2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/dm-kcopyd.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
18 #define DM_MSG_PREFIX "thin"
23 #define ENDIO_HOOK_POOL_SIZE 1024
24 #define DEFERRED_SET_SIZE 64
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
30 * The block size of the device holding pool data must be
31 * between 64KB and 1GB.
33 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
34 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
37 * Device id is restricted to 24 bits.
39 #define MAX_DEV_ID ((1 << 24) - 1)
42 * How do we handle breaking sharing of data blocks?
43 * =================================================
45 * We use a standard copy-on-write btree to store the mappings for the
46 * devices (note I'm talking about copy-on-write of the metadata here, not
47 * the data). When you take an internal snapshot you clone the root node
48 * of the origin btree. After this there is no concept of an origin or a
49 * snapshot. They are just two device trees that happen to point to the
52 * When we get a write in we decide if it's to a shared data block using
53 * some timestamp magic. If it is, we have to break sharing.
55 * Let's say we write to a shared block in what was the origin. The
58 * i) plug io further to this physical block. (see bio_prison code).
60 * ii) quiesce any read io to that shared data block. Obviously
61 * including all devices that share this block. (see deferred_set code)
63 * iii) copy the data block to a newly allocate block. This step can be
64 * missed out if the io covers the block. (schedule_copy).
66 * iv) insert the new mapping into the origin's btree
67 * (process_prepared_mapping). This act of inserting breaks some
68 * sharing of btree nodes between the two devices. Breaking sharing only
69 * effects the btree of that specific device. Btrees for the other
70 * devices that share the block never change. The btree for the origin
71 * device as it was after the last commit is untouched, ie. we're using
72 * persistent data structures in the functional programming sense.
74 * v) unplug io to this physical block, including the io that triggered
75 * the breaking of sharing.
77 * Steps (ii) and (iii) occur in parallel.
79 * The metadata _doesn't_ need to be committed before the io continues. We
80 * get away with this because the io is always written to a _new_ block.
81 * If there's a crash, then:
83 * - The origin mapping will point to the old origin block (the shared
84 * one). This will contain the data as it was before the io that triggered
85 * the breaking of sharing came in.
87 * - The snap mapping still points to the old block. As it would after
90 * The downside of this scheme is the timestamp magic isn't perfect, and
91 * will continue to think that data block in the snapshot device is shared
92 * even after the write to the origin has broken sharing. I suspect data
93 * blocks will typically be shared by many different devices, so we're
94 * breaking sharing n + 1 times, rather than n, where n is the number of
95 * devices that reference this data block. At the moment I think the
96 * benefits far, far outweigh the disadvantages.
99 /*----------------------------------------------------------------*/
102 * Sometimes we can't deal with a bio straight away. We put them in prison
103 * where they can't cause any mischief. Bios are put in a cell identified
104 * by a key, multiple bios can be in the same cell. When the cell is
105 * subsequently unlocked the bios become available.
115 struct dm_bio_prison_cell {
116 struct hlist_node list;
117 struct bio_prison *prison;
120 struct bio_list bios;
125 mempool_t *cell_pool;
129 struct hlist_head *cells;
132 static uint32_t calc_nr_buckets(unsigned nr_cells)
137 nr_cells = min(nr_cells, 8192u);
145 static struct kmem_cache *_cell_cache;
148 * @nr_cells should be the number of cells you want in use _concurrently_.
149 * Don't confuse it with the number of distinct keys.
151 static struct bio_prison *prison_create(unsigned nr_cells)
154 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
155 size_t len = sizeof(struct bio_prison) +
156 (sizeof(struct hlist_head) * nr_buckets);
157 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
162 spin_lock_init(&prison->lock);
163 prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
164 if (!prison->cell_pool) {
169 prison->nr_buckets = nr_buckets;
170 prison->hash_mask = nr_buckets - 1;
171 prison->cells = (struct hlist_head *) (prison + 1);
172 for (i = 0; i < nr_buckets; i++)
173 INIT_HLIST_HEAD(prison->cells + i);
178 static void prison_destroy(struct bio_prison *prison)
180 mempool_destroy(prison->cell_pool);
184 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
186 const unsigned long BIG_PRIME = 4294967291UL;
187 uint64_t hash = key->block * BIG_PRIME;
189 return (uint32_t) (hash & prison->hash_mask);
192 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
194 return (lhs->virtual == rhs->virtual) &&
195 (lhs->dev == rhs->dev) &&
196 (lhs->block == rhs->block);
199 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
200 struct cell_key *key)
202 struct dm_bio_prison_cell *cell;
203 struct hlist_node *tmp;
205 hlist_for_each_entry(cell, tmp, bucket, list)
206 if (keys_equal(&cell->key, key))
213 * This may block if a new cell needs allocating. You must ensure that
214 * cells will be unlocked even if the calling thread is blocked.
216 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
218 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
219 struct bio *inmate, struct dm_bio_prison_cell **ref)
223 uint32_t hash = hash_key(prison, key);
224 struct dm_bio_prison_cell *cell, *cell2;
226 BUG_ON(hash > prison->nr_buckets);
228 spin_lock_irqsave(&prison->lock, flags);
230 cell = __search_bucket(prison->cells + hash, key);
232 bio_list_add(&cell->bios, inmate);
237 * Allocate a new cell
239 spin_unlock_irqrestore(&prison->lock, flags);
240 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
241 spin_lock_irqsave(&prison->lock, flags);
244 * We've been unlocked, so we have to double check that
245 * nobody else has inserted this cell in the meantime.
247 cell = __search_bucket(prison->cells + hash, key);
249 mempool_free(cell2, prison->cell_pool);
250 bio_list_add(&cell->bios, inmate);
259 cell->prison = prison;
260 memcpy(&cell->key, key, sizeof(cell->key));
261 cell->holder = inmate;
262 bio_list_init(&cell->bios);
263 hlist_add_head(&cell->list, prison->cells + hash);
268 spin_unlock_irqrestore(&prison->lock, flags);
276 * @inmates must have been initialised prior to this call
278 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
280 struct bio_prison *prison = cell->prison;
282 hlist_del(&cell->list);
285 bio_list_add(inmates, cell->holder);
286 bio_list_merge(inmates, &cell->bios);
289 mempool_free(cell, prison->cell_pool);
292 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
295 struct bio_prison *prison = cell->prison;
297 spin_lock_irqsave(&prison->lock, flags);
298 __cell_release(cell, bios);
299 spin_unlock_irqrestore(&prison->lock, flags);
303 * There are a couple of places where we put a bio into a cell briefly
304 * before taking it out again. In these situations we know that no other
305 * bio may be in the cell. This function releases the cell, and also does
308 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
310 BUG_ON(cell->holder != bio);
311 BUG_ON(!bio_list_empty(&cell->bios));
313 __cell_release(cell, NULL);
316 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
319 struct bio_prison *prison = cell->prison;
321 spin_lock_irqsave(&prison->lock, flags);
322 __cell_release_singleton(cell, bio);
323 spin_unlock_irqrestore(&prison->lock, flags);
327 * Sometimes we don't want the holder, just the additional bios.
329 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
330 struct bio_list *inmates)
332 struct bio_prison *prison = cell->prison;
334 hlist_del(&cell->list);
335 bio_list_merge(inmates, &cell->bios);
337 mempool_free(cell, prison->cell_pool);
340 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
341 struct bio_list *inmates)
344 struct bio_prison *prison = cell->prison;
346 spin_lock_irqsave(&prison->lock, flags);
347 __cell_release_no_holder(cell, inmates);
348 spin_unlock_irqrestore(&prison->lock, flags);
351 static void cell_error(struct dm_bio_prison_cell *cell)
353 struct bio_prison *prison = cell->prison;
354 struct bio_list bios;
358 bio_list_init(&bios);
360 spin_lock_irqsave(&prison->lock, flags);
361 __cell_release(cell, &bios);
362 spin_unlock_irqrestore(&prison->lock, flags);
364 while ((bio = bio_list_pop(&bios)))
368 /*----------------------------------------------------------------*/
371 * We use the deferred set to keep track of pending reads to shared blocks.
