dm thin: avoid metadata commit if a pool's thin devices haven't changed
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147         bool error_if_no_space:1;
148 };
149
150 struct thin_c;
151 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
152 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
153
154 struct pool {
155         struct list_head list;
156         struct dm_target *ti;   /* Only set if a pool target is bound */
157
158         struct mapped_device *pool_md;
159         struct block_device *md_dev;
160         struct dm_pool_metadata *pmd;
161
162         dm_block_t low_water_blocks;
163         uint32_t sectors_per_block;
164         int sectors_per_block_shift;
165
166         struct pool_features pf;
167         bool low_water_triggered:1;     /* A dm event has been sent */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void out_of_data_space(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205  * Target context for a pool.
206  */
207 struct pool_c {
208         struct dm_target *ti;
209         struct pool *pool;
210         struct dm_dev *data_dev;
211         struct dm_dev *metadata_dev;
212         struct dm_target_callbacks callbacks;
213
214         dm_block_t low_water_blocks;
215         struct pool_features requested_pf; /* Features requested during table load */
216         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220  * Target context for a thin.
221  */
222 struct thin_c {
223         struct dm_dev *pool_dev;
224         struct dm_dev *origin_dev;
225         dm_thin_id dev_id;
226
227         struct pool *pool;
228         struct dm_thin_device *td;
229 };
230
231 /*----------------------------------------------------------------*/
232
233 /*
234  * wake_worker() is used when new work is queued and when pool_resume is
235  * ready to continue deferred IO processing.
236  */
237 static void wake_worker(struct pool *pool)
238 {
239         queue_work(pool->wq, &pool->worker);
240 }
241
242 /*----------------------------------------------------------------*/
243
244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245                       struct dm_bio_prison_cell **cell_result)
246 {
247         int r;
248         struct dm_bio_prison_cell *cell_prealloc;
249
250         /*
251          * Allocate a cell from the prison's mempool.
252          * This might block but it can't fail.
253          */
254         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
255
256         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
257         if (r)
258                 /*
259                  * We reused an old cell; we can get rid of
260                  * the new one.
261                  */
262                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
263
264         return r;
265 }
266
267 static void cell_release(struct pool *pool,
268                          struct dm_bio_prison_cell *cell,
269                          struct bio_list *bios)
270 {
271         dm_cell_release(pool->prison, cell, bios);
272         dm_bio_prison_free_cell(pool->prison, cell);
273 }
274
275 static void cell_release_no_holder(struct pool *pool,
276                                    struct dm_bio_prison_cell *cell,
277                                    struct bio_list *bios)
278 {
279         dm_cell_release_no_holder(pool->prison, cell, bios);
280         dm_bio_prison_free_cell(pool->prison, cell);
281 }
282
283 static void cell_defer_no_holder_no_free(struct thin_c *tc,
284                                          struct dm_bio_prison_cell *cell)
285 {
286         struct pool *pool = tc->pool;
287         unsigned long flags;
288
289         spin_lock_irqsave(&pool->lock, flags);
290         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291         spin_unlock_irqrestore(&pool->lock, flags);
292
293         wake_worker(pool);
294 }
295
296 static void cell_error(struct pool *pool,
297                        struct dm_bio_prison_cell *cell)
298 {
299         dm_cell_error(pool->prison, cell);
300         dm_bio_prison_free_cell(pool->prison, cell);
301 }
302
303 /*----------------------------------------------------------------*/
304
305 /*
306  * A global list of pools that uses a struct mapped_device as a key.
307  */
308 static struct dm_thin_pool_table {
309         struct mutex mutex;
310         struct list_head pools;
311 } dm_thin_pool_table;
312
313 static void pool_table_init(void)
314 {
315         mutex_init(&dm_thin_pool_table.mutex);
316         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
317 }
318
319 static void __pool_table_insert(struct pool *pool)
320 {
321         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322         list_add(&pool->list, &dm_thin_pool_table.pools);
323 }
324
325 static void __pool_table_remove(struct pool *pool)
326 {
327         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328         list_del(&pool->list);
329 }
330
331 static struct pool *__pool_table_lookup(struct mapped_device *md)
332 {
333         struct pool *pool = NULL, *tmp;
334
335         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
336
337         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338                 if (tmp->pool_md == md) {
339                         pool = tmp;
340                         break;
341                 }
342         }
343
344         return pool;
345 }
346
347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
348 {
349         struct pool *pool = NULL, *tmp;
350
351         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
352
353         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354                 if (tmp->md_dev == md_dev) {
355                         pool = tmp;
356                         break;
357                 }
358         }
359
360         return pool;
361 }
362
363 /*----------------------------------------------------------------*/
364
365 struct dm_thin_endio_hook {
366         struct thin_c *tc;
367         struct dm_deferred_entry *shared_read_entry;
368         struct dm_deferred_entry *all_io_entry;
369         struct dm_thin_new_mapping *overwrite_mapping;
370 };
371
372 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
373 {
374         struct bio *bio;
375         struct bio_list bios;
376
377         bio_list_init(&bios);
378         bio_list_merge(&bios, master);
379         bio_list_init(master);
380
381         while ((bio = bio_list_pop(&bios))) {
382                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
383
384                 if (h->tc == tc)
385                         bio_endio(bio, DM_ENDIO_REQUEUE);
386                 else
387                         bio_list_add(master, bio);
388         }
389 }
390
391 static void requeue_io(struct thin_c *tc)
392 {
393         struct pool *pool = tc->pool;
394         unsigned long flags;
395
396         spin_lock_irqsave(&pool->lock, flags);
397         __requeue_bio_list(tc, &pool->deferred_bios);
398         __requeue_bio_list(tc, &pool->retry_on_resume_list);
399         spin_unlock_irqrestore(&pool->lock, flags);
400 }
401
402 /*
403  * This section of code contains the logic for processing a thin device's IO.
404  * Much of the code depends on pool object resources (lists, workqueues, etc)
405  * but most is exclusively called from the thin target rather than the thin-pool
406  * target.
407  */
408
409 static bool block_size_is_power_of_two(struct pool *pool)
410 {
411         return pool->sectors_per_block_shift >= 0;
412 }
413
414 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
415 {
416         struct pool *pool = tc->pool;
417         sector_t block_nr = bio->bi_iter.bi_sector;
418
419         if (block_size_is_power_of_two(pool))
420                 block_nr >>= pool->sectors_per_block_shift;
421         else
422                 (void) sector_div(block_nr, pool->sectors_per_block);
423
424         return block_nr;
425 }
426
427 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
428 {
429         struct pool *pool = tc->pool;
430         sector_t bi_sector = bio->bi_iter.bi_sector;
431
432         bio->bi_bdev = tc->pool_dev->bdev;
433         if (block_size_is_power_of_two(pool))
434                 bio->bi_iter.bi_sector =
435                         (block << pool->sectors_per_block_shift) |
436                         (bi_sector & (pool->sectors_per_block - 1));
437         else
438                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
439                                  sector_div(bi_sector, pool->sectors_per_block);
440 }
441
442 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
443 {
444         bio->bi_bdev = tc->origin_dev->bdev;
445 }
446
447 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
448 {
449         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
450                 dm_thin_changed_this_transaction(tc->td);
451 }
452
453 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
454 {
455         struct dm_thin_endio_hook *h;
456
457         if (bio->bi_rw & REQ_DISCARD)
458                 return;
459
460         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
461         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
462 }
463
464 static void issue(struct thin_c *tc, struct bio *bio)
465 {
466         struct pool *pool = tc->pool;
467         unsigned long flags;
468
469         if (!bio_triggers_commit(tc, bio)) {
470                 generic_make_request(bio);
471                 return;
472         }
473
474         /*
475          * Complete bio with an error if earlier I/O caused changes to
476          * the metadata that can't be committed e.g, due to I/O errors
477          * on the metadata device.
478          */
479         if (dm_thin_aborted_changes(tc->td)) {
480                 bio_io_error(bio);
481                 return;
482         }
483
484         /*
485          * Batch together any bios that trigger commits and then issue a
486          * single commit for them in process_deferred_bios().
487          */
488         spin_lock_irqsave(&pool->lock, flags);
489         bio_list_add(&pool->deferred_flush_bios, bio);
490         spin_unlock_irqrestore(&pool->lock, flags);
491 }
492
493 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
494 {
495         remap_to_origin(tc, bio);
496         issue(tc, bio);
497 }
498
499 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
500                             dm_block_t block)
501 {
502         remap(tc, bio, block);
503         issue(tc, bio);
504 }
505
506 /*----------------------------------------------------------------*/
507
508 /*
509  * Bio endio functions.
510  */
511 struct dm_thin_new_mapping {
512         struct list_head list;
513
514         bool quiesced:1;
515         bool prepared:1;
516         bool pass_discard:1;
517         bool definitely_not_shared:1;
518
519         int err;
520         struct thin_c *tc;
521         dm_block_t virt_block;
522         dm_block_t data_block;
523         struct dm_bio_prison_cell *cell, *cell2;
524
525         /*
526          * If the bio covers the whole area of a block then we can avoid
527          * zeroing or copying.  Instead this bio is hooked.  The bio will
528          * still be in the cell, so care has to be taken to avoid issuing
529          * the bio twice.
530          */
531         struct bio *bio;
532         bio_end_io_t *saved_bi_end_io;
533 };
534
535 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
536 {
537         struct pool *pool = m->tc->pool;
538
539         if (m->quiesced && m->prepared) {
540                 list_add_tail(&m->list, &pool->prepared_mappings);
541                 wake_worker(pool);
542         }
543 }
544
545 static void copy_complete(int read_err, unsigned long write_err, void *context)
546 {
547         unsigned long flags;
548         struct dm_thin_new_mapping *m = context;
549         struct pool *pool = m->tc->pool;
550
551         m->err = read_err || write_err ? -EIO : 0;
552
553         spin_lock_irqsave(&pool->lock, flags);
554         m->prepared = true;
555         __maybe_add_mapping(m);
556         spin_unlock_irqrestore(&pool->lock, flags);
557 }
558
559 static void overwrite_endio(struct bio *bio, int err)
560 {
561         unsigned long flags;
562         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
563         struct dm_thin_new_mapping *m = h->overwrite_mapping;
564         struct pool *pool = m->tc->pool;
565
566         m->err = err;
567
568         spin_lock_irqsave(&pool->lock, flags);
569         m->prepared = true;
570         __maybe_add_mapping(m);
571         spin_unlock_irqrestore(&pool->lock, flags);
572 }
573
574 /*----------------------------------------------------------------*/
575
576 /*
577  * Workqueue.
578  */
579
580 /*
581  * Prepared mapping jobs.
