private;
2768         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2769
2770         if (!q->merge_bvec_fn)
2771                 return max_size;
2772
2773         bvm->bi_bdev = pt->data_dev->bdev;
2774
2775         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2776 }
2777
2778 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2779 {
2780         struct pool *pool = pt->pool;
2781         struct queue_limits *data_limits;
2782
2783         limits->max_discard_sectors = pool->sectors_per_block;
2784
2785         /*
2786          * discard_granularity is just a hint, and not enforced.
2787          */
2788         if (pt->adjusted_pf.discard_passdown) {
2789                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2790                 limits->discard_granularity = data_limits->discard_granularity;
2791         } else
2792                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2793 }
2794
2795 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2796 {
2797         struct pool_c *pt = ti->private;
2798         struct pool *pool = pt->pool;
2799         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2800
2801         /*
2802          * If the system-determined stacked limits are compatible with the
2803          * pool's blocksize (io_opt is a factor) do not override them.
2804          */
2805         if (io_opt_sectors < pool->sectors_per_block ||
2806             do_div(io_opt_sectors, pool->sectors_per_block)) {
2807                 blk_limits_io_min(limits, 0);
2808                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2809         }
2810
2811         /*
2812          * pt->adjusted_pf is a staging area for the actual features to use.
2813          * They get transferred to the live pool in bind_control_target()
2814          * called from pool_preresume().
2815          */
2816         if (!pt->adjusted_pf.discard_enabled) {
2817                 /*
2818                  * Must explicitly disallow stacking discard limits otherwise the
2819                  * block layer will stack them if pool's data device has support.
2820                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2821                  * user to see that, so make sure to set all discard limits to 0.
2822                  */
2823                 limits->discard_granularity = 0;
2824                 return;
2825         }
2826
2827         disable_passdown_if_not_supported(pt);
2828
2829         set_discard_limits(pt, limits);
2830 }
2831
2832 static struct target_type pool_target = {
2833         .name = "thin-pool",
2834         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2835                     DM_TARGET_IMMUTABLE,
2836         .version = {1, 11, 0},
2837         .module = THIS_MODULE,
2838         .ctr = pool_ctr,
2839         .dtr = pool_dtr,
2840         .map = pool_map,
2841         .postsuspend = pool_postsuspend,
2842         .preresume = pool_preresume,
2843         .resume = pool_resume,
2844         .message = pool_message,
2845         .status = pool_status,
2846         .merge = pool_merge,
2847         .iterate_devices = pool_iterate_devices,
2848         .io_hints = pool_io_hints,
2849 };
2850
2851 /*----------------------------------------------------------------
2852  * Thin target methods
2853  *--------------------------------------------------------------*/
2854 static void thin_dtr(struct dm_target *ti)
2855 {
2856         struct thin_c *tc = ti->private;
2857
2858         mutex_lock(&dm_thin_pool_table.mutex);
2859
2860         __pool_dec(tc->pool);
2861         dm_pool_close_thin_device(tc->td);
2862         dm_put_device(ti, tc->pool_dev);
2863         if (tc->origin_dev)
2864                 dm_put_device(ti, tc->origin_dev);
2865         kfree(tc);
2866
2867         mutex_unlock(&dm_thin_pool_table.mutex);
2868 }
2869
2870 /*
2871  * Thin target parameters:
2872  *
2873  * <pool_dev> <dev_id> [origin_dev]
2874  *
2875  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2876  * dev_id: the internal device identifier
2877  * origin_dev: a device external to the pool that should act as the origin
2878  *
2879  * If the pool device has discards disabled, they get disabled for the thin
2880  * device as well.
