drm/vc4: txp: Protect device resources
[platform/kernel/linux-starfive.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203
204         /*
205          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206          */
207         PM_OUT_OF_METADATA_SPACE,
208         PM_READ_ONLY,           /* metadata may not be changed */
209
210         PM_FAIL,                /* all I/O fails */
211 };
212
213 struct pool_features {
214         enum pool_mode mode;
215
216         bool zero_new_blocks:1;
217         bool discard_enabled:1;
218         bool discard_passdown:1;
219         bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230         struct list_head list;
231         struct dm_target *ti;   /* Only set if a pool target is bound */
232
233         struct mapped_device *pool_md;
234         struct block_device *data_dev;
235         struct block_device *md_dev;
236         struct dm_pool_metadata *pmd;
237
238         dm_block_t low_water_blocks;
239         uint32_t sectors_per_block;
240         int sectors_per_block_shift;
241
242         struct pool_features pf;
243         bool low_water_triggered:1;     /* A dm event has been sent */
244         bool suspended:1;
245         bool out_of_data_space:1;
246
247         struct dm_bio_prison *prison;
248         struct dm_kcopyd_client *copier;
249
250         struct work_struct worker;
251         struct workqueue_struct *wq;
252         struct throttle throttle;
253         struct delayed_work waker;
254         struct delayed_work no_space_timeout;
255
256         unsigned long last_commit_jiffies;
257         unsigned ref_count;
258
259         spinlock_t lock;
260         struct bio_list deferred_flush_bios;
261         struct bio_list deferred_flush_completions;
262         struct list_head prepared_mappings;
263         struct list_head prepared_discards;
264         struct list_head prepared_discards_pt2;
265         struct list_head active_thins;
266
267         struct dm_deferred_set *shared_read_ds;
268         struct dm_deferred_set *all_io_ds;
269
270         struct dm_thin_new_mapping *next_mapping;
271
272         process_bio_fn process_bio;
273         process_bio_fn process_discard;
274
275         process_cell_fn process_cell;
276         process_cell_fn process_discard_cell;
277
278         process_mapping_fn process_prepared_mapping;
279         process_mapping_fn process_prepared_discard;
280         process_mapping_fn process_prepared_discard_pt2;
281
282         struct dm_bio_prison_cell **cell_sort_array;
283
284         mempool_t mapping_pool;
285 };
286
287 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
288
289 static enum pool_mode get_pool_mode(struct pool *pool)
290 {
291         return pool->pf.mode;
292 }
293
294 static void notify_of_pool_mode_change(struct pool *pool)
295 {
296         const char *descs[] = {
297                 "write",
298                 "out-of-data-space",
299                 "read-only",
300                 "read-only",
301                 "fail"
302         };
303         const char *extra_desc = NULL;
304         enum pool_mode mode = get_pool_mode(pool);
305
306         if (mode == PM_OUT_OF_DATA_SPACE) {
307                 if (!pool->pf.error_if_no_space)
308                         extra_desc = " (queue IO)";
309                 else
310                         extra_desc = " (error IO)";
311         }
312
313         dm_table_event(pool->ti->table);
314         DMINFO("%s: switching pool to %s%s mode",
315                dm_device_name(pool->pool_md),
316                descs[(int)mode], extra_desc ? : "");
317 }
318
319 /*
320  * Target context for a pool.
321  */
322 struct pool_c {
323         struct dm_target *ti;
324         struct pool *pool;
325         struct dm_dev *data_dev;
326         struct dm_dev *metadata_dev;
327
328         dm_block_t low_water_blocks;
329         struct pool_features requested_pf; /* Features requested during table load */
330         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
331 };
332
333 /*
334  * Target context for a thin.
335  */
336 struct thin_c {
337         struct list_head list;
338         struct dm_dev *pool_dev;
339         struct dm_dev *origin_dev;
340         sector_t origin_size;
341         dm_thin_id dev_id;
342
343         struct pool *pool;
344         struct dm_thin_device *td;
345         struct mapped_device *thin_md;
346
347         bool requeue_mode:1;
348         spinlock_t lock;
349         struct list_head deferred_cells;
350         struct bio_list deferred_bio_list;
351         struct bio_list retry_on_resume_list;
352         struct rb_root sort_bio_list; /* sorted list of deferred bios */
353
354         /*
355          * Ensures the thin is not destroyed until the worker has finished
356          * iterating the active_thins list.
357          */
358         refcount_t refcount;
359         struct completion can_destroy;
360 };
361
362 /*----------------------------------------------------------------*/
363
364 static bool block_size_is_power_of_two(struct pool *pool)
365 {
366         return pool->sectors_per_block_shift >= 0;
367 }
368
369 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
370 {
371         return block_size_is_power_of_two(pool) ?
372                 (b << pool->sectors_per_block_shift) :
373                 (b * pool->sectors_per_block);
374 }
375
376 /*----------------------------------------------------------------*/
377
378 struct discard_op {
379         struct thin_c *tc;
380         struct blk_plug plug;
381         struct bio *parent_bio;
382         struct bio *bio;
383 };
384
385 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
386 {
387         BUG_ON(!parent);
388
389         op->tc = tc;
390         blk_start_plug(&op->plug);
391         op->parent_bio = parent;
392         op->bio = NULL;
393 }
394
395 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
396 {
397         struct thin_c *tc = op->tc;
398         sector_t s = block_to_sectors(tc->pool, data_b);
399         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
400
401         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT,
402                                       &op->bio);
403 }
404
405 static void end_discard(struct discard_op *op, int r)
406 {
407         if (op->bio) {
408                 /*
409                  * Even if one of the calls to issue_discard failed, we
410                  * need to wait for the chain to complete.
411                  */
412                 bio_chain(op->bio, op->parent_bio);
413                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
414                 submit_bio(op->bio);
415         }
416
417         blk_finish_plug(&op->plug);
418
419         /*
420          * Even if r is set, there could be sub discards in flight that we
421          * need to wait for.
422          */
423         if (r && !op->parent_bio->bi_status)
424                 op->parent_bio->bi_status = errno_to_blk_status(r);
425         bio_endio(op->parent_bio);
426 }
427
428 /*----------------------------------------------------------------*/
429
430 /*
431  * wake_worker() is used when new work is queued and when pool_resume is
432  * ready to continue deferred IO processing.
433  */
434 static void wake_worker(struct pool *pool)
435 {
436         queue_work(pool->wq, &pool->worker);
437 }
438
439 /*----------------------------------------------------------------*/
440
441 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
442                       struct dm_bio_prison_cell **cell_result)
443 {
444         int r;
445         struct dm_bio_prison_cell *cell_prealloc;
446
447         /*
448          * Allocate a cell from the prison's mempool.
449          * This might block but it can't fail.
450          */
451         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
452
453         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
454         if (r)
455                 /*
456                  * We reused an old cell; we can get rid of
457                  * the new one.
458                  */
459                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
460
461         return r;
462 }
463
464 static void cell_release(struct pool *pool,
465                          struct dm_bio_prison_cell *cell,
466                          struct bio_list *bios)
467 {
468         dm_cell_release(pool->prison, cell, bios);
469         dm_bio_prison_free_cell(pool->prison, cell);
470 }
471
472 static void cell_visit_release(struct pool *pool,
473                                void (*fn)(void *, struct dm_bio_prison_cell *),
474                                void *context,
475                                struct dm_bio_prison_cell *cell)
476 {
477         dm_cell_visit_release(pool->prison, fn, context, cell);
478         dm_bio_prison_free_cell(pool->prison, cell);
479 }
480
481 static void cell_release_no_holder(struct pool *pool,
482                                    struct dm_bio_prison_cell *cell,
483                                    struct bio_list *bios)
484 {
485         dm_cell_release_no_holder(pool->prison, cell, bios);
486         dm_bio_prison_free_cell(pool->prison, cell);
487 }
488
489 static void cell_error_with_code(struct pool *pool,
490                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
491 {
492         dm_cell_error(pool->prison, cell, error_code);
493         dm_bio_prison_free_cell(pool->prison, cell);
494 }
495
496 static blk_status_t get_pool_io_error_code(struct pool *pool)
497 {
498         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
499 }
500
501 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
502 {
503         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
504 }
505
506 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
507 {
508         cell_error_with_code(pool, cell, 0);
509 }
510
511 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
512 {
513         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
514 }
515
516 /*----------------------------------------------------------------*/
517
518 /*
519  * A global list of pools that uses a struct mapped_device as a key.
520  */
521 static struct dm_thin_pool_table {
522         struct mutex mutex;
523         struct list_head pools;
524 } dm_thin_pool_table;
525
526 static void pool_table_init(void)
527 {
528         mutex_init(&dm_thin_pool_table.mutex);
529         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
530 }
531
532 static void pool_table_exit(void)
533 {
534         mutex_destroy(&dm_thin_pool_table.mutex);
535 }
536
537 static void __pool_table_insert(struct pool *pool)
538 {
539         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
540         list_add(&pool->list, &dm_thin_pool_table.pools);
541 }
542
543 static void __pool_table_remove(struct pool *pool)
544 {
545         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
546         list_del(&pool->list);
547 }
548
549 static struct pool *__pool_table_lookup(struct mapped_device *md)
550 {
551         struct pool *pool = NULL, *tmp;
552
553         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
554
555         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
556                 if (tmp->pool_md == md) {
557                         pool = tmp;
558                         break;
559                 }
560         }
561
562         return pool;
563 }
564
565 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
566 {
567         struct pool *pool = NULL, *tmp;
568
569         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570
571         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572                 if (tmp->md_dev == md_dev) {
573                         pool = tmp;
574                         break;
575                 }
576         }
577
578         return pool;
579 }
580
581 /*----------------------------------------------------------------*/
582
583 struct dm_thin_endio_hook {
584         struct thin_c *tc;
585         struct dm_deferred_entry *shared_read_entry;
586         struct dm_deferred_entry *all_io_entry;
587         struct dm_thin_new_mapping *overwrite_mapping;
588         struct rb_node rb_node;
589         struct dm_bio_prison_cell *cell;
590 };
591
592 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
593 {
594         bio_list_merge(bios, master);
595         bio_list_init(master);
596 }
597
598 static void error_bio_list(struct bio_list *bios, blk_status_t error)
599 {
600         struct bio *bio;
601
602         while ((bio = bio_list_pop(bios))) {
603                 bio->bi_status = error;
604                 bio_endio(bio);
605         }
606 }
607
608 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
609                 blk_status_t error)
610 {
611         struct bio_list bios;
612
613         bio_list_init(&bios);
614
615         spin_lock_irq(&tc->lock);
616         __merge_bio_list(&bios, master);
617         spin_unlock_irq(&tc->lock);
618
619         error_bio_list(&bios, error);
620 }
621
622 static void requeue_deferred_cells(struct thin_c *tc)
623 {
624         struct pool *pool = tc->pool;
625         struct list_head cells;
626         struct dm_bio_prison_cell *cell, *tmp;
627
628         INIT_LIST_HEAD(&cells);
629
630         spin_lock_irq(&tc->lock);
631         list_splice_init(&tc->deferred_cells, &cells);
632         spin_unlock_irq(&tc->lock);
633
634         list_for_each_entry_safe(cell, tmp, &cells, user_list)
635                 cell_requeue(pool, cell);
636 }
637
638 static void requeue_io(struct thin_c *tc)
639 {
640         struct bio_list bios;
641
642         bio_list_init(&bios);
643
644         spin_lock_irq(&tc->lock);
645         __merge_bio_list(&bios, &tc->deferred_bio_list);
646         __merge_bio_list(&bios, &tc->retry_on_resume_list);
647         spin_unlock_irq(&tc->lock);
648
649         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
650         requeue_deferred_cells(tc);
651 }
652
653 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
654 {
655         struct thin_c *tc;
656
657         rcu_read_lock();
658         list_for_each_entry_rcu(tc, &pool->active_thins, list)
659                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
660         rcu_read_unlock();
661 }
662
663 static void error_retry_list(struct pool *pool)
664 {
665         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
666 }
667
668 /*
669  * This section of code contains the logic for processing a thin device's IO.
670  * Much of the code depends on pool object resources (lists, workqueues, etc)
671  * but most is exclusively called from the thin target rather than the thin-pool
672  * target.
673  */
674
675 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
676 {
677         struct pool *pool = tc->pool;
678         sector_t block_nr = bio->bi_iter.bi_sector;
679
680         if (block_size_is_power_of_two(pool))
681                 block_nr >>= pool->sectors_per_block_shift;
682         else
683                 (void) sector_div(block_nr, pool->sectors_per_block);
684
685         return block_nr;
686 }
687
688 /*
689  * Returns the _complete_ blocks that this bio covers.
690  */
691 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
692                                 dm_block_t *begin, dm_block_t *end)
693 {
694         struct pool *pool = tc->pool;
695         sector_t b = bio->bi_iter.bi_sector;
696         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
697
698         b += pool->sectors_per_block - 1ull; /* so we round up */
699
700         if (block_size_is_power_of_two(pool)) {
701                 b >>= pool->sectors_per_block_shift;
702                 e >>= pool->sectors_per_block_shift;
703         } else {
704                 (void) sector_div(b, pool->sectors_per_block);
705                 (void) sector_div(e, pool->sectors_per_block);
706         }
707
708         if (e < b)
709                 /* Can happen if the bio is within a single block. */
710                 e = b;
711
712         *begin = b;
713         *end = e;
714 }
715
716 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
717 {
718         struct pool *pool = tc->pool;
719         sector_t bi_sector = bio->bi_iter.bi_sector;
720
721         bio_set_dev(bio, tc->pool_dev->bdev);
722         if (block_size_is_power_of_two(pool))
723                 bio->bi_iter.bi_sector =
724                         (block << pool->sectors_per_block_shift) |
725                         (bi_sector & (pool->sectors_per_block - 1));
726         else
727                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
728                                  sector_div(bi_sector, pool->sectors_per_block);
729 }
730
731 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
732 {
733         bio_set_dev(bio, tc->origin_dev->bdev);
734 }
735
736 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
737 {
738         return op_is_flush(bio->bi_opf) &&
739                 dm_thin_changed_this_transaction(tc->td);
740 }
741
742 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
743 {
744         struct dm_thin_endio_hook *h;
745
746         if (bio_op(bio) == REQ_OP_DISCARD)
747                 return;
748
749         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
750         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
751 }
752
753 static void issue(struct thin_c *tc, struct bio *bio)
754 {
755         struct pool *pool = tc->pool;
756
757         if (!bio_triggers_commit(tc, bio)) {
758                 dm_submit_bio_remap(bio, NULL);
759                 return;
760         }
761
762         /*
763          * Complete bio with an error if earlier I/O caused changes to
764          * the metadata that can't be committed e.g, due to I/O errors
765          * on the metadata device.
766          */
767         if (dm_thin_aborted_changes(tc->td)) {
768                 bio_io_error(bio);
769                 return;
770         }
771
772         /*
773          * Batch together any bios that trigger commits and then issue a
774          * single commit for them in process_deferred_bios().
775          */
776         spin_lock_irq(&pool->lock);
777         bio_list_add(&pool->deferred_flush_bios, bio);
778         spin_unlock_irq(&pool->lock);
779 }
780
781 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
782 {
783         remap_to_origin(tc, bio);
784         issue(tc, bio);
785 }
786
787 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
788                             dm_block_t block)
789 {
790         remap(tc, bio, block);
791         issue(tc, bio);
792 }
793
794 /*----------------------------------------------------------------*/
795
796 /*
797  * Bio endio functions.
