2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
132 build_key(td, PHYSICAL, b, b + 1llu, key);
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
138 build_key(td, VIRTUAL, b, b + 1llu, key);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
151 static void throttle_init(struct throttle *t)
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
157 static void throttle_work_start(struct throttle *t)
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
162 static void throttle_work_update(struct throttle *t)
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
170 static void throttle_work_complete(struct throttle *t)
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
178 static void throttle_lock(struct throttle *t)
183 static void throttle_unlock(struct throttle *t)
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
195 struct dm_thin_new_mapping;
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
207 PM_OUT_OF_METADATA_SPACE,
208 PM_READ_ONLY, /* metadata may not be changed */
210 PM_FAIL, /* all I/O fails */
213 struct pool_features {
216 bool zero_new_blocks:1;
217 bool discard_enabled:1;
218 bool discard_passdown:1;
219 bool error_if_no_space:1;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
227 #define CELL_SORT_ARRAY_SIZE 8192
230 struct list_head list;
231 struct dm_target *ti; /* Only set if a pool target is bound */
233 struct mapped_device *pool_md;
234 struct block_device *data_dev;
235 struct block_device *md_dev;
236 struct dm_pool_metadata *pmd;
238 dm_block_t low_water_blocks;
239 uint32_t sectors_per_block;
240 int sectors_per_block_shift;
242 struct pool_features pf;
243 bool low_water_triggered:1; /* A dm event has been sent */
245 bool out_of_data_space:1;
247 struct dm_bio_prison *prison;
248 struct dm_kcopyd_client *copier;
250 struct work_struct worker;
251 struct workqueue_struct *wq;
252 struct throttle throttle;
253 struct delayed_work waker;
254 struct delayed_work no_space_timeout;
256 unsigned long last_commit_jiffies;
260 struct bio_list deferred_flush_bios;
261 struct bio_list deferred_flush_completions;
262 struct list_head prepared_mappings;
263 struct list_head prepared_discards;
264 struct list_head prepared_discards_pt2;
265 struct list_head active_thins;
267 struct dm_deferred_set *shared_read_ds;
268 struct dm_deferred_set *all_io_ds;
270 struct dm_thin_new_mapping *next_mapping;
272 process_bio_fn process_bio;
273 process_bio_fn process_discard;
275 process_cell_fn process_cell;
276 process_cell_fn process_discard_cell;
278 process_mapping_fn process_prepared_mapping;
279 process_mapping_fn process_prepared_discard;
280 process_mapping_fn process_prepared_discard_pt2;
282 struct dm_bio_prison_cell **cell_sort_array;
284 mempool_t mapping_pool;
287 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
289 static enum pool_mode get_pool_mode(struct pool *pool)
291 return pool->pf.mode;
294 static void notify_of_pool_mode_change(struct pool *pool)
296 const char *descs[] = {
303 const char *extra_desc = NULL;
304 enum pool_mode mode = get_pool_mode(pool);
306 if (mode == PM_OUT_OF_DATA_SPACE) {
307 if (!pool->pf.error_if_no_space)
308 extra_desc = " (queue IO)";
310 extra_desc = " (error IO)";
313 dm_table_event(pool->ti->table);
314 DMINFO("%s: switching pool to %s%s mode",
315 dm_device_name(pool->pool_md),
316 descs[(int)mode], extra_desc ? : "");
320 * Target context for a pool.
323 struct dm_target *ti;
325 struct dm_dev *data_dev;
326 struct dm_dev *metadata_dev;
327 struct dm_target_callbacks callbacks;
329 dm_block_t low_water_blocks;
330 struct pool_features requested_pf; /* Features requested during table load */
331 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
332 struct bio flush_bio;
336 * Target context for a thin.
