2 * Copyright (C) 2011 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
17 #define DM_MSG_PREFIX "thin"
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
36 * Device id is restricted to 24 bits.
38 #define MAX_DEV_ID ((1 << 24) - 1)
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
54 * Let's say we write to a shared block in what was the origin. The
57 * i) plug io further to this physical block. (see bio_prison code).
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
65 * iv) insert the new mapping into the origin's btree
66 * (process_prepared_mapping). This act of inserting breaks some
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
76 * Steps (ii) and (iii) occur in parallel.
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
86 * - The snap mapping still points to the old block. As it would after
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
98 /*----------------------------------------------------------------*/
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
115 struct hlist_node list;
116 struct bio_prison *prison;
119 struct bio_list bios;
124 mempool_t *cell_pool;
128 struct hlist_head *cells;
131 static uint32_t calc_nr_buckets(unsigned nr_cells)
136 nr_cells = min(nr_cells, 8192u);
145 * @nr_cells should be the number of cells you want in use _concurrently_.
146 * Don't confuse it with the number of distinct keys.
148 static struct bio_prison *prison_create(unsigned nr_cells)
151 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
152 size_t len = sizeof(struct bio_prison) +
153 (sizeof(struct hlist_head) * nr_buckets);
154 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
159 spin_lock_init(&prison->lock);
160 prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
161 sizeof(struct cell));
162 if (!prison->cell_pool) {
167 prison->nr_buckets = nr_buckets;
168 prison->hash_mask = nr_buckets - 1;
169 prison->cells = (struct hlist_head *) (prison + 1);
170 for (i = 0; i < nr_buckets; i++)
171 INIT_HLIST_HEAD(prison->cells + i);
176 static void prison_destroy(struct bio_prison *prison)
178 mempool_destroy(prison->cell_pool);
182 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184 const unsigned long BIG_PRIME = 4294967291UL;
185 uint64_t hash = key->block * BIG_PRIME;
187 return (uint32_t) (hash & prison->hash_mask);
190 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192 return (lhs->virtual == rhs->virtual) &&
193 (lhs->dev == rhs->dev) &&
194 (lhs->block == rhs->block);
197 static struct cell *__search_bucket(struct hlist_head *bucket,
198 struct cell_key *key)
201 struct hlist_node *tmp;
203 hlist_for_each_entry(cell, tmp, bucket, list)
204 if (keys_equal(&cell->key, key))
211 * This may block if a new cell needs allocating. You must ensure that
212 * cells will be unlocked even if the calling thread is blocked.
214 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
216 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
217 struct bio *inmate, struct cell **ref)
221 uint32_t hash = hash_key(prison, key);
222 struct cell *cell, *cell2;
224 BUG_ON(hash > prison->nr_buckets);
226 spin_lock_irqsave(&prison->lock, flags);
228 cell = __search_bucket(prison->cells + hash, key);
230 bio_list_add(&cell->bios, inmate);
235 * Allocate a new cell
237 spin_unlock_irqrestore(&prison->lock, flags);
238 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
239 spin_lock_irqsave(&prison->lock, flags);
242 * We've been unlocked, so we have to double check that
243 * nobody else has inserted this cell in the meantime.
245 cell = __search_bucket(prison->cells + hash, key);
247 mempool_free(cell2, prison->cell_pool);
248 bio_list_add(&cell->bios, inmate);
257 cell->prison = prison;
258 memcpy(&cell->key, key, sizeof(cell->key));
259 cell->holder = inmate;
260 bio_list_init(&cell->bios);
261 hlist_add_head(&cell->list, prison->cells + hash);
266 spin_unlock_irqrestore(&prison->lock, flags);
274 * @inmates must have been initialised prior to this call
276 static void __cell_release(struct cell *cell, struct bio_list *inmates)
278 struct bio_prison *prison = cell->prison;
280 hlist_del(&cell->list);
282 bio_list_add(inmates, cell->holder);
283 bio_list_merge(inmates, &cell->bios);
285 mempool_free(cell, prison->cell_pool);
288 static void cell_release(struct cell *cell, struct bio_list *bios)
291 struct bio_prison *prison = cell->prison;
293 spin_lock_irqsave(&prison->lock, flags);
294 __cell_release(cell, bios);
295 spin_unlock_irqrestore(&prison->lock, flags);
299 * There are a couple of places where we put a bio into a cell briefly
300 * before taking it out again. In these situations we know that no other
301 * bio may be in the cell. This function releases the cell, and also does
304 static void __cell_release_singleton(struct cell *cell, struct bio *bio)
306 hlist_del(&cell->list);
307 BUG_ON(cell->holder != bio);
308 BUG_ON(!bio_list_empty(&cell->bios));
311 static void cell_release_singleton(struct cell *cell, struct bio *bio)
314 struct bio_prison *prison = cell->prison;
316 spin_lock_irqsave(&prison->lock, flags);
317 __cell_release_singleton(cell, bio);
318 spin_unlock_irqrestore(&prison->lock, flags);
322 * Sometimes we don't want the holder, just the additional bios.
324 static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
326 struct bio_prison *prison = cell->prison;
328 hlist_del(&cell->list);
329 bio_list_merge(inmates, &cell->bios);
331 mempool_free(cell, prison->cell_pool);
334 static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
337 struct bio_prison *prison = cell->prison;
339 spin_lock_irqsave(&prison->lock, flags);
340 __cell_release_no_holder(cell, inmates);
341 spin_unlock_irqrestore(&prison->lock, flags);
344 static void cell_error(struct cell *cell)
346 struct bio_prison *prison = cell->prison;
347 struct bio_list bios;
351 bio_list_init(&bios);
353 spin_lock_irqsave(&prison->lock, flags);
354 __cell_release(cell, &bios);
355 spin_unlock_irqrestore(&prison->lock, flags);
357 while ((bio = bio_list_pop(&bios)))
361 /*----------------------------------------------------------------*/
364 * We use the deferred set to keep track of pending reads to shared blocks.
365 * We do this to ensure the new mapping caused by a write isn't performed
366 * until these prior reads have completed. Otherwise the insertion of the
367 * new mapping could free the old block that the read bios are mapped to.