798  */
799 struct dm_thin_new_mapping {
800         struct list_head list;
801
802         bool pass_discard:1;
803         bool maybe_shared:1;
804
805         /*
806          * Track quiescing, copying and zeroing preparation actions.  When this
807          * counter hits zero the block is prepared and can be inserted into the
808          * btree.
809          */
810         atomic_t prepare_actions;
811
812         blk_status_t status;
813         struct thin_c *tc;
814         dm_block_t virt_begin, virt_end;
815         dm_block_t data_block;
816         struct dm_bio_prison_cell *cell;
817
818         /*
819          * If the bio covers the whole area of a block then we can avoid
820          * zeroing or copying.  Instead this bio is hooked.  The bio will
821          * still be in the cell, so care has to be taken to avoid issuing
822          * the bio twice.
823          */
824         struct bio *bio;
825         bio_end_io_t *saved_bi_end_io;
826 };
827
828 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
829 {
830         struct pool *pool = m->tc->pool;
831
832         if (atomic_dec_and_test(&m->prepare_actions)) {
833                 list_add_tail(&m->list, &pool->prepared_mappings);
834                 wake_worker(pool);
835         }
836 }
837
838 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
839 {
840         unsigned long flags;
841         struct pool *pool = m->tc->pool;
842
843         spin_lock_irqsave(&pool->lock, flags);
844         __complete_mapping_preparation(m);
845         spin_unlock_irqrestore(&pool->lock, flags);
846 }
847
848 static void copy_complete(int read_err, unsigned long write_err, void *context)
849 {
850         struct dm_thin_new_mapping *m = context;
851
852         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
853         complete_mapping_preparation(m);
854 }
855
856 static void overwrite_endio(struct bio *bio)
857 {
858         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
859         struct dm_thin_new_mapping *m = h->overwrite_mapping;
860
861         bio->bi_end_io = m->saved_bi_end_io;
862
863         m->status = bio->bi_status;
864         complete_mapping_preparation(m);
865 }
866
867 /*----------------------------------------------------------------*/
868
869 /*
870  * Workqueue.
871  */
872
873 /*
874  * Prepared mapping jobs.
875  */
876
877 /*
878  * This sends the bios in the cell, except the original holder, back
879  * to the deferred_bios list.
880  */
881 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
882 {
883         struct pool *pool = tc->pool;
884         unsigned long flags;
885         int has_work;
886
887         spin_lock_irqsave(&tc->lock, flags);
888         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
889         has_work = !bio_list_empty(&tc->deferred_bio_list);
890         spin_unlock_irqrestore(&tc->lock, flags);
891
892         if (has_work)
893                 wake_worker(pool);
894 }
895
896 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
897
898 struct remap_info {
899         struct thin_c *tc;
900         struct bio_list defer_bios;
901         struct bio_list issue_bios;
902 };
903
904 static void __inc_remap_and_issue_cell(void *context,
905                                        struct dm_bio_prison_cell *cell)
906 {
907         struct remap_info *info = context;
908         struct bio *bio;
909
910         while ((bio = bio_list_pop(&cell->bios))) {
911                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
912                         bio_list_add(&info->defer_bios, bio);
913                 else {
914                         inc_all_io_entry(info->tc->pool, bio);
915
916                         /*
917                          * We can't issue the bios with the bio prison lock
918                          * held, so we add them to a list to issue on
919                          * return from this function.
920                          */
921                         bio_list_add(&info->issue_bios, bio);
922                 }
923         }
924 }
925
926 static void inc_remap_and_issue_cell(struct thin_c *tc,
927                                      struct dm_bio_prison_cell *cell,
928                                      dm_block_t block)
929 {
930         struct bio *bio;
931         struct remap_info info;
932
933         info.tc = tc;
934         bio_list_init(&info.defer_bios);
935         bio_list_init(&info.issue_bios);
936
937         /*
938          * We have to be careful to inc any bios we're about to issue
939          * before the cell is released, and avoid a race with new bios
940          * being added to the cell.
941          */
942         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
943                            &info, cell);
944
945         while ((bio = bio_list_pop(&info.defer_bios)))
946                 thin_defer_bio(tc, bio);
947
948         while ((bio = bio_list_pop(&info.issue_bios)))
949                 remap_and_issue(info.tc, bio, block);
950 }
951
952 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
953 {
954         cell_error(m->tc->pool, m->cell);
955         list_del(&m->list);
956         mempool_free(m, &m->tc->pool->mapping_pool);
957 }
958
959 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
960 {
961         struct pool *pool = tc->pool;
962
963         /*
964          * If the bio has the REQ_FUA flag set we must commit the metadata
965          * before signaling its completion.
966          */
967         if (!bio_triggers_commit(tc, bio)) {
968                 bio_endio(bio);
969                 return;
970         }
971
972         /*
973          * Complete bio with an error if earlier I/O caused changes to the
974          * metadata that can't be committed, e.g, due to I/O errors on the
975          * metadata device.
976          */
977         if (dm_thin_aborted_changes(tc->td)) {
978                 bio_io_error(bio);
979                 return;
980         }
981
982         /*
983          * Batch together any bios that trigger commits and then issue a
984          * single commit for them in process_deferred_bios().
985          */
986         spin_lock_irq(&pool->lock);
987         bio_list_add(&pool->deferred_flush_completions, bio);
988         spin_unlock_irq(&pool->lock);
989 }
990
991 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
992 {
993         struct thin_c *tc = m->tc;
994         struct pool *pool = tc->pool;
995         struct bio *bio = m->bio;
996         int r;
997
998         if (m->status) {
999                 cell_error(pool, m->cell);
1000                 goto out;
1001         }
1002
1003         /*
1004          * Commit the prepared block into the mapping btree.
1005          * Any I/O for this block arriving after this point will get
1006          * remapped to it directly.
1007          */
1008         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1009         if (r) {
1010                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1011                 cell_error(pool, m->cell);
1012                 goto out;
1013         }
1014
1015         /*
1016          * Release any bios held while the block was being provisioned.
1017          * If we are processing a write bio that completely covers the block,
1018          * we already processed it so can ignore it now when processing
1019          * the bios in the cell.
1020          */
1021         if (bio) {
1022                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1023                 complete_overwrite_bio(tc, bio);
1024         } else {
1025                 inc_all_io_entry(tc->pool, m->cell->holder);
1026                 remap_and_issue(tc, m->cell->holder, m->data_block);
1027                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1028         }
1029
1030 out:
1031         list_del(&m->list);
1032         mempool_free(m, &pool->mapping_pool);
1033 }
1034
1035 /*----------------------------------------------------------------*/
1036
1037 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1038 {
1039         struct thin_c *tc = m->tc;
1040         if (m->cell)
1041                 cell_defer_no_holder(tc, m->cell);
1042         mempool_free(m, &tc->pool->mapping_pool);
1043 }
1044
1045 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1046 {
1047         bio_io_error(m->bio);
1048         free_discard_mapping(m);
1049 }
1050
1051 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1052 {
1053         bio_endio(m->bio);
1054         free_discard_mapping(m);
1055 }
1056
1057 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1058 {
1059         int r;
1060         struct thin_c *tc = m->tc;
1061
1062         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1063         if (r) {
1064                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1065                 bio_io_error(m->bio);
1066         } else
1067                 bio_endio(m->bio);
1068
1069         cell_defer_no_holder(tc, m->cell);
1070         mempool_free(m, &tc->pool->mapping_pool);
1071 }
1072
1073 /*----------------------------------------------------------------*/
1074
1075 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1076                                                    struct bio *discard_parent)
1077 {
1078         /*
1079          * We've already unmapped this range of blocks, but before we
1080          * passdown we have to check that these blocks are now unused.
1081          */
1082         int r = 0;
1083         bool shared = true;
1084         struct thin_c *tc = m->tc;
1085         struct pool *pool = tc->pool;
1086         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1087         struct discard_op op;
1088
1089         begin_discard(&op, tc, discard_parent);
1090         while (b != end) {
1091                 /* find start of unmapped run */
1092                 for (; b < end; b++) {
1093                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1094                         if (r)
1095                                 goto out;
1096
1097                         if (!shared)
1098                                 break;
1099                 }
1100
1101                 if (b == end)
1102                         break;
1103
1104                 /* find end of run */
1105                 for (e = b + 1; e != end; e++) {
1106                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1107                         if (r)
1108                                 goto out;
1109
1110                         if (shared)
1111                                 break;
1112                 }
1113
1114                 r = issue_discard(&op, b, e);
1115                 if (r)
1116                         goto out;
1117
1118                 b = e;
1119         }
1120 out:
1121         end_discard(&op, r);
1122 }
1123
1124 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1125 {
1126         unsigned long flags;
1127         struct pool *pool = m->tc->pool;
1128
1129         spin_lock_irqsave(&pool->lock, flags);
1130         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1131         spin_unlock_irqrestore(&pool->lock, flags);
1132         wake_worker(pool);
1133 }
1134
1135 static void passdown_endio(struct bio *bio)
1136 {
1137         /*
1138          * It doesn't matter if the passdown discard failed, we still want
1139          * to unmap (we ignore err).
1140          */
1141         queue_passdown_pt2(bio->bi_private);
1142         bio_put(bio);
1143 }
1144
1145 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1146 {
1147         int r;
1148         struct thin_c *tc = m->tc;
1149         struct pool *pool = tc->pool;
1150         struct bio *discard_parent;
1151         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1152
1153         /*
1154          * Only this thread allocates blocks, so we can be sure that the
1155          * newly unmapped blocks will not be allocated before the end of
1156          * the function.
1157          */
1158         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1159         if (r) {
1160                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1161                 bio_io_error(m->bio);
1162                 cell_defer_no_holder(tc, m->cell);
1163                 mempool_free(m, &pool->mapping_pool);
1164                 return;
1165         }
1166
1167         /*
1168          * Increment the unmapped blocks.  This prevents a race between the
1169          * passdown io and reallocation of freed blocks.
1170          */
1171         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1172         if (r) {
1173                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1174                 bio_io_error(m->bio);
1175                 cell_defer_no_holder(tc, m->cell);
1176                 mempool_free(m, &pool->mapping_pool);
1177                 return;
1178         }
1179
1180         discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1181         discard_parent->bi_end_io = passdown_endio;
1182         discard_parent->bi_private = m;
1183         if (m->maybe_shared)
1184                 passdown_double_checking_shared_status(m, discard_parent);
1185         else {
1186                 struct discard_op op;
1187
1188                 begin_discard(&op, tc, discard_parent);
1189                 r = issue_discard(&op, m->data_block, data_end);
1190                 end_discard(&op, r);
1191         }
1192 }
1193
1194 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1195 {
1196         int r;
1197         struct thin_c *tc = m->tc;
1198         struct pool *pool = tc->pool;
1199
1200         /*
1201          * The passdown has completed, so now we can decrement all those
1202          * unmapped blocks.
1203          */
1204         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1205                                    m->data_block + (m->virt_end - m->virt_begin));
1206         if (r) {
1207                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1208                 bio_io_error(m->bio);
1209         } else
1210                 bio_endio(m->bio);
1211
1212         cell_defer_no_holder(tc, m->cell);
1213         mempool_free(m, &pool->mapping_pool);
1214 }
1215
1216 static void process_prepared(struct pool *pool, struct list_head *head,
1217                              process_mapping_fn *fn)
1218 {
1219         struct list_head maps;
1220         struct dm_thin_new_mapping *m, *tmp;
1221
1222         INIT_LIST_HEAD(&maps);
1223         spin_lock_irq(&pool->lock);
1224         list_splice_init(head, &maps);
1225         spin_unlock_irq(&pool->lock);
1226
1227         list_for_each_entry_safe(m, tmp, &maps, list)
1228                 (*fn)(m);
1229 }
1230
1231 /*
1232  * Deferred bio jobs.
1233  */
1234 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1235 {
1236         return bio->bi_iter.bi_size ==
1237                 (pool->sectors_per_block << SECTOR_SHIFT);
1238 }
1239
1240 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1241 {
1242         return (bio_data_dir(bio) == WRITE) &&
1243                 io_overlaps_block(pool, bio);
1244 }
1245
1246 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1247                                bio_end_io_t *fn)
1248 {
1249         *save = bio->bi_end_io;
1250         bio->bi_end_io = fn;
1251 }
1252
1253 static int ensure_next_mapping(struct pool *pool)
1254 {
1255         if (pool->next_mapping)
1256                 return 0;
1257
1258         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1259
1260         return pool->next_mapping ? 0 : -ENOMEM;
1261 }
1262
1263 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1264 {
1265         struct dm_thin_new_mapping *m = pool->next_mapping;
1266
1267         BUG_ON(!pool->next_mapping);
1268
1269         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1270         INIT_LIST_HEAD(&m->list);
1271         m->bio = NULL;
1272
1273         pool->next_mapping = NULL;
1274
1275         return m;
1276 }
1277
1278 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1279                     sector_t begin, sector_t end)
1280 {
1281         struct dm_io_region to;
1282
1283         to.bdev = tc->pool_dev->bdev;
1284         to.sector = begin;
1285         to.count = end - begin;
1286
1287         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1288 }
1289
1290 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1291                                       dm_block_t data_begin,
1292                                       struct dm_thin_new_mapping *m)
1293 {
1294         struct pool *pool = tc->pool;
1295         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1296
1297         h->overwrite_mapping = m;
1298         m->bio = bio;
1299         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1300         inc_all_io_entry(pool, bio);
1301         remap_and_issue(tc, bio, data_begin);
1302 }
1303
1304 /*
1305  * A partial copy also needs to zero the uncopied region.
1306  */
1307 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1308                           struct dm_dev *origin, dm_block_t data_origin,
1309                           dm_block_t data_dest,
1310                           struct dm_bio_prison_cell *cell, struct bio *bio,
1311                           sector_t len)
1312 {
1313         struct pool *pool = tc->pool;
1314         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1315
1316         m->tc = tc;
1317         m->virt_begin = virt_block;
1318         m->virt_end = virt_block + 1u;
1319         m->data_block = data_dest;
1320         m->cell = cell;
1321
1322         /*
1323          * quiesce action + copy action + an extra reference held for the
1324          * duration of this function (we may need to inc later for a
1325          * partial zero).
1326          */
1327         atomic_set(&m->prepare_actions, 3);
1328
1329         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1330                 complete_mapping_preparation(m); /* already quiesced */
1331
1332         /*
1333          * IO to pool_dev remaps to the pool target's data_dev.
1334          *
1335          * If the whole block of data is being overwritten, we can issue the
1336          * bio immediately. Otherwise we use kcopyd to clone the data first.
1337          */
1338         if (io_overwrites_block(pool, bio))
1339                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1340         else {
1341                 struct dm_io_region from, to;
1342
1343                 from.bdev = origin->bdev;
1344                 from.sector = data_origin * pool->sectors_per_block;
1345                 from.count = len;
1346
1347                 to.bdev = tc->pool_dev->bdev;
1348                 to.sector = data_dest * pool->sectors_per_block;
1349                 to.count = len;
1350
1351                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1352                                0, copy_complete, m);
1353
1354                 /*
1355                  * Do we need to zero a tail region?