582  */
583
584 /*
585  * This sends the bios in the cell back to the deferred_bios list.
586  */
587 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
588 {
589         struct pool *pool = tc->pool;
590         unsigned long flags;
591
592         spin_lock_irqsave(&pool->lock, flags);
593         cell_release(pool, cell, &pool->deferred_bios);
594         spin_unlock_irqrestore(&tc->pool->lock, flags);
595
596         wake_worker(pool);
597 }
598
599 /*
600  * Same as cell_defer above, except it omits the original holder of the cell.
601  */
602 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
603 {
604         struct pool *pool = tc->pool;
605         unsigned long flags;
606
607         spin_lock_irqsave(&pool->lock, flags);
608         cell_release_no_holder(pool, cell, &pool->deferred_bios);
609         spin_unlock_irqrestore(&pool->lock, flags);
610
611         wake_worker(pool);
612 }
613
614 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
615 {
616         if (m->bio) {
617                 m->bio->bi_end_io = m->saved_bi_end_io;
618                 atomic_inc(&m->bio->bi_remaining);
619         }
620         cell_error(m->tc->pool, m->cell);
621         list_del(&m->list);
622         mempool_free(m, m->tc->pool->mapping_pool);
623 }
624
625 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
626 {
627         struct thin_c *tc = m->tc;
628         struct pool *pool = tc->pool;
629         struct bio *bio;
630         int r;
631
632         bio = m->bio;
633         if (bio) {
634                 bio->bi_end_io = m->saved_bi_end_io;
635                 atomic_inc(&bio->bi_remaining);
636         }
637
638         if (m->err) {
639                 cell_error(pool, m->cell);
640                 goto out;
641         }
642
643         /*
644          * Commit the prepared block into the mapping btree.
645          * Any I/O for this block arriving after this point will get
646          * remapped to it directly.
647          */
648         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
649         if (r) {
650                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
651                 cell_error(pool, m->cell);
652                 goto out;
653         }
654
655         /*
656          * Release any bios held while the block was being provisioned.
657          * If we are processing a write bio that completely covers the block,
658          * we already processed it so can ignore it now when processing
659          * the bios in the cell.
660          */
661         if (bio) {
662                 cell_defer_no_holder(tc, m->cell);
663                 bio_endio(bio, 0);
664         } else
665                 cell_defer(tc, m->cell);
666
667 out:
668         list_del(&m->list);
669         mempool_free(m, pool->mapping_pool);
670 }
671
672 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
673 {
674         struct thin_c *tc = m->tc;
675
676         bio_io_error(m->bio);
677         cell_defer_no_holder(tc, m->cell);
678         cell_defer_no_holder(tc, m->cell2);
679         mempool_free(m, tc->pool->mapping_pool);
680 }
681
682 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
683 {
684         struct thin_c *tc = m->tc;
685
686         inc_all_io_entry(tc->pool, m->bio);
687         cell_defer_no_holder(tc, m->cell);
688         cell_defer_no_holder(tc, m->cell2);
689
690         if (m->pass_discard)
691                 if (m->definitely_not_shared)
692                         remap_and_issue(tc, m->bio, m->data_block);
693                 else {
694                         bool used = false;
695                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
696                                 bio_endio(m->bio, 0);
697                         else
698                                 remap_and_issue(tc, m->bio, m->data_block);
699                 }
700         else
701                 bio_endio(m->bio, 0);
702
703         mempool_free(m, tc->pool->mapping_pool);
704 }
705
706 static void process_prepared_discard(struct dm_thin_new_mapping *m)
707 {
708         int r;
709         struct thin_c *tc = m->tc;
710
711         r = dm_thin_remove_block(tc->td, m->virt_block);
712         if (r)
713                 DMERR_LIMIT("dm_thin_remove_block() failed");
714
715         process_prepared_discard_passdown(m);
716 }
717
718 static void process_prepared(struct pool *pool, struct list_head *head,
719                              process_mapping_fn *fn)
720 {
721         unsigned long flags;
722         struct list_head maps;
723         struct dm_thin_new_mapping *m, *tmp;
724
725         INIT_LIST_HEAD(&maps);
726         spin_lock_irqsave(&pool->lock, flags);
727         list_splice_init(head, &maps);
728         spin_unlock_irqrestore(&pool->lock, flags);
729
730         list_for_each_entry_safe(m, tmp, &maps, list)
731                 (*fn)(m);
732 }
733
734 /*
735  * Deferred bio jobs.
736  */
737 static int io_overlaps_block(struct pool *pool, struct bio *bio)
738 {
739         return bio->bi_iter.bi_size ==
740                 (pool->sectors_per_block << SECTOR_SHIFT);
741 }
742
743 static int io_overwrites_block(struct pool *pool, struct bio *bio)
744 {
745         return (bio_data_dir(bio) == WRITE) &&
746                 io_overlaps_block(pool, bio);
747 }
748
749 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
750                                bio_end_io_t *fn)
751 {
752         *save = bio->bi_end_io;
753         bio->bi_end_io = fn;
754 }
755
756 static int ensure_next_mapping(struct pool *pool)
757 {
758         if (pool->next_mapping)
759                 return 0;
760
761         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
762
763         return pool->next_mapping ? 0 : -ENOMEM;
764 }
765
766 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
767 {
768         struct dm_thin_new_mapping *m = pool->next_mapping;
769
770         BUG_ON(!pool->next_mapping);
771
772         memset(m, 0, sizeof(struct dm_thin_new_mapping));
773         INIT_LIST_HEAD(&m->list);
774         m->bio = NULL;
775
776         pool->next_mapping = NULL;
777
778         return m;
779 }
780
781 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
782                           struct dm_dev *origin, dm_block_t data_origin,
783                           dm_block_t data_dest,
784                           struct dm_bio_prison_cell *cell, struct bio *bio)
785 {
786         int r;
787         struct pool *pool = tc->pool;
788         struct dm_thin_new_mapping *m = get_next_mapping(pool);
789
790         m->tc = tc;
791         m->virt_block = virt_block;
792         m->data_block = data_dest;
793         m->cell = cell;
794
795         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
796                 m->quiesced = true;
797
798         /*
799          * IO to pool_dev remaps to the pool target's data_dev.
800          *
801          * If the whole block of data is being overwritten, we can issue the
802          * bio immediately. Otherwise we use kcopyd to clone the data first.
803          */
804         if (io_overwrites_block(pool, bio)) {
805                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
806
807                 h->overwrite_mapping = m;
808                 m->bio = bio;
809                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
810                 inc_all_io_entry(pool, bio);
811                 remap_and_issue(tc, bio, data_dest);
812         } else {
813                 struct dm_io_region from, to;
814
815                 from.bdev = origin->bdev;
816                 from.sector = data_origin * pool->sectors_per_block;
817                 from.count = pool->sectors_per_block;
818
819                 to.bdev = tc->pool_dev->bdev;
820                 to.sector = data_dest * pool->sectors_per_block;
821                 to.count = pool->sectors_per_block;
822
823                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
824                                    0, copy_complete, m);
825                 if (r < 0) {
826                         mempool_free(m, pool->mapping_pool);
827                         DMERR_LIMIT("dm_kcopyd_copy() failed");
828                         cell_error(pool, cell);
829                 }
830         }
831 }
832
833 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
834                                    dm_block_t data_origin, dm_block_t data_dest,
835                                    struct dm_bio_prison_cell *cell, struct bio *bio)
836 {
837         schedule_copy(tc, virt_block, tc->pool_dev,
838                       data_origin, data_dest, cell, bio);
839 }
840
841 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
842                                    dm_block_t data_dest,
843                                    struct dm_bio_prison_cell *cell, struct bio *bio)
844 {
845         schedule_copy(tc, virt_block, tc->origin_dev,
846                       virt_block, data_dest, cell, bio);
847 }
848
849 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
850                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
851                           struct bio *bio)
852 {
853         struct pool *pool = tc->pool;
854         struct dm_thin_new_mapping *m = get_next_mapping(pool);
855
856         m->quiesced = true;
857         m->prepared = false;
858         m->tc = tc;
859         m->virt_block = virt_block;
860         m->data_block = data_block;
861         m->cell = cell;
862
863         /*
864          * If the whole block of data is being overwritten or we are not
865          * zeroing pre-existing data, we can issue the bio immediately.
866          * Otherwise we use kcopyd to zero the data first.
867          */
868         if (!pool->pf.zero_new_blocks)
869                 process_prepared_mapping(m);
870
871         else if (io_overwrites_block(pool, bio)) {
872                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
873
874                 h->overwrite_mapping = m;
875                 m->bio = bio;
876                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
877                 inc_all_io_entry(pool, bio);
878                 remap_and_issue(tc, bio, data_block);
879         } else {
880                 int r;
881                 struct dm_io_region to;
882
883                 to.bdev = tc->pool_dev->bdev;
884                 to.sector = data_block * pool->sectors_per_block;
885                 to.count = pool->sectors_per_block;
886
887                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
888                 if (r < 0) {
889                         mempool_free(m, pool->mapping_pool);
890                         DMERR_LIMIT("dm_kcopyd_zero() failed");
891                         cell_error(pool, cell);
892                 }
893         }
894 }
895
896 /*
897  * A non-zero return indicates read_only or fail_io mode.
898  * Many callers don't care about the return value.
899  */
900 static int commit(struct pool *pool)
901 {
902         int r;
903
904         if (get_pool_mode(pool) != PM_WRITE)
905                 return -EINVAL;
906
907         r = dm_pool_commit_metadata(pool->pmd);
908         if (r)
909                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
910
911         return r;
912 }
913
914 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
915 {
916         unsigned long flags;
917
918         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
919                 DMWARN("%s: reached low water mark for data device: sending event.",
920                        dm_device_name(pool->pool_md));
921                 spin_lock_irqsave(&pool->lock, flags);
922                 pool->low_water_triggered = true;
923                 spin_unlock_irqrestore(&pool->lock, flags);
924                 dm_table_event(pool->ti->table);
925         }
926 }
927
928 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
929 {
930         int r;
931         dm_block_t free_blocks;
932         struct pool *pool = tc->pool;
933
934         if (get_pool_mode(pool) != PM_WRITE)
935                 return -EINVAL;
936
937         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
938         if (r) {
939                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
940                 return r;
941         }
942
943         check_low_water_mark(pool, free_blocks);
944
945         if (!free_blocks) {
946                 /*
947                  * Try to commit to see if that will free up some
948                  * more space.