371 struct deferred_entry {
372 struct deferred_set *ds;
374 struct list_head work_items;
377 struct deferred_set {
379 unsigned current_entry;
381 struct deferred_entry entries[DEFERRED_SET_SIZE];
384 static void ds_init(struct deferred_set *ds)
388 spin_lock_init(&ds->lock);
389 ds->current_entry = 0;
391 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
392 ds->entries[i].ds = ds;
393 ds->entries[i].count = 0;
394 INIT_LIST_HEAD(&ds->entries[i].work_items);
398 static struct deferred_entry *ds_inc(struct deferred_set *ds)
401 struct deferred_entry *entry;
403 spin_lock_irqsave(&ds->lock, flags);
404 entry = ds->entries + ds->current_entry;
406 spin_unlock_irqrestore(&ds->lock, flags);
411 static unsigned ds_next(unsigned index)
413 return (index + 1) % DEFERRED_SET_SIZE;
416 static void __sweep(struct deferred_set *ds, struct list_head *head)
418 while ((ds->sweeper != ds->current_entry) &&
419 !ds->entries[ds->sweeper].count) {
420 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
421 ds->sweeper = ds_next(ds->sweeper);
424 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
425 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
428 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
432 spin_lock_irqsave(&entry->ds->lock, flags);
433 BUG_ON(!entry->count);
435 __sweep(entry->ds, head);
436 spin_unlock_irqrestore(&entry->ds->lock, flags);
440 * Returns 1 if deferred or 0 if no pending items to delay job.
442 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
448 spin_lock_irqsave(&ds->lock, flags);
449 if ((ds->sweeper == ds->current_entry) &&
450 !ds->entries[ds->current_entry].count)
453 list_add(work, &ds->entries[ds->current_entry].work_items);
454 next_entry = ds_next(ds->current_entry);
455 if (!ds->entries[next_entry].count)
456 ds->current_entry = next_entry;
458 spin_unlock_irqrestore(&ds->lock, flags);
463 /*----------------------------------------------------------------*/
468 static void build_data_key(struct dm_thin_device *td,
469 dm_block_t b, struct cell_key *key)
472 key->dev = dm_thin_dev_id(td);
476 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
477 struct cell_key *key)
480 key->dev = dm_thin_dev_id(td);
484 /*----------------------------------------------------------------*/
487 * A pool device ties together a metadata device and a data device. It
488 * also provides the interface for creating and destroying internal
493 struct list_head list;
494 struct dm_target *ti; /* Only set if a pool target is bound */
496 struct mapped_device *pool_md;
497 struct block_device *md_dev;
498 struct dm_pool_metadata *pmd;
500 uint32_t sectors_per_block;
501 unsigned block_shift;
502 dm_block_t offset_mask;
503 dm_block_t low_water_blocks;
505 unsigned zero_new_blocks:1;
506 unsigned low_water_triggered:1; /* A dm event has been sent */
507 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
509 struct bio_prison *prison;
510 struct dm_kcopyd_client *copier;
512 struct workqueue_struct *wq;
513 struct work_struct worker;
514 struct delayed_work waker;
517 unsigned long last_commit_jiffies;
520 struct bio_list deferred_bios;
521 struct bio_list deferred_flush_bios;
522 struct list_head prepared_mappings;
524 struct bio_list retry_on_resume_list;
526 struct deferred_set ds; /* FIXME: move to thin_c */
528 struct new_mapping *next_mapping;
529 mempool_t *mapping_pool;
530 mempool_t *endio_hook_pool;
534 * Target context for a pool.
537 struct dm_target *ti;
539 struct dm_dev *data_dev;
540 struct dm_dev *metadata_dev;
541 struct dm_target_callbacks callbacks;
543 dm_block_t low_water_blocks;
544 unsigned zero_new_blocks:1;
548 * Target context for a thin.
551 struct dm_dev *pool_dev;
552 struct dm_dev *origin_dev;
556 struct dm_thin_device *td;
559 /*----------------------------------------------------------------*/
562 * A global list of pools that uses a struct mapped_device as a key.
564 static struct dm_thin_pool_table {
566 struct list_head pools;
567 } dm_thin_pool_table;
569 static void pool_table_init(void)
571 mutex_init(&dm_thin_pool_table.mutex);
572 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
575 static void __pool_table_insert(struct pool *pool)
577 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
578 list_add(&pool->list, &dm_thin_pool_table.pools);
581 static void __pool_table_remove(struct pool *pool)
583 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
584 list_del(&pool->list);
587 static struct pool *__pool_table_lookup(struct mapped_device *md)
589 struct pool *pool = NULL, *tmp;
591 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
593 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
594 if (tmp->pool_md == md) {
603 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
605 struct pool *pool = NULL, *tmp;
607 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
609 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
610 if (tmp->md_dev == md_dev) {
619 /*----------------------------------------------------------------*/
621 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
624 struct bio_list bios;
626 bio_list_init(&bios);
627 bio_list_merge(&bios, master);
628 bio_list_init(master);
630 while ((bio = bio_list_pop(&bios))) {
631 if (dm_get_mapinfo(bio)->ptr == tc)
632 bio_endio(bio, DM_ENDIO_REQUEUE);
634 bio_list_add(master, bio);
638 static void requeue_io(struct thin_c *tc)
640 struct pool *pool = tc->pool;
643 spin_lock_irqsave(&pool->lock, flags);
644 __requeue_bio_list(tc, &pool->deferred_bios);
645 __requeue_bio_list(tc, &pool->retry_on_resume_list);
646 spin_unlock_irqrestore(&pool->lock, flags);
650 * This section of code contains the logic for processing a thin device's IO.
651 * Much of the code depends on pool object resources (lists, workqueues, etc)
652 * but most is exclusively called from the thin target rather than the thin-pool
656 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
658 return bio->bi_sector >> tc->pool->block_shift;
661 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
663 struct pool *pool = tc->pool;
665 bio->bi_bdev = tc->pool_dev->bdev;
666 bio->bi_sector = (block << pool->block_shift) +
667 (bio->bi_sector & pool->offset_mask);
670 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
672 bio->bi_bdev = tc->origin_dev->bdev;
675 static void issue(struct thin_c *tc, struct bio *bio)
677 struct pool *pool = tc->pool;
681 * Batch together any FUA/FLUSH bios we find and then issue
682 * a single commit for them in process_deferred_bios().