372 * We do this to ensure the new mapping caused by a write isn't performed
373 * until these prior reads have completed. Otherwise the insertion of the
374 * new mapping could free the old block that the read bios are mapped to.
378 struct deferred_entry {
379 struct deferred_set *ds;
381 struct list_head work_items;
384 struct deferred_set {
386 unsigned current_entry;
388 struct deferred_entry entries[DEFERRED_SET_SIZE];
391 static void ds_init(struct deferred_set *ds)
395 spin_lock_init(&ds->lock);
396 ds->current_entry = 0;
398 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
399 ds->entries[i].ds = ds;
400 ds->entries[i].count = 0;
401 INIT_LIST_HEAD(&ds->entries[i].work_items);
405 static struct deferred_entry *ds_inc(struct deferred_set *ds)
408 struct deferred_entry *entry;
410 spin_lock_irqsave(&ds->lock, flags);
411 entry = ds->entries + ds->current_entry;
413 spin_unlock_irqrestore(&ds->lock, flags);
418 static unsigned ds_next(unsigned index)
420 return (index + 1) % DEFERRED_SET_SIZE;
423 static void __sweep(struct deferred_set *ds, struct list_head *head)
425 while ((ds->sweeper != ds->current_entry) &&
426 !ds->entries[ds->sweeper].count) {
427 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
428 ds->sweeper = ds_next(ds->sweeper);
431 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
432 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
435 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
439 spin_lock_irqsave(&entry->ds->lock, flags);
440 BUG_ON(!entry->count);
442 __sweep(entry->ds, head);
443 spin_unlock_irqrestore(&entry->ds->lock, flags);
447 * Returns 1 if deferred or 0 if no pending items to delay job.
449 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
455 spin_lock_irqsave(&ds->lock, flags);
456 if ((ds->sweeper == ds->current_entry) &&
457 !ds->entries[ds->current_entry].count)
460 list_add(work, &ds->entries[ds->current_entry].work_items);
461 next_entry = ds_next(ds->current_entry);
462 if (!ds->entries[next_entry].count)
463 ds->current_entry = next_entry;
465 spin_unlock_irqrestore(&ds->lock, flags);
470 /*----------------------------------------------------------------*/
475 static void build_data_key(struct dm_thin_device *td,
476 dm_block_t b, struct cell_key *key)
479 key->dev = dm_thin_dev_id(td);
483 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
484 struct cell_key *key)
487 key->dev = dm_thin_dev_id(td);
491 /*----------------------------------------------------------------*/
494 * A pool device ties together a metadata device and a data device. It
495 * also provides the interface for creating and destroying internal
498 struct dm_thin_new_mapping;
501 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
504 PM_WRITE, /* metadata may be changed */
505 PM_READ_ONLY, /* metadata may not be changed */
506 PM_FAIL, /* all I/O fails */
509 struct pool_features {
512 unsigned zero_new_blocks:1;
513 unsigned discard_enabled:1;
514 unsigned discard_passdown:1;
518 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
519 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
522 struct list_head list;
523 struct dm_target *ti; /* Only set if a pool target is bound */
525 struct mapped_device *pool_md;
526 struct block_device *md_dev;
527 struct dm_pool_metadata *pmd;
529 dm_block_t low_water_blocks;
530 uint32_t sectors_per_block;
531 int sectors_per_block_shift;
533 struct pool_features pf;
534 unsigned low_water_triggered:1; /* A dm event has been sent */
535 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
537 struct bio_prison *prison;
538 struct dm_kcopyd_client *copier;
540 struct workqueue_struct *wq;
541 struct work_struct worker;
542 struct delayed_work waker;
544 unsigned long last_commit_jiffies;
548 struct bio_list deferred_bios;
549 struct bio_list deferred_flush_bios;
550 struct list_head prepared_mappings;
551 struct list_head prepared_discards;
553 struct bio_list retry_on_resume_list;
555 struct deferred_set shared_read_ds;
556 struct deferred_set all_io_ds;
558 struct dm_thin_new_mapping *next_mapping;
559 mempool_t *mapping_pool;
560 mempool_t *endio_hook_pool;
562 process_bio_fn process_bio;
563 process_bio_fn process_discard;
565 process_mapping_fn process_prepared_mapping;
566 process_mapping_fn process_prepared_discard;
569 static enum pool_mode get_pool_mode(struct pool *pool);
570 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
573 * Target context for a pool.
576 struct dm_target *ti;
578 struct dm_dev *data_dev;
579 struct dm_dev *metadata_dev;
580 struct dm_target_callbacks callbacks;
582 dm_block_t low_water_blocks;
583 struct pool_features pf;
587 * Target context for a thin.
590 struct dm_dev *pool_dev;
591 struct dm_dev *origin_dev;
595 struct dm_thin_device *td;
598 /*----------------------------------------------------------------*/
601 * A global list of pools that uses a struct mapped_device as a key.
603 static struct dm_thin_pool_table {
605 struct list_head pools;
606 } dm_thin_pool_table;
608 static void pool_table_init(void)
610 mutex_init(&dm_thin_pool_table.mutex);
611 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
614 static void __pool_table_insert(struct pool *pool)
616 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
617 list_add(&pool->list, &dm_thin_pool_table.pools);
620 static void __pool_table_remove(struct pool *pool)
622 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
623 list_del(&pool->list);
626 static struct pool *__pool_table_lookup(struct mapped_device *md)
628 struct pool *pool = NULL, *tmp;
630 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
632 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
633 if (tmp->pool_md == md) {
642 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
644 struct pool *pool = NULL, *tmp;
646 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
648 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
649 if (tmp->md_dev == md_dev) {
658 /*----------------------------------------------------------------*/
660 struct dm_thin_endio_hook {
662 struct deferred_entry *shared_read_entry;
663 struct deferred_entry *all_io_entry;
664 struct dm_thin_new_mapping *overwrite_mapping;
667 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
670 struct bio_list bios;
672 bio_list_init(&bios);
673 bio_list_merge(&bios, master);
674 bio_list_init(master);
676 while ((bio = bio_list_pop(&bios))) {
677 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
680 bio_endio(bio, DM_ENDIO_REQUEUE);
682 bio_list_add(master, bio);
686 static void requeue_io(struct thin_c *tc)
688 struct pool *pool = tc->pool;
691 spin_lock_irqsave(&pool->lock, flags);
692 __requeue_bio_list(tc, &pool->deferred_bios);
693 __requeue_bio_list(tc, &pool->retry_on_resume_list);
694 spin_unlock_irqrestore(&pool->lock, flags);
698 * This section of code contains the logic for processing a thin device's IO.
699 * Much of the code depends on pool object resources (lists, workqueues, etc)
700 * but most is exclusively called from the thin target rather than the thin-pool
704 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
706 sector_t block_nr = bio->bi_sector;
708 if (tc->pool->sectors_per_block_shift < 0)
709 (void) sector_div(block_nr, tc->pool->sectors_per_block);
711 block_nr >>= tc->pool->sectors_per_block_shift;
716 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
718 struct pool *pool = tc->pool;
719 sector_t bi_sector = bio->bi_sector;
721 bio->bi_bdev = tc->pool_dev->bdev;
722 if (tc->pool->sectors_per_block_shift < 0)
723 bio->bi_sector = (block * pool->sectors_per_block) +
724 sector_div(bi_sector, pool->sectors_per_block);
726 bio->bi_sector = (block << pool->sectors_per_block_shift) |
727 (bi_sector & (pool->sectors_per_block - 1));
730 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
732 bio->bi_bdev = tc->origin_dev->bdev;
735 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
737 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
738 dm_thin_changed_this_transaction(tc->td);
741 static void issue(struct thin_c *tc, struct bio *bio)
743 struct pool *pool = tc->pool;
746 if (!bio_triggers_commit(tc, bio)) {
747 generic_make_request(bio);
752 * Complete bio with an error if earlier I/O caused changes to
753 * the metadata that can't be committed e.g, due to I/O errors
754 * on the metadata device.
756 if (dm_thin_aborted_changes(tc->td)) {
762 * Batch together any bios that trigger commits and then issue a
763 * single commit for them in process_deferred_bios().