949                  */
950                 r = commit(pool);
951                 if (r)
952                         return r;
953
954                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
955                 if (r) {
956                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
957                         return r;
958                 }
959
960                 if (!free_blocks) {
961                         out_of_data_space(pool);
962                         return -ENOSPC;
963                 }
964         }
965
966         r = dm_pool_alloc_data_block(pool->pmd, result);
967         if (r) {
968                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
969                 return r;
970         }
971
972         return 0;
973 }
974
975 /*
976  * If we have run out of space, queue bios until the device is
977  * resumed, presumably after having been reloaded with more space.
978  */
979 static void retry_on_resume(struct bio *bio)
980 {
981         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
982         struct thin_c *tc = h->tc;
983         struct pool *pool = tc->pool;
984         unsigned long flags;
985
986         spin_lock_irqsave(&pool->lock, flags);
987         bio_list_add(&pool->retry_on_resume_list, bio);
988         spin_unlock_irqrestore(&pool->lock, flags);
989 }
990
991 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
992 {
993         /*
994          * When pool is read-only, no cell locking is needed because
995          * nothing is changing.
996          */
997         WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
998
999         if (pool->pf.error_if_no_space)
1000                 bio_io_error(bio);
1001         else
1002                 retry_on_resume(bio);
1003 }
1004
1005 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1006 {
1007         struct bio *bio;
1008         struct bio_list bios;
1009
1010         bio_list_init(&bios);
1011         cell_release(pool, cell, &bios);
1012
1013         while ((bio = bio_list_pop(&bios)))
1014                 handle_unserviceable_bio(pool, bio);
1015 }
1016
1017 static void process_discard(struct thin_c *tc, struct bio *bio)
1018 {
1019         int r;
1020         unsigned long flags;
1021         struct pool *pool = tc->pool;
1022         struct dm_bio_prison_cell *cell, *cell2;
1023         struct dm_cell_key key, key2;
1024         dm_block_t block = get_bio_block(tc, bio);
1025         struct dm_thin_lookup_result lookup_result;
1026         struct dm_thin_new_mapping *m;
1027
1028         build_virtual_key(tc->td, block, &key);
1029         if (bio_detain(tc->pool, &key, bio, &cell))
1030                 return;
1031
1032         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1033         switch (r) {
1034         case 0:
1035                 /*
1036                  * Check nobody is fiddling with this pool block.  This can
1037                  * happen if someone's in the process of breaking sharing
1038                  * on this block.
1039                  */
1040                 build_data_key(tc->td, lookup_result.block, &key2);
1041                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1042                         cell_defer_no_holder(tc, cell);
1043                         break;
1044                 }
1045
1046                 if (io_overlaps_block(pool, bio)) {
1047                         /*
1048                          * IO may still be going to the destination block.  We must
1049                          * quiesce before we can do the removal.
1050                          */
1051                         m = get_next_mapping(pool);
1052                         m->tc = tc;
1053                         m->pass_discard = pool->pf.discard_passdown;
1054                         m->definitely_not_shared = !lookup_result.shared;
1055                         m->virt_block = block;
1056                         m->data_block = lookup_result.block;
1057                         m->cell = cell;
1058                         m->cell2 = cell2;
1059                         m->bio = bio;
1060
1061                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1062                                 spin_lock_irqsave(&pool->lock, flags);
1063                                 list_add_tail(&m->list, &pool->prepared_discards);
1064                                 spin_unlock_irqrestore(&pool->lock, flags);
1065                                 wake_worker(pool);
1066                         }
1067                 } else {
1068                         inc_all_io_entry(pool, bio);
1069                         cell_defer_no_holder(tc, cell);
1070                         cell_defer_no_holder(tc, cell2);
1071
1072                         /*
1073                          * The DM core makes sure that the discard doesn't span
1074                          * a block boundary.  So we submit the discard of a
1075                          * partial block appropriately.
1076                          */
1077                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1078                                 remap_and_issue(tc, bio, lookup_result.block);
1079                         else
1080                                 bio_endio(bio, 0);
1081                 }
1082                 break;
1083
1084         case -ENODATA:
1085                 /*
1086                  * It isn't provisioned, just forget it.
1087                  */
1088                 cell_defer_no_holder(tc, cell);
1089                 bio_endio(bio, 0);
1090                 break;
1091
1092         default:
1093                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1094                             __func__, r);
1095                 cell_defer_no_holder(tc, cell);
1096                 bio_io_error(bio);
1097                 break;
1098         }
1099 }
1100
1101 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1102                           struct dm_cell_key *key,
1103                           struct dm_thin_lookup_result *lookup_result,
1104                           struct dm_bio_prison_cell *cell)
1105 {
1106         int r;
1107         dm_block_t data_block;
1108         struct pool *pool = tc->pool;
1109
1110         r = alloc_data_block(tc, &data_block);
1111         switch (r) {
1112         case 0:
1113                 schedule_internal_copy(tc, block, lookup_result->block,
1114                                        data_block, cell, bio);
1115                 break;
1116
1117         case -ENOSPC:
1118                 retry_bios_on_resume(pool, cell);
1119                 break;
1120
1121         default:
1122                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1123                             __func__, r);
1124                 cell_error(pool, cell);
1125                 break;
1126         }
1127 }
1128
1129 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1130                                dm_block_t block,
1131                                struct dm_thin_lookup_result *lookup_result)
1132 {
1133         struct dm_bio_prison_cell *cell;
1134         struct pool *pool = tc->pool;
1135         struct dm_cell_key key;
1136
1137         /*
1138          * If cell is already occupied, then sharing is already in the process
1139          * of being broken so we have nothing further to do here.
1140          */
1141         build_data_key(tc->td, lookup_result->block, &key);
1142         if (bio_detain(pool, &key, bio, &cell))
1143                 return;
1144
1145         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1146                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1147         else {
1148                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1149
1150                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1151                 inc_all_io_entry(pool, bio);
1152                 cell_defer_no_holder(tc, cell);
1153
1154                 remap_and_issue(tc, bio, lookup_result->block);
1155         }
1156 }
1157
1158 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1159                             struct dm_bio_prison_cell *cell)
1160 {
1161         int r;
1162         dm_block_t data_block;
1163         struct pool *pool = tc->pool;
1164
1165         /*
1166          * Remap empty bios (flushes) immediately, without provisioning.
1167          */
1168         if (!bio->bi_iter.bi_size) {
1169                 inc_all_io_entry(pool, bio);
1170                 cell_defer_no_holder(tc, cell);
1171
1172                 remap_and_issue(tc, bio, 0);
1173                 return;
1174         }
1175
1176         /*
1177          * Fill read bios with zeroes and complete them immediately.
1178          */
1179         if (bio_data_dir(bio) == READ) {
1180                 zero_fill_bio(bio);
1181                 cell_defer_no_holder(tc, cell);
1182                 bio_endio(bio, 0);
1183                 return;
1184         }
1185
1186         r = alloc_data_block(tc, &data_block);
1187         switch (r) {
1188         case 0:
1189                 if (tc->origin_dev)
1190                         schedule_external_copy(tc, block, data_block, cell, bio);
1191                 else
1192                         schedule_zero(tc, block, data_block, cell, bio);
1193                 break;
1194
1195         case -ENOSPC:
1196                 retry_bios_on_resume(pool, cell);
1197                 break;
1198
1199         default:
1200                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1201                             __func__, r);
1202                 cell_error(pool, cell);
1203                 break;
1204         }
1205 }
1206
1207 static void process_bio(struct thin_c *tc, struct bio *bio)
1208 {
1209         int r;
1210         struct pool *pool = tc->pool;
1211         dm_block_t block = get_bio_block(tc, bio);
1212         struct dm_bio_prison_cell *cell;
1213         struct dm_cell_key key;
1214         struct dm_thin_lookup_result lookup_result;
1215
1216         /*
1217          * If cell is already occupied, then the block is already
1218          * being provisioned so we have nothing further to do here.
1219          */
1220         build_virtual_key(tc->td, block, &key);
1221         if (bio_detain(pool, &key, bio, &cell))
1222                 return;
1223
1224         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1225         switch (r) {
1226         case 0:
1227                 if (lookup_result.shared) {
1228                         process_shared_bio(tc, bio, block, &lookup_result);
1229                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1230                 } else {
1231                         inc_all_io_entry(pool, bio);
1232                         cell_defer_no_holder(tc, cell);
1233
1234                         remap_and_issue(tc, bio, lookup_result.block);
1235                 }
1236                 break;
1237
1238         case -ENODATA:
1239                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1240                         inc_all_io_entry(pool, bio);
1241                         cell_defer_no_holder(tc, cell);
1242
1243                         remap_to_origin_and_issue(tc, bio);
1244                 } else
1245                         provision_block(tc, bio, block, cell);
1246                 break;
1247
1248         default:
1249                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1250                             __func__, r);
1251                 cell_defer_no_holder(tc, cell);
1252                 bio_io_error(bio);
1253                 break;
1254         }
1255 }
1256
1257 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1258 {
1259         int r;
1260         int rw = bio_data_dir(bio);
1261         dm_block_t block = get_bio_block(tc, bio);
1262         struct dm_thin_lookup_result lookup_result;
1263
1264         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1265         switch (r) {
1266         case 0:
1267                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1268                         handle_unserviceable_bio(tc->pool, bio);
1269                 else {
1270                         inc_all_io_entry(tc->pool, bio);
1271                         remap_and_issue(tc, bio, lookup_result.block);
1272                 }
1273                 break;
1274
1275         case -ENODATA:
1276                 if (rw != READ) {
1277                         handle_unserviceable_bio(tc->pool, bio);
1278                         break;
1279                 }
1280
1281                 if (tc->origin_dev) {
1282                         inc_all_io_entry(tc->pool, bio);
1283                         remap_to_origin_and_issue(tc, bio);
1284                         break;
1285                 }
1286
1287                 zero_fill_bio(bio);
1288                 bio_endio(bio, 0);
1289                 break;
1290
1291         default:
1292                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1293                             __func__, r);
1294                 bio_io_error(bio);
1295                 break;
1296         }
1297 }
1298
1299 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1300 {
1301         bio_io_error(bio);
1302 }
1303
1304 /*
1305  * FIXME: should we also commit due to size of transaction, measured in
1306  * metadata blocks?
1307  */
1308 static int need_commit_due_to_time(struct pool *pool)
1309 {
1310         return jiffies < pool->last_commit_jiffies ||
1311                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1312 }
1313
1314 static void process_deferred_bios(struct pool *pool)
1315 {
1316         unsigned long flags;
1317         struct bio *bio;
1318         struct bio_list bios;
1319
1320         bio_list_init(&bios);
1321
1322         spin_lock_irqsave(&pool->lock, flags);
1323         bio_list_merge(&bios, &pool->deferred_bios);
1324         bio_list_init(&pool->deferred_bios);
1325         spin_unlock_irqrestore(&pool->lock, flags);
1326
1327         while ((bio = bio_list_pop(&bios))) {
1328                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1329                 struct thin_c *tc = h->tc;
1330
1331                 /*
1332                  * If we've got no free new_mapping structs, and processing
1333                  * this bio might require one, we pause until there are some
1334                  * prepared mappings to process.