684 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
685 spin_lock_irqsave(&pool->lock, flags);
686 bio_list_add(&pool->deferred_flush_bios, bio);
687 spin_unlock_irqrestore(&pool->lock, flags);
689 generic_make_request(bio);
692 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
694 remap_to_origin(tc, bio);
698 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
701 remap(tc, bio, block);
706 * wake_worker() is used when new work is queued and when pool_resume is
707 * ready to continue deferred IO processing.
709 static void wake_worker(struct pool *pool)
711 queue_work(pool->wq, &pool->worker);
714 /*----------------------------------------------------------------*/
717 * Bio endio functions.
721 bio_end_io_t *saved_bi_end_io;
722 struct deferred_entry *entry;
726 struct list_head list;
731 dm_block_t virt_block;
732 dm_block_t data_block;
737 * If the bio covers the whole area of a block then we can avoid
738 * zeroing or copying. Instead this bio is hooked. The bio will
739 * still be in the cell, so care has to be taken to avoid issuing
743 bio_end_io_t *saved_bi_end_io;
746 static void __maybe_add_mapping(struct new_mapping *m)
748 struct pool *pool = m->tc->pool;
750 if (list_empty(&m->list) && m->prepared) {
751 list_add(&m->list, &pool->prepared_mappings);
756 static void copy_complete(int read_err, unsigned long write_err, void *context)
759 struct new_mapping *m = context;
760 struct pool *pool = m->tc->pool;
762 m->err = read_err || write_err ? -EIO : 0;
764 spin_lock_irqsave(&pool->lock, flags);
766 __maybe_add_mapping(m);
767 spin_unlock_irqrestore(&pool->lock, flags);
770 static void overwrite_endio(struct bio *bio, int err)
773 struct new_mapping *m = dm_get_mapinfo(bio)->ptr;
774 struct pool *pool = m->tc->pool;
778 spin_lock_irqsave(&pool->lock, flags);
780 __maybe_add_mapping(m);
781 spin_unlock_irqrestore(&pool->lock, flags);
784 static void shared_read_endio(struct bio *bio, int err)
786 struct list_head mappings;
787 struct new_mapping *m, *tmp;
788 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
790 struct pool *pool = h->tc->pool;
792 bio->bi_end_io = h->saved_bi_end_io;
795 INIT_LIST_HEAD(&mappings);
796 ds_dec(h->entry, &mappings);
798 spin_lock_irqsave(&pool->lock, flags);
799 list_for_each_entry_safe(m, tmp, &mappings, list) {
801 INIT_LIST_HEAD(&m->list);
802 __maybe_add_mapping(m);
804 spin_unlock_irqrestore(&pool->lock, flags);
806 mempool_free(h, pool->endio_hook_pool);
809 /*----------------------------------------------------------------*/
816 * Prepared mapping jobs.
820 * This sends the bios in the cell back to the deferred_bios list.
822 static void cell_defer(struct thin_c *tc, struct cell *cell,
823 dm_block_t data_block)
825 struct pool *pool = tc->pool;
828 spin_lock_irqsave(&pool->lock, flags);
829 cell_release(cell, &pool->deferred_bios);
830 spin_unlock_irqrestore(&tc->pool->lock, flags);
836 * Same as cell_defer above, except it omits one particular detainee,
837 * a write bio that covers the block and has already been processed.
839 static void cell_defer_except(struct thin_c *tc, struct cell *cell)
841 struct bio_list bios;
842 struct pool *pool = tc->pool;
845 bio_list_init(&bios);
847 spin_lock_irqsave(&pool->lock, flags);
848 cell_release_no_holder(cell, &pool->deferred_bios);
849 spin_unlock_irqrestore(&pool->lock, flags);
854 static void process_prepared_mapping(struct new_mapping *m)
856 struct thin_c *tc = m->tc;
862 bio->bi_end_io = m->saved_bi_end_io;
870 * Commit the prepared block into the mapping btree.
871 * Any I/O for this block arriving after this point will get
872 * remapped to it directly.
874 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
876 DMERR("dm_thin_insert_block() failed");
882 * Release any bios held while the block was being provisioned.
883 * If we are processing a write bio that completely covers the block,
884 * we already processed it so can ignore it now when processing
885 * the bios in the cell.
888 cell_defer_except(tc, m->cell);
891 cell_defer(tc, m->cell, m->data_block);
894 mempool_free(m, tc->pool->mapping_pool);
897 static void process_prepared_mappings(struct pool *pool)
900 struct list_head maps;
901 struct new_mapping *m, *tmp;
903 INIT_LIST_HEAD(&maps);
904 spin_lock_irqsave(&pool->lock, flags);
905 list_splice_init(&pool->prepared_mappings, &maps);
906 spin_unlock_irqrestore(&pool->lock, flags);
908 list_for_each_entry_safe(m, tmp, &maps, list)
909 process_prepared_mapping(m);
915 static int io_overwrites_block(struct pool *pool, struct bio *bio)
917 return ((bio_data_dir(bio) == WRITE) &&
918 !(bio->bi_sector & pool->offset_mask)) &&
919 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
922 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
925 *save = bio->bi_end_io;
929 static int ensure_next_mapping(struct pool *pool)
931 if (pool->next_mapping)
934 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
936 return pool->next_mapping ? 0 : -ENOMEM;
939 static struct new_mapping *get_next_mapping(struct pool *pool)
941 struct new_mapping *r = pool->next_mapping;
943 BUG_ON(!pool->next_mapping);
945 pool->next_mapping = NULL;
950 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
951 struct dm_dev *origin, dm_block_t data_origin,
952 dm_block_t data_dest,
953 struct cell *cell, struct bio *bio)
956 struct pool *pool = tc->pool;
957 struct new_mapping *m = get_next_mapping(pool);
959 INIT_LIST_HEAD(&m->list);
962 m->virt_block = virt_block;
963 m->data_block = data_dest;
968 ds_add_work(&pool->ds, &m->list);
971 * IO to pool_dev remaps to the pool target's data_dev.
973 * If the whole block of data is being overwritten, we can issue the
974 * bio immediately. Otherwise we use kcopyd to clone the data first.