1356                  */
1357                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1358                         atomic_inc(&m->prepare_actions);
1359                         ll_zero(tc, m,
1360                                 data_dest * pool->sectors_per_block + len,
1361                                 (data_dest + 1) * pool->sectors_per_block);
1362                 }
1363         }
1364
1365         complete_mapping_preparation(m); /* drop our ref */
1366 }
1367
1368 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1369                                    dm_block_t data_origin, dm_block_t data_dest,
1370                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1371 {
1372         schedule_copy(tc, virt_block, tc->pool_dev,
1373                       data_origin, data_dest, cell, bio,
1374                       tc->pool->sectors_per_block);
1375 }
1376
1377 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1378                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1379                           struct bio *bio)
1380 {
1381         struct pool *pool = tc->pool;
1382         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1383
1384         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1385         m->tc = tc;
1386         m->virt_begin = virt_block;
1387         m->virt_end = virt_block + 1u;
1388         m->data_block = data_block;
1389         m->cell = cell;
1390
1391         /*
1392          * If the whole block of data is being overwritten or we are not
1393          * zeroing pre-existing data, we can issue the bio immediately.
1394          * Otherwise we use kcopyd to zero the data first.
1395          */
1396         if (pool->pf.zero_new_blocks) {
1397                 if (io_overwrites_block(pool, bio))
1398                         remap_and_issue_overwrite(tc, bio, data_block, m);
1399                 else
1400                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1401                                 (data_block + 1) * pool->sectors_per_block);
1402         } else
1403                 process_prepared_mapping(m);
1404 }
1405
1406 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1407                                    dm_block_t data_dest,
1408                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1409 {
1410         struct pool *pool = tc->pool;
1411         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1412         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1413
1414         if (virt_block_end <= tc->origin_size)
1415                 schedule_copy(tc, virt_block, tc->origin_dev,
1416                               virt_block, data_dest, cell, bio,
1417                               pool->sectors_per_block);
1418
1419         else if (virt_block_begin < tc->origin_size)
1420                 schedule_copy(tc, virt_block, tc->origin_dev,
1421                               virt_block, data_dest, cell, bio,
1422                               tc->origin_size - virt_block_begin);
1423
1424         else
1425                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1426 }
1427
1428 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1429
1430 static void requeue_bios(struct pool *pool);
1431
1432 static bool is_read_only_pool_mode(enum pool_mode mode)
1433 {
1434         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1435 }
1436
1437 static bool is_read_only(struct pool *pool)
1438 {
1439         return is_read_only_pool_mode(get_pool_mode(pool));
1440 }
1441
1442 static void check_for_metadata_space(struct pool *pool)
1443 {
1444         int r;
1445         const char *ooms_reason = NULL;
1446         dm_block_t nr_free;
1447
1448         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1449         if (r)
1450                 ooms_reason = "Could not get free metadata blocks";
1451         else if (!nr_free)
1452                 ooms_reason = "No free metadata blocks";
1453
1454         if (ooms_reason && !is_read_only(pool)) {
1455                 DMERR("%s", ooms_reason);
1456                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1457         }
1458 }
1459
1460 static void check_for_data_space(struct pool *pool)
1461 {
1462         int r;
1463         dm_block_t nr_free;
1464
1465         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1466                 return;
1467
1468         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1469         if (r)
1470                 return;
1471
1472         if (nr_free) {
1473                 set_pool_mode(pool, PM_WRITE);
1474                 requeue_bios(pool);
1475         }
1476 }
1477
1478 /*
1479  * A non-zero return indicates read_only or fail_io mode.
1480  * Many callers don't care about the return value.
1481  */
1482 static int commit(struct pool *pool)
1483 {
1484         int r;
1485
1486         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1487                 return -EINVAL;
1488
1489         r = dm_pool_commit_metadata(pool->pmd);
1490         if (r)
1491                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1492         else {
1493                 check_for_metadata_space(pool);
1494                 check_for_data_space(pool);
1495         }
1496
1497         return r;
1498 }
1499
1500 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1501 {
1502         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1503                 DMWARN("%s: reached low water mark for data device: sending event.",
1504                        dm_device_name(pool->pool_md));
1505                 spin_lock_irq(&pool->lock);
1506                 pool->low_water_triggered = true;
1507                 spin_unlock_irq(&pool->lock);
1508                 dm_table_event(pool->ti->table);
1509         }
1510 }
1511
1512 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1513 {
1514         int r;
1515         dm_block_t free_blocks;
1516         struct pool *pool = tc->pool;
1517
1518         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1519                 return -EINVAL;
1520
1521         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1522         if (r) {
1523                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1524                 return r;
1525         }
1526
1527         check_low_water_mark(pool, free_blocks);
1528
1529         if (!free_blocks) {
1530                 /*
1531                  * Try to commit to see if that will free up some
1532                  * more space.
1533                  */
1534                 r = commit(pool);
1535                 if (r)
1536                         return r;
1537
1538                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1539                 if (r) {
1540                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1541                         return r;
1542                 }
1543
1544                 if (!free_blocks) {
1545                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1546                         return -ENOSPC;
1547                 }
1548         }
1549
1550         r = dm_pool_alloc_data_block(pool->pmd, result);
1551         if (r) {
1552                 if (r == -ENOSPC)
1553                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1554                 else
1555                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1556                 return r;
1557         }
1558
1559         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1560         if (r) {
1561                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1562                 return r;
1563         }
1564
1565         if (!free_blocks) {
1566                 /* Let's commit before we use up the metadata reserve. */
1567                 r = commit(pool);
1568                 if (r)
1569                         return r;
1570         }
1571
1572         return 0;
1573 }
1574
1575 /*
1576  * If we have run out of space, queue bios until the device is
1577  * resumed, presumably after having been reloaded with more space.
1578  */
1579 static void retry_on_resume(struct bio *bio)
1580 {
1581         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1582         struct thin_c *tc = h->tc;
1583
1584         spin_lock_irq(&tc->lock);
1585         bio_list_add(&tc->retry_on_resume_list, bio);
1586         spin_unlock_irq(&tc->lock);
1587 }
1588
1589 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1590 {
1591         enum pool_mode m = get_pool_mode(pool);
1592
1593         switch (m) {
1594         case PM_WRITE:
1595                 /* Shouldn't get here */
1596                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1597                 return BLK_STS_IOERR;
1598
1599         case PM_OUT_OF_DATA_SPACE:
1600                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1601
1602         case PM_OUT_OF_METADATA_SPACE:
1603         case PM_READ_ONLY:
1604         case PM_FAIL:
1605                 return BLK_STS_IOERR;
1606         default:
1607                 /* Shouldn't get here */
1608                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1609                 return BLK_STS_IOERR;
1610         }
1611 }
1612
1613 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1614 {
1615         blk_status_t error = should_error_unserviceable_bio(pool);
1616
1617         if (error) {
1618                 bio->bi_status = error;
1619                 bio_endio(bio);
1620         } else
1621                 retry_on_resume(bio);
1622 }
1623
1624 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1625 {
1626         struct bio *bio;
1627         struct bio_list bios;
1628         blk_status_t error;
1629
1630         error = should_error_unserviceable_bio(pool);
1631         if (error) {
1632                 cell_error_with_code(pool, cell, error);
1633                 return;
1634         }
1635
1636         bio_list_init(&bios);
1637         cell_release(pool, cell, &bios);
1638
1639         while ((bio = bio_list_pop(&bios)))
1640                 retry_on_resume(bio);
1641 }
1642
1643 static void process_discard_cell_no_passdown(struct thin_c *tc,
1644                                              struct dm_bio_prison_cell *virt_cell)
1645 {
1646         struct pool *pool = tc->pool;
1647         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1648
1649         /*
1650          * We don't need to lock the data blocks, since there's no
1651          * passdown.  We only lock data blocks for allocation and breaking sharing.
1652          */
1653         m->tc = tc;
1654         m->virt_begin = virt_cell->key.block_begin;
1655         m->virt_end = virt_cell->key.block_end;
1656         m->cell = virt_cell;
1657         m->bio = virt_cell->holder;
1658
1659         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1660                 pool->process_prepared_discard(m);
1661 }
1662
1663 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1664                                  struct bio *bio)
1665 {
1666         struct pool *pool = tc->pool;
1667
1668         int r;
1669         bool maybe_shared;
1670         struct dm_cell_key data_key;
1671         struct dm_bio_prison_cell *data_cell;
1672         struct dm_thin_new_mapping *m;
1673         dm_block_t virt_begin, virt_end, data_begin;
1674
1675         while (begin != end) {
1676                 r = ensure_next_mapping(pool);
1677                 if (r)
1678                         /* we did our best */
1679                         return;
1680
1681                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1682                                               &data_begin, &maybe_shared);
1683                 if (r)
1684                         /*
1685                          * Silently fail, letting any mappings we've
1686                          * created complete.
1687                          */
1688                         break;
1689
1690                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1691                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1692                         /* contention, we'll give up with this range */
1693                         begin = virt_end;
1694                         continue;
1695                 }
1696
1697                 /*
1698                  * IO may still be going to the destination block.  We must
1699                  * quiesce before we can do the removal.
1700                  */
1701                 m = get_next_mapping(pool);
1702                 m->tc = tc;
1703                 m->maybe_shared = maybe_shared;
1704                 m->virt_begin = virt_begin;
1705                 m->virt_end = virt_end;
1706                 m->data_block = data_begin;
1707                 m->cell = data_cell;
1708                 m->bio = bio;
1709
1710                 /*
1711                  * The parent bio must not complete before sub discard bios are
1712                  * chained to it (see end_discard's bio_chain)!
1713                  *
1714                  * This per-mapping bi_remaining increment is paired with
1715                  * the implicit decrement that occurs via bio_endio() in
1716                  * end_discard().
1717                  */
1718                 bio_inc_remaining(bio);
1719                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1720                         pool->process_prepared_discard(m);
1721
1722                 begin = virt_end;
1723         }
1724 }
1725
1726 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1727 {
1728         struct bio *bio = virt_cell->holder;
1729         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730
1731         /*
1732          * The virt_cell will only get freed once the origin bio completes.
1733          * This means it will remain locked while all the individual
1734          * passdown bios are in flight.
1735          */
1736         h->cell = virt_cell;
1737         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1738
1739         /*
1740          * We complete the bio now, knowing that the bi_remaining field
1741          * will prevent completion until the sub range discards have
1742          * completed.
1743          */
1744         bio_endio(bio);
1745 }
1746
1747 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1748 {
1749         dm_block_t begin, end;
1750         struct dm_cell_key virt_key;
1751         struct dm_bio_prison_cell *virt_cell;
1752
1753         get_bio_block_range(tc, bio, &begin, &end);
1754         if (begin == end) {
1755                 /*
1756                  * The discard covers less than a block.
1757                  */
1758                 bio_endio(bio);
1759                 return;
1760         }
1761
1762         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1763         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1764                 /*
1765                  * Potential starvation issue: We're relying on the
1766                  * fs/application being well behaved, and not trying to
1767                  * send IO to a region at the same time as discarding it.
1768                  * If they do this persistently then it's possible this
1769                  * cell will never be granted.
1770                  */
1771                 return;
1772
1773         tc->pool->process_discard_cell(tc, virt_cell);
1774 }
1775
1776 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1777                           struct dm_cell_key *key,
1778                           struct dm_thin_lookup_result *lookup_result,
1779                           struct dm_bio_prison_cell *cell)
1780 {
1781         int r;
1782         dm_block_t data_block;
1783         struct pool *pool = tc->pool;
1784
1785         r = alloc_data_block(tc, &data_block);
1786         switch (r) {
1787         case 0:
1788                 schedule_internal_copy(tc, block, lookup_result->block,
1789                                        data_block, cell, bio);
1790                 break;
1791
1792         case -ENOSPC:
1793                 retry_bios_on_resume(pool, cell);
1794                 break;
1795
1796         default:
1797                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1798                             __func__, r);
1799                 cell_error(pool, cell);
1800                 break;
1801         }
1802 }
1803
1804 static void __remap_and_issue_shared_cell(void *context,
1805                                           struct dm_bio_prison_cell *cell)
1806 {
1807         struct remap_info *info = context;
1808         struct bio *bio;
1809
1810         while ((bio = bio_list_pop(&cell->bios))) {
1811                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1812                     bio_op(bio) == REQ_OP_DISCARD)
1813                         bio_list_add(&info->defer_bios, bio);
1814                 else {
1815                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1816
1817                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1818                         inc_all_io_entry(info->tc->pool, bio);
1819                         bio_list_add(&info->issue_bios, bio);
1820                 }
1821         }
1822 }
1823
1824 static void remap_and_issue_shared_cell(struct thin_c *tc,
1825                                         struct dm_bio_prison_cell *cell,
1826                                         dm_block_t block)
1827 {
1828         struct bio *bio;
1829         struct remap_info info;
1830
1831         info.tc = tc;
1832         bio_list_init(&info.defer_bios);
1833         bio_list_init(&info.issue_bios);
1834
1835         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1836                            &info, cell);
1837
1838         while ((bio = bio_list_pop(&info.defer_bios)))
1839                 thin_defer_bio(tc, bio);
1840
1841         while ((bio = bio_list_pop(&info.issue_bios)))
1842                 remap_and_issue(tc, bio, block);
1843 }
1844
1845 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1846                                dm_block_t block,
1847                                struct dm_thin_lookup_result *lookup_result,
1848                                struct dm_bio_prison_cell *virt_cell)
1849 {
1850         struct dm_bio_prison_cell *data_cell;
1851         struct pool *pool = tc->pool;
1852         struct dm_cell_key key;
1853
1854         /*
1855          * If cell is already occupied, then sharing is already in the process
1856          * of being broken so we have nothing further to do here.
1857          */
1858         build_data_key(tc->td, lookup_result->block, &key);
1859         if (bio_detain(pool, &key, bio, &data_cell)) {
1860                 cell_defer_no_holder(tc, virt_cell);
1861                 return;
1862         }
1863
1864         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1865                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1866                 cell_defer_no_holder(tc, virt_cell);
1867         } else {
1868                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1869
1870                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1871                 inc_all_io_entry(pool, bio);
1872                 remap_and_issue(tc, bio, lookup_result->block);
1873
1874                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1875                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1876         }
1877 }
1878
1879 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1880                             struct dm_bio_prison_cell *cell)
1881 {
1882         int r;
1883         dm_block_t data_block;
1884         struct pool *pool = tc->pool;
1885
1886         /*
1887          * Remap empty bios (flushes) immediately, without provisioning.
1888          */
1889         if (!bio->bi_iter.bi_size) {
1890                 inc_all_io_entry(pool, bio);
1891                 cell_defer_no_holder(tc, cell);
1892
1893                 remap_and_issue(tc, bio, 0);
1894                 return;
1895         }
1896
1897         /*
1898          * Fill read bios with zeroes and complete them immediately.