1335                  */
1336                 if (ensure_next_mapping(pool)) {
1337                         spin_lock_irqsave(&pool->lock, flags);
1338                         bio_list_merge(&pool->deferred_bios, &bios);
1339                         spin_unlock_irqrestore(&pool->lock, flags);
1340
1341                         break;
1342                 }
1343
1344                 if (bio->bi_rw & REQ_DISCARD)
1345                         pool->process_discard(tc, bio);
1346                 else
1347                         pool->process_bio(tc, bio);
1348         }
1349
1350         /*
1351          * If there are any deferred flush bios, we must commit
1352          * the metadata before issuing them.
1353          */
1354         bio_list_init(&bios);
1355         spin_lock_irqsave(&pool->lock, flags);
1356         bio_list_merge(&bios, &pool->deferred_flush_bios);
1357         bio_list_init(&pool->deferred_flush_bios);
1358         spin_unlock_irqrestore(&pool->lock, flags);
1359
1360         if (bio_list_empty(&bios) &&
1361             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1362                 return;
1363
1364         if (commit(pool)) {
1365                 while ((bio = bio_list_pop(&bios)))
1366                         bio_io_error(bio);
1367                 return;
1368         }
1369         pool->last_commit_jiffies = jiffies;
1370
1371         while ((bio = bio_list_pop(&bios)))
1372                 generic_make_request(bio);
1373 }
1374
1375 static void do_worker(struct work_struct *ws)
1376 {
1377         struct pool *pool = container_of(ws, struct pool, worker);
1378
1379         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1380         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1381         process_deferred_bios(pool);
1382 }
1383
1384 /*
1385  * We want to commit periodically so that not too much
1386  * unwritten data builds up.
1387  */
1388 static void do_waker(struct work_struct *ws)
1389 {
1390         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1391         wake_worker(pool);
1392         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1393 }
1394
1395 /*----------------------------------------------------------------*/
1396
1397 static enum pool_mode get_pool_mode(struct pool *pool)
1398 {
1399         return pool->pf.mode;
1400 }
1401
1402 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1403 {
1404         int r;
1405         enum pool_mode old_mode = pool->pf.mode;
1406
1407         switch (new_mode) {
1408         case PM_FAIL:
1409                 if (old_mode != new_mode)
1410                         DMERR("%s: switching pool to failure mode",
1411                               dm_device_name(pool->pool_md));
1412                 dm_pool_metadata_read_only(pool->pmd);
1413                 pool->process_bio = process_bio_fail;
1414                 pool->process_discard = process_bio_fail;
1415                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1416                 pool->process_prepared_discard = process_prepared_discard_fail;
1417                 break;
1418
1419         case PM_READ_ONLY:
1420                 if (old_mode != new_mode)
1421                         DMERR("%s: switching pool to read-only mode",
1422                               dm_device_name(pool->pool_md));
1423                 r = dm_pool_abort_metadata(pool->pmd);
1424                 if (r) {
1425                         DMERR("%s: aborting transaction failed",
1426                               dm_device_name(pool->pool_md));
1427                         new_mode = PM_FAIL;
1428                         set_pool_mode(pool, new_mode);
1429                 } else {
1430                         dm_pool_metadata_read_only(pool->pmd);
1431                         pool->process_bio = process_bio_read_only;
1432                         pool->process_discard = process_discard;
1433                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1434                         pool->process_prepared_discard = process_prepared_discard_passdown;
1435                 }
1436                 break;
1437
1438         case PM_WRITE:
1439                 if (old_mode != new_mode)
1440                         DMINFO("%s: switching pool to write mode",
1441                                dm_device_name(pool->pool_md));
1442                 dm_pool_metadata_read_write(pool->pmd);
1443                 pool->process_bio = process_bio;
1444                 pool->process_discard = process_discard;
1445                 pool->process_prepared_mapping = process_prepared_mapping;
1446                 pool->process_prepared_discard = process_prepared_discard;
1447                 break;
1448         }
1449
1450         pool->pf.mode = new_mode;
1451 }
1452
1453 /*
1454  * Rather than calling set_pool_mode directly, use these which describe the
1455  * reason for mode degradation.
1456  */
1457 static void out_of_data_space(struct pool *pool)
1458 {
1459         DMERR_LIMIT("%s: no free data space available.",
1460                     dm_device_name(pool->pool_md));
1461         set_pool_mode(pool, PM_READ_ONLY);
1462 }
1463
1464 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1465 {
1466         dm_block_t free_blocks;
1467
1468         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1469                     dm_device_name(pool->pool_md), op, r);
1470
1471         if (r == -ENOSPC &&
1472             !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
1473             !free_blocks)
1474                 DMERR_LIMIT("%s: no free metadata space available.",
1475                             dm_device_name(pool->pool_md));
1476
1477         set_pool_mode(pool, PM_READ_ONLY);
1478 }
1479
1480 /*----------------------------------------------------------------*/
1481
1482 /*
1483  * Mapping functions.
1484  */
1485
1486 /*
1487  * Called only while mapping a thin bio to hand it over to the workqueue.
1488  */
1489 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1490 {
1491         unsigned long flags;
1492         struct pool *pool = tc->pool;
1493
1494         spin_lock_irqsave(&pool->lock, flags);
1495         bio_list_add(&pool->deferred_bios, bio);
1496         spin_unlock_irqrestore(&pool->lock, flags);
1497
1498         wake_worker(pool);
1499 }
1500
1501 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1502 {
1503         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1504
1505         h->tc = tc;
1506         h->shared_read_entry = NULL;
1507         h->all_io_entry = NULL;
1508         h->overwrite_mapping = NULL;
1509 }
1510
1511 /*
1512  * Non-blocking function called from the thin target's map function.
1513  */
1514 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1515 {
1516         int r;
1517         struct thin_c *tc = ti->private;
1518         dm_block_t block = get_bio_block(tc, bio);
1519         struct dm_thin_device *td = tc->td;
1520         struct dm_thin_lookup_result result;
1521         struct dm_bio_prison_cell cell1, cell2;
1522         struct dm_bio_prison_cell *cell_result;
1523         struct dm_cell_key key;
1524
1525         thin_hook_bio(tc, bio);
1526
1527         if (get_pool_mode(tc->pool) == PM_FAIL) {
1528                 bio_io_error(bio);
1529                 return DM_MAPIO_SUBMITTED;
1530         }
1531
1532         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1533                 thin_defer_bio(tc, bio);
1534                 return DM_MAPIO_SUBMITTED;
1535         }
1536
1537         r = dm_thin_find_block(td, block, 0, &result);
1538
1539         /*
1540          * Note that we defer readahead too.
1541          */
1542         switch (r) {
1543         case 0:
1544                 if (unlikely(result.shared)) {
1545                         /*
1546                          * We have a race condition here between the
1547                          * result.shared value returned by the lookup and
1548                          * snapshot creation, which may cause new
1549                          * sharing.
1550                          *
1551                          * To avoid this always quiesce the origin before
1552                          * taking the snap.  You want to do this anyway to
1553                          * ensure a consistent application view
1554                          * (i.e. lockfs).
1555                          *
1556                          * More distant ancestors are irrelevant. The
1557                          * shared flag will be set in their case.
1558                          */
1559                         thin_defer_bio(tc, bio);
1560                         return DM_MAPIO_SUBMITTED;
1561                 }
1562
1563                 build_virtual_key(tc->td, block, &key);
1564                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1565                         return DM_MAPIO_SUBMITTED;
1566
1567                 build_data_key(tc->td, result.block, &key);
1568                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1569                         cell_defer_no_holder_no_free(tc, &cell1);
1570                         return DM_MAPIO_SUBMITTED;
1571                 }
1572
1573                 inc_all_io_entry(tc->pool, bio);
1574                 cell_defer_no_holder_no_free(tc, &cell2);
1575                 cell_defer_no_holder_no_free(tc, &cell1);
1576
1577                 remap(tc, bio, result.block);
1578                 return DM_MAPIO_REMAPPED;
1579
1580         case -ENODATA:
1581                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1582                         /*
1583                          * This block isn't provisioned, and we have no way
1584                          * of doing so.
1585                          */
1586                         handle_unserviceable_bio(tc->pool, bio);
1587                         return DM_MAPIO_SUBMITTED;
1588                 }
1589                 /* fall through */
1590
1591         case -EWOULDBLOCK:
1592                 /*
1593                  * In future, the failed dm_thin_find_block above could
1594                  * provide the hint to load the metadata into cache.
1595                  */
1596                 thin_defer_bio(tc, bio);
1597                 return DM_MAPIO_SUBMITTED;
1598
1599         default:
1600                 /*
1601                  * Must always call bio_io_error on failure.
1602                  * dm_thin_find_block can fail with -EINVAL if the
1603                  * pool is switched to fail-io mode.
1604                  */
1605                 bio_io_error(bio);
1606                 return DM_MAPIO_SUBMITTED;
1607         }
1608 }
1609
1610 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1611 {
1612         int r;
1613         unsigned long flags;
1614         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1615
1616         spin_lock_irqsave(&pt->pool->lock, flags);
1617         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1618         spin_unlock_irqrestore(&pt->pool->lock, flags);
1619
1620         if (!r) {
1621                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1622                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1623         }
1624
1625         return r;
1626 }
1627
1628 static void __requeue_bios(struct pool *pool)
1629 {
1630         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1631         bio_list_init(&pool->retry_on_resume_list);
1632 }
1633
1634 /*----------------------------------------------------------------
1635  * Binding of control targets to a pool object
1636  *--------------------------------------------------------------*/
1637 static bool data_dev_supports_discard(struct pool_c *pt)
1638 {
1639         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1640
1641         return q && blk_queue_discard(q);
1642 }
1643
1644 static bool is_factor(sector_t block_size, uint32_t n)
1645 {
1646         return !sector_div(block_size, n);
1647 }
1648
1649 /*
1650  * If discard_passdown was enabled verify that the data device
1651  * supports discards.  Disable discard_passdown if not.