976 if (io_overwrites_block(pool, bio)) {
978 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
979 dm_get_mapinfo(bio)->ptr = m;
980 remap_and_issue(tc, bio, data_dest);
982 struct dm_io_region from, to;
984 from.bdev = origin->bdev;
985 from.sector = data_origin * pool->sectors_per_block;
986 from.count = pool->sectors_per_block;
988 to.bdev = tc->pool_dev->bdev;
989 to.sector = data_dest * pool->sectors_per_block;
990 to.count = pool->sectors_per_block;
992 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
993 0, copy_complete, m);
995 mempool_free(m, pool->mapping_pool);
996 DMERR("dm_kcopyd_copy() failed");
1002 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1003 dm_block_t data_origin, dm_block_t data_dest,
1004 struct cell *cell, struct bio *bio)
1006 schedule_copy(tc, virt_block, tc->pool_dev,
1007 data_origin, data_dest, cell, bio);
1010 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1011 dm_block_t data_dest,
1012 struct cell *cell, struct bio *bio)
1014 schedule_copy(tc, virt_block, tc->origin_dev,
1015 virt_block, data_dest, cell, bio);
1018 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1019 dm_block_t data_block, struct cell *cell,
1022 struct pool *pool = tc->pool;
1023 struct new_mapping *m = get_next_mapping(pool);
1025 INIT_LIST_HEAD(&m->list);
1028 m->virt_block = virt_block;
1029 m->data_block = data_block;
1035 * If the whole block of data is being overwritten or we are not
1036 * zeroing pre-existing data, we can issue the bio immediately.
1037 * Otherwise we use kcopyd to zero the data first.
1039 if (!pool->zero_new_blocks)
1040 process_prepared_mapping(m);
1042 else if (io_overwrites_block(pool, bio)) {
1044 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1045 dm_get_mapinfo(bio)->ptr = m;
1046 remap_and_issue(tc, bio, data_block);
1050 struct dm_io_region to;
1052 to.bdev = tc->pool_dev->bdev;
1053 to.sector = data_block * pool->sectors_per_block;
1054 to.count = pool->sectors_per_block;
1056 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1058 mempool_free(m, pool->mapping_pool);
1059 DMERR("dm_kcopyd_zero() failed");
1065 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1068 dm_block_t free_blocks;
1069 unsigned long flags;
1070 struct pool *pool = tc->pool;
1072 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1076 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1077 DMWARN("%s: reached low water mark, sending event.",
1078 dm_device_name(pool->pool_md));
1079 spin_lock_irqsave(&pool->lock, flags);
1080 pool->low_water_triggered = 1;
1081 spin_unlock_irqrestore(&pool->lock, flags);
1082 dm_table_event(pool->ti->table);
1086 if (pool->no_free_space)
1090 * Try to commit to see if that will free up some
1093 r = dm_pool_commit_metadata(pool->pmd);
1095 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1100 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1105 * If we still have no space we set a flag to avoid
1106 * doing all this checking and return -ENOSPC.
1109 DMWARN("%s: no free space available.",
1110 dm_device_name(pool->pool_md));
1111 spin_lock_irqsave(&pool->lock, flags);
1112 pool->no_free_space = 1;
1113 spin_unlock_irqrestore(&pool->lock, flags);
1119 r = dm_pool_alloc_data_block(pool->pmd, result);
1127 * If we have run out of space, queue bios until the device is
1128 * resumed, presumably after having been reloaded with more space.
1130 static void retry_on_resume(struct bio *bio)
1132 struct thin_c *tc = dm_get_mapinfo(bio)->ptr;
1133 struct pool *pool = tc->pool;
1134 unsigned long flags;
1136 spin_lock_irqsave(&pool->lock, flags);
1137 bio_list_add(&pool->retry_on_resume_list, bio);
1138 spin_unlock_irqrestore(&pool->lock, flags);
1141 static void no_space(struct cell *cell)
1144 struct bio_list bios;
1146 bio_list_init(&bios);
1147 cell_release(cell, &bios);
1149 while ((bio = bio_list_pop(&bios)))
1150 retry_on_resume(bio);
1153 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1154 struct cell_key *key,
1155 struct dm_thin_lookup_result *lookup_result,
1159 dm_block_t data_block;
1161 r = alloc_data_block(tc, &data_block);
1164 schedule_internal_copy(tc, block, lookup_result->block,
1165 data_block, cell, bio);
1173 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1179 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1181 struct dm_thin_lookup_result *lookup_result)
1184 struct pool *pool = tc->pool;
1185 struct cell_key key;
1188 * If cell is already occupied, then sharing is already in the process
1189 * of being broken so we have nothing further to do here.
1191 build_data_key(tc->td, lookup_result->block, &key);
1192 if (bio_detain(pool->prison, &key, bio, &cell))
1195 if (bio_data_dir(bio) == WRITE)
1196 break_sharing(tc, bio, block, &key, lookup_result, cell);
1198 struct endio_hook *h;
1199 h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1202 h->entry = ds_inc(&pool->ds);
1203 save_and_set_endio(bio, &h->saved_bi_end_io, shared_read_endio);
1204 dm_get_mapinfo(bio)->ptr = h;
1206 cell_release_singleton(cell, bio);
1207 remap_and_issue(tc, bio, lookup_result->block);
1211 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1215 dm_block_t data_block;
1218 * Remap empty bios (flushes) immediately, without provisioning.
1220 if (!bio->bi_size) {
1221 cell_release_singleton(cell, bio);
1222 remap_and_issue(tc, bio, 0);
1227 * Fill read bios with zeroes and complete them immediately.
1229 if (bio_data_dir(bio) == READ) {
1231 cell_release_singleton(cell, bio);
1236 r = alloc_data_block(tc, &data_block);
1240 schedule_external_copy(tc, block, data_block, cell, bio);
1242 schedule_zero(tc, block, data_block, cell, bio);
1250 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1256 static void process_bio(struct thin_c *tc, struct bio *bio)
1259 dm_block_t block = get_bio_block(tc, bio);
1261 struct cell_key key;
1262 struct dm_thin_lookup_result lookup_result;
1265 * If cell is already occupied, then the block is already
1266 * being provisioned so we have nothing further to do here.
1268 build_virtual_key(tc->td, block, &key);
1269 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1272 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1276 * We can release this cell now. This thread is the only
1277 * one that puts bios into a cell, and we know there were
1278 * no preceding bios.