765 spin_lock_irqsave(&pool->lock, flags);
766 bio_list_add(&pool->deferred_flush_bios, bio);
767 spin_unlock_irqrestore(&pool->lock, flags);
770 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
772 remap_to_origin(tc, bio);
776 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
779 remap(tc, bio, block);
784 * wake_worker() is used when new work is queued and when pool_resume is
785 * ready to continue deferred IO processing.
787 static void wake_worker(struct pool *pool)
789 queue_work(pool->wq, &pool->worker);
792 /*----------------------------------------------------------------*/
795 * Bio endio functions.
797 struct dm_thin_new_mapping {
798 struct list_head list;
802 unsigned pass_discard:1;
805 dm_block_t virt_block;
806 dm_block_t data_block;
807 struct dm_bio_prison_cell *cell, *cell2;
811 * If the bio covers the whole area of a block then we can avoid
812 * zeroing or copying. Instead this bio is hooked. The bio will
813 * still be in the cell, so care has to be taken to avoid issuing
817 bio_end_io_t *saved_bi_end_io;
820 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
822 struct pool *pool = m->tc->pool;
824 if (m->quiesced && m->prepared) {
825 list_add(&m->list, &pool->prepared_mappings);
830 static void copy_complete(int read_err, unsigned long write_err, void *context)
833 struct dm_thin_new_mapping *m = context;
834 struct pool *pool = m->tc->pool;
836 m->err = read_err || write_err ? -EIO : 0;
838 spin_lock_irqsave(&pool->lock, flags);
840 __maybe_add_mapping(m);
841 spin_unlock_irqrestore(&pool->lock, flags);
844 static void overwrite_endio(struct bio *bio, int err)
847 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
848 struct dm_thin_new_mapping *m = h->overwrite_mapping;
849 struct pool *pool = m->tc->pool;
853 spin_lock_irqsave(&pool->lock, flags);
855 __maybe_add_mapping(m);
856 spin_unlock_irqrestore(&pool->lock, flags);
859 /*----------------------------------------------------------------*/
866 * Prepared mapping jobs.
870 * This sends the bios in the cell back to the deferred_bios list.
872 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
873 dm_block_t data_block)
875 struct pool *pool = tc->pool;
878 spin_lock_irqsave(&pool->lock, flags);
879 cell_release(cell, &pool->deferred_bios);
880 spin_unlock_irqrestore(&tc->pool->lock, flags);
886 * Same as cell_defer above, except it omits one particular detainee,
887 * a write bio that covers the block and has already been processed.
889 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
891 struct bio_list bios;
892 struct pool *pool = tc->pool;
895 bio_list_init(&bios);
897 spin_lock_irqsave(&pool->lock, flags);
898 cell_release_no_holder(cell, &pool->deferred_bios);
899 spin_unlock_irqrestore(&pool->lock, flags);
904 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
907 m->bio->bi_end_io = m->saved_bi_end_io;
910 mempool_free(m, m->tc->pool->mapping_pool);
912 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
914 struct thin_c *tc = m->tc;
920 bio->bi_end_io = m->saved_bi_end_io;
928 * Commit the prepared block into the mapping btree.
929 * Any I/O for this block arriving after this point will get
930 * remapped to it directly.
932 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
934 DMERR("dm_thin_insert_block() failed");
940 * Release any bios held while the block was being provisioned.
941 * If we are processing a write bio that completely covers the block,
942 * we already processed it so can ignore it now when processing
943 * the bios in the cell.
946 cell_defer_except(tc, m->cell);
949 cell_defer(tc, m->cell, m->data_block);
953 mempool_free(m, tc->pool->mapping_pool);
956 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
958 struct thin_c *tc = m->tc;
960 bio_io_error(m->bio);
961 cell_defer_except(tc, m->cell);
962 cell_defer_except(tc, m->cell2);
963 mempool_free(m, tc->pool->mapping_pool);
966 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
968 struct thin_c *tc = m->tc;
971 remap_and_issue(tc, m->bio, m->data_block);
973 bio_endio(m->bio, 0);
975 cell_defer_except(tc, m->cell);
976 cell_defer_except(tc, m->cell2);
977 mempool_free(m, tc->pool->mapping_pool);
980 static void process_prepared_discard(struct dm_thin_new_mapping *m)
983 struct thin_c *tc = m->tc;
985 r = dm_thin_remove_block(tc->td, m->virt_block);
987 DMERR("dm_thin_remove_block() failed");
989 process_prepared_discard_passdown(m);
992 static void process_prepared(struct pool *pool, struct list_head *head,
993 process_mapping_fn *fn)
996 struct list_head maps;
997 struct dm_thin_new_mapping *m, *tmp;
999 INIT_LIST_HEAD(&maps);
1000 spin_lock_irqsave(&pool->lock, flags);
1001 list_splice_init(head, &maps);
1002 spin_unlock_irqrestore(&pool->lock, flags);
1004 list_for_each_entry_safe(m, tmp, &maps, list)
1009 * Deferred bio jobs.
1011 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1013 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
1016 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1018 return (bio_data_dir(bio) == WRITE) &&
1019 io_overlaps_block(pool, bio);
1022 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1025 *save = bio->bi_end_io;
1026 bio->bi_end_io = fn;
1029 static int ensure_next_mapping(struct pool *pool)
1031 if (pool->next_mapping)
1034 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1036 return pool->next_mapping ? 0 : -ENOMEM;
1039 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1041 struct dm_thin_new_mapping *r = pool->next_mapping;
1043 BUG_ON(!pool->next_mapping);
1045 pool->next_mapping = NULL;
1050 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1051 struct dm_dev *origin, dm_block_t data_origin,
1052 dm_block_t data_dest,
1053 struct dm_bio_prison_cell *cell, struct bio *bio)
1056 struct pool *pool = tc->pool;
1057 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1059 INIT_LIST_HEAD(&m->list);
1063 m->virt_block = virt_block;
1064 m->data_block = data_dest;
1069 if (!ds_add_work(&pool->shared_read_ds, &m->list))
1073 * IO to pool_dev remaps to the pool target's data_dev.
1075 * If the whole block of data is being overwritten, we can issue the
1076 * bio immediately. Otherwise we use kcopyd to clone the data first.
1078 if (io_overwrites_block(pool, bio)) {
1079 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1081 h->overwrite_mapping = m;
1083 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1084 remap_and_issue(tc, bio, data_dest);
1086 struct dm_io_region from, to;
1088 from.bdev = origin->bdev;
1089 from.sector = data_origin * pool->sectors_per_block;
1090 from.count = pool->sectors_per_block;
1092 to.bdev = tc->pool_dev->bdev;
1093 to.sector = data_dest * pool->sectors_per_block;
1094 to.count = pool->sectors_per_block;
1096 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1097 0, copy_complete, m);
1099 mempool_free(m, pool->mapping_pool);
1100 DMERR("dm_kcopyd_copy() failed");
1106 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1107 dm_block_t data_origin, dm_block_t data_dest,
1108 struct dm_bio_prison_cell *cell, struct bio *bio)
1110 schedule_copy(tc, virt_block, tc->pool_dev,
1111 data_origin, data_dest, cell, bio);
1114 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1115 dm_block_t data_dest,
1116 struct dm_bio_prison_cell *cell, struct bio *bio)
1118 schedule_copy(tc, virt_block, tc->origin_dev,
1119 virt_block, data_dest, cell, bio);
1122 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1123 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1126 struct pool *pool = tc->pool;
1127 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1129 INIT_LIST_HEAD(&m->list);
1133 m->virt_block = virt_block;
1134 m->data_block = data_block;
1140 * If the whole block of data is being overwritten or we are not
1141 * zeroing pre-existing data, we can issue the bio immediately.
1142 * Otherwise we use kcopyd to zero the data first.