1899          */
1900         if (bio_data_dir(bio) == READ) {
1901                 zero_fill_bio(bio);
1902                 cell_defer_no_holder(tc, cell);
1903                 bio_endio(bio);
1904                 return;
1905         }
1906
1907         r = alloc_data_block(tc, &data_block);
1908         switch (r) {
1909         case 0:
1910                 if (tc->origin_dev)
1911                         schedule_external_copy(tc, block, data_block, cell, bio);
1912                 else
1913                         schedule_zero(tc, block, data_block, cell, bio);
1914                 break;
1915
1916         case -ENOSPC:
1917                 retry_bios_on_resume(pool, cell);
1918                 break;
1919
1920         default:
1921                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1922                             __func__, r);
1923                 cell_error(pool, cell);
1924                 break;
1925         }
1926 }
1927
1928 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1929 {
1930         int r;
1931         struct pool *pool = tc->pool;
1932         struct bio *bio = cell->holder;
1933         dm_block_t block = get_bio_block(tc, bio);
1934         struct dm_thin_lookup_result lookup_result;
1935
1936         if (tc->requeue_mode) {
1937                 cell_requeue(pool, cell);
1938                 return;
1939         }
1940
1941         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1942         switch (r) {
1943         case 0:
1944                 if (lookup_result.shared)
1945                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1946                 else {
1947                         inc_all_io_entry(pool, bio);
1948                         remap_and_issue(tc, bio, lookup_result.block);
1949                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1950                 }
1951                 break;
1952
1953         case -ENODATA:
1954                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1955                         inc_all_io_entry(pool, bio);
1956                         cell_defer_no_holder(tc, cell);
1957
1958                         if (bio_end_sector(bio) <= tc->origin_size)
1959                                 remap_to_origin_and_issue(tc, bio);
1960
1961                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1962                                 zero_fill_bio(bio);
1963                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1964                                 remap_to_origin_and_issue(tc, bio);
1965
1966                         } else {
1967                                 zero_fill_bio(bio);
1968                                 bio_endio(bio);
1969                         }
1970                 } else
1971                         provision_block(tc, bio, block, cell);
1972                 break;
1973
1974         default:
1975                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1976                             __func__, r);
1977                 cell_defer_no_holder(tc, cell);
1978                 bio_io_error(bio);
1979                 break;
1980         }
1981 }
1982
1983 static void process_bio(struct thin_c *tc, struct bio *bio)
1984 {
1985         struct pool *pool = tc->pool;
1986         dm_block_t block = get_bio_block(tc, bio);
1987         struct dm_bio_prison_cell *cell;
1988         struct dm_cell_key key;
1989
1990         /*
1991          * If cell is already occupied, then the block is already
1992          * being provisioned so we have nothing further to do here.
1993          */
1994         build_virtual_key(tc->td, block, &key);
1995         if (bio_detain(pool, &key, bio, &cell))
1996                 return;
1997
1998         process_cell(tc, cell);
1999 }
2000
2001 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2002                                     struct dm_bio_prison_cell *cell)
2003 {
2004         int r;
2005         int rw = bio_data_dir(bio);
2006         dm_block_t block = get_bio_block(tc, bio);
2007         struct dm_thin_lookup_result lookup_result;
2008
2009         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2010         switch (r) {
2011         case 0:
2012                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2013                         handle_unserviceable_bio(tc->pool, bio);
2014                         if (cell)
2015                                 cell_defer_no_holder(tc, cell);
2016                 } else {
2017                         inc_all_io_entry(tc->pool, bio);
2018                         remap_and_issue(tc, bio, lookup_result.block);
2019                         if (cell)
2020                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2021                 }
2022                 break;
2023
2024         case -ENODATA:
2025                 if (cell)
2026                         cell_defer_no_holder(tc, cell);
2027                 if (rw != READ) {
2028                         handle_unserviceable_bio(tc->pool, bio);
2029                         break;
2030                 }
2031
2032                 if (tc->origin_dev) {
2033                         inc_all_io_entry(tc->pool, bio);
2034                         remap_to_origin_and_issue(tc, bio);
2035                         break;
2036                 }
2037
2038                 zero_fill_bio(bio);
2039                 bio_endio(bio);
2040                 break;
2041
2042         default:
2043                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2044                             __func__, r);
2045                 if (cell)
2046                         cell_defer_no_holder(tc, cell);
2047                 bio_io_error(bio);
2048                 break;
2049         }
2050 }
2051
2052 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2053 {
2054         __process_bio_read_only(tc, bio, NULL);
2055 }
2056
2057 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2058 {
2059         __process_bio_read_only(tc, cell->holder, cell);
2060 }
2061
2062 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2063 {
2064         bio_endio(bio);
2065 }
2066
2067 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2068 {
2069         bio_io_error(bio);
2070 }
2071
2072 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2073 {
2074         cell_success(tc->pool, cell);
2075 }
2076
2077 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2078 {
2079         cell_error(tc->pool, cell);
2080 }
2081
2082 /*
2083  * FIXME: should we also commit due to size of transaction, measured in
2084  * metadata blocks?
2085  */
2086 static int need_commit_due_to_time(struct pool *pool)
2087 {
2088         return !time_in_range(jiffies, pool->last_commit_jiffies,
2089                               pool->last_commit_jiffies + COMMIT_PERIOD);
2090 }
2091
2092 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2093 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2094
2095 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2096 {
2097         struct rb_node **rbp, *parent;
2098         struct dm_thin_endio_hook *pbd;
2099         sector_t bi_sector = bio->bi_iter.bi_sector;
2100
2101         rbp = &tc->sort_bio_list.rb_node;
2102         parent = NULL;
2103         while (*rbp) {
2104                 parent = *rbp;
2105                 pbd = thin_pbd(parent);
2106
2107                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2108                         rbp = &(*rbp)->rb_left;
2109                 else
2110                         rbp = &(*rbp)->rb_right;
2111         }
2112
2113         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2114         rb_link_node(&pbd->rb_node, parent, rbp);
2115         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2116 }
2117
2118 static void __extract_sorted_bios(struct thin_c *tc)
2119 {
2120         struct rb_node *node;
2121         struct dm_thin_endio_hook *pbd;
2122         struct bio *bio;
2123
2124         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2125                 pbd = thin_pbd(node);
2126                 bio = thin_bio(pbd);
2127
2128                 bio_list_add(&tc->deferred_bio_list, bio);
2129                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2130         }
2131
2132         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2133 }
2134
2135 static void __sort_thin_deferred_bios(struct thin_c *tc)
2136 {
2137         struct bio *bio;
2138         struct bio_list bios;
2139
2140         bio_list_init(&bios);
2141         bio_list_merge(&bios, &tc->deferred_bio_list);
2142         bio_list_init(&tc->deferred_bio_list);
2143
2144         /* Sort deferred_bio_list using rb-tree */
2145         while ((bio = bio_list_pop(&bios)))
2146                 __thin_bio_rb_add(tc, bio);
2147
2148         /*
2149          * Transfer the sorted bios in sort_bio_list back to
2150          * deferred_bio_list to allow lockless submission of
2151          * all bios.
2152          */
2153         __extract_sorted_bios(tc);
2154 }
2155
2156 static void process_thin_deferred_bios(struct thin_c *tc)
2157 {
2158         struct pool *pool = tc->pool;
2159         struct bio *bio;
2160         struct bio_list bios;
2161         struct blk_plug plug;
2162         unsigned count = 0;
2163
2164         if (tc->requeue_mode) {
2165                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2166                                 BLK_STS_DM_REQUEUE);
2167                 return;
2168         }
2169
2170         bio_list_init(&bios);
2171
2172         spin_lock_irq(&tc->lock);
2173
2174         if (bio_list_empty(&tc->deferred_bio_list)) {
2175                 spin_unlock_irq(&tc->lock);
2176                 return;
2177         }
2178
2179         __sort_thin_deferred_bios(tc);
2180
2181         bio_list_merge(&bios, &tc->deferred_bio_list);
2182         bio_list_init(&tc->deferred_bio_list);
2183
2184         spin_unlock_irq(&tc->lock);
2185
2186         blk_start_plug(&plug);
2187         while ((bio = bio_list_pop(&bios))) {
2188                 /*
2189                  * If we've got no free new_mapping structs, and processing
2190                  * this bio might require one, we pause until there are some
2191                  * prepared mappings to process.
2192                  */
2193                 if (ensure_next_mapping(pool)) {
2194                         spin_lock_irq(&tc->lock);
2195                         bio_list_add(&tc->deferred_bio_list, bio);
2196                         bio_list_merge(&tc->deferred_bio_list, &bios);
2197                         spin_unlock_irq(&tc->lock);
2198                         break;
2199                 }
2200
2201                 if (bio_op(bio) == REQ_OP_DISCARD)
2202                         pool->process_discard(tc, bio);
2203                 else
2204                         pool->process_bio(tc, bio);
2205
2206                 if ((count++ & 127) == 0) {
2207                         throttle_work_update(&pool->throttle);
2208                         dm_pool_issue_prefetches(pool->pmd);
2209                 }
2210         }
2211         blk_finish_plug(&plug);
2212 }
2213
2214 static int cmp_cells(const void *lhs, const void *rhs)
2215 {
2216         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2217         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2218
2219         BUG_ON(!lhs_cell->holder);
2220         BUG_ON(!rhs_cell->holder);
2221
2222         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2223                 return -1;
2224
2225         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2226                 return 1;
2227
2228         return 0;
2229 }
2230
2231 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2232 {
2233         unsigned count = 0;
2234         struct dm_bio_prison_cell *cell, *tmp;
2235
2236         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2237                 if (count >= CELL_SORT_ARRAY_SIZE)
2238                         break;
2239
2240                 pool->cell_sort_array[count++] = cell;
2241                 list_del(&cell->user_list);
2242         }
2243
2244         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2245
2246         return count;
2247 }
2248
2249 static void process_thin_deferred_cells(struct thin_c *tc)
2250 {
2251         struct pool *pool = tc->pool;
2252         struct list_head cells;
2253         struct dm_bio_prison_cell *cell;
2254         unsigned i, j, count;
2255
2256         INIT_LIST_HEAD(&cells);
2257
2258         spin_lock_irq(&tc->lock);
2259         list_splice_init(&tc->deferred_cells, &cells);
2260         spin_unlock_irq(&tc->lock);
2261
2262         if (list_empty(&cells))
2263                 return;
2264
2265         do {
2266                 count = sort_cells(tc->pool, &cells);
2267
2268                 for (i = 0; i < count; i++) {
2269                         cell = pool->cell_sort_array[i];
2270                         BUG_ON(!cell->holder);
2271
2272                         /*
2273                          * If we've got no free new_mapping structs, and processing
2274                          * this bio might require one, we pause until there are some
2275                          * prepared mappings to process.
2276                          */
2277                         if (ensure_next_mapping(pool)) {
2278                                 for (j = i; j < count; j++)
2279                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2280
2281                                 spin_lock_irq(&tc->lock);
2282                                 list_splice(&cells, &tc->deferred_cells);
2283                                 spin_unlock_irq(&tc->lock);
2284                                 return;
2285                         }
2286
2287                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2288                                 pool->process_discard_cell(tc, cell);
2289                         else
2290                                 pool->process_cell(tc, cell);
2291                 }
2292         } while (!list_empty(&cells));
2293 }
2294
2295 static void thin_get(struct thin_c *tc);
2296 static void thin_put(struct thin_c *tc);
2297
2298 /*
2299  * We can't hold rcu_read_lock() around code that can block.  So we
2300  * find a thin with the rcu lock held; bump a refcount; then drop
2301  * the lock.
2302  */
2303 static struct thin_c *get_first_thin(struct pool *pool)
2304 {
2305         struct thin_c *tc = NULL;
2306
2307         rcu_read_lock();
2308         if (!list_empty(&pool->active_thins)) {
2309                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2310                 thin_get(tc);
2311         }
2312         rcu_read_unlock();
2313
2314         return tc;
2315 }
2316
2317 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2318 {
2319         struct thin_c *old_tc = tc;
2320
2321         rcu_read_lock();
2322         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2323                 thin_get(tc);
2324                 thin_put(old_tc);
2325                 rcu_read_unlock();
2326                 return tc;
2327         }
2328         thin_put(old_tc);
2329         rcu_read_unlock();
2330
2331         return NULL;
2332 }
2333
2334 static void process_deferred_bios(struct pool *pool)
2335 {
2336         struct bio *bio;
2337         struct bio_list bios, bio_completions;
2338         struct thin_c *tc;
2339
2340         tc = get_first_thin(pool);
2341         while (tc) {
2342                 process_thin_deferred_cells(tc);
2343                 process_thin_deferred_bios(tc);
2344                 tc = get_next_thin(pool, tc);
2345         }
2346
2347         /*
2348          * If there are any deferred flush bios, we must commit the metadata
2349          * before issuing them or signaling their completion.
2350          */
2351         bio_list_init(&bios);
2352         bio_list_init(&bio_completions);
2353
2354         spin_lock_irq(&pool->lock);
2355         bio_list_merge(&bios, &pool->deferred_flush_bios);
2356         bio_list_init(&pool->deferred_flush_bios);
2357
2358         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2359         bio_list_init(&pool->deferred_flush_completions);
2360         spin_unlock_irq(&pool->lock);
2361
2362         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2363             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2364                 return;
2365
2366         if (commit(pool)) {
2367                 bio_list_merge(&bios, &bio_completions);
2368
2369                 while ((bio = bio_list_pop(&bios)))
2370                         bio_io_error(bio);
2371                 return;
2372         }
2373         pool->last_commit_jiffies = jiffies;
2374
2375         while ((bio = bio_list_pop(&bio_completions)))
2376                 bio_endio(bio);
2377
2378         while ((bio = bio_list_pop(&bios))) {
2379                 /*
2380                  * The data device was flushed as part of metadata commit,
2381                  * so complete redundant flushes immediately.
2382                  */
2383                 if (bio->bi_opf & REQ_PREFLUSH)
2384                         bio_endio(bio);
2385                 else
2386                         dm_submit_bio_remap(bio, NULL);
2387         }
2388 }
2389
2390 static void do_worker(struct work_struct *ws)
2391 {
2392         struct pool *pool = container_of(ws, struct pool, worker);
2393
2394         throttle_work_start(&pool->throttle);
2395         dm_pool_issue_prefetches(pool->pmd);
2396         throttle_work_update(&pool->throttle);
2397         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2398         throttle_work_update(&pool->throttle);
2399         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2400         throttle_work_update(&pool->throttle);
2401         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2402         throttle_work_update(&pool->throttle);
2403         process_deferred_bios(pool);
2404         throttle_work_complete(&pool->throttle);
2405 }
2406
2407 /*
2408  * We want to commit periodically so that not too much
2409  * unwritten data builds up.