1281 * TODO: this will probably have to change when discard goes
1284 cell_release_singleton(cell, bio);
1286 if (lookup_result.shared)
1287 process_shared_bio(tc, bio, block, &lookup_result);
1289 remap_and_issue(tc, bio, lookup_result.block);
1293 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1294 cell_release_singleton(cell, bio);
1295 remap_to_origin_and_issue(tc, bio);
1297 provision_block(tc, bio, block, cell);
1301 DMERR("dm_thin_find_block() failed, error = %d", r);
1307 static int need_commit_due_to_time(struct pool *pool)
1309 return jiffies < pool->last_commit_jiffies ||
1310 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1313 static void process_deferred_bios(struct pool *pool)
1315 unsigned long flags;
1317 struct bio_list bios;
1320 bio_list_init(&bios);
1322 spin_lock_irqsave(&pool->lock, flags);
1323 bio_list_merge(&bios, &pool->deferred_bios);
1324 bio_list_init(&pool->deferred_bios);
1325 spin_unlock_irqrestore(&pool->lock, flags);
1327 while ((bio = bio_list_pop(&bios))) {
1328 struct thin_c *tc = dm_get_mapinfo(bio)->ptr;
1330 * If we've got no free new_mapping structs, and processing
1331 * this bio might require one, we pause until there are some
1332 * prepared mappings to process.
1334 if (ensure_next_mapping(pool)) {
1335 spin_lock_irqsave(&pool->lock, flags);
1336 bio_list_merge(&pool->deferred_bios, &bios);
1337 spin_unlock_irqrestore(&pool->lock, flags);
1341 process_bio(tc, bio);
1345 * If there are any deferred flush bios, we must commit
1346 * the metadata before issuing them.
1348 bio_list_init(&bios);
1349 spin_lock_irqsave(&pool->lock, flags);
1350 bio_list_merge(&bios, &pool->deferred_flush_bios);
1351 bio_list_init(&pool->deferred_flush_bios);
1352 spin_unlock_irqrestore(&pool->lock, flags);
1354 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1357 r = dm_pool_commit_metadata(pool->pmd);
1359 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1361 while ((bio = bio_list_pop(&bios)))
1365 pool->last_commit_jiffies = jiffies;
1367 while ((bio = bio_list_pop(&bios)))
1368 generic_make_request(bio);
1371 static void do_worker(struct work_struct *ws)
1373 struct pool *pool = container_of(ws, struct pool, worker);
1375 process_prepared_mappings(pool);
1376 process_deferred_bios(pool);
1380 * We want to commit periodically so that not too much
1381 * unwritten data builds up.
1383 static void do_waker(struct work_struct *ws)
1385 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1387 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1390 /*----------------------------------------------------------------*/
1393 * Mapping functions.
1397 * Called only while mapping a thin bio to hand it over to the workqueue.
1399 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1401 unsigned long flags;
1402 struct pool *pool = tc->pool;
1404 spin_lock_irqsave(&pool->lock, flags);
1405 bio_list_add(&pool->deferred_bios, bio);
1406 spin_unlock_irqrestore(&pool->lock, flags);
1412 * Non-blocking function called from the thin target's map function.
1414 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1415 union map_info *map_context)
1418 struct thin_c *tc = ti->private;
1419 dm_block_t block = get_bio_block(tc, bio);
1420 struct dm_thin_device *td = tc->td;
1421 struct dm_thin_lookup_result result;
1424 * Save the thin context for easy access from the deferred bio later.
1426 map_context->ptr = tc;
1428 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1429 thin_defer_bio(tc, bio);
1430 return DM_MAPIO_SUBMITTED;
1433 r = dm_thin_find_block(td, block, 0, &result);
1436 * Note that we defer readahead too.
1440 if (unlikely(result.shared)) {
1442 * We have a race condition here between the
1443 * result.shared value returned by the lookup and
1444 * snapshot creation, which may cause new
1447 * To avoid this always quiesce the origin before
1448 * taking the snap. You want to do this anyway to
1449 * ensure a consistent application view
1452 * More distant ancestors are irrelevant. The
1453 * shared flag will be set in their case.
1455 thin_defer_bio(tc, bio);
1456 r = DM_MAPIO_SUBMITTED;
1458 remap(tc, bio, result.block);
1459 r = DM_MAPIO_REMAPPED;
1465 * In future, the failed dm_thin_find_block above could
1466 * provide the hint to load the metadata into cache.
1469 thin_defer_bio(tc, bio);
1470 r = DM_MAPIO_SUBMITTED;
1477 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1480 unsigned long flags;
1481 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1483 spin_lock_irqsave(&pt->pool->lock, flags);
1484 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1485 spin_unlock_irqrestore(&pt->pool->lock, flags);
1488 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1489 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1495 static void __requeue_bios(struct pool *pool)
1497 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1498 bio_list_init(&pool->retry_on_resume_list);
1501 /*----------------------------------------------------------------
1502 * Binding of control targets to a pool object
1503 *--------------------------------------------------------------*/
1504 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1506 struct pool_c *pt = ti->private;
1509 pool->low_water_blocks = pt->low_water_blocks;
1510 pool->zero_new_blocks = pt->zero_new_blocks;
1515 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1521 /*----------------------------------------------------------------
1523 *--------------------------------------------------------------*/
1524 static void __pool_destroy(struct pool *pool)
1526 __pool_table_remove(pool);
1528 if (dm_pool_metadata_close(pool->pmd) < 0)
1529 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1531 prison_destroy(pool->prison);
1532 dm_kcopyd_client_destroy(pool->copier);
1535 destroy_workqueue(pool->wq);
1537 if (pool->next_mapping)
1538 mempool_free(pool->next_mapping, pool->mapping_pool);
1539 mempool_destroy(pool->mapping_pool);
1540 mempool_destroy(pool->endio_hook_pool);
1544 static struct pool *pool_create(struct mapped_device *pool_md,
1545 struct block_device *metadata_dev,
1546 unsigned long block_size, char **error)
1551 struct dm_pool_metadata *pmd;
1553 pmd = dm_pool_metadata_open(metadata_dev, block_size);
1555 *error = "Error creating metadata object";
1556 return (struct pool *)pmd;
1559 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1561 *error = "Error allocating memory for pool";
1562 err_p = ERR_PTR(-ENOMEM);
1567 pool->sectors_per_block = block_size;
1568 pool->block_shift = ffs(block_size) - 1;
1569 pool->offset_mask = block_size - 1;
1570 pool->low_water_blocks = 0;
1571 pool->zero_new_blocks = 1;
1572 pool->prison = prison_create(PRISON_CELLS);
1573 if (!pool->prison) {
1574 *error = "Error creating pool's bio prison";
1575 err_p = ERR_PTR(-ENOMEM);
1579 pool->copier = dm_kcopyd_client_create();
1580 if (IS_ERR(pool->copier)) {
1581 r = PTR_ERR(pool->copier);
1582 *error = "Error creating pool's kcopyd client";
1584 goto bad_kcopyd_client;
1588 * Create singlethreaded workqueue that will service all devices
1589 * that use this metadata.