1144 if (!pool->pf.zero_new_blocks)
1145 process_prepared_mapping(m);
1147 else if (io_overwrites_block(pool, bio)) {
1148 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1150 h->overwrite_mapping = m;
1152 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1153 remap_and_issue(tc, bio, data_block);
1156 struct dm_io_region to;
1158 to.bdev = tc->pool_dev->bdev;
1159 to.sector = data_block * pool->sectors_per_block;
1160 to.count = pool->sectors_per_block;
1162 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1164 mempool_free(m, pool->mapping_pool);
1165 DMERR("dm_kcopyd_zero() failed");
1171 static int commit(struct pool *pool)
1175 r = dm_pool_commit_metadata(pool->pmd);
1177 DMERR("commit failed, error = %d", r);
1183 * A non-zero return indicates read_only or fail_io mode.
1184 * Many callers don't care about the return value.
1186 static int commit_or_fallback(struct pool *pool)
1190 if (get_pool_mode(pool) != PM_WRITE)
1195 set_pool_mode(pool, PM_READ_ONLY);
1200 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1203 dm_block_t free_blocks;
1204 unsigned long flags;
1205 struct pool *pool = tc->pool;
1207 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1211 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1212 DMWARN("%s: reached low water mark, sending event.",
1213 dm_device_name(pool->pool_md));
1214 spin_lock_irqsave(&pool->lock, flags);
1215 pool->low_water_triggered = 1;
1216 spin_unlock_irqrestore(&pool->lock, flags);
1217 dm_table_event(pool->ti->table);
1221 if (pool->no_free_space)
1225 * Try to commit to see if that will free up some
1228 (void) commit_or_fallback(pool);
1230 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1235 * If we still have no space we set a flag to avoid
1236 * doing all this checking and return -ENOSPC.
1239 DMWARN("%s: no free space available.",
1240 dm_device_name(pool->pool_md));
1241 spin_lock_irqsave(&pool->lock, flags);
1242 pool->no_free_space = 1;
1243 spin_unlock_irqrestore(&pool->lock, flags);
1249 r = dm_pool_alloc_data_block(pool->pmd, result);
1257 * If we have run out of space, queue bios until the device is
1258 * resumed, presumably after having been reloaded with more space.
1260 static void retry_on_resume(struct bio *bio)
1262 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1263 struct thin_c *tc = h->tc;
1264 struct pool *pool = tc->pool;
1265 unsigned long flags;
1267 spin_lock_irqsave(&pool->lock, flags);
1268 bio_list_add(&pool->retry_on_resume_list, bio);
1269 spin_unlock_irqrestore(&pool->lock, flags);
1272 static void no_space(struct dm_bio_prison_cell *cell)
1275 struct bio_list bios;
1277 bio_list_init(&bios);
1278 cell_release(cell, &bios);
1280 while ((bio = bio_list_pop(&bios)))
1281 retry_on_resume(bio);
1284 static void process_discard(struct thin_c *tc, struct bio *bio)
1287 unsigned long flags;
1288 struct pool *pool = tc->pool;
1289 struct dm_bio_prison_cell *cell, *cell2;
1290 struct cell_key key, key2;
1291 dm_block_t block = get_bio_block(tc, bio);
1292 struct dm_thin_lookup_result lookup_result;
1293 struct dm_thin_new_mapping *m;
1295 build_virtual_key(tc->td, block, &key);
1296 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1299 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1303 * Check nobody is fiddling with this pool block. This can
1304 * happen if someone's in the process of breaking sharing
1307 build_data_key(tc->td, lookup_result.block, &key2);
1308 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1309 cell_release_singleton(cell, bio);
1313 if (io_overlaps_block(pool, bio)) {
1315 * IO may still be going to the destination block. We must
1316 * quiesce before we can do the removal.
1318 m = get_next_mapping(pool);
1320 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1321 m->virt_block = block;
1322 m->data_block = lookup_result.block;
1328 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1329 spin_lock_irqsave(&pool->lock, flags);
1330 list_add(&m->list, &pool->prepared_discards);
1331 spin_unlock_irqrestore(&pool->lock, flags);
1336 * The DM core makes sure that the discard doesn't span
1337 * a block boundary. So we submit the discard of a
1338 * partial block appropriately.
1340 cell_release_singleton(cell, bio);
1341 cell_release_singleton(cell2, bio);
1342 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1343 remap_and_issue(tc, bio, lookup_result.block);
1351 * It isn't provisioned, just forget it.
1353 cell_release_singleton(cell, bio);
1358 DMERR("discard: find block unexpectedly returned %d", r);
1359 cell_release_singleton(cell, bio);
1365 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1366 struct cell_key *key,
1367 struct dm_thin_lookup_result *lookup_result,
1368 struct dm_bio_prison_cell *cell)
1371 dm_block_t data_block;
1373 r = alloc_data_block(tc, &data_block);
1376 schedule_internal_copy(tc, block, lookup_result->block,
1377 data_block, cell, bio);
1385 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1391 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1393 struct dm_thin_lookup_result *lookup_result)
1395 struct dm_bio_prison_cell *cell;
1396 struct pool *pool = tc->pool;
1397 struct cell_key key;
1400 * If cell is already occupied, then sharing is already in the process
1401 * of being broken so we have nothing further to do here.
1403 build_data_key(tc->td, lookup_result->block, &key);
1404 if (bio_detain(pool->prison, &key, bio, &cell))
1407 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1408 break_sharing(tc, bio, block, &key, lookup_result, cell);
1410 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1412 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1414 cell_release_singleton(cell, bio);
1415 remap_and_issue(tc, bio, lookup_result->block);
1419 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1420 struct dm_bio_prison_cell *cell)
1423 dm_block_t data_block;
1426 * Remap empty bios (flushes) immediately, without provisioning.
1428 if (!bio->bi_size) {
1429 cell_release_singleton(cell, bio);
1430 remap_and_issue(tc, bio, 0);
1435 * Fill read bios with zeroes and complete them immediately.
1437 if (bio_data_dir(bio) == READ) {
1439 cell_release_singleton(cell, bio);
1444 r = alloc_data_block(tc, &data_block);
1448 schedule_external_copy(tc, block, data_block, cell, bio);
1450 schedule_zero(tc, block, data_block, cell, bio);
1458 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1459 set_pool_mode(tc->pool, PM_READ_ONLY);
1465 static void process_bio(struct thin_c *tc, struct bio *bio)
1468 dm_block_t block = get_bio_block(tc, bio);
1469 struct dm_bio_prison_cell *cell;
1470 struct cell_key key;
1471 struct dm_thin_lookup_result lookup_result;
1474 * If cell is already occupied, then the block is already
1475 * being provisioned so we have nothing further to do here.
1477 build_virtual_key(tc->td, block, &key);
1478 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1481 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1485 * We can release this cell now. This thread is the only
1486 * one that puts bios into a cell, and we know there were
1487 * no preceding bios.
1490 * TODO: this will probably have to change when discard goes
1493 cell_release_singleton(cell, bio);
1495 if (lookup_result.shared)
1496 process_shared_bio(tc, bio, block, &lookup_result);
1498 remap_and_issue(tc, bio, lookup_result.block);
1502 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1503 cell_release_singleton(cell, bio);
1504 remap_to_origin_and_issue(tc, bio);
1506 provision_block(tc, bio, block, cell);
1510 DMERR("dm_thin_find_block() failed, error = %d", r);
1511 cell_release_singleton(cell, bio);
1517 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1520 int rw = bio_data_dir(bio);
1521 dm_block_t block = get_bio_block(tc, bio);
1522 struct dm_thin_lookup_result lookup_result;
1524 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1527 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1530 remap_and_issue(tc, bio, lookup_result.block);
1539 if (tc->origin_dev) {
1540 remap_to_origin_and_issue(tc, bio);
1549 DMERR("dm_thin_find_block() failed, error = %d", r);
1555 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1560 static int need_commit_due_to_time(struct pool *pool)
1562 return jiffies < pool->last_commit_jiffies ||
1563 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1566 static void process_deferred_bios(struct pool *pool)
1568 unsigned long flags;
1570 struct bio_list bios;
1572 bio_list_init(&bios);
1574 spin_lock_irqsave(&pool->lock, flags);
1575 bio_list_merge(&bios, &pool->deferred_bios);
1576 bio_list_init(&pool->deferred_bios);
1577 spin_unlock_irqrestore(&pool->lock, flags);
1579 while ((bio = bio_list_pop(&bios))) {
1580 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1581 struct thin_c *tc = h->tc;
1584 * If we've got no free new_mapping structs, and processing
1585 * this bio might require one, we pause until there are some
1586 * prepared mappings to process.