2881  */
2882 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2883 {
2884         int r;
2885         struct thin_c *tc;
2886         struct dm_dev *pool_dev, *origin_dev;
2887         struct mapped_device *pool_md;
2888
2889         mutex_lock(&dm_thin_pool_table.mutex);
2890
2891         if (argc != 2 && argc != 3) {
2892                 ti->error = "Invalid argument count";
2893                 r = -EINVAL;
2894                 goto out_unlock;
2895         }
2896
2897         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2898         if (!tc) {
2899                 ti->error = "Out of memory";
2900                 r = -ENOMEM;
2901                 goto out_unlock;
2902         }
2903
2904         if (argc == 3) {
2905                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2906                 if (r) {
2907                         ti->error = "Error opening origin device";
2908                         goto bad_origin_dev;
2909                 }
2910                 tc->origin_dev = origin_dev;
2911         }
2912
2913         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2914         if (r) {
2915                 ti->error = "Error opening pool device";
2916                 goto bad_pool_dev;
2917         }
2918         tc->pool_dev = pool_dev;
2919
2920         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2921                 ti->error = "Invalid device id";
2922                 r = -EINVAL;
2923                 goto bad_common;
2924         }
2925
2926         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2927         if (!pool_md) {
2928                 ti->error = "Couldn't get pool mapped device";
2929                 r = -EINVAL;
2930                 goto bad_common;
2931         }
2932
2933         tc->pool = __pool_table_lookup(pool_md);
2934         if (!tc->pool) {
2935                 ti->error = "Couldn't find pool object";
2936                 r = -EINVAL;
2937                 goto bad_pool_lookup;
2938         }
2939         __pool_inc(tc->pool);
2940
2941         if (get_pool_mode(tc->pool) == PM_FAIL) {
2942                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2943                 r = -EINVAL;
2944                 goto bad_thin_open;
2945         }
2946
2947         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2948         if (r) {
2949                 ti->error = "Couldn't open thin internal device";
2950                 goto bad_thin_open;
2951         }
2952
2953         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2954         if (r)
2955                 goto bad_target_max_io_len;
2956
2957         ti->num_flush_bios = 1;
2958         ti->flush_supported = true;
2959         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2960
2961         /* In case the pool supports discards, pass them on. */
2962         ti->discard_zeroes_data_unsupported = true;
2963         if (tc->pool->pf.discard_enabled) {
2964                 ti->discards_supported = true;
2965                 ti->num_discard_bios = 1;
2966                 /* Discard bios must be split on a block boundary */
2967                 ti->split_discard_bios = true;
2968         }
2969
2970         dm_put(pool_md);
2971
2972         mutex_unlock(&dm_thin_pool_table.mutex);
2973
2974         return 0;
2975
2976 bad_target_max_io_len:
2977         dm_pool_close_thin_device(tc->td);
2978 bad_thin_open:
2979         __pool_dec(tc->pool);
2980 bad_pool_lookup:
2981         dm_put(pool_md);
2982 bad_common:
2983         dm_put_device(ti, tc->pool_dev);
2984 bad_pool_dev:
2985         if (tc->origin_dev)
2986                 dm_put_device(ti, tc->origin_dev);
2987 bad_origin_dev:
2988         kfree(tc);
2989 out_unlock:
2990         mutex_unlock(&dm_thin_pool_table.mutex);
2991
2992         return r;
2993 }
2994
2995 static int thin_map(struct dm_target *ti, struct bio *bio)
2996 {
2997         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
2998
2999         return thin_bio_map(ti, bio);
3000 }
3001
3002 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3003 {
3004         unsigned long flags;
3005         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3006         struct list_head work;
3007         struct dm_thin_new_mapping *m, *tmp;
3008         struct pool *pool = h->tc->pool;
3009
3010         if (h->shared_read_entry) {
3011                 INIT_LIST_HEAD(&work);
3012                 dm_deferred_entry_dec(h->shared_read_entry, &work);
3013
3014                 spin_lock_irqsave(&pool->lock, flags);
3015                 list_for_each_entry_safe(m, tmp, &work, list) {
3016                         list_del(&m->list);
3017                         m->quiesced = true;
3018                         __maybe_add_mapping(m);
3019                 }
3020                 spin_unlock_irqrestore(&pool->lock, flags);
3021         }
3022
3023         if (h->all_io_entry) {
3024                 INIT_LIST_HEAD(&work);
3025                 dm_deferred_entry_dec(h->all_io_entry, &work);
3026                 if (!list_empty(&work)) {
3027                         spin_lock_irqsave(&pool->lock, flags);