1652  */
1653 static void disable_passdown_if_not_supported(struct pool_c *pt)
1654 {
1655         struct pool *pool = pt->pool;
1656         struct block_device *data_bdev = pt->data_dev->bdev;
1657         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1658         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1659         const char *reason = NULL;
1660         char buf[BDEVNAME_SIZE];
1661
1662         if (!pt->adjusted_pf.discard_passdown)
1663                 return;
1664
1665         if (!data_dev_supports_discard(pt))
1666                 reason = "discard unsupported";
1667
1668         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1669                 reason = "max discard sectors smaller than a block";
1670
1671         else if (data_limits->discard_granularity > block_size)
1672                 reason = "discard granularity larger than a block";
1673
1674         else if (!is_factor(block_size, data_limits->discard_granularity))
1675                 reason = "discard granularity not a factor of block size";
1676
1677         if (reason) {
1678                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1679                 pt->adjusted_pf.discard_passdown = false;
1680         }
1681 }
1682
1683 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1684 {
1685         struct pool_c *pt = ti->private;
1686
1687         /*
1688          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1689          */
1690         enum pool_mode old_mode = pool->pf.mode;
1691         enum pool_mode new_mode = pt->adjusted_pf.mode;
1692
1693         /*
1694          * Don't change the pool's mode until set_pool_mode() below.
1695          * Otherwise the pool's process_* function pointers may
1696          * not match the desired pool mode.
1697          */
1698         pt->adjusted_pf.mode = old_mode;
1699
1700         pool->ti = ti;
1701         pool->pf = pt->adjusted_pf;
1702         pool->low_water_blocks = pt->low_water_blocks;
1703
1704         /*
1705          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1706          * not going to recover without a thin_repair.  So we never let the
1707          * pool move out of the old mode.  On the other hand a PM_READ_ONLY
1708          * may have been due to a lack of metadata or data space, and may
1709          * now work (ie. if the underlying devices have been resized).
1710          */
1711         if (old_mode == PM_FAIL)
1712                 new_mode = old_mode;
1713
1714         set_pool_mode(pool, new_mode);
1715
1716         return 0;
1717 }
1718
1719 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1720 {
1721         if (pool->ti == ti)
1722                 pool->ti = NULL;
1723 }
1724
1725 /*----------------------------------------------------------------
1726  * Pool creation
1727  *--------------------------------------------------------------*/
1728 /* Initialize pool features. */
1729 static void pool_features_init(struct pool_features *pf)
1730 {
1731         pf->mode = PM_WRITE;
1732         pf->zero_new_blocks = true;
1733         pf->discard_enabled = true;
1734         pf->discard_passdown = true;
1735         pf->error_if_no_space = false;
1736 }
1737
1738 static void __pool_destroy(struct pool *pool)
1739 {
1740         __pool_table_remove(pool);
1741
1742         if (dm_pool_metadata_close(pool->pmd) < 0)
1743                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1744
1745         dm_bio_prison_destroy(pool->prison);
1746         dm_kcopyd_client_destroy(pool->copier);
1747
1748         if (pool->wq)
1749                 destroy_workqueue(pool->wq);
1750
1751         if (pool->next_mapping)
1752                 mempool_free(pool->next_mapping, pool->mapping_pool);
1753         mempool_destroy(pool->mapping_pool);
1754         dm_deferred_set_destroy(pool->shared_read_ds);
1755         dm_deferred_set_destroy(pool->all_io_ds);
1756         kfree(pool);
1757 }
1758
1759 static struct kmem_cache *_new_mapping_cache;
1760
1761 static struct pool *pool_create(struct mapped_device *pool_md,
1762                                 struct block_device *metadata_dev,
1763                                 unsigned long block_size,
1764                                 int read_only, char **error)
1765 {
1766         int r;
1767         void *err_p;
1768         struct pool *pool;
1769         struct dm_pool_metadata *pmd;
1770         bool format_device = read_only ? false : true;
1771
1772         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1773         if (IS_ERR(pmd)) {
1774                 *error = "Error creating metadata object";
1775                 return (struct pool *)pmd;
1776         }
1777
1778         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1779         if (!pool) {
1780                 *error = "Error allocating memory for pool";
1781                 err_p = ERR_PTR(-ENOMEM);
1782                 goto bad_pool;
1783         }
1784
1785         pool->pmd = pmd;
1786         pool->sectors_per_block = block_size;
1787         if (block_size & (block_size - 1))
1788                 pool->sectors_per_block_shift = -1;
1789         else
1790                 pool->sectors_per_block_shift = __ffs(block_size);
1791         pool->low_water_blocks = 0;
1792         pool_features_init(&pool->pf);
1793         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1794         if (!pool->prison) {
1795                 *error = "Error creating pool's bio prison";
1796                 err_p = ERR_PTR(-ENOMEM);
1797                 goto bad_prison;
1798         }
1799
1800         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1801         if (IS_ERR(pool->copier)) {
1802                 r = PTR_ERR(pool->copier);
1803                 *error = "Error creating pool's kcopyd client";
1804                 err_p = ERR_PTR(r);
1805                 goto bad_kcopyd_client;
1806         }
1807
1808         /*
1809          * Create singlethreaded workqueue that will service all devices
1810          * that use this metadata.
1811          */
1812         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1813         if (!pool->wq) {
1814                 *error = "Error creating pool's workqueue";
1815                 err_p = ERR_PTR(-ENOMEM);
1816                 goto bad_wq;
1817         }
1818
1819         INIT_WORK(&pool->worker, do_worker);
1820         INIT_DELAYED_WORK(&pool->waker, do_waker);
1821         spin_lock_init(&pool->lock);
1822         bio_list_init(&pool->deferred_bios);
1823         bio_list_init(&pool->deferred_flush_bios);
1824         INIT_LIST_HEAD(&pool->prepared_mappings);
1825         INIT_LIST_HEAD(&pool->prepared_discards);
1826         pool->low_water_triggered = false;
1827         bio_list_init(&pool->retry_on_resume_list);
1828
1829         pool->shared_read_ds = dm_deferred_set_create();
1830         if (!pool->shared_read_ds) {
1831                 *error = "Error creating pool's shared read deferred set";
1832                 err_p = ERR_PTR(-ENOMEM);
1833                 goto bad_shared_read_ds;
1834         }
1835
1836         pool->all_io_ds = dm_deferred_set_create();
1837         if (!pool->all_io_ds) {
1838                 *error = "Error creating pool's all io deferred set";
1839                 err_p = ERR_PTR(-ENOMEM);
1840                 goto bad_all_io_ds;
1841         }
1842
1843         pool->next_mapping = NULL;
1844         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1845                                                       _new_mapping_cache);
1846         if (!pool->mapping_pool) {
1847                 *error = "Error creating pool's mapping mempool";
1848                 err_p = ERR_PTR(-ENOMEM);
1849                 goto bad_mapping_pool;
1850         }
1851
1852         pool->ref_count = 1;
1853         pool->last_commit_jiffies = jiffies;
1854         pool->pool_md = pool_md;
1855         pool->md_dev = metadata_dev;
1856         __pool_table_insert(pool);
1857
1858         return pool;
1859
1860 bad_mapping_pool:
1861         dm_deferred_set_destroy(pool->all_io_ds);
1862 bad_all_io_ds:
1863         dm_deferred_set_destroy(pool->shared_read_ds);
1864 bad_shared_read_ds:
1865         destroy_workqueue(pool->wq);
1866 bad_wq:
1867         dm_kcopyd_client_destroy(pool->copier);
1868 bad_kcopyd_client:
1869         dm_bio_prison_destroy(pool->prison);
1870 bad_prison:
1871         kfree(pool);
1872 bad_pool:
1873         if (dm_pool_metadata_close(pmd))
1874                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1875
1876         return err_p;
1877 }
1878
1879 static void __pool_inc(struct pool *pool)
1880 {
1881         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1882         pool->ref_count++;
1883 }
1884
1885 static void __pool_dec(struct pool *pool)
1886 {
1887         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1888         BUG_ON(!pool->ref_count);
1889         if (!--pool->ref_count)
1890                 __pool_destroy(pool);
1891 }
1892
1893 static struct pool *__pool_find(struct mapped_device *pool_md,
1894                                 struct block_device *metadata_dev,
1895                                 unsigned long block_size, int read_only,
1896                                 char **error, int *created)
1897 {
1898         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1899
1900         if (pool) {
1901                 if (pool->pool_md != pool_md) {
1902                         *error = "metadata device already in use by a pool";
1903                         return ERR_PTR(-EBUSY);
1904                 }
1905                 __pool_inc(pool);
1906
1907         } else {
1908                 pool = __pool_table_lookup(pool_md);
1909                 if (pool) {
1910                         if (pool->md_dev != metadata_dev) {
1911                                 *error = "different pool cannot replace a pool";
1912                                 return ERR_PTR(-EINVAL);
1913                         }
1914                         __pool_inc(pool);
1915
1916                 } else {
1917                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1918                         *created = 1;
1919                 }
1920         }
1921
1922         return pool;
1923 }
1924
1925 /*----------------------------------------------------------------
1926  * Pool target methods
1927  *--------------------------------------------------------------*/
1928 static void pool_dtr(struct dm_target *ti)
1929 {
1930         struct pool_c *pt = ti->private;
1931
1932         mutex_lock(&dm_thin_pool_table.mutex);
1933
1934         unbind_control_target(pt->pool, ti);
1935         __pool_dec(pt->pool);
1936         dm_put_device(ti, pt->metadata_dev);
1937         dm_put_device(ti, pt->data_dev);
1938         kfree(pt);
1939
1940         mutex_unlock(&dm_thin_pool_table.mutex);
1941 }
1942
1943 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1944                                struct dm_target *ti)
1945 {
1946         int r;
1947         unsigned argc;
1948         const char *arg_name;
1949
1950         static struct dm_arg _args[] = {
1951                 {0, 4, "Invalid number of pool feature arguments"},
1952         };
1953
1954         /*
1955          * No feature arguments supplied.
1956          */
1957         if (!as->argc)
1958                 return 0;
1959
1960         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1961         if (r)
1962                 return -EINVAL;
1963
1964         while (argc && !r) {
1965                 arg_name = dm_shift_arg(as);
1966                 argc--;
1967
1968                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1969                         pf->zero_new_blocks = false;
1970
1971                 else if (!strcasecmp(arg_name, "ignore_discard"))
1972                         pf->discard_enabled = false;
1973
1974                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1975                         pf->discard_passdown = false;
1976
1977                 else if (!strcasecmp(arg_name, "read_only"))
1978                         pf->mode = PM_READ_ONLY;
1979
1980                 else if (!strcasecmp(arg_name, "error_if_no_space"))
1981                         pf->error_if_no_space = true;
1982
1983                 else {
1984                         ti->error = "Unrecognised pool feature requested";
1985                         r = -EINVAL;
1986                         break;
1987                 }
1988         }
1989
1990         return r;
1991 }
1992
1993 static void metadata_low_callback(void *context)
1994 {
1995         struct pool *pool = context;
1996
1997         DMWARN("%s: reached low water mark for metadata device: sending event.",
1998                dm_device_name(pool->pool_md));
1999
2000         dm_table_event(pool->ti->table);
2001 }
2002
2003 static sector_t get_metadata_dev_size(struct block_device *bdev)
2004 {
2005         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2006         char buffer[BDEVNAME_SIZE];
2007
2008         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
2009                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2010                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2011                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
2012         }
2013
2014         return metadata_dev_size;
2015 }
2016
2017 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2018 {
2019         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2020
2021         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
2022
2023         return metadata_dev_size;
2024 }
2025
2026 /*
2027  * When a metadata threshold is crossed a dm event is triggered, and
2028  * userland should respond by growing the metadata device.  We could let
2029  * userland set the threshold, like we do with the data threshold, but I'm
2030  * not sure they know enough to do this well.