1588 if (ensure_next_mapping(pool)) {
1589 spin_lock_irqsave(&pool->lock, flags);
1590 bio_list_merge(&pool->deferred_bios, &bios);
1591 spin_unlock_irqrestore(&pool->lock, flags);
1596 if (bio->bi_rw & REQ_DISCARD)
1597 pool->process_discard(tc, bio);
1599 pool->process_bio(tc, bio);
1603 * If there are any deferred flush bios, we must commit
1604 * the metadata before issuing them.
1606 bio_list_init(&bios);
1607 spin_lock_irqsave(&pool->lock, flags);
1608 bio_list_merge(&bios, &pool->deferred_flush_bios);
1609 bio_list_init(&pool->deferred_flush_bios);
1610 spin_unlock_irqrestore(&pool->lock, flags);
1612 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1615 if (commit_or_fallback(pool)) {
1616 while ((bio = bio_list_pop(&bios)))
1620 pool->last_commit_jiffies = jiffies;
1622 while ((bio = bio_list_pop(&bios)))
1623 generic_make_request(bio);
1626 static void do_worker(struct work_struct *ws)
1628 struct pool *pool = container_of(ws, struct pool, worker);
1630 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1631 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1632 process_deferred_bios(pool);
1636 * We want to commit periodically so that not too much
1637 * unwritten data builds up.
1639 static void do_waker(struct work_struct *ws)
1641 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1643 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1646 /*----------------------------------------------------------------*/
1648 static enum pool_mode get_pool_mode(struct pool *pool)
1650 return pool->pf.mode;
1653 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1657 pool->pf.mode = mode;
1661 DMERR("switching pool to failure mode");
1662 pool->process_bio = process_bio_fail;
1663 pool->process_discard = process_bio_fail;
1664 pool->process_prepared_mapping = process_prepared_mapping_fail;
1665 pool->process_prepared_discard = process_prepared_discard_fail;
1669 DMERR("switching pool to read-only mode");
1670 r = dm_pool_abort_metadata(pool->pmd);
1672 DMERR("aborting transaction failed");
1673 set_pool_mode(pool, PM_FAIL);
1675 dm_pool_metadata_read_only(pool->pmd);
1676 pool->process_bio = process_bio_read_only;
1677 pool->process_discard = process_discard;
1678 pool->process_prepared_mapping = process_prepared_mapping_fail;
1679 pool->process_prepared_discard = process_prepared_discard_passdown;
1684 pool->process_bio = process_bio;
1685 pool->process_discard = process_discard;
1686 pool->process_prepared_mapping = process_prepared_mapping;
1687 pool->process_prepared_discard = process_prepared_discard;
1692 /*----------------------------------------------------------------*/
1695 * Mapping functions.
1699 * Called only while mapping a thin bio to hand it over to the workqueue.
1701 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1703 unsigned long flags;
1704 struct pool *pool = tc->pool;
1706 spin_lock_irqsave(&pool->lock, flags);
1707 bio_list_add(&pool->deferred_bios, bio);
1708 spin_unlock_irqrestore(&pool->lock, flags);
1713 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1715 struct pool *pool = tc->pool;
1716 struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1719 h->shared_read_entry = NULL;
1720 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1721 h->overwrite_mapping = NULL;
1727 * Non-blocking function called from the thin target's map function.
1729 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1730 union map_info *map_context)
1733 struct thin_c *tc = ti->private;
1734 dm_block_t block = get_bio_block(tc, bio);
1735 struct dm_thin_device *td = tc->td;
1736 struct dm_thin_lookup_result result;
1738 map_context->ptr = thin_hook_bio(tc, bio);
1740 if (get_pool_mode(tc->pool) == PM_FAIL) {
1742 return DM_MAPIO_SUBMITTED;
1745 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1746 thin_defer_bio(tc, bio);
1747 return DM_MAPIO_SUBMITTED;
1750 r = dm_thin_find_block(td, block, 0, &result);
1753 * Note that we defer readahead too.
1757 if (unlikely(result.shared)) {
1759 * We have a race condition here between the
1760 * result.shared value returned by the lookup and
1761 * snapshot creation, which may cause new
1764 * To avoid this always quiesce the origin before
1765 * taking the snap. You want to do this anyway to
1766 * ensure a consistent application view
1769 * More distant ancestors are irrelevant. The
1770 * shared flag will be set in their case.
1772 thin_defer_bio(tc, bio);
1773 r = DM_MAPIO_SUBMITTED;
1775 remap(tc, bio, result.block);
1776 r = DM_MAPIO_REMAPPED;
1781 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1783 * This block isn't provisioned, and we have no way
1784 * of doing so. Just error it.
1787 r = DM_MAPIO_SUBMITTED;
1794 * In future, the failed dm_thin_find_block above could
1795 * provide the hint to load the metadata into cache.
1797 thin_defer_bio(tc, bio);
1798 r = DM_MAPIO_SUBMITTED;
1803 * Must always call bio_io_error on failure.
1804 * dm_thin_find_block can fail with -EINVAL if the
1805 * pool is switched to fail-io mode.
1808 r = DM_MAPIO_SUBMITTED;
1815 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1818 unsigned long flags;
1819 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1821 spin_lock_irqsave(&pt->pool->lock, flags);
1822 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1823 spin_unlock_irqrestore(&pt->pool->lock, flags);
1826 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1827 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1833 static void __requeue_bios(struct pool *pool)
1835 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1836 bio_list_init(&pool->retry_on_resume_list);
1839 /*----------------------------------------------------------------
1840 * Binding of control targets to a pool object
1841 *--------------------------------------------------------------*/
1842 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1844 struct pool_c *pt = ti->private;
1847 * We want to make sure that degraded pools are never upgraded.
1849 enum pool_mode old_mode = pool->pf.mode;
1850 enum pool_mode new_mode = pt->pf.mode;
1852 if (old_mode > new_mode)
1853 new_mode = old_mode;
1856 pool->low_water_blocks = pt->low_water_blocks;
1858 set_pool_mode(pool, new_mode);
1861 * If discard_passdown was enabled verify that the data device
1862 * supports discards. Disable discard_passdown if not; otherwise
1863 * -EOPNOTSUPP will be returned.
1865 /* FIXME: pull this out into a sep fn. */
1866 if (pt->pf.discard_passdown) {
1867 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1868 if (!q || !blk_queue_discard(q)) {
1869 char buf[BDEVNAME_SIZE];
1870 DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1871 bdevname(pt->data_dev->bdev, buf));
1872 pool->pf.discard_passdown = 0;
1879 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1885 /*----------------------------------------------------------------
1887 *--------------------------------------------------------------*/
1888 /* Initialize pool features. */
1889 static void pool_features_init(struct pool_features *pf)
1891 pf->mode = PM_WRITE;
1892 pf->zero_new_blocks = 1;
1893 pf->discard_enabled = 1;
1894 pf->discard_passdown = 1;
1897 static void __pool_destroy(struct pool *pool)
1899 __pool_table_remove(pool);
1901 if (dm_pool_metadata_close(pool->pmd) < 0)
1902 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1904 prison_destroy(pool->prison);
1905 dm_kcopyd_client_destroy(pool->copier);
1908 destroy_workqueue(pool->wq);
1910 if (pool->next_mapping)
1911 mempool_free(pool->next_mapping, pool->mapping_pool);
1912 mempool_destroy(pool->mapping_pool);
1913 mempool_destroy(pool->endio_hook_pool);
1917 static struct kmem_cache *_new_mapping_cache;
1918 static struct kmem_cache *_endio_hook_cache;
1920 static struct pool *pool_create(struct mapped_device *pool_md,
1921 struct block_device *metadata_dev,
1922 unsigned long block_size,
1923 int read_only, char **error)
1928 struct dm_pool_metadata *pmd;
1929 bool format_device = read_only ? false : true;
1931 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1933 *error = "Error creating metadata object";
1934 return (struct pool *)pmd;
1937 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1939 *error = "Error allocating memory for pool";
1940 err_p = ERR_PTR(-ENOMEM);
1945 pool->sectors_per_block = block_size;
1946 if (block_size & (block_size - 1))
1947 pool->sectors_per_block_shift = -1;
1949 pool->sectors_per_block_shift = __ffs(block_size);
1950 pool->low_water_blocks = 0;
1951 pool_features_init(&pool->pf);
1952 pool->prison = prison_create(PRISON_CELLS);
1953 if (!pool->prison) {
1954 *error = "Error creating pool's bio prison";
1955 err_p = ERR_PTR(-ENOMEM);
1959 pool->copier = dm_kcopyd_client_create();
1960 if (IS_ERR(pool->copier)) {
1961 r = PTR_ERR(pool->copier);
1962 *error = "Error creating pool's kcopyd client";
1964 goto bad_kcopyd_client;
1968 * Create singlethreaded workqueue that will service all devices
1969 * that use this metadata.