1591 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1593 *error = "Error creating pool's workqueue";
1594 err_p = ERR_PTR(-ENOMEM);
1598 INIT_WORK(&pool->worker, do_worker);
1599 INIT_DELAYED_WORK(&pool->waker, do_waker);
1600 spin_lock_init(&pool->lock);
1601 bio_list_init(&pool->deferred_bios);
1602 bio_list_init(&pool->deferred_flush_bios);
1603 INIT_LIST_HEAD(&pool->prepared_mappings);
1604 pool->low_water_triggered = 0;
1605 pool->no_free_space = 0;
1606 bio_list_init(&pool->retry_on_resume_list);
1609 pool->next_mapping = NULL;
1610 pool->mapping_pool =
1611 mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
1612 if (!pool->mapping_pool) {
1613 *error = "Error creating pool's mapping mempool";
1614 err_p = ERR_PTR(-ENOMEM);
1615 goto bad_mapping_pool;
1618 pool->endio_hook_pool =
1619 mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
1620 if (!pool->endio_hook_pool) {
1621 *error = "Error creating pool's endio_hook mempool";
1622 err_p = ERR_PTR(-ENOMEM);
1623 goto bad_endio_hook_pool;
1625 pool->ref_count = 1;
1626 pool->last_commit_jiffies = jiffies;
1627 pool->pool_md = pool_md;
1628 pool->md_dev = metadata_dev;
1629 __pool_table_insert(pool);
1633 bad_endio_hook_pool:
1634 mempool_destroy(pool->mapping_pool);
1636 destroy_workqueue(pool->wq);
1638 dm_kcopyd_client_destroy(pool->copier);
1640 prison_destroy(pool->prison);
1644 if (dm_pool_metadata_close(pmd))
1645 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1650 static void __pool_inc(struct pool *pool)
1652 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1656 static void __pool_dec(struct pool *pool)
1658 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1659 BUG_ON(!pool->ref_count);
1660 if (!--pool->ref_count)
1661 __pool_destroy(pool);
1664 static struct pool *__pool_find(struct mapped_device *pool_md,
1665 struct block_device *metadata_dev,
1666 unsigned long block_size, char **error)
1668 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1671 if (pool->pool_md != pool_md)
1672 return ERR_PTR(-EBUSY);
1676 pool = __pool_table_lookup(pool_md);
1678 if (pool->md_dev != metadata_dev)
1679 return ERR_PTR(-EINVAL);
1683 pool = pool_create(pool_md, metadata_dev, block_size, error);
1689 /*----------------------------------------------------------------
1690 * Pool target methods
1691 *--------------------------------------------------------------*/
1692 static void pool_dtr(struct dm_target *ti)
1694 struct pool_c *pt = ti->private;
1696 mutex_lock(&dm_thin_pool_table.mutex);
1698 unbind_control_target(pt->pool, ti);
1699 __pool_dec(pt->pool);
1700 dm_put_device(ti, pt->metadata_dev);
1701 dm_put_device(ti, pt->data_dev);
1704 mutex_unlock(&dm_thin_pool_table.mutex);
1707 struct pool_features {
1708 unsigned zero_new_blocks:1;
1711 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1712 struct dm_target *ti)
1716 const char *arg_name;
1718 static struct dm_arg _args[] = {
1719 {0, 1, "Invalid number of pool feature arguments"},
1723 * No feature arguments supplied.
1728 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1732 while (argc && !r) {
1733 arg_name = dm_shift_arg(as);
1736 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1737 pf->zero_new_blocks = 0;
1741 ti->error = "Unrecognised pool feature requested";
1749 * thin-pool <metadata dev> <data dev>
1750 * <data block size (sectors)>
1751 * <low water mark (blocks)>
1752 * [<#feature args> [<arg>]*]
1754 * Optional feature arguments are:
1755 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1757 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1762 struct pool_features pf;
1763 struct dm_arg_set as;
1764 struct dm_dev *data_dev;
1765 unsigned long block_size;
1766 dm_block_t low_water_blocks;
1767 struct dm_dev *metadata_dev;
1768 sector_t metadata_dev_size;
1769 char b[BDEVNAME_SIZE];
1772 * FIXME Remove validation from scope of lock.
1774 mutex_lock(&dm_thin_pool_table.mutex);
1777 ti->error = "Invalid argument count";
1784 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1786 ti->error = "Error opening metadata block device";
1790 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1791 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1792 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1793 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1795 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1797 ti->error = "Error getting data device";
1801 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1802 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1803 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1804 !is_power_of_2(block_size)) {
1805 ti->error = "Invalid block size";
1810 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1811 ti->error = "Invalid low water mark";
1817 * Set default pool features.
1819 memset(&pf, 0, sizeof(pf));
1820 pf.zero_new_blocks = 1;
1822 dm_consume_args(&as, 4);
1823 r = parse_pool_features(&as, &pf, ti);
1827 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1833 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1834 block_size, &ti->error);
1842 pt->metadata_dev = metadata_dev;
1843 pt->data_dev = data_dev;
1844 pt->low_water_blocks = low_water_blocks;
1845 pt->zero_new_blocks = pf.zero_new_blocks;
1846 ti->num_flush_requests = 1;
1847 ti->num_discard_requests = 0;
1850 pt->callbacks.congested_fn = pool_is_congested;
1851 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
1853 mutex_unlock(&dm_thin_pool_table.mutex);
1860 dm_put_device(ti, data_dev);
1862 dm_put_device(ti, metadata_dev);
1864 mutex_unlock(&dm_thin_pool_table.mutex);
1869 static int pool_map(struct dm_target *ti, struct bio *bio,
1870 union map_info *map_context)
1873 struct pool_c *pt = ti->private;
1874 struct pool *pool = pt->pool;
1875 unsigned long flags;
1878 * As this is a singleton target, ti->begin is always zero.