2031  */
2032 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2033 {
2034         /*
2035          * 4M is ample for all ops with the possible exception of thin
2036          * device deletion which is harmless if it fails (just retry the
2037          * delete after you've grown the device).
2038          */
2039         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2040         return min((dm_block_t)1024ULL /* 4M */, quarter);
2041 }
2042
2043 /*
2044  * thin-pool <metadata dev> <data dev>
2045  *           <data block size (sectors)>
2046  *           <low water mark (blocks)>
2047  *           [<#feature args> [<arg>]*]
2048  *
2049  * Optional feature arguments are:
2050  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2051  *           ignore_discard: disable discard
2052  *           no_discard_passdown: don't pass discards down to the data device
2053  *           read_only: Don't allow any changes to be made to the pool metadata.
2054  *           error_if_no_space: error IOs, instead of queueing, if no space.
2055  */
2056 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2057 {
2058         int r, pool_created = 0;
2059         struct pool_c *pt;
2060         struct pool *pool;
2061         struct pool_features pf;
2062         struct dm_arg_set as;
2063         struct dm_dev *data_dev;
2064         unsigned long block_size;
2065         dm_block_t low_water_blocks;
2066         struct dm_dev *metadata_dev;
2067         fmode_t metadata_mode;
2068
2069         /*
2070          * FIXME Remove validation from scope of lock.
2071          */
2072         mutex_lock(&dm_thin_pool_table.mutex);
2073
2074         if (argc < 4) {
2075                 ti->error = "Invalid argument count";
2076                 r = -EINVAL;
2077                 goto out_unlock;
2078         }
2079
2080         as.argc = argc;
2081         as.argv = argv;
2082
2083         /*
2084          * Set default pool features.
2085          */
2086         pool_features_init(&pf);
2087
2088         dm_consume_args(&as, 4);
2089         r = parse_pool_features(&as, &pf, ti);
2090         if (r)
2091                 goto out_unlock;
2092
2093         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2094         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2095         if (r) {
2096                 ti->error = "Error opening metadata block device";
2097                 goto out_unlock;
2098         }
2099
2100         /*
2101          * Run for the side-effect of possibly issuing a warning if the
2102          * device is too big.
2103          */
2104         (void) get_metadata_dev_size(metadata_dev->bdev);
2105
2106         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2107         if (r) {
2108                 ti->error = "Error getting data device";
2109                 goto out_metadata;
2110         }
2111
2112         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2113             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2114             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2115             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2116                 ti->error = "Invalid block size";
2117                 r = -EINVAL;
2118                 goto out;
2119         }
2120
2121         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2122                 ti->error = "Invalid low water mark";
2123                 r = -EINVAL;
2124                 goto out;
2125         }
2126
2127         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2128         if (!pt) {
2129                 r = -ENOMEM;
2130                 goto out;
2131         }
2132
2133         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2134                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2135         if (IS_ERR(pool)) {
2136                 r = PTR_ERR(pool);
2137                 goto out_free_pt;
2138         }
2139
2140         /*
2141          * 'pool_created' reflects whether this is the first table load.
2142          * Top level discard support is not allowed to be changed after
2143          * initial load.  This would require a pool reload to trigger thin
2144          * device changes.
2145          */
2146         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2147                 ti->error = "Discard support cannot be disabled once enabled";
2148                 r = -EINVAL;
2149                 goto out_flags_changed;
2150         }
2151
2152         pt->pool = pool;
2153         pt->ti = ti;
2154         pt->metadata_dev = metadata_dev;
2155         pt->data_dev = data_dev;
2156         pt->low_water_blocks = low_water_blocks;
2157         pt->adjusted_pf = pt->requested_pf = pf;
2158         ti->num_flush_bios = 1;
2159
2160         /*
2161          * Only need to enable discards if the pool should pass
2162          * them down to the data device.  The thin device's discard
2163          * processing will cause mappings to be removed from the btree.
2164          */
2165         ti->discard_zeroes_data_unsupported = true;
2166         if (pf.discard_enabled && pf.discard_passdown) {
2167                 ti->num_discard_bios = 1;
2168
2169                 /*
2170                  * Setting 'discards_supported' circumvents the normal
2171                  * stacking of discard limits (this keeps the pool and
2172                  * thin devices' discard limits consistent).
2173                  */
2174                 ti->discards_supported = true;
2175         }
2176         ti->private = pt;
2177
2178         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2179                                                 calc_metadata_threshold(pt),
2180                                                 metadata_low_callback,
2181                                                 pool);
2182         if (r)
2183                 goto out_free_pt;
2184
2185         pt->callbacks.congested_fn = pool_is_congested;
2186         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2187
2188         mutex_unlock(&dm_thin_pool_table.mutex);
2189
2190         return 0;
2191
2192 out_flags_changed:
2193         __pool_dec(pool);
2194 out_free_pt:
2195         kfree(pt);
2196 out:
2197         dm_put_device(ti, data_dev);
2198 out_metadata:
2199         dm_put_device(ti, metadata_dev);
2200 out_unlock:
2201         mutex_unlock(&dm_thin_pool_table.mutex);
2202
2203         return r;
2204 }
2205
2206 static int pool_map(struct dm_target *ti, struct bio *bio)
2207 {
2208         int r;
2209         struct pool_c *pt = ti->private;
2210         struct pool *pool = pt->pool;
2211         unsigned long flags;
2212
2213         /*
2214          * As this is a singleton target, ti->begin is always zero.
2215          */
2216         spin_lock_irqsave(&pool->lock, flags);
2217         bio->bi_bdev = pt->data_dev->bdev;
2218         r = DM_MAPIO_REMAPPED;
2219         spin_unlock_irqrestore(&pool->lock, flags);
2220
2221         return r;
2222 }
2223
2224 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2225 {
2226         int r;
2227         struct pool_c *pt = ti->private;
2228         struct pool *pool = pt->pool;
2229         sector_t data_size = ti->len;
2230         dm_block_t sb_data_size;
2231
2232         *need_commit = false;
2233
2234         (void) sector_div(data_size, pool->sectors_per_block);
2235
2236         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2237         if (r) {
2238                 DMERR("%s: failed to retrieve data device size",
2239                       dm_device_name(pool->pool_md));
2240                 return r;
2241         }
2242
2243         if (data_size < sb_data_size) {
2244                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2245                       dm_device_name(pool->pool_md),
2246                       (unsigned long long)data_size, sb_data_size);
2247                 return -EINVAL;
2248
2249         } else if (data_size > sb_data_size) {
2250                 if (sb_data_size)
2251                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2252                                dm_device_name(pool->pool_md),
2253                                sb_data_size, (unsigned long long)data_size);
2254                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2255                 if (r) {
2256                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2257                         return r;
2258                 }
2259
2260                 *need_commit = true;
2261         }
2262
2263         return 0;
2264 }
2265
2266 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2267 {
2268         int r;
2269         struct pool_c *pt = ti->private;
2270         struct pool *pool = pt->pool;
2271         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2272
2273         *need_commit = false;
2274
2275         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2276
2277         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2278         if (r) {
2279                 DMERR("%s: failed to retrieve metadata device size",
2280                       dm_device_name(pool->pool_md));
2281                 return r;
2282         }
2283
2284         if (metadata_dev_size < sb_metadata_dev_size) {
2285                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2286                       dm_device_name(pool->pool_md),
2287                       metadata_dev_size, sb_metadata_dev_size);
2288                 return -EINVAL;
2289
2290         } else if (metadata_dev_size > sb_metadata_dev_size) {
2291                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2292                        dm_device_name(pool->pool_md),
2293                        sb_metadata_dev_size, metadata_dev_size);
2294                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2295                 if (r) {
2296                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2297                         return r;
2298                 }
2299
2300                 *need_commit = true;
2301         }
2302
2303         return 0;
2304 }
2305
2306 /*
2307  * Retrieves the number of blocks of the data device from
2308  * the superblock and compares it to the actual device size,
2309  * thus resizing the data device in case it has grown.
2310  *
2311  * This both copes with opening preallocated data devices in the ctr
2312  * being followed by a resume
2313  * -and-
2314  * calling the resume method individually after userspace has
2315  * grown the data device in reaction to a table event.
2316  */
2317 static int pool_preresume(struct dm_target *ti)
2318 {
2319         int r;
2320         bool need_commit1, need_commit2;
2321         struct pool_c *pt = ti->private;
2322         struct pool *pool = pt->pool;
2323
2324         /*
2325          * Take control of the pool object.