1971 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1973 *error = "Error creating pool's workqueue";
1974 err_p = ERR_PTR(-ENOMEM);
1978 INIT_WORK(&pool->worker, do_worker);
1979 INIT_DELAYED_WORK(&pool->waker, do_waker);
1980 spin_lock_init(&pool->lock);
1981 bio_list_init(&pool->deferred_bios);
1982 bio_list_init(&pool->deferred_flush_bios);
1983 INIT_LIST_HEAD(&pool->prepared_mappings);
1984 INIT_LIST_HEAD(&pool->prepared_discards);
1985 pool->low_water_triggered = 0;
1986 pool->no_free_space = 0;
1987 bio_list_init(&pool->retry_on_resume_list);
1988 ds_init(&pool->shared_read_ds);
1989 ds_init(&pool->all_io_ds);
1991 pool->next_mapping = NULL;
1992 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1993 _new_mapping_cache);
1994 if (!pool->mapping_pool) {
1995 *error = "Error creating pool's mapping mempool";
1996 err_p = ERR_PTR(-ENOMEM);
1997 goto bad_mapping_pool;
2000 pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
2002 if (!pool->endio_hook_pool) {
2003 *error = "Error creating pool's endio_hook mempool";
2004 err_p = ERR_PTR(-ENOMEM);
2005 goto bad_endio_hook_pool;
2007 pool->ref_count = 1;
2008 pool->last_commit_jiffies = jiffies;
2009 pool->pool_md = pool_md;
2010 pool->md_dev = metadata_dev;
2011 __pool_table_insert(pool);
2015 bad_endio_hook_pool:
2016 mempool_destroy(pool->mapping_pool);
2018 destroy_workqueue(pool->wq);
2020 dm_kcopyd_client_destroy(pool->copier);
2022 prison_destroy(pool->prison);
2026 if (dm_pool_metadata_close(pmd))
2027 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2032 static void __pool_inc(struct pool *pool)
2034 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2038 static void __pool_dec(struct pool *pool)
2040 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2041 BUG_ON(!pool->ref_count);
2042 if (!--pool->ref_count)
2043 __pool_destroy(pool);
2046 static struct pool *__pool_find(struct mapped_device *pool_md,
2047 struct block_device *metadata_dev,
2048 unsigned long block_size, int read_only,
2049 char **error, int *created)
2051 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2054 if (pool->pool_md != pool_md) {
2055 *error = "metadata device already in use by a pool";
2056 return ERR_PTR(-EBUSY);
2061 pool = __pool_table_lookup(pool_md);
2063 if (pool->md_dev != metadata_dev) {
2064 *error = "different pool cannot replace a pool";
2065 return ERR_PTR(-EINVAL);
2070 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2078 /*----------------------------------------------------------------
2079 * Pool target methods
2080 *--------------------------------------------------------------*/
2081 static void pool_dtr(struct dm_target *ti)
2083 struct pool_c *pt = ti->private;
2085 mutex_lock(&dm_thin_pool_table.mutex);
2087 unbind_control_target(pt->pool, ti);
2088 __pool_dec(pt->pool);
2089 dm_put_device(ti, pt->metadata_dev);
2090 dm_put_device(ti, pt->data_dev);
2093 mutex_unlock(&dm_thin_pool_table.mutex);
2096 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2097 struct dm_target *ti)
2101 const char *arg_name;
2103 static struct dm_arg _args[] = {
2104 {0, 3, "Invalid number of pool feature arguments"},
2108 * No feature arguments supplied.
2113 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2117 while (argc && !r) {
2118 arg_name = dm_shift_arg(as);
2121 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2122 pf->zero_new_blocks = 0;
2124 else if (!strcasecmp(arg_name, "ignore_discard"))
2125 pf->discard_enabled = 0;
2127 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2128 pf->discard_passdown = 0;
2130 else if (!strcasecmp(arg_name, "read_only"))
2131 pf->mode = PM_READ_ONLY;
2134 ti->error = "Unrecognised pool feature requested";
2144 * thin-pool <metadata dev> <data dev>
2145 * <data block size (sectors)>
2146 * <low water mark (blocks)>
2147 * [<#feature args> [<arg>]*]
2149 * Optional feature arguments are:
2150 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2151 * ignore_discard: disable discard
2152 * no_discard_passdown: don't pass discards down to the data device
2154 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2156 int r, pool_created = 0;
2159 struct pool_features pf;
2160 struct dm_arg_set as;
2161 struct dm_dev *data_dev;
2162 unsigned long block_size;
2163 dm_block_t low_water_blocks;
2164 struct dm_dev *metadata_dev;
2165 sector_t metadata_dev_size;
2166 char b[BDEVNAME_SIZE];
2169 * FIXME Remove validation from scope of lock.
2171 mutex_lock(&dm_thin_pool_table.mutex);
2174 ti->error = "Invalid argument count";
2181 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
2183 ti->error = "Error opening metadata block device";
2187 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
2188 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2189 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2190 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2192 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2194 ti->error = "Error getting data device";
2198 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2199 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2200 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2201 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2202 ti->error = "Invalid block size";
2207 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2208 ti->error = "Invalid low water mark";
2214 * Set default pool features.
2216 pool_features_init(&pf);
2218 dm_consume_args(&as, 4);
2219 r = parse_pool_features(&as, &pf, ti);
2223 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2229 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2230 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2237 * 'pool_created' reflects whether this is the first table load.
2238 * Top level discard support is not allowed to be changed after
2239 * initial load. This would require a pool reload to trigger thin
2242 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2243 ti->error = "Discard support cannot be disabled once enabled";
2245 goto out_flags_changed;
2249 * The block layer requires discard_granularity to be a power of 2.
2251 if (pf.discard_enabled && !is_power_of_2(block_size)) {
2252 ti->error = "Discard support must be disabled when the block size is not a power of 2";
2254 goto out_flags_changed;
2259 pt->metadata_dev = metadata_dev;
2260 pt->data_dev = data_dev;
2261 pt->low_water_blocks = low_water_blocks;
2263 ti->num_flush_requests = 1;
2265 * Only need to enable discards if the pool should pass
2266 * them down to the data device. The thin device's discard
2267 * processing will cause mappings to be removed from the btree.
2269 if (pf.discard_enabled && pf.discard_passdown) {
2270 ti->num_discard_requests = 1;
2272 * Setting 'discards_supported' circumvents the normal
2273 * stacking of discard limits (this keeps the pool and
2274 * thin devices' discard limits consistent).
2276 ti->discards_supported = true;
2280 pt->callbacks.congested_fn = pool_is_congested;
2281 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2283 mutex_unlock(&dm_thin_pool_table.mutex);
2292 dm_put_device(ti, data_dev);
2294 dm_put_device(ti, metadata_dev);
2296 mutex_unlock(&dm_thin_pool_table.mutex);
2301 static int pool_map(struct dm_target *ti, struct bio *bio,
2302 union map_info *map_context)
2305 struct pool_c *pt = ti->private;
2306 struct pool *pool = pt->pool;
2307 unsigned long flags;
2310 * As this is a singleton target, ti->begin is always zero.