2410  */
2411 static void do_waker(struct work_struct *ws)
2412 {
2413         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2414         wake_worker(pool);
2415         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2416 }
2417
2418 /*
2419  * We're holding onto IO to allow userland time to react.  After the
2420  * timeout either the pool will have been resized (and thus back in
2421  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2422  */
2423 static void do_no_space_timeout(struct work_struct *ws)
2424 {
2425         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2426                                          no_space_timeout);
2427
2428         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2429                 pool->pf.error_if_no_space = true;
2430                 notify_of_pool_mode_change(pool);
2431                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2432         }
2433 }
2434
2435 /*----------------------------------------------------------------*/
2436
2437 struct pool_work {
2438         struct work_struct worker;
2439         struct completion complete;
2440 };
2441
2442 static struct pool_work *to_pool_work(struct work_struct *ws)
2443 {
2444         return container_of(ws, struct pool_work, worker);
2445 }
2446
2447 static void pool_work_complete(struct pool_work *pw)
2448 {
2449         complete(&pw->complete);
2450 }
2451
2452 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2453                            void (*fn)(struct work_struct *))
2454 {
2455         INIT_WORK_ONSTACK(&pw->worker, fn);
2456         init_completion(&pw->complete);
2457         queue_work(pool->wq, &pw->worker);
2458         wait_for_completion(&pw->complete);
2459 }
2460
2461 /*----------------------------------------------------------------*/
2462
2463 struct noflush_work {
2464         struct pool_work pw;
2465         struct thin_c *tc;
2466 };
2467
2468 static struct noflush_work *to_noflush(struct work_struct *ws)
2469 {
2470         return container_of(to_pool_work(ws), struct noflush_work, pw);
2471 }
2472
2473 static void do_noflush_start(struct work_struct *ws)
2474 {
2475         struct noflush_work *w = to_noflush(ws);
2476         w->tc->requeue_mode = true;
2477         requeue_io(w->tc);
2478         pool_work_complete(&w->pw);
2479 }
2480
2481 static void do_noflush_stop(struct work_struct *ws)
2482 {
2483         struct noflush_work *w = to_noflush(ws);
2484         w->tc->requeue_mode = false;
2485         pool_work_complete(&w->pw);
2486 }
2487
2488 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2489 {
2490         struct noflush_work w;
2491
2492         w.tc = tc;
2493         pool_work_wait(&w.pw, tc->pool, fn);
2494 }
2495
2496 /*----------------------------------------------------------------*/
2497
2498 static bool passdown_enabled(struct pool_c *pt)
2499 {
2500         return pt->adjusted_pf.discard_passdown;
2501 }
2502
2503 static void set_discard_callbacks(struct pool *pool)
2504 {
2505         struct pool_c *pt = pool->ti->private;
2506
2507         if (passdown_enabled(pt)) {
2508                 pool->process_discard_cell = process_discard_cell_passdown;
2509                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2510                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2511         } else {
2512                 pool->process_discard_cell = process_discard_cell_no_passdown;
2513                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2514         }
2515 }
2516
2517 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2518 {
2519         struct pool_c *pt = pool->ti->private;
2520         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2521         enum pool_mode old_mode = get_pool_mode(pool);
2522         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2523
2524         /*
2525          * Never allow the pool to transition to PM_WRITE mode if user
2526          * intervention is required to verify metadata and data consistency.
2527          */
2528         if (new_mode == PM_WRITE && needs_check) {
2529                 DMERR("%s: unable to switch pool to write mode until repaired.",
2530                       dm_device_name(pool->pool_md));
2531                 if (old_mode != new_mode)
2532                         new_mode = old_mode;
2533                 else
2534                         new_mode = PM_READ_ONLY;
2535         }
2536         /*
2537          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2538          * not going to recover without a thin_repair.  So we never let the
2539          * pool move out of the old mode.
2540          */
2541         if (old_mode == PM_FAIL)
2542                 new_mode = old_mode;
2543
2544         switch (new_mode) {
2545         case PM_FAIL:
2546                 dm_pool_metadata_read_only(pool->pmd);
2547                 pool->process_bio = process_bio_fail;
2548                 pool->process_discard = process_bio_fail;
2549                 pool->process_cell = process_cell_fail;
2550                 pool->process_discard_cell = process_cell_fail;
2551                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2552                 pool->process_prepared_discard = process_prepared_discard_fail;
2553
2554                 error_retry_list(pool);
2555                 break;
2556
2557         case PM_OUT_OF_METADATA_SPACE:
2558         case PM_READ_ONLY:
2559                 dm_pool_metadata_read_only(pool->pmd);
2560                 pool->process_bio = process_bio_read_only;
2561                 pool->process_discard = process_bio_success;
2562                 pool->process_cell = process_cell_read_only;
2563                 pool->process_discard_cell = process_cell_success;
2564                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2565                 pool->process_prepared_discard = process_prepared_discard_success;
2566
2567                 error_retry_list(pool);
2568                 break;
2569
2570         case PM_OUT_OF_DATA_SPACE:
2571                 /*
2572                  * Ideally we'd never hit this state; the low water mark
2573                  * would trigger userland to extend the pool before we
2574                  * completely run out of data space.  However, many small
2575                  * IOs to unprovisioned space can consume data space at an
2576                  * alarming rate.  Adjust your low water mark if you're
2577                  * frequently seeing this mode.
2578                  */
2579                 pool->out_of_data_space = true;
2580                 pool->process_bio = process_bio_read_only;
2581                 pool->process_discard = process_discard_bio;
2582                 pool->process_cell = process_cell_read_only;
2583                 pool->process_prepared_mapping = process_prepared_mapping;
2584                 set_discard_callbacks(pool);
2585
2586                 if (!pool->pf.error_if_no_space && no_space_timeout)
2587                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2588                 break;
2589
2590         case PM_WRITE:
2591                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2592                         cancel_delayed_work_sync(&pool->no_space_timeout);
2593                 pool->out_of_data_space = false;
2594                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2595                 dm_pool_metadata_read_write(pool->pmd);
2596                 pool->process_bio = process_bio;
2597                 pool->process_discard = process_discard_bio;
2598                 pool->process_cell = process_cell;
2599                 pool->process_prepared_mapping = process_prepared_mapping;
2600                 set_discard_callbacks(pool);
2601                 break;
2602         }
2603
2604         pool->pf.mode = new_mode;
2605         /*
2606          * The pool mode may have changed, sync it so bind_control_target()
2607          * doesn't cause an unexpected mode transition on resume.
2608          */
2609         pt->adjusted_pf.mode = new_mode;
2610
2611         if (old_mode != new_mode)
2612                 notify_of_pool_mode_change(pool);
2613 }
2614
2615 static void abort_transaction(struct pool *pool)
2616 {
2617         const char *dev_name = dm_device_name(pool->pool_md);
2618
2619         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2620         if (dm_pool_abort_metadata(pool->pmd)) {
2621                 DMERR("%s: failed to abort metadata transaction", dev_name);
2622                 set_pool_mode(pool, PM_FAIL);
2623         }
2624
2625         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2626                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2627                 set_pool_mode(pool, PM_FAIL);
2628         }
2629 }
2630
2631 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2632 {
2633         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2634                     dm_device_name(pool->pool_md), op, r);
2635
2636         abort_transaction(pool);
2637         set_pool_mode(pool, PM_READ_ONLY);
2638 }
2639
2640 /*----------------------------------------------------------------*/
2641
2642 /*
2643  * Mapping functions.
2644  */
2645
2646 /*
2647  * Called only while mapping a thin bio to hand it over to the workqueue.
2648  */
2649 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2650 {
2651         struct pool *pool = tc->pool;
2652
2653         spin_lock_irq(&tc->lock);
2654         bio_list_add(&tc->deferred_bio_list, bio);
2655         spin_unlock_irq(&tc->lock);
2656
2657         wake_worker(pool);
2658 }
2659
2660 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2661 {
2662         struct pool *pool = tc->pool;
2663
2664         throttle_lock(&pool->throttle);
2665         thin_defer_bio(tc, bio);
2666         throttle_unlock(&pool->throttle);
2667 }
2668
2669 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2670 {
2671         struct pool *pool = tc->pool;
2672
2673         throttle_lock(&pool->throttle);
2674         spin_lock_irq(&tc->lock);
2675         list_add_tail(&cell->user_list, &tc->deferred_cells);
2676         spin_unlock_irq(&tc->lock);
2677         throttle_unlock(&pool->throttle);
2678
2679         wake_worker(pool);
2680 }
2681
2682 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2683 {
2684         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2685
2686         h->tc = tc;
2687         h->shared_read_entry = NULL;
2688         h->all_io_entry = NULL;
2689         h->overwrite_mapping = NULL;
2690         h->cell = NULL;
2691 }
2692
2693 /*
2694  * Non-blocking function called from the thin target's map function.
2695  */
2696 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2697 {
2698         int r;
2699         struct thin_c *tc = ti->private;
2700         dm_block_t block = get_bio_block(tc, bio);
2701         struct dm_thin_device *td = tc->td;
2702         struct dm_thin_lookup_result result;
2703         struct dm_bio_prison_cell *virt_cell, *data_cell;
2704         struct dm_cell_key key;
2705
2706         thin_hook_bio(tc, bio);
2707
2708         if (tc->requeue_mode) {
2709                 bio->bi_status = BLK_STS_DM_REQUEUE;
2710                 bio_endio(bio);
2711                 return DM_MAPIO_SUBMITTED;
2712         }
2713
2714         if (get_pool_mode(tc->pool) == PM_FAIL) {
2715                 bio_io_error(bio);
2716                 return DM_MAPIO_SUBMITTED;
2717         }
2718
2719         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2720                 thin_defer_bio_with_throttle(tc, bio);
2721                 return DM_MAPIO_SUBMITTED;
2722         }
2723
2724         /*
2725          * We must hold the virtual cell before doing the lookup, otherwise
2726          * there's a race with discard.
2727          */
2728         build_virtual_key(tc->td, block, &key);
2729         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2730                 return DM_MAPIO_SUBMITTED;
2731
2732         r = dm_thin_find_block(td, block, 0, &result);
2733
2734         /*
2735          * Note that we defer readahead too.
2736          */
2737         switch (r) {
2738         case 0:
2739                 if (unlikely(result.shared)) {
2740                         /*
2741                          * We have a race condition here between the
2742                          * result.shared value returned by the lookup and
2743                          * snapshot creation, which may cause new
2744                          * sharing.
2745                          *
2746                          * To avoid this always quiesce the origin before
2747                          * taking the snap.  You want to do this anyway to
2748                          * ensure a consistent application view
2749                          * (i.e. lockfs).
2750                          *
2751                          * More distant ancestors are irrelevant. The
2752                          * shared flag will be set in their case.
2753                          */
2754                         thin_defer_cell(tc, virt_cell);
2755                         return DM_MAPIO_SUBMITTED;
2756                 }
2757
2758                 build_data_key(tc->td, result.block, &key);
2759                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2760                         cell_defer_no_holder(tc, virt_cell);
2761                         return DM_MAPIO_SUBMITTED;
2762                 }
2763
2764                 inc_all_io_entry(tc->pool, bio);
2765                 cell_defer_no_holder(tc, data_cell);
2766                 cell_defer_no_holder(tc, virt_cell);
2767
2768                 remap(tc, bio, result.block);
2769                 return DM_MAPIO_REMAPPED;
2770
2771         case -ENODATA:
2772         case -EWOULDBLOCK:
2773                 thin_defer_cell(tc, virt_cell);
2774                 return DM_MAPIO_SUBMITTED;
2775
2776         default:
2777                 /*
2778                  * Must always call bio_io_error on failure.
2779                  * dm_thin_find_block can fail with -EINVAL if the
2780                  * pool is switched to fail-io mode.
2781                  */
2782                 bio_io_error(bio);
2783                 cell_defer_no_holder(tc, virt_cell);
2784                 return DM_MAPIO_SUBMITTED;
2785         }
2786 }
2787
2788 static void requeue_bios(struct pool *pool)
2789 {
2790         struct thin_c *tc;
2791
2792         rcu_read_lock();
2793         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2794                 spin_lock_irq(&tc->lock);
2795                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2796                 bio_list_init(&tc->retry_on_resume_list);
2797                 spin_unlock_irq(&tc->lock);
2798         }
2799         rcu_read_unlock();
2800 }
2801
2802 /*----------------------------------------------------------------
2803  * Binding of control targets to a pool object
2804  *--------------------------------------------------------------*/
2805 static bool is_factor(sector_t block_size, uint32_t n)
2806 {
2807         return !sector_div(block_size, n);
2808 }
2809
2810 /*
2811  * If discard_passdown was enabled verify that the data device
2812  * supports discards.  Disable discard_passdown if not.
2813  */
2814 static void disable_passdown_if_not_supported(struct pool_c *pt)
2815 {
2816         struct pool *pool = pt->pool;
2817         struct block_device *data_bdev = pt->data_dev->bdev;
2818         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2819         const char *reason = NULL;
2820
2821         if (!pt->adjusted_pf.discard_passdown)
2822                 return;
2823
2824         if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2825                 reason = "discard unsupported";
2826
2827         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2828                 reason = "max discard sectors smaller than a block";
2829
2830         if (reason) {
2831                 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2832                 pt->adjusted_pf.discard_passdown = false;
2833         }
2834 }
2835
2836 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2837 {
2838         struct pool_c *pt = ti->private;
2839
2840         /*
2841          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2842          */
2843         enum pool_mode old_mode = get_pool_mode(pool);
2844         enum pool_mode new_mode = pt->adjusted_pf.mode;
2845
2846         /*
2847          * Don't change the pool's mode until set_pool_mode() below.
2848          * Otherwise the pool's process_* function pointers may
2849          * not match the desired pool mode.
2850          */
2851         pt->adjusted_pf.mode = old_mode;
2852
2853         pool->ti = ti;
2854         pool->pf = pt->adjusted_pf;
2855         pool->low_water_blocks = pt->low_water_blocks;
2856
2857         set_pool_mode(pool, new_mode);
2858
2859         return 0;
2860 }
2861
2862 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2863 {
2864         if (pool->ti == ti)
2865                 pool->ti = NULL;
2866 }
2867
2868 /*----------------------------------------------------------------
2869  * Pool creation
2870  *--------------------------------------------------------------*/
2871 /* Initialize pool features. */
2872 static void pool_features_init(struct pool_features *pf)
2873 {
2874         pf->mode = PM_WRITE;
2875         pf->zero_new_blocks = true;
2876         pf->discard_enabled = true;
2877         pf->discard_passdown = true;
2878         pf->error_if_no_space = false;
2879 }
2880
2881 static void __pool_destroy(struct pool *pool)
2882 {
2883         __pool_table_remove(pool);
2884
2885         vfree(pool->cell_sort_array);
2886         if (dm_pool_metadata_close(pool->pmd) < 0)
2887                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2888
2889         dm_bio_prison_destroy(pool->prison);
2890         dm_kcopyd_client_destroy(pool->copier);
2891
2892         if (pool->wq)
2893                 destroy_workqueue(pool->wq);
2894
2895         if (pool->next_mapping)
2896                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2897         mempool_exit(&pool->mapping_pool);
2898         dm_deferred_set_destroy(pool->shared_read_ds);
2899         dm_deferred_set_destroy(pool->all_io_ds);
2900         kfree(pool);
2901 }
2902
2903 static struct kmem_cache *_new_mapping_cache;
2904
2905 static struct pool *pool_create(struct mapped_device *pool_md,
2906                                 struct block_device *metadata_dev,
2907                                 struct block_device *data_dev,
2908                                 unsigned long block_size,
2909                                 int read_only, char **error)
2910 {
2911         int r;
2912         void *err_p;
2913         struct pool *pool;
2914         struct dm_pool_metadata *pmd;
2915         bool format_device = read_only ? false : true;
2916
2917         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2918         if (IS_ERR(pmd)) {
2919                 *error = "Error creating metadata object";
2920                 return (struct pool *)pmd;
2921         }
2922
2923         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2924         if (!pool) {
2925                 *error = "Error allocating memory for pool";
2926                 err_p = ERR_PTR(-ENOMEM);
2927                 goto bad_pool;
2928         }
2929
2930         pool->pmd = pmd;
2931         pool->sectors_per_block = block_size;
2932         if (block_size & (block_size - 1))
2933                 pool->sectors_per_block_shift = -1;
2934         else
2935                 pool->sectors_per_block_shift = __ffs(block_size);
2936         pool->low_water_blocks = 0;
2937         pool_features_init(&pool->pf);
2938         pool->prison = dm_bio_prison_create();
2939         if (!pool->prison) {
2940                 *error = "Error creating pool's bio prison";
2941                 err_p = ERR_PTR(-ENOMEM);
2942                 goto bad_prison;
2943         }
2944
2945         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2946         if (IS_ERR(pool->copier)) {
2947                 r = PTR_ERR(pool->copier);
2948                 *error = "Error creating pool's kcopyd client";
2949                 err_p = ERR_PTR(r);
2950                 goto bad_kcopyd_client;
2951         }
2952
2953         /*
2954          * Create singlethreaded workqueue that will service all devices
2955          * that use this metadata.