3028                         list_for_each_entry_safe(m, tmp, &work, list)
3029                                 list_add_tail(&m->list, &pool->prepared_discards);
3030                         spin_unlock_irqrestore(&pool->lock, flags);
3031                         wake_worker(pool);
3032                 }
3033         }
3034
3035         return 0;
3036 }
3037
3038 static void thin_postsuspend(struct dm_target *ti)
3039 {
3040         if (dm_noflush_suspending(ti))
3041                 requeue_io((struct thin_c *)ti->private);
3042 }
3043
3044 /*
3045  * <nr mapped sectors> <highest mapped sector>
3046  */
3047 static void thin_status(struct dm_target *ti, status_type_t type,
3048                         unsigned status_flags, char *result, unsigned maxlen)
3049 {
3050         int r;
3051         ssize_t sz = 0;
3052         dm_block_t mapped, highest;
3053         char buf[BDEVNAME_SIZE];
3054         struct thin_c *tc = ti->private;
3055
3056         if (get_pool_mode(tc->pool) == PM_FAIL) {
3057                 DMEMIT("Fail");
3058                 return;
3059         }
3060
3061         if (!tc->td)
3062                 DMEMIT("-");
3063         else {
3064                 switch (type) {
3065                 case STATUSTYPE_INFO:
3066                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3067                         if (r) {
3068                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3069                                 goto err;
3070                         }
3071
3072                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3073                         if (r < 0) {
3074                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3075                                 goto err;
3076                         }
3077
3078                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3079                         if (r)
3080                                 DMEMIT("%llu", ((highest + 1) *
3081                                                 tc->pool->sectors_per_block) - 1);
3082                         else
3083                                 DMEMIT("-");
3084                         break;
3085
3086                 case STATUSTYPE_TABLE:
3087                         DMEMIT("%s %lu",
3088                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3089                                (unsigned long) tc->dev_id);
3090                         if (tc->origin_dev)
3091                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3092                         break;
3093                 }
3094         }
3095
3096         return;
3097
3098 err:
3099         DMEMIT("Error");
3100 }
3101
3102 static int thin_iterate_devices(struct dm_target *ti,
3103                                 iterate_devices_callout_fn fn, void *data)
3104 {
3105         sector_t blocks;
3106         struct thin_c *tc = ti->private;
3107         struct pool *pool = tc->pool;
3108
3109         /*
3110          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3111          * we follow a more convoluted path through to the pool's target.
3112          */
3113         if (!pool->ti)
3114                 return 0;       /* nothing is bound */
3115
3116         blocks = pool->ti->len;
3117         (void) sector_div(blocks, pool->sectors_per_block);
3118         if (blocks)
3119                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3120
3121         return 0;
3122 }
3123
3124 static struct target_type thin_target = {
3125         .name = "thin",
3126         .version = {1, 11, 0},
3127         .module = THIS_MODULE,
3128         .ctr = thin_ctr,
3129         .dtr = thin_dtr,
3130         .map = thin_map,
3131         .end_io = thin_endio,
3132         .postsuspend = thin_postsuspend,
3133         .status = thin_status,
3134         .iterate_devices = thin_iterate_devices,
3135 };
3136
3137 /*----------------------------------------------------------------*/
3138
3139 static int __init dm_thin_init(void)
3140 {
3141         int r;
3142
3143         pool_table_init();
3144
3145         r = dm_register_target(&thin_target);
3146         if (r)
3147                 return r;
3148
3149         r = dm_register_target(&pool_target);
3150         if (r)
3151                 goto bad_pool_target;
3152
3153         r = -ENOMEM;
3154
3155         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3156         if (!_new_mapping_cache)
3157                 goto bad_new_mapping_cache;
3158
3159         return 0;
3160
3161 bad_new_mapping_cache:
3162         dm_unregister_target(&pool_target);
3163 bad_pool_target:
3164         dm_unregister_target(&thin_target);
3165
3166         return r;
3167 }
3168
3169 static void dm_thin_exit(void)
3170 {
3171         dm_unregister_target(&thin_target);
3172         dm_unregister_target(&pool_target);
3173
3174         kmem_cache_destroy(_new_mapping_cache);
3175 }
3176
3177 module_init(dm_thin_init);
3178 module_exit(dm_thin_exit);
3179
3180 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3181 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3182 MODULE_LICENSE("GPL");