2326          */
2327         r = bind_control_target(pool, ti);
2328         if (r)
2329                 return r;
2330
2331         r = maybe_resize_data_dev(ti, &need_commit1);
2332         if (r)
2333                 return r;
2334
2335         r = maybe_resize_metadata_dev(ti, &need_commit2);
2336         if (r)
2337                 return r;
2338
2339         if (need_commit1 || need_commit2)
2340                 (void) commit(pool);
2341
2342         return 0;
2343 }
2344
2345 static void pool_resume(struct dm_target *ti)
2346 {
2347         struct pool_c *pt = ti->private;
2348         struct pool *pool = pt->pool;
2349         unsigned long flags;
2350
2351         spin_lock_irqsave(&pool->lock, flags);
2352         pool->low_water_triggered = false;
2353         __requeue_bios(pool);
2354         spin_unlock_irqrestore(&pool->lock, flags);
2355
2356         do_waker(&pool->waker.work);
2357 }
2358
2359 static void pool_postsuspend(struct dm_target *ti)
2360 {
2361         struct pool_c *pt = ti->private;
2362         struct pool *pool = pt->pool;
2363
2364         cancel_delayed_work(&pool->waker);
2365         flush_workqueue(pool->wq);
2366         (void) commit(pool);
2367 }
2368
2369 static int check_arg_count(unsigned argc, unsigned args_required)
2370 {
2371         if (argc != args_required) {
2372                 DMWARN("Message received with %u arguments instead of %u.",
2373                        argc, args_required);
2374                 return -EINVAL;
2375         }
2376
2377         return 0;
2378 }
2379
2380 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2381 {
2382         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2383             *dev_id <= MAX_DEV_ID)
2384                 return 0;
2385
2386         if (warning)
2387                 DMWARN("Message received with invalid device id: %s", arg);
2388
2389         return -EINVAL;
2390 }
2391
2392 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2393 {
2394         dm_thin_id dev_id;
2395         int r;
2396
2397         r = check_arg_count(argc, 2);
2398         if (r)
2399                 return r;
2400
2401         r = read_dev_id(argv[1], &dev_id, 1);
2402         if (r)
2403                 return r;
2404
2405         r = dm_pool_create_thin(pool->pmd, dev_id);
2406         if (r) {
2407                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2408                        argv[1]);
2409                 return r;
2410         }
2411
2412         return 0;
2413 }
2414
2415 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2416 {
2417         dm_thin_id dev_id;
2418         dm_thin_id origin_dev_id;
2419         int r;
2420
2421         r = check_arg_count(argc, 3);
2422         if (r)
2423                 return r;
2424
2425         r = read_dev_id(argv[1], &dev_id, 1);
2426         if (r)
2427                 return r;
2428
2429         r = read_dev_id(argv[2], &origin_dev_id, 1);
2430         if (r)
2431                 return r;
2432
2433         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2434         if (r) {
2435                 DMWARN("Creation of new snapshot %s of device %s failed.",
2436                        argv[1], argv[2]);
2437                 return r;
2438         }
2439
2440         return 0;
2441 }
2442
2443 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2444 {
2445         dm_thin_id dev_id;
2446         int r;
2447
2448         r = check_arg_count(argc, 2);
2449         if (r)
2450                 return r;
2451
2452         r = read_dev_id(argv[1], &dev_id, 1);
2453         if (r)
2454                 return r;
2455
2456         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2457         if (r)
2458                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2459
2460         return r;
2461 }
2462
2463 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2464 {
2465         dm_thin_id old_id, new_id;
2466         int r;
2467
2468         r = check_arg_count(argc, 3);
2469         if (r)
2470                 return r;
2471
2472         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2473                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2474                 return -EINVAL;
2475         }
2476
2477         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2478                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2479                 return -EINVAL;
2480         }
2481
2482         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2483         if (r) {
2484                 DMWARN("Failed to change transaction id from %s to %s.",
2485                        argv[1], argv[2]);
2486                 return r;
2487         }
2488
2489         return 0;
2490 }
2491
2492 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2493 {
2494         int r;
2495
2496         r = check_arg_count(argc, 1);
2497         if (r)
2498                 return r;
2499
2500         (void) commit(pool);
2501
2502         r = dm_pool_reserve_metadata_snap(pool->pmd);
2503         if (r)
2504                 DMWARN("reserve_metadata_snap message failed.");
2505
2506         return r;
2507 }
2508
2509 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2510 {
2511         int r;
2512
2513         r = check_arg_count(argc, 1);
2514         if (r)
2515                 return r;
2516
2517         r = dm_pool_release_metadata_snap(pool->pmd);
2518         if (r)
2519                 DMWARN("release_metadata_snap message failed.");
2520
2521         return r;
2522 }
2523
2524 /*
2525  * Messages supported:
2526  *   create_thin        <dev_id>
2527  *   create_snap        <dev_id> <origin_id>
2528  *   delete             <dev_id>
2529  *   trim               <dev_id> <new_size_in_sectors>
2530  *   set_transaction_id <current_trans_id> <new_trans_id>
2531  *   reserve_metadata_snap
2532  *   release_metadata_snap
2533  */
2534 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2535 {
2536         int r = -EINVAL;
2537         struct pool_c *pt = ti->private;
2538         struct pool *pool = pt->pool;
2539
2540         if (!strcasecmp(argv[0], "create_thin"))
2541                 r = process_create_thin_mesg(argc, argv, pool);
2542
2543         else if (!strcasecmp(argv[0], "create_snap"))
2544                 r = process_create_snap_mesg(argc, argv, pool);
2545
2546         else if (!strcasecmp(argv[0], "delete"))
2547                 r = process_delete_mesg(argc, argv, pool);
2548
2549         else if (!strcasecmp(argv[0], "set_transaction_id"))
2550                 r = process_set_transaction_id_mesg(argc, argv, pool);
2551
2552         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2553                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2554
2555         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2556                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2557
2558         else
2559                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2560
2561         if (!r)
2562                 (void) commit(pool);
2563
2564         return r;
2565 }
2566
2567 static void emit_flags(struct pool_features *pf, char *result,
2568                        unsigned sz, unsigned maxlen)
2569 {
2570         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2571                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2572                 pf->error_if_no_space;
2573         DMEMIT("%u ", count);
2574
2575         if (!pf->zero_new_blocks)
2576                 DMEMIT("skip_block_zeroing ");
2577
2578         if (!pf->discard_enabled)
2579                 DMEMIT("ignore_discard ");
2580
2581         if (!pf->discard_passdown)
2582                 DMEMIT("no_discard_passdown ");
2583
2584         if (pf->mode == PM_READ_ONLY)
2585                 DMEMIT("read_only ");
2586
2587         if (pf->error_if_no_space)
2588                 DMEMIT("error_if_no_space ");
2589 }
2590
2591 /*
2592  * Status line is:
2593  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2594  *    <used data sectors>/<total data sectors> <held metadata root>
2595  */
2596 static void pool_status(struct dm_target *ti, status_type_t type,
2597                         unsigned status_flags, char *result, unsigned maxlen)
2598 {
2599         int r;
2600         unsigned sz = 0;
2601         uint64_t transaction_id;
2602         dm_block_t nr_free_blocks_data;
2603         dm_block_t nr_free_blocks_metadata;
2604         dm_block_t nr_blocks_data;
2605         dm_block_t nr_blocks_metadata;
2606         dm_block_t held_root;
2607         char buf[BDEVNAME_SIZE];
2608         char buf2[BDEVNAME_SIZE];
2609         struct pool_c *pt = ti->private;
2610         struct pool *pool = pt->pool;
2611
2612         switch (type) {
2613         case STATUSTYPE_INFO:
2614                 if (get_pool_mode(pool) == PM_FAIL) {
2615                         DMEMIT("Fail");
2616                         break;
2617                 }
2618
2619                 /* Commit to ensure statistics aren't out-of-date */
2620                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2621                         (void) commit(pool);
2622
2623                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2624                 if (r) {
2625                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2626                               dm_device_name(pool->pool_md), r);
2627                         goto err;
2628                 }
2629
2630                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2631                 if (r) {
2632                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2633                               dm_device_name(pool->pool_md), r);
2634                         goto err;
2635                 }
2636
2637                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2638                 if (r) {
2639                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2640                               dm_device_name(pool->pool_md), r);
2641                         goto err;
2642                 }
2643
2644                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2645                 if (r) {
2646                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2647                               dm_device_name(pool->pool_md), r);
2648                         goto err;
2649                 }
2650
2651                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2652                 if (r) {
2653                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2654                               dm_device_name(pool->pool_md), r);
2655                         goto err;
2656                 }
2657
2658                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2659                 if (r) {
2660                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2661                               dm_device_name(pool->pool_md), r);
2662                         goto err;
2663                 }
2664
2665                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2666                        (unsigned long long)transaction_id,
2667                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2668                        (unsigned long long)nr_blocks_metadata,
2669                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2670                        (unsigned long long)nr_blocks_data);
2671
2672                 if (held_root)
2673                         DMEMIT("%llu ", held_root);
2674                 else
2675                         DMEMIT("- ");
2676
2677                 if (pool->pf.mode == PM_READ_ONLY)
2678                         DMEMIT("ro ");
2679                 else
2680                         DMEMIT("rw ");
2681
2682                 if (!pool->pf.discard_enabled)
2683                         DMEMIT("ignore_discard ");
2684                 else if (pool->pf.discard_passdown)
2685                         DMEMIT("discard_passdown ");
2686                 else
2687                         DMEMIT("no_discard_passdown ");
2688
2689                 if (pool->pf.error_if_no_space)
2690                         DMEMIT("error_if_no_space ");
2691                 else
2692                         DMEMIT("queue_if_no_space ");
2693
2694                 break;
2695
2696         case STATUSTYPE_TABLE:
2697                 DMEMIT("%s %s %lu %llu ",
2698                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2699                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2700                        (unsigned long)pool->sectors_per_block,
2701                        (unsigned long long)pt->low_water_blocks);
2702                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2703                 break;
2704         }
2705         return;
2706
2707 err:
2708         DMEMIT("Error");
2709 }
2710
2711 static int pool_iterate_devices(struct dm_target *ti,
2712                                 iterate_devices_callout_fn fn, void *data)
2713 {
2714         struct pool_c *pt = ti->private;
2715
2716         return fn(ti, pt->data_dev, 0, ti->len, data);
2717 }
2718
2719 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2720                       struct bio_vec *biovec, int max_size)
2721 {
2722         struct pool_c *pt = ti->private;
2723         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2724
2725         if (!q->merge_bvec_fn)
2726                 return max_size;
2727
2728         bvm->bi_bdev = pt->data_dev->bdev;
2729
2730         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2731 }
2732
2733 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2734 {
2735         struct pool *pool = pt->pool;
2736         struct queue_limits *data_limits;
2737
2738         limits->max_discard_sectors = pool->sectors_per_block;
2739
2740         /*
2741          * discard_granularity is just a hint, and not enforced.
2742          */
2743         if (pt->adjusted_pf.discard_passdown) {
2744                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2745                 limits->discard_granularity = data_limits->discard_granularity;
2746         } else
2747                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2748 }
2749
2750 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2751 {
2752         struct pool_c *pt = ti->private;
2753         struct pool *pool = pt->pool;
2754         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2755
2756         /*
2757          * If the system-determined stacked limits are compatible with the
2758          * pool's blocksize (io_opt is a factor) do not override them.
2759          */
2760         if (io_opt_sectors < pool->sectors_per_block ||
2761             do_div(io_opt_sectors, pool->sectors_per_block)) {
2762                 blk_limits_io_min(limits, 0);
2763                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2764         }
2765
2766         /*
2767          * pt->adjusted_pf is a staging area for the actual features to use.
2768          * They get transferred to the live pool in bind_control_target()
2769          * called from pool_preresume().