2956          */
2957         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2958         if (!pool->wq) {
2959                 *error = "Error creating pool's workqueue";
2960                 err_p = ERR_PTR(-ENOMEM);
2961                 goto bad_wq;
2962         }
2963
2964         throttle_init(&pool->throttle);
2965         INIT_WORK(&pool->worker, do_worker);
2966         INIT_DELAYED_WORK(&pool->waker, do_waker);
2967         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2968         spin_lock_init(&pool->lock);
2969         bio_list_init(&pool->deferred_flush_bios);
2970         bio_list_init(&pool->deferred_flush_completions);
2971         INIT_LIST_HEAD(&pool->prepared_mappings);
2972         INIT_LIST_HEAD(&pool->prepared_discards);
2973         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2974         INIT_LIST_HEAD(&pool->active_thins);
2975         pool->low_water_triggered = false;
2976         pool->suspended = true;
2977         pool->out_of_data_space = false;
2978
2979         pool->shared_read_ds = dm_deferred_set_create();
2980         if (!pool->shared_read_ds) {
2981                 *error = "Error creating pool's shared read deferred set";
2982                 err_p = ERR_PTR(-ENOMEM);
2983                 goto bad_shared_read_ds;
2984         }
2985
2986         pool->all_io_ds = dm_deferred_set_create();
2987         if (!pool->all_io_ds) {
2988                 *error = "Error creating pool's all io deferred set";
2989                 err_p = ERR_PTR(-ENOMEM);
2990                 goto bad_all_io_ds;
2991         }
2992
2993         pool->next_mapping = NULL;
2994         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2995                                    _new_mapping_cache);
2996         if (r) {
2997                 *error = "Error creating pool's mapping mempool";
2998                 err_p = ERR_PTR(r);
2999                 goto bad_mapping_pool;
3000         }
3001
3002         pool->cell_sort_array =
3003                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3004                                    sizeof(*pool->cell_sort_array)));
3005         if (!pool->cell_sort_array) {
3006                 *error = "Error allocating cell sort array";
3007                 err_p = ERR_PTR(-ENOMEM);
3008                 goto bad_sort_array;
3009         }
3010
3011         pool->ref_count = 1;
3012         pool->last_commit_jiffies = jiffies;
3013         pool->pool_md = pool_md;
3014         pool->md_dev = metadata_dev;
3015         pool->data_dev = data_dev;
3016         __pool_table_insert(pool);
3017
3018         return pool;
3019
3020 bad_sort_array:
3021         mempool_exit(&pool->mapping_pool);
3022 bad_mapping_pool:
3023         dm_deferred_set_destroy(pool->all_io_ds);
3024 bad_all_io_ds:
3025         dm_deferred_set_destroy(pool->shared_read_ds);
3026 bad_shared_read_ds:
3027         destroy_workqueue(pool->wq);
3028 bad_wq:
3029         dm_kcopyd_client_destroy(pool->copier);
3030 bad_kcopyd_client:
3031         dm_bio_prison_destroy(pool->prison);
3032 bad_prison:
3033         kfree(pool);
3034 bad_pool:
3035         if (dm_pool_metadata_close(pmd))
3036                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3037
3038         return err_p;
3039 }
3040
3041 static void __pool_inc(struct pool *pool)
3042 {
3043         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3044         pool->ref_count++;
3045 }
3046
3047 static void __pool_dec(struct pool *pool)
3048 {
3049         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3050         BUG_ON(!pool->ref_count);
3051         if (!--pool->ref_count)
3052                 __pool_destroy(pool);
3053 }
3054
3055 static struct pool *__pool_find(struct mapped_device *pool_md,
3056                                 struct block_device *metadata_dev,
3057                                 struct block_device *data_dev,
3058                                 unsigned long block_size, int read_only,
3059                                 char **error, int *created)
3060 {
3061         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3062
3063         if (pool) {
3064                 if (pool->pool_md != pool_md) {
3065                         *error = "metadata device already in use by a pool";
3066                         return ERR_PTR(-EBUSY);
3067                 }
3068                 if (pool->data_dev != data_dev) {
3069                         *error = "data device already in use by a pool";
3070                         return ERR_PTR(-EBUSY);
3071                 }
3072                 __pool_inc(pool);
3073
3074         } else {
3075                 pool = __pool_table_lookup(pool_md);
3076                 if (pool) {
3077                         if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3078                                 *error = "different pool cannot replace a pool";
3079                                 return ERR_PTR(-EINVAL);
3080                         }
3081                         __pool_inc(pool);
3082
3083                 } else {
3084                         pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3085                         *created = 1;
3086                 }
3087         }
3088
3089         return pool;
3090 }
3091
3092 /*----------------------------------------------------------------
3093  * Pool target methods
3094  *--------------------------------------------------------------*/
3095 static void pool_dtr(struct dm_target *ti)
3096 {
3097         struct pool_c *pt = ti->private;
3098
3099         mutex_lock(&dm_thin_pool_table.mutex);
3100
3101         unbind_control_target(pt->pool, ti);
3102         __pool_dec(pt->pool);
3103         dm_put_device(ti, pt->metadata_dev);
3104         dm_put_device(ti, pt->data_dev);
3105         kfree(pt);
3106
3107         mutex_unlock(&dm_thin_pool_table.mutex);
3108 }
3109
3110 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3111                                struct dm_target *ti)
3112 {
3113         int r;
3114         unsigned argc;
3115         const char *arg_name;
3116
3117         static const struct dm_arg _args[] = {
3118                 {0, 4, "Invalid number of pool feature arguments"},
3119         };
3120
3121         /*
3122          * No feature arguments supplied.
3123          */
3124         if (!as->argc)
3125                 return 0;
3126
3127         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3128         if (r)
3129                 return -EINVAL;
3130
3131         while (argc && !r) {
3132                 arg_name = dm_shift_arg(as);
3133                 argc--;
3134
3135                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3136                         pf->zero_new_blocks = false;
3137
3138                 else if (!strcasecmp(arg_name, "ignore_discard"))
3139                         pf->discard_enabled = false;
3140
3141                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3142                         pf->discard_passdown = false;
3143
3144                 else if (!strcasecmp(arg_name, "read_only"))
3145                         pf->mode = PM_READ_ONLY;
3146
3147                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3148                         pf->error_if_no_space = true;
3149
3150                 else {
3151                         ti->error = "Unrecognised pool feature requested";
3152                         r = -EINVAL;
3153                         break;
3154                 }
3155         }
3156
3157         return r;
3158 }
3159
3160 static void metadata_low_callback(void *context)
3161 {
3162         struct pool *pool = context;
3163
3164         DMWARN("%s: reached low water mark for metadata device: sending event.",
3165                dm_device_name(pool->pool_md));
3166
3167         dm_table_event(pool->ti->table);
3168 }
3169
3170 /*
3171  * We need to flush the data device **before** committing the metadata.
3172  *
3173  * This ensures that the data blocks of any newly inserted mappings are
3174  * properly written to non-volatile storage and won't be lost in case of a
3175  * crash.
3176  *
3177  * Failure to do so can result in data corruption in the case of internal or
3178  * external snapshots and in the case of newly provisioned blocks, when block
3179  * zeroing is enabled.
3180  */
3181 static int metadata_pre_commit_callback(void *context)
3182 {
3183         struct pool *pool = context;
3184
3185         return blkdev_issue_flush(pool->data_dev);
3186 }
3187
3188 static sector_t get_dev_size(struct block_device *bdev)
3189 {
3190         return bdev_nr_sectors(bdev);
3191 }
3192
3193 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3194 {
3195         sector_t metadata_dev_size = get_dev_size(bdev);
3196
3197         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3198                 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3199                        bdev, THIN_METADATA_MAX_SECTORS);
3200 }
3201
3202 static sector_t get_metadata_dev_size(struct block_device *bdev)
3203 {
3204         sector_t metadata_dev_size = get_dev_size(bdev);
3205
3206         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3207                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3208
3209         return metadata_dev_size;
3210 }
3211
3212 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3213 {
3214         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3215
3216         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3217
3218         return metadata_dev_size;
3219 }
3220
3221 /*
3222  * When a metadata threshold is crossed a dm event is triggered, and
3223  * userland should respond by growing the metadata device.  We could let
3224  * userland set the threshold, like we do with the data threshold, but I'm
3225  * not sure they know enough to do this well.
3226  */
3227 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3228 {
3229         /*
3230          * 4M is ample for all ops with the possible exception of thin
3231          * device deletion which is harmless if it fails (just retry the
3232          * delete after you've grown the device).
3233          */
3234         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3235         return min((dm_block_t)1024ULL /* 4M */, quarter);
3236 }
3237
3238 /*
3239  * thin-pool <metadata dev> <data dev>
3240  *           <data block size (sectors)>
3241  *           <low water mark (blocks)>
3242  *           [<#feature args> [<arg>]*]
3243  *
3244  * Optional feature arguments are:
3245  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3246  *           ignore_discard: disable discard
3247  *           no_discard_passdown: don't pass discards down to the data device
3248  *           read_only: Don't allow any changes to be made to the pool metadata.
3249  *           error_if_no_space: error IOs, instead of queueing, if no space.
3250  */
3251 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3252 {
3253         int r, pool_created = 0;
3254         struct pool_c *pt;
3255         struct pool *pool;
3256         struct pool_features pf;
3257         struct dm_arg_set as;
3258         struct dm_dev *data_dev;
3259         unsigned long block_size;
3260         dm_block_t low_water_blocks;
3261         struct dm_dev *metadata_dev;
3262         fmode_t metadata_mode;
3263
3264         /*
3265          * FIXME Remove validation from scope of lock.
3266          */
3267         mutex_lock(&dm_thin_pool_table.mutex);
3268
3269         if (argc < 4) {
3270                 ti->error = "Invalid argument count";
3271                 r = -EINVAL;
3272                 goto out_unlock;
3273         }
3274
3275         as.argc = argc;
3276         as.argv = argv;
3277
3278         /* make sure metadata and data are different devices */
3279         if (!strcmp(argv[0], argv[1])) {
3280                 ti->error = "Error setting metadata or data device";
3281                 r = -EINVAL;
3282                 goto out_unlock;
3283         }
3284
3285         /*
3286          * Set default pool features.
3287          */
3288         pool_features_init(&pf);
3289
3290         dm_consume_args(&as, 4);
3291         r = parse_pool_features(&as, &pf, ti);
3292         if (r)
3293                 goto out_unlock;
3294
3295         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3296         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3297         if (r) {
3298                 ti->error = "Error opening metadata block device";
3299                 goto out_unlock;
3300         }
3301         warn_if_metadata_device_too_big(metadata_dev->bdev);
3302
3303         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3304         if (r) {
3305                 ti->error = "Error getting data device";
3306                 goto out_metadata;
3307         }
3308
3309         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3310             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3311             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3312             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3313                 ti->error = "Invalid block size";
3314                 r = -EINVAL;
3315                 goto out;
3316         }
3317
3318         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3319                 ti->error = "Invalid low water mark";
3320                 r = -EINVAL;
3321                 goto out;
3322         }
3323
3324         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3325         if (!pt) {
3326                 r = -ENOMEM;
3327                 goto out;
3328         }
3329
3330         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3331                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3332         if (IS_ERR(pool)) {
3333                 r = PTR_ERR(pool);
3334                 goto out_free_pt;
3335         }
3336
3337         /*
3338          * 'pool_created' reflects whether this is the first table load.
3339          * Top level discard support is not allowed to be changed after
3340          * initial load.  This would require a pool reload to trigger thin
3341          * device changes.
3342          */
3343         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3344                 ti->error = "Discard support cannot be disabled once enabled";
3345                 r = -EINVAL;
3346                 goto out_flags_changed;
3347         }
3348
3349         pt->pool = pool;
3350         pt->ti = ti;
3351         pt->metadata_dev = metadata_dev;
3352         pt->data_dev = data_dev;
3353         pt->low_water_blocks = low_water_blocks;
3354         pt->adjusted_pf = pt->requested_pf = pf;
3355         ti->num_flush_bios = 1;
3356
3357         /*
3358          * Only need to enable discards if the pool should pass
3359          * them down to the data device.  The thin device's discard
3360          * processing will cause mappings to be removed from the btree.
3361          */
3362         if (pf.discard_enabled && pf.discard_passdown) {
3363                 ti->num_discard_bios = 1;
3364
3365                 /*
3366                  * Setting 'discards_supported' circumvents the normal
3367                  * stacking of discard limits (this keeps the pool and
3368                  * thin devices' discard limits consistent).
3369                  */
3370                 ti->discards_supported = true;
3371         }
3372         ti->private = pt;
3373
3374         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3375                                                 calc_metadata_threshold(pt),
3376                                                 metadata_low_callback,
3377                                                 pool);
3378         if (r)
3379                 goto out_flags_changed;
3380
3381         dm_pool_register_pre_commit_callback(pool->pmd,
3382                                              metadata_pre_commit_callback, pool);
3383
3384         mutex_unlock(&dm_thin_pool_table.mutex);
3385
3386         return 0;
3387
3388 out_flags_changed:
3389         __pool_dec(pool);
3390 out_free_pt:
3391         kfree(pt);
3392 out:
3393         dm_put_device(ti, data_dev);
3394 out_metadata:
3395         dm_put_device(ti, metadata_dev);
3396 out_unlock:
3397         mutex_unlock(&dm_thin_pool_table.mutex);
3398
3399         return r;
3400 }
3401
3402 static int pool_map(struct dm_target *ti, struct bio *bio)
3403 {
3404         int r;
3405         struct pool_c *pt = ti->private;
3406         struct pool *pool = pt->pool;
3407
3408         /*
3409          * As this is a singleton target, ti->begin is always zero.