2312 spin_lock_irqsave(&pool->lock, flags);
2313 bio->bi_bdev = pt->data_dev->bdev;
2314 r = DM_MAPIO_REMAPPED;
2315 spin_unlock_irqrestore(&pool->lock, flags);
2321 * Retrieves the number of blocks of the data device from
2322 * the superblock and compares it to the actual device size,
2323 * thus resizing the data device in case it has grown.
2325 * This both copes with opening preallocated data devices in the ctr
2326 * being followed by a resume
2328 * calling the resume method individually after userspace has
2329 * grown the data device in reaction to a table event.
2331 static int pool_preresume(struct dm_target *ti)
2334 struct pool_c *pt = ti->private;
2335 struct pool *pool = pt->pool;
2336 sector_t data_size = ti->len;
2337 dm_block_t sb_data_size;
2340 * Take control of the pool object.
2342 r = bind_control_target(pool, ti);
2346 (void) sector_div(data_size, pool->sectors_per_block);
2348 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2350 DMERR("failed to retrieve data device size");
2354 if (data_size < sb_data_size) {
2355 DMERR("pool target too small, is %llu blocks (expected %llu)",
2356 (unsigned long long)data_size, sb_data_size);
2359 } else if (data_size > sb_data_size) {
2360 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2362 DMERR("failed to resize data device");
2363 /* FIXME Stricter than necessary: Rollback transaction instead here */
2364 set_pool_mode(pool, PM_READ_ONLY);
2368 (void) commit_or_fallback(pool);
2374 static void pool_resume(struct dm_target *ti)
2376 struct pool_c *pt = ti->private;
2377 struct pool *pool = pt->pool;
2378 unsigned long flags;
2380 spin_lock_irqsave(&pool->lock, flags);
2381 pool->low_water_triggered = 0;
2382 pool->no_free_space = 0;
2383 __requeue_bios(pool);
2384 spin_unlock_irqrestore(&pool->lock, flags);
2386 do_waker(&pool->waker.work);
2389 static void pool_postsuspend(struct dm_target *ti)
2391 struct pool_c *pt = ti->private;
2392 struct pool *pool = pt->pool;
2394 cancel_delayed_work(&pool->waker);
2395 flush_workqueue(pool->wq);
2396 (void) commit_or_fallback(pool);
2399 static int check_arg_count(unsigned argc, unsigned args_required)
2401 if (argc != args_required) {
2402 DMWARN("Message received with %u arguments instead of %u.",
2403 argc, args_required);
2410 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2412 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2413 *dev_id <= MAX_DEV_ID)
2417 DMWARN("Message received with invalid device id: %s", arg);
2422 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2427 r = check_arg_count(argc, 2);
2431 r = read_dev_id(argv[1], &dev_id, 1);
2435 r = dm_pool_create_thin(pool->pmd, dev_id);
2437 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2445 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2448 dm_thin_id origin_dev_id;
2451 r = check_arg_count(argc, 3);
2455 r = read_dev_id(argv[1], &dev_id, 1);
2459 r = read_dev_id(argv[2], &origin_dev_id, 1);
2463 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2465 DMWARN("Creation of new snapshot %s of device %s failed.",
2473 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2478 r = check_arg_count(argc, 2);
2482 r = read_dev_id(argv[1], &dev_id, 1);
2486 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2488 DMWARN("Deletion of thin device %s failed.", argv[1]);
2493 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2495 dm_thin_id old_id, new_id;
2498 r = check_arg_count(argc, 3);
2502 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2503 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2507 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2508 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2512 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2514 DMWARN("Failed to change transaction id from %s to %s.",
2522 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2526 r = check_arg_count(argc, 1);
2530 (void) commit_or_fallback(pool);
2532 r = dm_pool_reserve_metadata_snap(pool->pmd);
2534 DMWARN("reserve_metadata_snap message failed.");
2539 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2543 r = check_arg_count(argc, 1);
2547 r = dm_pool_release_metadata_snap(pool->pmd);
2549 DMWARN("release_metadata_snap message failed.");
2555 * Messages supported:
2556 * create_thin <dev_id>
2557 * create_snap <dev_id> <origin_id>
2559 * trim <dev_id> <new_size_in_sectors>
2560 * set_transaction_id <current_trans_id> <new_trans_id>
2561 * reserve_metadata_snap
2562 * release_metadata_snap
2564 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2567 struct pool_c *pt = ti->private;
2568 struct pool *pool = pt->pool;
2570 if (!strcasecmp(argv[0], "create_thin"))
2571 r = process_create_thin_mesg(argc, argv, pool);
2573 else if (!strcasecmp(argv[0], "create_snap"))
2574 r = process_create_snap_mesg(argc, argv, pool);
2576 else if (!strcasecmp(argv[0], "delete"))
2577 r = process_delete_mesg(argc, argv, pool);
2579 else if (!strcasecmp(argv[0], "set_transaction_id"))
2580 r = process_set_transaction_id_mesg(argc, argv, pool);
2582 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2583 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2585 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2586 r = process_release_metadata_snap_mesg(argc, argv, pool);
2589 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2592 (void) commit_or_fallback(pool);
2597 static void emit_flags(struct pool_features *pf, char *result,
2598 unsigned sz, unsigned maxlen)
2600 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2601 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2602 DMEMIT("%u ", count);
2604 if (!pf->zero_new_blocks)
2605 DMEMIT("skip_block_zeroing ");
2607 if (!pf->discard_enabled)
2608 DMEMIT("ignore_discard ");
2610 if (!pf->discard_passdown)
2611 DMEMIT("no_discard_passdown ");
2613 if (pf->mode == PM_READ_ONLY)
2614 DMEMIT("read_only ");
2619 * <transaction id> <used metadata sectors>/<total metadata sectors>
2620 * <used data sectors>/<total data sectors> <held metadata root>
2622 static int pool_status(struct dm_target *ti, status_type_t type,
2623 unsigned status_flags, char *result, unsigned maxlen)
2627 uint64_t transaction_id;
2628 dm_block_t nr_free_blocks_data;
2629 dm_block_t nr_free_blocks_metadata;
2630 dm_block_t nr_blocks_data;
2631 dm_block_t nr_blocks_metadata;
2632 dm_block_t held_root;
2633 char buf[BDEVNAME_SIZE];
2634 char buf2[BDEVNAME_SIZE];
2635 struct pool_c *pt = ti->private;
2636 struct pool *pool = pt->pool;
2639 case STATUSTYPE_INFO:
2640 if (get_pool_mode(pool) == PM_FAIL) {
2645 /* Commit to ensure statistics aren't out-of-date */
2646 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2647 (void) commit_or_fallback(pool);
2649 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2654 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2655 &nr_free_blocks_metadata);
2659 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2663 r = dm_pool_get_free_block_count(pool->pmd,
2664 &nr_free_blocks_data);
2668 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2672 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2676 DMEMIT("%llu %llu/%llu %llu/%llu ",
2677 (unsigned long long)transaction_id,
2678 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2679 (unsigned long long)nr_blocks_metadata,
2680 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2681 (unsigned long long)nr_blocks_data);
2684 DMEMIT("%llu ", held_root);
2688 if (pool->pf.mode == PM_READ_ONLY)
2693 if (pool->pf.discard_enabled && pool->pf.discard_passdown)
2694 DMEMIT("discard_passdown");
2696 DMEMIT("no_discard_passdown");
2700 case STATUSTYPE_TABLE:
2701 DMEMIT("%s %s %lu %llu ",
2702 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2703 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2704 (unsigned long)pool->sectors_per_block,
2705 (unsigned long long)pt->low_water_blocks);
2706 emit_flags(&pt->pf, result, sz, maxlen);
2713 static int pool_iterate_devices(struct dm_target *ti,
2714 iterate_devices_callout_fn fn, void *data)
2716 struct pool_c *pt = ti->private;
2718 return fn(ti, pt->data_dev, 0, ti->len, data);
2721 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2722 struct bio_vec *biovec, int max_size)
2724 struct pool_c *pt = ti->private;
2725 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2727 if (!q->merge_bvec_fn)
2730 bvm->bi_bdev = pt->data_dev->bdev;
2732 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2735 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2738 * FIXME: these limits may be incompatible with the pool's data device
2740 limits->max_discard_sectors = pool->sectors_per_block;
2743 * This is just a hint, and not enforced. We have to cope with
2744 * bios that cover a block partially. A discard that spans a block
2745 * boundary is not sent to this target.