1880 spin_lock_irqsave(&pool->lock, flags);
1881 bio->bi_bdev = pt->data_dev->bdev;
1882 r = DM_MAPIO_REMAPPED;
1883 spin_unlock_irqrestore(&pool->lock, flags);
1889 * Retrieves the number of blocks of the data device from
1890 * the superblock and compares it to the actual device size,
1891 * thus resizing the data device in case it has grown.
1893 * This both copes with opening preallocated data devices in the ctr
1894 * being followed by a resume
1896 * calling the resume method individually after userspace has
1897 * grown the data device in reaction to a table event.
1899 static int pool_preresume(struct dm_target *ti)
1902 struct pool_c *pt = ti->private;
1903 struct pool *pool = pt->pool;
1904 dm_block_t data_size, sb_data_size;
1907 * Take control of the pool object.
1909 r = bind_control_target(pool, ti);
1913 data_size = ti->len >> pool->block_shift;
1914 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
1916 DMERR("failed to retrieve data device size");
1920 if (data_size < sb_data_size) {
1921 DMERR("pool target too small, is %llu blocks (expected %llu)",
1922 data_size, sb_data_size);
1925 } else if (data_size > sb_data_size) {
1926 r = dm_pool_resize_data_dev(pool->pmd, data_size);
1928 DMERR("failed to resize data device");
1932 r = dm_pool_commit_metadata(pool->pmd);
1934 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1943 static void pool_resume(struct dm_target *ti)
1945 struct pool_c *pt = ti->private;
1946 struct pool *pool = pt->pool;
1947 unsigned long flags;
1949 spin_lock_irqsave(&pool->lock, flags);
1950 pool->low_water_triggered = 0;
1951 pool->no_free_space = 0;
1952 __requeue_bios(pool);
1953 spin_unlock_irqrestore(&pool->lock, flags);
1955 do_waker(&pool->waker.work);
1958 static void pool_postsuspend(struct dm_target *ti)
1961 struct pool_c *pt = ti->private;
1962 struct pool *pool = pt->pool;
1964 cancel_delayed_work(&pool->waker);
1965 flush_workqueue(pool->wq);
1967 r = dm_pool_commit_metadata(pool->pmd);
1969 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1971 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
1975 static int check_arg_count(unsigned argc, unsigned args_required)
1977 if (argc != args_required) {
1978 DMWARN("Message received with %u arguments instead of %u.",
1979 argc, args_required);
1986 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
1988 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
1989 *dev_id <= MAX_DEV_ID)
1993 DMWARN("Message received with invalid device id: %s", arg);
1998 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2003 r = check_arg_count(argc, 2);
2007 r = read_dev_id(argv[1], &dev_id, 1);
2011 r = dm_pool_create_thin(pool->pmd, dev_id);
2013 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2021 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2024 dm_thin_id origin_dev_id;
2027 r = check_arg_count(argc, 3);
2031 r = read_dev_id(argv[1], &dev_id, 1);
2035 r = read_dev_id(argv[2], &origin_dev_id, 1);
2039 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2041 DMWARN("Creation of new snapshot %s of device %s failed.",
2049 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2054 r = check_arg_count(argc, 2);
2058 r = read_dev_id(argv[1], &dev_id, 1);
2062 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2064 DMWARN("Deletion of thin device %s failed.", argv[1]);
2069 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2071 dm_thin_id old_id, new_id;
2074 r = check_arg_count(argc, 3);
2078 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2079 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2083 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2084 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2088 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2090 DMWARN("Failed to change transaction id from %s to %s.",
2099 * Messages supported:
2100 * create_thin <dev_id>
2101 * create_snap <dev_id> <origin_id>
2103 * trim <dev_id> <new_size_in_sectors>
2104 * set_transaction_id <current_trans_id> <new_trans_id>
2106 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2109 struct pool_c *pt = ti->private;
2110 struct pool *pool = pt->pool;
2112 if (!strcasecmp(argv[0], "create_thin"))
2113 r = process_create_thin_mesg(argc, argv, pool);
2115 else if (!strcasecmp(argv[0], "create_snap"))
2116 r = process_create_snap_mesg(argc, argv, pool);
2118 else if (!strcasecmp(argv[0], "delete"))
2119 r = process_delete_mesg(argc, argv, pool);
2121 else if (!strcasecmp(argv[0], "set_transaction_id"))
2122 r = process_set_transaction_id_mesg(argc, argv, pool);
2125 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2128 r = dm_pool_commit_metadata(pool->pmd);
2130 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2139 * <transaction id> <used metadata sectors>/<total metadata sectors>
2140 * <used data sectors>/<total data sectors> <held metadata root>
2142 static int pool_status(struct dm_target *ti, status_type_t type,
2143 char *result, unsigned maxlen)
2147 uint64_t transaction_id;
2148 dm_block_t nr_free_blocks_data;
2149 dm_block_t nr_free_blocks_metadata;
2150 dm_block_t nr_blocks_data;
2151 dm_block_t nr_blocks_metadata;
2152 dm_block_t held_root;
2153 char buf[BDEVNAME_SIZE];
2154 char buf2[BDEVNAME_SIZE];
2155 struct pool_c *pt = ti->private;
2156 struct pool *pool = pt->pool;
2159 case STATUSTYPE_INFO:
2160 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2165 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2166 &nr_free_blocks_metadata);
2170 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2174 r = dm_pool_get_free_block_count(pool->pmd,
2175 &nr_free_blocks_data);
2179 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2183 r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
2187 DMEMIT("%llu %llu/%llu %llu/%llu ",
2188 (unsigned long long)transaction_id,
2189 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2190 (unsigned long long)nr_blocks_metadata,
2191 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2192 (unsigned long long)nr_blocks_data);
2195 DMEMIT("%llu", held_root);
2201 case STATUSTYPE_TABLE:
2202 DMEMIT("%s %s %lu %llu ",