3410          */
3411         spin_lock_irq(&pool->lock);
3412         bio_set_dev(bio, pt->data_dev->bdev);
3413         r = DM_MAPIO_REMAPPED;
3414         spin_unlock_irq(&pool->lock);
3415
3416         return r;
3417 }
3418
3419 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3420 {
3421         int r;
3422         struct pool_c *pt = ti->private;
3423         struct pool *pool = pt->pool;
3424         sector_t data_size = ti->len;
3425         dm_block_t sb_data_size;
3426
3427         *need_commit = false;
3428
3429         (void) sector_div(data_size, pool->sectors_per_block);
3430
3431         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3432         if (r) {
3433                 DMERR("%s: failed to retrieve data device size",
3434                       dm_device_name(pool->pool_md));
3435                 return r;
3436         }
3437
3438         if (data_size < sb_data_size) {
3439                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3440                       dm_device_name(pool->pool_md),
3441                       (unsigned long long)data_size, sb_data_size);
3442                 return -EINVAL;
3443
3444         } else if (data_size > sb_data_size) {
3445                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3446                         DMERR("%s: unable to grow the data device until repaired.",
3447                               dm_device_name(pool->pool_md));
3448                         return 0;
3449                 }
3450
3451                 if (sb_data_size)
3452                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3453                                dm_device_name(pool->pool_md),
3454                                sb_data_size, (unsigned long long)data_size);
3455                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3456                 if (r) {
3457                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3458                         return r;
3459                 }
3460
3461                 *need_commit = true;
3462         }
3463
3464         return 0;
3465 }
3466
3467 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3468 {
3469         int r;
3470         struct pool_c *pt = ti->private;
3471         struct pool *pool = pt->pool;
3472         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3473
3474         *need_commit = false;
3475
3476         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3477
3478         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3479         if (r) {
3480                 DMERR("%s: failed to retrieve metadata device size",
3481                       dm_device_name(pool->pool_md));
3482                 return r;
3483         }
3484
3485         if (metadata_dev_size < sb_metadata_dev_size) {
3486                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3487                       dm_device_name(pool->pool_md),
3488                       metadata_dev_size, sb_metadata_dev_size);
3489                 return -EINVAL;
3490
3491         } else if (metadata_dev_size > sb_metadata_dev_size) {
3492                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3493                         DMERR("%s: unable to grow the metadata device until repaired.",
3494                               dm_device_name(pool->pool_md));
3495                         return 0;
3496                 }
3497
3498                 warn_if_metadata_device_too_big(pool->md_dev);
3499                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3500                        dm_device_name(pool->pool_md),
3501                        sb_metadata_dev_size, metadata_dev_size);
3502
3503                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3504                         set_pool_mode(pool, PM_WRITE);
3505
3506                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3507                 if (r) {
3508                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3509                         return r;
3510                 }
3511
3512                 *need_commit = true;
3513         }
3514
3515         return 0;
3516 }
3517
3518 /*
3519  * Retrieves the number of blocks of the data device from
3520  * the superblock and compares it to the actual device size,
3521  * thus resizing the data device in case it has grown.
3522  *
3523  * This both copes with opening preallocated data devices in the ctr
3524  * being followed by a resume
3525  * -and-
3526  * calling the resume method individually after userspace has
3527  * grown the data device in reaction to a table event.
3528  */
3529 static int pool_preresume(struct dm_target *ti)
3530 {
3531         int r;
3532         bool need_commit1, need_commit2;
3533         struct pool_c *pt = ti->private;
3534         struct pool *pool = pt->pool;
3535
3536         /*
3537          * Take control of the pool object.
3538          */
3539         r = bind_control_target(pool, ti);
3540         if (r)
3541                 return r;
3542
3543         r = maybe_resize_data_dev(ti, &need_commit1);
3544         if (r)
3545                 return r;
3546
3547         r = maybe_resize_metadata_dev(ti, &need_commit2);
3548         if (r)
3549                 return r;
3550
3551         if (need_commit1 || need_commit2)
3552                 (void) commit(pool);
3553
3554         return 0;
3555 }
3556
3557 static void pool_suspend_active_thins(struct pool *pool)
3558 {
3559         struct thin_c *tc;
3560
3561         /* Suspend all active thin devices */
3562         tc = get_first_thin(pool);
3563         while (tc) {
3564                 dm_internal_suspend_noflush(tc->thin_md);
3565                 tc = get_next_thin(pool, tc);
3566         }
3567 }
3568
3569 static void pool_resume_active_thins(struct pool *pool)
3570 {
3571         struct thin_c *tc;
3572
3573         /* Resume all active thin devices */
3574         tc = get_first_thin(pool);
3575         while (tc) {
3576                 dm_internal_resume(tc->thin_md);
3577                 tc = get_next_thin(pool, tc);
3578         }
3579 }
3580
3581 static void pool_resume(struct dm_target *ti)
3582 {
3583         struct pool_c *pt = ti->private;
3584         struct pool *pool = pt->pool;
3585
3586         /*
3587          * Must requeue active_thins' bios and then resume
3588          * active_thins _before_ clearing 'suspend' flag.
3589          */
3590         requeue_bios(pool);
3591         pool_resume_active_thins(pool);
3592
3593         spin_lock_irq(&pool->lock);
3594         pool->low_water_triggered = false;
3595         pool->suspended = false;
3596         spin_unlock_irq(&pool->lock);
3597
3598         do_waker(&pool->waker.work);
3599 }
3600
3601 static void pool_presuspend(struct dm_target *ti)
3602 {
3603         struct pool_c *pt = ti->private;
3604         struct pool *pool = pt->pool;
3605
3606         spin_lock_irq(&pool->lock);
3607         pool->suspended = true;
3608         spin_unlock_irq(&pool->lock);
3609
3610         pool_suspend_active_thins(pool);
3611 }
3612
3613 static void pool_presuspend_undo(struct dm_target *ti)
3614 {
3615         struct pool_c *pt = ti->private;
3616         struct pool *pool = pt->pool;
3617
3618         pool_resume_active_thins(pool);
3619
3620         spin_lock_irq(&pool->lock);
3621         pool->suspended = false;
3622         spin_unlock_irq(&pool->lock);
3623 }
3624
3625 static void pool_postsuspend(struct dm_target *ti)
3626 {
3627         struct pool_c *pt = ti->private;
3628         struct pool *pool = pt->pool;
3629
3630         cancel_delayed_work_sync(&pool->waker);
3631         cancel_delayed_work_sync(&pool->no_space_timeout);
3632         flush_workqueue(pool->wq);
3633         (void) commit(pool);
3634 }
3635
3636 static int check_arg_count(unsigned argc, unsigned args_required)
3637 {
3638         if (argc != args_required) {
3639                 DMWARN("Message received with %u arguments instead of %u.",
3640                        argc, args_required);
3641                 return -EINVAL;
3642         }
3643
3644         return 0;
3645 }
3646
3647 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3648 {
3649         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3650             *dev_id <= MAX_DEV_ID)
3651                 return 0;
3652
3653         if (warning)
3654                 DMWARN("Message received with invalid device id: %s", arg);
3655
3656         return -EINVAL;
3657 }
3658
3659 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3660 {
3661         dm_thin_id dev_id;
3662         int r;
3663
3664         r = check_arg_count(argc, 2);
3665         if (r)
3666                 return r;
3667
3668         r = read_dev_id(argv[1], &dev_id, 1);
3669         if (r)
3670                 return r;
3671
3672         r = dm_pool_create_thin(pool->pmd, dev_id);
3673         if (r) {
3674                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3675                        argv[1]);
3676                 return r;
3677         }
3678
3679         return 0;
3680 }
3681
3682 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3683 {
3684         dm_thin_id dev_id;
3685         dm_thin_id origin_dev_id;
3686         int r;
3687
3688         r = check_arg_count(argc, 3);
3689         if (r)
3690                 return r;
3691
3692         r = read_dev_id(argv[1], &dev_id, 1);
3693         if (r)
3694                 return r;
3695
3696         r = read_dev_id(argv[2], &origin_dev_id, 1);
3697         if (r)
3698                 return r;
3699
3700         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3701         if (r) {
3702                 DMWARN("Creation of new snapshot %s of device %s failed.",
3703                        argv[1], argv[2]);
3704                 return r;
3705         }
3706
3707         return 0;
3708 }
3709
3710 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3711 {
3712         dm_thin_id dev_id;
3713         int r;
3714
3715         r = check_arg_count(argc, 2);
3716         if (r)
3717                 return r;
3718
3719         r = read_dev_id(argv[1], &dev_id, 1);
3720         if (r)
3721                 return r;
3722
3723         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3724         if (r)
3725                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3726
3727         return r;
3728 }
3729
3730 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3731 {
3732         dm_thin_id old_id, new_id;
3733         int r;
3734
3735         r = check_arg_count(argc, 3);
3736         if (r)
3737                 return r;
3738
3739         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3740                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3741                 return -EINVAL;
3742         }
3743
3744         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3745                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3746                 return -EINVAL;
3747         }
3748
3749         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3750         if (r) {
3751                 DMWARN("Failed to change transaction id from %s to %s.",
3752                        argv[1], argv[2]);
3753                 return r;
3754         }
3755
3756         return 0;
3757 }
3758
3759 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3760 {
3761         int r;
3762
3763         r = check_arg_count(argc, 1);
3764         if (r)
3765                 return r;
3766
3767         (void) commit(pool);
3768
3769         r = dm_pool_reserve_metadata_snap(pool->pmd);
3770         if (r)
3771                 DMWARN("reserve_metadata_snap message failed.");
3772
3773         return r;
3774 }
3775
3776 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3777 {
3778         int r;
3779
3780         r = check_arg_count(argc, 1);
3781         if (r)
3782                 return r;
3783
3784         r = dm_pool_release_metadata_snap(pool->pmd);
3785         if (r)
3786                 DMWARN("release_metadata_snap message failed.");
3787
3788         return r;
3789 }
3790
3791 /*
3792  * Messages supported:
3793  *   create_thin        <dev_id>
3794  *   create_snap        <dev_id> <origin_id>
3795  *   delete             <dev_id>
3796  *   set_transaction_id <current_trans_id> <new_trans_id>
3797  *   reserve_metadata_snap
3798  *   release_metadata_snap
3799  */
3800 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3801                         char *result, unsigned maxlen)
3802 {
3803         int r = -EINVAL;
3804         struct pool_c *pt = ti->private;
3805         struct pool *pool = pt->pool;
3806
3807         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3808                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3809                       dm_device_name(pool->pool_md));
3810                 return -EOPNOTSUPP;
3811         }
3812
3813         if (!strcasecmp(argv[0], "create_thin"))
3814                 r = process_create_thin_mesg(argc, argv, pool);
3815
3816         else if (!strcasecmp(argv[0], "create_snap"))
3817                 r = process_create_snap_mesg(argc, argv, pool);
3818
3819         else if (!strcasecmp(argv[0], "delete"))
3820                 r = process_delete_mesg(argc, argv, pool);
3821
3822         else if (!strcasecmp(argv[0], "set_transaction_id"))
3823                 r = process_set_transaction_id_mesg(argc, argv, pool);
3824
3825         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3826                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3827
3828         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3829                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3830
3831         else
3832                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3833
3834         if (!r)
3835                 (void) commit(pool);
3836
3837         return r;
3838 }
3839
3840 static void emit_flags(struct pool_features *pf, char *result,
3841                        unsigned sz, unsigned maxlen)
3842 {
3843         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3844                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3845                 pf->error_if_no_space;
3846         DMEMIT("%u ", count);
3847
3848         if (!pf->zero_new_blocks)
3849                 DMEMIT("skip_block_zeroing ");
3850
3851         if (!pf->discard_enabled)
3852                 DMEMIT("ignore_discard ");
3853
3854         if (!pf->discard_passdown)
3855                 DMEMIT("no_discard_passdown ");
3856
3857         if (pf->mode == PM_READ_ONLY)
3858                 DMEMIT("read_only ");
3859
3860         if (pf->error_if_no_space)
3861                 DMEMIT("error_if_no_space ");
3862 }
3863
3864 /*
3865  * Status line is:
3866  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3867  *    <used data sectors>/<total data sectors> <held metadata root>
3868  *    <pool mode> <discard config> <no space config> <needs_check>
3869  */
3870 static void pool_status(struct dm_target *ti, status_type_t type,
3871                         unsigned status_flags, char *result, unsigned maxlen)
3872 {
3873         int r;
3874         unsigned sz = 0;
3875         uint64_t transaction_id;
3876         dm_block_t nr_free_blocks_data;
3877         dm_block_t nr_free_blocks_metadata;
3878         dm_block_t nr_blocks_data;
3879         dm_block_t nr_blocks_metadata;
3880         dm_block_t held_root;
3881         enum pool_mode mode;
3882         char buf[BDEVNAME_SIZE];
3883         char buf2[BDEVNAME_SIZE];
3884         struct pool_c *pt = ti->private;
3885         struct pool *pool = pt->pool;
3886
3887         switch (type) {
3888         case STATUSTYPE_INFO:
3889                 if (get_pool_mode(pool) == PM_FAIL) {
3890                         DMEMIT("Fail");
3891                         break;
3892                 }
3893
3894                 /* Commit to ensure statistics aren't out-of-date */
3895                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3896                         (void) commit(pool);
3897
3898                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3899                 if (r) {
3900                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3901                               dm_device_name(pool->pool_md), r);
3902                         goto err;
3903                 }
3904
3905                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3906                 if (r) {
3907                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3908                               dm_device_name(pool->pool_md), r);
3909                         goto err;
3910                 }
3911
3912                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3913                 if (r) {
3914                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3915                               dm_device_name(pool->pool_md), r);
3916                         goto err;
3917                 }
3918
3919                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3920                 if (r) {
3921                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3922                               dm_device_name(pool->pool_md), r);
3923                         goto err;
3924                 }
3925
3926                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3927                 if (r) {
3928                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3929                               dm_device_name(pool->pool_md), r);
3930                         goto err;
3931                 }
3932
3933                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3934                 if (r) {
3935                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3936                               dm_device_name(pool->pool_md), r);
3937                         goto err;
3938                 }
3939
3940                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3941                        (unsigned long long)transaction_id,
3942                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3943                        (unsigned long long)nr_blocks_metadata,
3944                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3945                        (unsigned long long)nr_blocks_data);
3946
3947                 if (held_root)
3948                         DMEMIT("%llu ", held_root);
3949                 else
3950                         DMEMIT("- ");
3951
3952                 mode = get_pool_mode(pool);
3953                 if (mode == PM_OUT_OF_DATA_SPACE)
3954                         DMEMIT("out_of_data_space ");
3955                 else if (is_read_only_pool_mode(mode))
3956                         DMEMIT("ro ");
3957                 else
3958                         DMEMIT("rw ");
3959
3960                 if (!pool->pf.discard_enabled)
3961                         DMEMIT("ignore_discard ");
3962                 else if (pool->pf.discard_passdown)
3963                         DMEMIT("discard_passdown ");
3964                 else
3965                         DMEMIT("no_discard_passdown ");
3966
3967                 if (pool->pf.error_if_no_space)
3968                         DMEMIT("error_if_no_space ");
3969                 else
3970                         DMEMIT("queue_if_no_space ");
3971
3972                 if (dm_pool_metadata_needs_check(pool->pmd))
3973                         DMEMIT("needs_check ");
3974                 else
3975                         DMEMIT("- ");
3976
3977                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3978
3979                 break;
3980
3981         case STATUSTYPE_TABLE:
3982                 DMEMIT("%s %s %lu %llu ",
3983                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3984                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3985                        (unsigned long)pool->sectors_per_block,
3986                        (unsigned long long)pt->low_water_blocks);
3987                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3988                 break;
3989
3990         case STATUSTYPE_IMA:
3991                 *result = '\0';
3992                 break;
3993         }
3994         return;
3995
3996 err:
3997         DMEMIT("Error");
3998 }
3999
4000 static int pool_iterate_devices(struct dm_target *ti,
4001                                 iterate_devices_callout_fn fn, void *data)
4002 {
4003         struct pool_c *pt = ti->private;
4004
4005         return fn(ti, pt->data_dev, 0, ti->len, data);
4006 }
4007
4008 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4009 {
4010         struct pool_c *pt = ti->private;
4011         struct pool *pool = pt->pool;
4012         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4013
4014         /*
4015          * If max_sectors is smaller than pool->sectors_per_block adjust it
4016          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4017          * This is especially beneficial when the pool's data device is a RAID
4018          * device that has a full stripe width that matches pool->sectors_per_block
4019          * -- because even though partial RAID stripe-sized IOs will be issued to a
4020          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4021          *    boundary.. which avoids additional partial RAID stripe writes cascading
4022          */
4023         if (limits->max_sectors < pool->sectors_per_block) {
4024                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4025                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4026                                 limits->max_sectors--;
4027                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4028                 }
4029         }
4030
4031         /*
4032          * If the system-determined stacked limits are compatible with the
4033          * pool's blocksize (io_opt is a factor) do not override them.