339 struct list_head list;
340 struct dm_dev *pool_dev;
341 struct dm_dev *origin_dev;
342 sector_t origin_size;
346 struct dm_thin_device *td;
347 struct mapped_device *thin_md;
351 struct list_head deferred_cells;
352 struct bio_list deferred_bio_list;
353 struct bio_list retry_on_resume_list;
354 struct rb_root sort_bio_list; /* sorted list of deferred bios */
357 * Ensures the thin is not destroyed until the worker has finished
358 * iterating the active_thins list.
361 struct completion can_destroy;
364 /*----------------------------------------------------------------*/
366 static bool block_size_is_power_of_two(struct pool *pool)
368 return pool->sectors_per_block_shift >= 0;
371 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 return block_size_is_power_of_two(pool) ?
374 (b << pool->sectors_per_block_shift) :
375 (b * pool->sectors_per_block);
378 /*----------------------------------------------------------------*/
382 struct blk_plug plug;
383 struct bio *parent_bio;
387 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
392 blk_start_plug(&op->plug);
393 op->parent_bio = parent;
397 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 struct thin_c *tc = op->tc;
400 sector_t s = block_to_sectors(tc->pool, data_b);
401 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
404 GFP_NOWAIT, 0, &op->bio);
407 static void end_discard(struct discard_op *op, int r)
411 * Even if one of the calls to issue_discard failed, we
412 * need to wait for the chain to complete.
414 bio_chain(op->bio, op->parent_bio);
415 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
419 blk_finish_plug(&op->plug);
422 * Even if r is set, there could be sub discards in flight that we
425 if (r && !op->parent_bio->bi_status)
426 op->parent_bio->bi_status = errno_to_blk_status(r);
427 bio_endio(op->parent_bio);
430 /*----------------------------------------------------------------*/
433 * wake_worker() is used when new work is queued and when pool_resume is
434 * ready to continue deferred IO processing.
436 static void wake_worker(struct pool *pool)
438 queue_work(pool->wq, &pool->worker);
441 /*----------------------------------------------------------------*/
443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 struct dm_bio_prison_cell **cell_result)
447 struct dm_bio_prison_cell *cell_prealloc;
450 * Allocate a cell from the prison's mempool.
451 * This might block but it can't fail.
453 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
455 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
458 * We reused an old cell; we can get rid of
461 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
466 static void cell_release(struct pool *pool,
467 struct dm_bio_prison_cell *cell,
468 struct bio_list *bios)
470 dm_cell_release(pool->prison, cell, bios);
471 dm_bio_prison_free_cell(pool->prison, cell);
474 static void cell_visit_release(struct pool *pool,
475 void (*fn)(void *, struct dm_bio_prison_cell *),
477 struct dm_bio_prison_cell *cell)
479 dm_cell_visit_release(pool->prison, fn, context, cell);
480 dm_bio_prison_free_cell(pool->prison, cell);
483 static void cell_release_no_holder(struct pool *pool,
484 struct dm_bio_prison_cell *cell,
485 struct bio_list *bios)
487 dm_cell_release_no_holder(pool->prison, cell, bios);
488 dm_bio_prison_free_cell(pool->prison, cell);
491 static void cell_error_with_code(struct pool *pool,
492 struct dm_bio_prison_cell *cell, blk_status_t error_code)
494 dm_cell_error(pool->prison, cell, error_code);
495 dm_bio_prison_free_cell(pool->prison, cell);
498 static blk_status_t get_pool_io_error_code(struct pool *pool)
500 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
503 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
505 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
508 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
510 cell_error_with_code(pool, cell, 0);
513 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
515 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
518 /*----------------------------------------------------------------*/
521 * A global list of pools that uses a struct mapped_device as a key.