2203 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2204 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2205 (unsigned long)pool->sectors_per_block,
2206 (unsigned long long)pt->low_water_blocks);
2208 DMEMIT("%u ", !pool->zero_new_blocks);
2210 if (!pool->zero_new_blocks)
2211 DMEMIT("skip_block_zeroing ");
2218 static int pool_iterate_devices(struct dm_target *ti,
2219 iterate_devices_callout_fn fn, void *data)
2221 struct pool_c *pt = ti->private;
2223 return fn(ti, pt->data_dev, 0, ti->len, data);
2226 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2227 struct bio_vec *biovec, int max_size)
2229 struct pool_c *pt = ti->private;
2230 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2232 if (!q->merge_bvec_fn)
2235 bvm->bi_bdev = pt->data_dev->bdev;
2237 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2240 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2242 struct pool_c *pt = ti->private;
2243 struct pool *pool = pt->pool;
2245 blk_limits_io_min(limits, 0);
2246 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2249 static struct target_type pool_target = {
2250 .name = "thin-pool",
2251 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2252 DM_TARGET_IMMUTABLE,
2253 .version = {1, 0, 0},
2254 .module = THIS_MODULE,
2258 .postsuspend = pool_postsuspend,
2259 .preresume = pool_preresume,
2260 .resume = pool_resume,
2261 .message = pool_message,
2262 .status = pool_status,
2263 .merge = pool_merge,
2264 .iterate_devices = pool_iterate_devices,
2265 .io_hints = pool_io_hints,
2268 /*----------------------------------------------------------------
2269 * Thin target methods
2270 *--------------------------------------------------------------*/
2271 static void thin_dtr(struct dm_target *ti)
2273 struct thin_c *tc = ti->private;
2275 mutex_lock(&dm_thin_pool_table.mutex);
2277 __pool_dec(tc->pool);
2278 dm_pool_close_thin_device(tc->td);
2279 dm_put_device(ti, tc->pool_dev);
2281 dm_put_device(ti, tc->origin_dev);
2284 mutex_unlock(&dm_thin_pool_table.mutex);
2288 * Thin target parameters:
2290 * <pool_dev> <dev_id> [origin_dev]
2292 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2293 * dev_id: the internal device identifier
2294 * origin_dev: a device external to the pool that should act as the origin
2296 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2300 struct dm_dev *pool_dev, *origin_dev;
2301 struct mapped_device *pool_md;
2303 mutex_lock(&dm_thin_pool_table.mutex);
2305 if (argc != 2 && argc != 3) {
2306 ti->error = "Invalid argument count";
2311 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2313 ti->error = "Out of memory";
2319 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2321 ti->error = "Error opening origin device";
2322 goto bad_origin_dev;
2324 tc->origin_dev = origin_dev;
2327 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2329 ti->error = "Error opening pool device";
2332 tc->pool_dev = pool_dev;
2334 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2335 ti->error = "Invalid device id";
2340 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2342 ti->error = "Couldn't get pool mapped device";
2347 tc->pool = __pool_table_lookup(pool_md);
2349 ti->error = "Couldn't find pool object";
2351 goto bad_pool_lookup;
2353 __pool_inc(tc->pool);
2355 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2357 ti->error = "Couldn't open thin internal device";
2361 ti->split_io = tc->pool->sectors_per_block;
2362 ti->num_flush_requests = 1;
2363 ti->num_discard_requests = 0;
2364 ti->discards_supported = 0;
2368 mutex_unlock(&dm_thin_pool_table.mutex);
2373 __pool_dec(tc->pool);
2377 dm_put_device(ti, tc->pool_dev);
2380 dm_put_device(ti, tc->origin_dev);
2384 mutex_unlock(&dm_thin_pool_table.mutex);
2389 static int thin_map(struct dm_target *ti, struct bio *bio,
2390 union map_info *map_context)
2392 bio->bi_sector -= ti->begin;
2394 return thin_bio_map(ti, bio, map_context);
2397 static void thin_postsuspend(struct dm_target *ti)
2399 if (dm_noflush_suspending(ti))
2400 requeue_io((struct thin_c *)ti->private);
2404 * <nr mapped sectors> <highest mapped sector>
2406 static int thin_status(struct dm_target *ti, status_type_t type,
2407 char *result, unsigned maxlen)
2411 dm_block_t mapped, highest;
2412 char buf[BDEVNAME_SIZE];
2413 struct thin_c *tc = ti->private;
2419 case STATUSTYPE_INFO:
2420 r = dm_thin_get_mapped_count(tc->td, &mapped);
2424 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2428 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2430 DMEMIT("%llu", ((highest + 1) *
2431 tc->pool->sectors_per_block) - 1);
2436 case STATUSTYPE_TABLE:
2438 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2439 (unsigned long) tc->dev_id);
2441 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2449 static int thin_iterate_devices(struct dm_target *ti,
2450 iterate_devices_callout_fn fn, void *data)
2453 struct thin_c *tc = ti->private;
2456 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2457 * we follow a more convoluted path through to the pool's target.
2460 return 0; /* nothing is bound */
2462 blocks = tc->pool->ti->len >> tc->pool->block_shift;
2464 return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2469 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2471 struct thin_c *tc = ti->private;
2473 blk_limits_io_min(limits, 0);
2474 blk_limits_io_opt(limits, tc->pool->sectors_per_block << SECTOR_SHIFT);
2477 static struct target_type thin_target = {
2479 .version = {1, 1, 0},
2480 .module = THIS_MODULE,
2484 .postsuspend = thin_postsuspend,
2485 .status = thin_status,
2486 .iterate_devices = thin_iterate_devices,
2487 .io_hints = thin_io_hints,
2490 /*----------------------------------------------------------------*/
2492 static int __init dm_thin_init(void)
2498 r = dm_register_target(&thin_target);
2502 r = dm_register_target(&pool_target);
2504 dm_unregister_target(&thin_target);
2509 static void dm_thin_exit(void)
2511 dm_unregister_target(&thin_target);
2512 dm_unregister_target(&pool_target);
2515 module_init(dm_thin_init);
2516 module_exit(dm_thin_exit);
2518 MODULE_DESCRIPTION(DM_NAME "device-mapper thin provisioning target");
2519 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2520 MODULE_LICENSE("GPL");