4034          */
4035         if (io_opt_sectors < pool->sectors_per_block ||
4036             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4037                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4038                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4039                 else
4040                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4041                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4042         }
4043
4044         /*
4045          * pt->adjusted_pf is a staging area for the actual features to use.
4046          * They get transferred to the live pool in bind_control_target()
4047          * called from pool_preresume().
4048          */
4049         if (!pt->adjusted_pf.discard_enabled) {
4050                 /*
4051                  * Must explicitly disallow stacking discard limits otherwise the
4052                  * block layer will stack them if pool's data device has support.
4053                  */
4054                 limits->discard_granularity = 0;
4055                 return;
4056         }
4057
4058         disable_passdown_if_not_supported(pt);
4059
4060         /*
4061          * The pool uses the same discard limits as the underlying data
4062          * device.  DM core has already set this up.
4063          */
4064 }
4065
4066 static struct target_type pool_target = {
4067         .name = "thin-pool",
4068         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4069                     DM_TARGET_IMMUTABLE,
4070         .version = {1, 22, 0},
4071         .module = THIS_MODULE,
4072         .ctr = pool_ctr,
4073         .dtr = pool_dtr,
4074         .map = pool_map,
4075         .presuspend = pool_presuspend,
4076         .presuspend_undo = pool_presuspend_undo,
4077         .postsuspend = pool_postsuspend,
4078         .preresume = pool_preresume,
4079         .resume = pool_resume,
4080         .message = pool_message,
4081         .status = pool_status,
4082         .iterate_devices = pool_iterate_devices,
4083         .io_hints = pool_io_hints,
4084 };
4085
4086 /*----------------------------------------------------------------
4087  * Thin target methods
4088  *--------------------------------------------------------------*/
4089 static void thin_get(struct thin_c *tc)
4090 {
4091         refcount_inc(&tc->refcount);
4092 }
4093
4094 static void thin_put(struct thin_c *tc)
4095 {
4096         if (refcount_dec_and_test(&tc->refcount))
4097                 complete(&tc->can_destroy);
4098 }
4099
4100 static void thin_dtr(struct dm_target *ti)
4101 {
4102         struct thin_c *tc = ti->private;
4103
4104         spin_lock_irq(&tc->pool->lock);
4105         list_del_rcu(&tc->list);
4106         spin_unlock_irq(&tc->pool->lock);
4107         synchronize_rcu();
4108
4109         thin_put(tc);
4110         wait_for_completion(&tc->can_destroy);
4111
4112         mutex_lock(&dm_thin_pool_table.mutex);
4113
4114         __pool_dec(tc->pool);
4115         dm_pool_close_thin_device(tc->td);
4116         dm_put_device(ti, tc->pool_dev);
4117         if (tc->origin_dev)
4118                 dm_put_device(ti, tc->origin_dev);
4119         kfree(tc);
4120
4121         mutex_unlock(&dm_thin_pool_table.mutex);
4122 }
4123
4124 /*
4125  * Thin target parameters:
4126  *
4127  * <pool_dev> <dev_id> [origin_dev]
4128  *
4129  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4130  * dev_id: the internal device identifier
4131  * origin_dev: a device external to the pool that should act as the origin
4132  *
4133  * If the pool device has discards disabled, they get disabled for the thin
4134  * device as well.
4135  */
4136 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4137 {
4138         int r;
4139         struct thin_c *tc;
4140         struct dm_dev *pool_dev, *origin_dev;
4141         struct mapped_device *pool_md;
4142
4143         mutex_lock(&dm_thin_pool_table.mutex);
4144
4145         if (argc != 2 && argc != 3) {
4146                 ti->error = "Invalid argument count";
4147                 r = -EINVAL;
4148                 goto out_unlock;
4149         }
4150
4151         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4152         if (!tc) {
4153                 ti->error = "Out of memory";
4154                 r = -ENOMEM;
4155                 goto out_unlock;
4156         }
4157         tc->thin_md = dm_table_get_md(ti->table);
4158         spin_lock_init(&tc->lock);
4159         INIT_LIST_HEAD(&tc->deferred_cells);
4160         bio_list_init(&tc->deferred_bio_list);
4161         bio_list_init(&tc->retry_on_resume_list);
4162         tc->sort_bio_list = RB_ROOT;
4163
4164         if (argc == 3) {
4165                 if (!strcmp(argv[0], argv[2])) {
4166                         ti->error = "Error setting origin device";
4167                         r = -EINVAL;
4168                         goto bad_origin_dev;
4169                 }
4170
4171                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4172                 if (r) {
4173                         ti->error = "Error opening origin device";
4174                         goto bad_origin_dev;
4175                 }
4176                 tc->origin_dev = origin_dev;
4177         }
4178
4179         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4180         if (r) {
4181                 ti->error = "Error opening pool device";
4182                 goto bad_pool_dev;
4183         }
4184         tc->pool_dev = pool_dev;
4185
4186         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4187                 ti->error = "Invalid device id";
4188                 r = -EINVAL;
4189                 goto bad_common;
4190         }
4191
4192         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4193         if (!pool_md) {
4194                 ti->error = "Couldn't get pool mapped device";
4195                 r = -EINVAL;
4196                 goto bad_common;
4197         }
4198
4199         tc->pool = __pool_table_lookup(pool_md);
4200         if (!tc->pool) {
4201                 ti->error = "Couldn't find pool object";
4202                 r = -EINVAL;
4203                 goto bad_pool_lookup;
4204         }
4205         __pool_inc(tc->pool);
4206
4207         if (get_pool_mode(tc->pool) == PM_FAIL) {
4208                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4209                 r = -EINVAL;
4210                 goto bad_pool;
4211         }
4212
4213         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4214         if (r) {
4215                 ti->error = "Couldn't open thin internal device";
4216                 goto bad_pool;
4217         }
4218
4219         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4220         if (r)
4221                 goto bad;
4222
4223         ti->num_flush_bios = 1;
4224         ti->flush_supported = true;
4225         ti->accounts_remapped_io = true;
4226         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4227
4228         /* In case the pool supports discards, pass them on. */
4229         if (tc->pool->pf.discard_enabled) {
4230                 ti->discards_supported = true;
4231                 ti->num_discard_bios = 1;
4232         }
4233
4234         mutex_unlock(&dm_thin_pool_table.mutex);
4235
4236         spin_lock_irq(&tc->pool->lock);
4237         if (tc->pool->suspended) {
4238                 spin_unlock_irq(&tc->pool->lock);
4239                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4240                 ti->error = "Unable to activate thin device while pool is suspended";
4241                 r = -EINVAL;
4242                 goto bad;
4243         }
4244         refcount_set(&tc->refcount, 1);
4245         init_completion(&tc->can_destroy);
4246         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4247         spin_unlock_irq(&tc->pool->lock);
4248         /*
4249          * This synchronize_rcu() call is needed here otherwise we risk a
4250          * wake_worker() call finding no bios to process (because the newly
4251          * added tc isn't yet visible).  So this reduces latency since we
4252          * aren't then dependent on the periodic commit to wake_worker().
4253          */
4254         synchronize_rcu();
4255
4256         dm_put(pool_md);
4257
4258         return 0;
4259
4260 bad:
4261         dm_pool_close_thin_device(tc->td);
4262 bad_pool:
4263         __pool_dec(tc->pool);
4264 bad_pool_lookup:
4265         dm_put(pool_md);
4266 bad_common:
4267         dm_put_device(ti, tc->pool_dev);
4268 bad_pool_dev:
4269         if (tc->origin_dev)
4270                 dm_put_device(ti, tc->origin_dev);
4271 bad_origin_dev:
4272         kfree(tc);
4273 out_unlock:
4274         mutex_unlock(&dm_thin_pool_table.mutex);
4275
4276         return r;
4277 }
4278
4279 static int thin_map(struct dm_target *ti, struct bio *bio)
4280 {
4281         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4282
4283         return thin_bio_map(ti, bio);
4284 }
4285
4286 static int thin_endio(struct dm_target *ti, struct bio *bio,
4287                 blk_status_t *err)
4288 {
4289         unsigned long flags;
4290         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4291         struct list_head work;
4292         struct dm_thin_new_mapping *m, *tmp;
4293         struct pool *pool = h->tc->pool;
4294
4295         if (h->shared_read_entry) {
4296                 INIT_LIST_HEAD(&work);
4297                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4298
4299                 spin_lock_irqsave(&pool->lock, flags);
4300                 list_for_each_entry_safe(m, tmp, &work, list) {
4301                         list_del(&m->list);
4302                         __complete_mapping_preparation(m);
4303                 }
4304                 spin_unlock_irqrestore(&pool->lock, flags);
4305         }
4306
4307         if (h->all_io_entry) {
4308                 INIT_LIST_HEAD(&work);
4309                 dm_deferred_entry_dec(h->all_io_entry, &work);
4310                 if (!list_empty(&work)) {
4311                         spin_lock_irqsave(&pool->lock, flags);
4312                         list_for_each_entry_safe(m, tmp, &work, list)
4313                                 list_add_tail(&m->list, &pool->prepared_discards);
4314                         spin_unlock_irqrestore(&pool->lock, flags);
4315                         wake_worker(pool);
4316                 }
4317         }
4318
4319         if (h->cell)
4320                 cell_defer_no_holder(h->tc, h->cell);
4321
4322         return DM_ENDIO_DONE;
4323 }
4324
4325 static void thin_presuspend(struct dm_target *ti)
4326 {
4327         struct thin_c *tc = ti->private;
4328
4329         if (dm_noflush_suspending(ti))
4330                 noflush_work(tc, do_noflush_start);
4331 }
4332
4333 static void thin_postsuspend(struct dm_target *ti)
4334 {
4335         struct thin_c *tc = ti->private;
4336
4337         /*
4338          * The dm_noflush_suspending flag has been cleared by now, so
4339          * unfortunately we must always run this.
4340          */
4341         noflush_work(tc, do_noflush_stop);
4342 }
4343
4344 static int thin_preresume(struct dm_target *ti)
4345 {
4346         struct thin_c *tc = ti->private;
4347
4348         if (tc->origin_dev)
4349                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4350
4351         return 0;
4352 }
4353
4354 /*
4355  * <nr mapped sectors> <highest mapped sector>
4356  */
4357 static void thin_status(struct dm_target *ti, status_type_t type,
4358                         unsigned status_flags, char *result, unsigned maxlen)
4359 {
4360         int r;
4361         ssize_t sz = 0;
4362         dm_block_t mapped, highest;
4363         char buf[BDEVNAME_SIZE];
4364         struct thin_c *tc = ti->private;
4365
4366         if (get_pool_mode(tc->pool) == PM_FAIL) {
4367                 DMEMIT("Fail");
4368                 return;
4369         }
4370
4371         if (!tc->td)
4372                 DMEMIT("-");
4373         else {
4374                 switch (type) {
4375                 case STATUSTYPE_INFO:
4376                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4377                         if (r) {
4378                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4379                                 goto err;
4380                         }
4381
4382                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4383                         if (r < 0) {
4384                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4385                                 goto err;
4386                         }
4387
4388                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4389                         if (r)
4390                                 DMEMIT("%llu", ((highest + 1) *
4391                                                 tc->pool->sectors_per_block) - 1);
4392                         else
4393                                 DMEMIT("-");
4394                         break;
4395
4396                 case STATUSTYPE_TABLE:
4397                         DMEMIT("%s %lu",
4398                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4399                                (unsigned long) tc->dev_id);
4400                         if (tc->origin_dev)
4401                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4402                         break;
4403
4404                 case STATUSTYPE_IMA:
4405                         *result = '\0';
4406                         break;
4407                 }
4408         }
4409
4410         return;
4411
4412 err:
4413         DMEMIT("Error");
4414 }
4415
4416 static int thin_iterate_devices(struct dm_target *ti,
4417                                 iterate_devices_callout_fn fn, void *data)
4418 {
4419         sector_t blocks;
4420         struct thin_c *tc = ti->private;
4421         struct pool *pool = tc->pool;
4422
4423         /*
4424          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4425          * we follow a more convoluted path through to the pool's target.
4426          */
4427         if (!pool->ti)
4428                 return 0;       /* nothing is bound */
4429
4430         blocks = pool->ti->len;
4431         (void) sector_div(blocks, pool->sectors_per_block);
4432         if (blocks)
4433                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4434
4435         return 0;
4436 }
4437
4438 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4439 {
4440         struct thin_c *tc = ti->private;
4441         struct pool *pool = tc->pool;
4442
4443         if (!pool->pf.discard_enabled)
4444                 return;
4445
4446         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4447         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4448 }
4449
4450 static struct target_type thin_target = {
4451         .name = "thin",
4452         .version = {1, 22, 0},
4453         .module = THIS_MODULE,
4454         .ctr = thin_ctr,
4455         .dtr = thin_dtr,
4456         .map = thin_map,
4457         .end_io = thin_endio,
4458         .preresume = thin_preresume,
4459         .presuspend = thin_presuspend,
4460         .postsuspend = thin_postsuspend,
4461         .status = thin_status,
4462         .iterate_devices = thin_iterate_devices,
4463         .io_hints = thin_io_hints,
4464 };
4465
4466 /*----------------------------------------------------------------*/
4467
4468 static int __init dm_thin_init(void)
4469 {
4470         int r = -ENOMEM;
4471
4472         pool_table_init();
4473
4474         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4475         if (!_new_mapping_cache)
4476                 return r;
4477
4478         r = dm_register_target(&thin_target);
4479         if (r)
4480                 goto bad_new_mapping_cache;
4481
4482         r = dm_register_target(&pool_target);
4483         if (r)
4484                 goto bad_thin_target;
4485
4486         return 0;
4487
4488 bad_thin_target:
4489         dm_unregister_target(&thin_target);
4490 bad_new_mapping_cache:
4491         kmem_cache_destroy(_new_mapping_cache);
4492
4493         return r;
4494 }
4495
4496 static void dm_thin_exit(void)
4497 {
4498         dm_unregister_target(&thin_target);
4499         dm_unregister_target(&pool_target);
4500
4501         kmem_cache_destroy(_new_mapping_cache);
4502
4503         pool_table_exit();
4504 }
4505
4506 module_init(dm_thin_init);
4507 module_exit(dm_thin_exit);
4508
4509 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4510 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4511
4512 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4513 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4514 MODULE_LICENSE("GPL");