523 static struct dm_thin_pool_table {
525 struct list_head pools;
526 } dm_thin_pool_table;
528 static void pool_table_init(void)
530 mutex_init(&dm_thin_pool_table.mutex);
531 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
534 static void pool_table_exit(void)
536 mutex_destroy(&dm_thin_pool_table.mutex);
539 static void __pool_table_insert(struct pool *pool)
541 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
542 list_add(&pool->list, &dm_thin_pool_table.pools);
545 static void __pool_table_remove(struct pool *pool)
547 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
548 list_del(&pool->list);
551 static struct pool *__pool_table_lookup(struct mapped_device *md)
553 struct pool *pool = NULL, *tmp;
555 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
558 if (tmp->pool_md == md) {
567 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
569 struct pool *pool = NULL, *tmp;
571 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
573 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
574 if (tmp->md_dev == md_dev) {
583 /*----------------------------------------------------------------*/
585 struct dm_thin_endio_hook {
587 struct dm_deferred_entry *shared_read_entry;
588 struct dm_deferred_entry *all_io_entry;
589 struct dm_thin_new_mapping *overwrite_mapping;
590 struct rb_node rb_node;
591 struct dm_bio_prison_cell *cell;
594 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
596 bio_list_merge(bios, master);
597 bio_list_init(master);
600 static void error_bio_list(struct bio_list *bios, blk_status_t error)
604 while ((bio = bio_list_pop(bios))) {
605 bio->bi_status = error;
610 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
613 struct bio_list bios;
616 bio_list_init(&bios);
618 spin_lock_irqsave(&tc->lock, flags);
619 __merge_bio_list(&bios, master);
620 spin_unlock_irqrestore(&tc->lock, flags);
622 error_bio_list(&bios, error);
625 static void requeue_deferred_cells(struct thin_c *tc)
627 struct pool *pool = tc->pool;
629 struct list_head cells;
630 struct dm_bio_prison_cell *cell, *tmp;
632 INIT_LIST_HEAD(&cells);
634 spin_lock_irqsave(&tc->lock, flags);
635 list_splice_init(&tc->deferred_cells, &cells);
636 spin_unlock_irqrestore(&tc->lock, flags);
638 list_for_each_entry_safe(cell, tmp, &cells, user_list)
639 cell_requeue(pool, cell);
642 static void requeue_io(struct thin_c *tc)
644 struct bio_list bios;
647 bio_list_init(&bios);
649 spin_lock_irqsave(&tc->lock, flags);
650 __merge_bio_list(&bios, &tc->deferred_bio_list);
651 __merge_bio_list(&bios, &tc->retry_on_resume_list);
652 spin_unlock_irqrestore(&tc->lock, flags);
654 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
655 requeue_deferred_cells(tc);
658 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
663 list_for_each_entry_rcu(tc, &pool->active_thins, list)
664 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
668 static void error_retry_list(struct pool *pool)
670 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
674 * This section of code contains the logic for processing a thin device's IO.
675 * Much of the code depends on pool object resources (lists, workqueues, etc)
676 * but most is exclusively called from the thin target rather than the thin-pool
680 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
682 struct pool *pool = tc->pool;
683 sector_t block_nr = bio->bi_iter.bi_sector;
685 if (block_size_is_power_of_two(pool))
686 block_nr >>= pool->sectors_per_block_shift;
688 (void) sector_div(block_nr, pool->sectors_per_block);
694 * Returns the _complete_ blocks that this bio covers.