2770          */
2771         if (!pt->adjusted_pf.discard_enabled) {
2772                 /*
2773                  * Must explicitly disallow stacking discard limits otherwise the
2774                  * block layer will stack them if pool's data device has support.
2775                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2776                  * user to see that, so make sure to set all discard limits to 0.
2777                  */
2778                 limits->discard_granularity = 0;
2779                 return;
2780         }
2781
2782         disable_passdown_if_not_supported(pt);
2783
2784         set_discard_limits(pt, limits);
2785 }
2786
2787 static struct target_type pool_target = {
2788         .name = "thin-pool",
2789         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2790                     DM_TARGET_IMMUTABLE,
2791         .version = {1, 10, 0},
2792         .module = THIS_MODULE,
2793         .ctr = pool_ctr,
2794         .dtr = pool_dtr,
2795         .map = pool_map,
2796         .postsuspend = pool_postsuspend,
2797         .preresume = pool_preresume,
2798         .resume = pool_resume,
2799         .message = pool_message,
2800         .status = pool_status,
2801         .merge = pool_merge,
2802         .iterate_devices = pool_iterate_devices,
2803         .io_hints = pool_io_hints,
2804 };
2805
2806 /*----------------------------------------------------------------
2807  * Thin target methods
2808  *--------------------------------------------------------------*/
2809 static void thin_dtr(struct dm_target *ti)
2810 {
2811         struct thin_c *tc = ti->private;
2812
2813         mutex_lock(&dm_thin_pool_table.mutex);
2814
2815         __pool_dec(tc->pool);
2816         dm_pool_close_thin_device(tc->td);
2817         dm_put_device(ti, tc->pool_dev);
2818         if (tc->origin_dev)
2819                 dm_put_device(ti, tc->origin_dev);
2820         kfree(tc);
2821
2822         mutex_unlock(&dm_thin_pool_table.mutex);
2823 }
2824
2825 /*
2826  * Thin target parameters:
2827  *
2828  * <pool_dev> <dev_id> [origin_dev]
2829  *
2830  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2831  * dev_id: the internal device identifier
2832  * origin_dev: a device external to the pool that should act as the origin
2833  *
2834  * If the pool device has discards disabled, they get disabled for the thin
2835  * device as well.
2836  */
2837 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2838 {
2839         int r;
2840         struct thin_c *tc;
2841         struct dm_dev *pool_dev, *origin_dev;
2842         struct mapped_device *pool_md;
2843
2844         mutex_lock(&dm_thin_pool_table.mutex);
2845
2846         if (argc != 2 && argc != 3) {
2847                 ti->error = "Invalid argument count";
2848                 r = -EINVAL;
2849                 goto out_unlock;
2850         }
2851
2852         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2853         if (!tc) {
2854                 ti->error = "Out of memory";
2855                 r = -ENOMEM;
2856                 goto out_unlock;
2857         }
2858
2859         if (argc == 3) {
2860                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2861                 if (r) {
2862                         ti->error = "Error opening origin device";
2863                         goto bad_origin_dev;
2864                 }
2865                 tc->origin_dev = origin_dev;
2866         }
2867
2868         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2869         if (r) {
2870                 ti->error = "Error opening pool device";
2871                 goto bad_pool_dev;
2872         }
2873         tc->pool_dev = pool_dev;
2874
2875         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2876                 ti->error = "Invalid device id";
2877                 r = -EINVAL;
2878                 goto bad_common;
2879         }
2880
2881         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2882         if (!pool_md) {
2883                 ti->error = "Couldn't get pool mapped device";
2884                 r = -EINVAL;
2885                 goto bad_common;
2886         }
2887
2888         tc->pool = __pool_table_lookup(pool_md);
2889         if (!tc->pool) {
2890                 ti->error = "Couldn't find pool object";
2891                 r = -EINVAL;
2892                 goto bad_pool_lookup;
2893         }
2894         __pool_inc(tc->pool);
2895
2896         if (get_pool_mode(tc->pool) == PM_FAIL) {
2897                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2898                 goto bad_thin_open;
2899         }
2900
2901         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2902         if (r) {
2903                 ti->error = "Couldn't open thin internal device";
2904                 goto bad_thin_open;
2905         }
2906
2907         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2908         if (r)
2909                 goto bad_thin_open;
2910
2911         ti->num_flush_bios = 1;
2912         ti->flush_supported = true;
2913         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2914
2915         /* In case the pool supports discards, pass them on. */
2916         ti->discard_zeroes_data_unsupported = true;
2917         if (tc->pool->pf.discard_enabled) {
2918                 ti->discards_supported = true;
2919                 ti->num_discard_bios = 1;
2920                 /* Discard bios must be split on a block boundary */
2921                 ti->split_discard_bios = true;
2922         }
2923
2924         dm_put(pool_md);
2925
2926         mutex_unlock(&dm_thin_pool_table.mutex);
2927
2928         return 0;
2929
2930 bad_thin_open:
2931         __pool_dec(tc->pool);
2932 bad_pool_lookup:
2933         dm_put(pool_md);
2934 bad_common:
2935         dm_put_device(ti, tc->pool_dev);
2936 bad_pool_dev:
2937         if (tc->origin_dev)
2938                 dm_put_device(ti, tc->origin_dev);
2939 bad_origin_dev:
2940         kfree(tc);
2941 out_unlock:
2942         mutex_unlock(&dm_thin_pool_table.mutex);
2943
2944         return r;
2945 }
2946
2947 static int thin_map(struct dm_target *ti, struct bio *bio)
2948 {
2949         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
2950
2951         return thin_bio_map(ti, bio);
2952 }
2953
2954 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2955 {
2956         unsigned long flags;
2957         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2958         struct list_head work;
2959         struct dm_thin_new_mapping *m, *tmp;
2960         struct pool *pool = h->tc->pool;
2961
2962         if (h->shared_read_entry) {
2963                 INIT_LIST_HEAD(&work);
2964                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2965
2966                 spin_lock_irqsave(&pool->lock, flags);
2967                 list_for_each_entry_safe(m, tmp, &work, list) {
2968                         list_del(&m->list);
2969                         m->quiesced = true;
2970                         __maybe_add_mapping(m);
2971                 }
2972                 spin_unlock_irqrestore(&pool->lock, flags);
2973         }
2974
2975         if (h->all_io_entry) {
2976                 INIT_LIST_HEAD(&work);
2977                 dm_deferred_entry_dec(h->all_io_entry, &work);
2978                 if (!list_empty(&work)) {
2979                         spin_lock_irqsave(&pool->lock, flags);
2980                         list_for_each_entry_safe(m, tmp, &work, list)
2981                                 list_add_tail(&m->list, &pool->prepared_discards);
2982                         spin_unlock_irqrestore(&pool->lock, flags);
2983                         wake_worker(pool);
2984                 }
2985         }
2986
2987         return 0;
2988 }
2989
2990 static void thin_postsuspend(struct dm_target *ti)
2991 {
2992         if (dm_noflush_suspending(ti))
2993                 requeue_io((struct thin_c *)ti->private);
2994 }
2995
2996 /*
2997  * <nr mapped sectors> <highest mapped sector>
2998  */
2999 static void thin_status(struct dm_target *ti, status_type_t type,
3000                         unsigned status_flags, char *result, unsigned maxlen)
3001 {
3002         int r;
3003         ssize_t sz = 0;
3004         dm_block_t mapped, highest;
3005         char buf[BDEVNAME_SIZE];
3006         struct thin_c *tc = ti->private;
3007
3008         if (get_pool_mode(tc->pool) == PM_FAIL) {
3009                 DMEMIT("Fail");
3010                 return;
3011         }
3012
3013         if (!tc->td)
3014                 DMEMIT("-");
3015         else {
3016                 switch (type) {
3017                 case STATUSTYPE_INFO:
3018                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3019                         if (r) {
3020                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3021                                 goto err;
3022                         }
3023
3024                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3025                         if (r < 0) {
3026                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3027                                 goto err;
3028                         }
3029
3030                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3031                         if (r)
3032                                 DMEMIT("%llu", ((highest + 1) *
3033                                                 tc->pool->sectors_per_block) - 1);
3034                         else
3035                                 DMEMIT("-");
3036                         break;
3037
3038                 case STATUSTYPE_TABLE:
3039                         DMEMIT("%s %lu",
3040                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3041                                (unsigned long) tc->dev_id);
3042                         if (tc->origin_dev)
3043                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3044                         break;
3045                 }
3046         }
3047
3048         return;
3049
3050 err:
3051         DMEMIT("Error");
3052 }
3053
3054 static int thin_iterate_devices(struct dm_target *ti,
3055                                 iterate_devices_callout_fn fn, void *data)
3056 {
3057         sector_t blocks;
3058         struct thin_c *tc = ti->private;
3059         struct pool *pool = tc->pool;
3060
3061         /*
3062          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3063          * we follow a more convoluted path through to the pool's target.
3064          */
3065         if (!pool->ti)
3066                 return 0;       /* nothing is bound */
3067
3068         blocks = pool->ti->len;
3069         (void) sector_div(blocks, pool->sectors_per_block);
3070         if (blocks)
3071                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3072
3073         return 0;
3074 }
3075
3076 static struct target_type thin_target = {
3077         .name = "thin",
3078         .version = {1, 10, 0},
3079         .module = THIS_MODULE,
3080         .ctr = thin_ctr,
3081         .dtr = thin_dtr,
3082         .map = thin_map,
3083         .end_io = thin_endio,
3084         .postsuspend = thin_postsuspend,
3085         .status = thin_status,
3086         .iterate_devices = thin_iterate_devices,
3087 };
3088
3089 /*----------------------------------------------------------------*/
3090
3091 static int __init dm_thin_init(void)
3092 {
3093         int r;
3094
3095         pool_table_init();
3096
3097         r = dm_register_target(&thin_target);
3098         if (r)
3099                 return r;
3100
3101         r = dm_register_target(&pool_target);
3102         if (r)
3103                 goto bad_pool_target;
3104
3105         r = -ENOMEM;
3106
3107         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3108         if (!_new_mapping_cache)
3109                 goto bad_new_mapping_cache;
3110
3111         return 0;
3112
3113 bad_new_mapping_cache:
3114         dm_unregister_target(&pool_target);
3115 bad_pool_target:
3116         dm_unregister_target(&thin_target);
3117
3118         return r;
3119 }
3120
3121 static void dm_thin_exit(void)
3122 {
3123         dm_unregister_target(&thin_target);
3124         dm_unregister_target(&pool_target);
3125
3126         kmem_cache_destroy(_new_mapping_cache);
3127 }
3128
3129 module_init(dm_thin_init);
3130 module_exit(dm_thin_exit);
3131
3132 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3133 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3134 MODULE_LICENSE("GPL");