2747 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2748 limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2751 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2753 struct pool_c *pt = ti->private;
2754 struct pool *pool = pt->pool;
2756 blk_limits_io_min(limits, 0);
2757 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2758 if (pool->pf.discard_enabled)
2759 set_discard_limits(pool, limits);
2762 static struct target_type pool_target = {
2763 .name = "thin-pool",
2764 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2765 DM_TARGET_IMMUTABLE,
2766 .version = {1, 3, 0},
2767 .module = THIS_MODULE,
2771 .postsuspend = pool_postsuspend,
2772 .preresume = pool_preresume,
2773 .resume = pool_resume,
2774 .message = pool_message,
2775 .status = pool_status,
2776 .merge = pool_merge,
2777 .iterate_devices = pool_iterate_devices,
2778 .io_hints = pool_io_hints,
2781 /*----------------------------------------------------------------
2782 * Thin target methods
2783 *--------------------------------------------------------------*/
2784 static void thin_dtr(struct dm_target *ti)
2786 struct thin_c *tc = ti->private;
2788 mutex_lock(&dm_thin_pool_table.mutex);
2790 __pool_dec(tc->pool);
2791 dm_pool_close_thin_device(tc->td);
2792 dm_put_device(ti, tc->pool_dev);
2794 dm_put_device(ti, tc->origin_dev);
2797 mutex_unlock(&dm_thin_pool_table.mutex);
2801 * Thin target parameters:
2803 * <pool_dev> <dev_id> [origin_dev]
2805 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2806 * dev_id: the internal device identifier
2807 * origin_dev: a device external to the pool that should act as the origin
2809 * If the pool device has discards disabled, they get disabled for the thin
2812 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2816 struct dm_dev *pool_dev, *origin_dev;
2817 struct mapped_device *pool_md;
2819 mutex_lock(&dm_thin_pool_table.mutex);
2821 if (argc != 2 && argc != 3) {
2822 ti->error = "Invalid argument count";
2827 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2829 ti->error = "Out of memory";
2835 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2837 ti->error = "Error opening origin device";
2838 goto bad_origin_dev;
2840 tc->origin_dev = origin_dev;
2843 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2845 ti->error = "Error opening pool device";
2848 tc->pool_dev = pool_dev;
2850 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2851 ti->error = "Invalid device id";
2856 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2858 ti->error = "Couldn't get pool mapped device";
2863 tc->pool = __pool_table_lookup(pool_md);
2865 ti->error = "Couldn't find pool object";
2867 goto bad_pool_lookup;
2869 __pool_inc(tc->pool);
2871 if (get_pool_mode(tc->pool) == PM_FAIL) {
2872 ti->error = "Couldn't open thin device, Pool is in fail mode";
2876 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2878 ti->error = "Couldn't open thin internal device";
2882 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2886 ti->num_flush_requests = 1;
2887 ti->flush_supported = true;
2889 /* In case the pool supports discards, pass them on. */
2890 if (tc->pool->pf.discard_enabled) {
2891 ti->discards_supported = true;
2892 ti->num_discard_requests = 1;
2893 ti->discard_zeroes_data_unsupported = true;
2894 /* Discard requests must be split on a block boundary */
2895 ti->split_discard_requests = true;
2900 mutex_unlock(&dm_thin_pool_table.mutex);
2905 __pool_dec(tc->pool);
2909 dm_put_device(ti, tc->pool_dev);
2912 dm_put_device(ti, tc->origin_dev);
2916 mutex_unlock(&dm_thin_pool_table.mutex);
2921 static int thin_map(struct dm_target *ti, struct bio *bio,
2922 union map_info *map_context)
2924 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2926 return thin_bio_map(ti, bio, map_context);
2929 static int thin_endio(struct dm_target *ti,
2930 struct bio *bio, int err,
2931 union map_info *map_context)
2933 unsigned long flags;
2934 struct dm_thin_endio_hook *h = map_context->ptr;
2935 struct list_head work;
2936 struct dm_thin_new_mapping *m, *tmp;
2937 struct pool *pool = h->tc->pool;
2939 if (h->shared_read_entry) {
2940 INIT_LIST_HEAD(&work);
2941 ds_dec(h->shared_read_entry, &work);
2943 spin_lock_irqsave(&pool->lock, flags);
2944 list_for_each_entry_safe(m, tmp, &work, list) {
2947 __maybe_add_mapping(m);
2949 spin_unlock_irqrestore(&pool->lock, flags);
2952 if (h->all_io_entry) {
2953 INIT_LIST_HEAD(&work);
2954 ds_dec(h->all_io_entry, &work);
2955 spin_lock_irqsave(&pool->lock, flags);
2956 list_for_each_entry_safe(m, tmp, &work, list)
2957 list_add(&m->list, &pool->prepared_discards);
2958 spin_unlock_irqrestore(&pool->lock, flags);
2961 mempool_free(h, pool->endio_hook_pool);
2966 static void thin_postsuspend(struct dm_target *ti)
2968 if (dm_noflush_suspending(ti))
2969 requeue_io((struct thin_c *)ti->private);
2973 * <nr mapped sectors> <highest mapped sector>
2975 static int thin_status(struct dm_target *ti, status_type_t type,
2976 unsigned status_flags, char *result, unsigned maxlen)
2980 dm_block_t mapped, highest;
2981 char buf[BDEVNAME_SIZE];
2982 struct thin_c *tc = ti->private;
2984 if (get_pool_mode(tc->pool) == PM_FAIL) {
2993 case STATUSTYPE_INFO:
2994 r = dm_thin_get_mapped_count(tc->td, &mapped);
2998 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3002 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3004 DMEMIT("%llu", ((highest + 1) *
3005 tc->pool->sectors_per_block) - 1);
3010 case STATUSTYPE_TABLE:
3012 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3013 (unsigned long) tc->dev_id);
3015 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3023 static int thin_iterate_devices(struct dm_target *ti,
3024 iterate_devices_callout_fn fn, void *data)
3027 struct thin_c *tc = ti->private;
3028 struct pool *pool = tc->pool;
3031 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3032 * we follow a more convoluted path through to the pool's target.
3035 return 0; /* nothing is bound */
3037 blocks = pool->ti->len;
3038 (void) sector_div(blocks, pool->sectors_per_block);
3040 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3045 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
3047 struct thin_c *tc = ti->private;
3048 struct pool *pool = tc->pool;
3050 blk_limits_io_min(limits, 0);
3051 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3052 set_discard_limits(pool, limits);
3055 static struct target_type thin_target = {
3057 .version = {1, 3, 0},
3058 .module = THIS_MODULE,
3062 .end_io = thin_endio,
3063 .postsuspend = thin_postsuspend,
3064 .status = thin_status,
3065 .iterate_devices = thin_iterate_devices,
3066 .io_hints = thin_io_hints,
3069 /*----------------------------------------------------------------*/
3071 static int __init dm_thin_init(void)
3077 r = dm_register_target(&thin_target);
3081 r = dm_register_target(&pool_target);
3083 goto bad_pool_target;
3087 _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
3089 goto bad_cell_cache;
3091 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3092 if (!_new_mapping_cache)
3093 goto bad_new_mapping_cache;
3095 _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
3096 if (!_endio_hook_cache)
3097 goto bad_endio_hook_cache;
3101 bad_endio_hook_cache:
3102 kmem_cache_destroy(_new_mapping_cache);
3103 bad_new_mapping_cache:
3104 kmem_cache_destroy(_cell_cache);
3106 dm_unregister_target(&pool_target);
3108 dm_unregister_target(&thin_target);
3113 static void dm_thin_exit(void)
3115 dm_unregister_target(&thin_target);
3116 dm_unregister_target(&pool_target);
3118 kmem_cache_destroy(_cell_cache);
3119 kmem_cache_destroy(_new_mapping_cache);
3120 kmem_cache_destroy(_endio_hook_cache);
3123 module_init(dm_thin_init);
3124 module_exit(dm_thin_exit);
3126 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3127 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3128 MODULE_LICENSE("GPL");