696 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
697 dm_block_t *begin, dm_block_t *end)
699 struct pool *pool = tc->pool;
700 sector_t b = bio->bi_iter.bi_sector;
701 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
703 b += pool->sectors_per_block - 1ull; /* so we round up */
705 if (block_size_is_power_of_two(pool)) {
706 b >>= pool->sectors_per_block_shift;
707 e >>= pool->sectors_per_block_shift;
709 (void) sector_div(b, pool->sectors_per_block);
710 (void) sector_div(e, pool->sectors_per_block);
714 /* Can happen if the bio is within a single block. */
721 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
723 struct pool *pool = tc->pool;
724 sector_t bi_sector = bio->bi_iter.bi_sector;
726 bio_set_dev(bio, tc->pool_dev->bdev);
727 if (block_size_is_power_of_two(pool))
728 bio->bi_iter.bi_sector =
729 (block << pool->sectors_per_block_shift) |
730 (bi_sector & (pool->sectors_per_block - 1));
732 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
733 sector_div(bi_sector, pool->sectors_per_block);
736 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
738 bio_set_dev(bio, tc->origin_dev->bdev);
741 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
743 return op_is_flush(bio->bi_opf) &&
744 dm_thin_changed_this_transaction(tc->td);
747 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
749 struct dm_thin_endio_hook *h;
751 if (bio_op(bio) == REQ_OP_DISCARD)
754 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
755 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
758 static void issue(struct thin_c *tc, struct bio *bio)
760 struct pool *pool = tc->pool;
763 if (!bio_triggers_commit(tc, bio)) {
764 generic_make_request(bio);
769 * Complete bio with an error if earlier I/O caused changes to
770 * the metadata that can't be committed e.g, due to I/O errors
771 * on the metadata device.
773 if (dm_thin_aborted_changes(tc->td)) {
779 * Batch together any bios that trigger commits and then issue a
780 * single commit for them in process_deferred_bios().
782 spin_lock_irqsave(&pool->lock, flags);
783 bio_list_add(&pool->deferred_flush_bios, bio);
784 spin_unlock_irqrestore(&pool->lock, flags);
787 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
789 remap_to_origin(tc, bio);
793 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
796 remap(tc, bio, block);
800 /*----------------------------------------------------------------*/
803 * Bio endio functions.
805 struct dm_thin_new_mapping {
806 struct list_head list;
812 * Track quiescing, copying and zeroing preparation actions. When this
813 * counter hits zero the block is prepared and can be inserted into the
816 atomic_t prepare_actions;
820 dm_block_t virt_begin, virt_end;
821 dm_block_t data_block;
822 struct dm_bio_prison_cell *cell;
825 * If the bio covers the whole area of a block then we can avoid
826 * zeroing or copying. Instead this bio is hooked. The bio will
827 * still be in the cell, so care has to be taken to avoid issuing
831 bio_end_io_t *saved_bi_end_io;
834 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
836 struct pool *pool = m->tc->pool;
838 if (atomic_dec_and_test(&m->prepare_actions)) {
839 list_add_tail(&m->list, &pool->prepared_mappings);
844 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
847 struct pool *pool = m->tc->pool;
849 spin_lock_irqsave(&pool->lock, flags);
850 __complete_mapping_preparation(m);
851 spin_unlock_irqrestore(&pool->lock, flags);
854 static void copy_complete(int read_err, unsigned long write_err, void *context)
856 struct dm_thin_new_mapping *m = context;
858 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
859 complete_mapping_preparation(m);
862 static void overwrite_endio(struct bio *bio)
864 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
865 struct dm_thin_new_mapping *m = h->overwrite_mapping;
867 bio->bi_end_io = m->saved_bi_end_io;
869 m->status = bio->bi_status;
870 complete_mapping_preparation(m);
873 /*----------------------------------------------------------------*/
880 * Prepared mapping jobs.
884 * This sends the bios in the cell, except the original holder, back
885 * to the deferred_bios list.
887 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
889 struct pool *pool = tc->pool;
892 spin_lock_irqsave(&tc->lock, flags);
893 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
894 spin_unlock_irqrestore(&tc->lock, flags);
899 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
903 struct bio_list defer_bios;
904 struct bio_list issue_bios;
907 static void __inc_remap_and_issue_cell(void *context,
908 struct dm_bio_prison_cell *cell)
910 struct remap_info *info = context;
913 while ((bio = bio_list_pop(&cell->bios))) {
914 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
915 bio_list_add(&info->defer_bios, bio);
917 inc_all_io_entry(info->tc->pool, bio);
920 * We can't issue the bios with the bio prison lock
921 * held, so we add them to a list to issue on
922 * return from this function.
924 bio_list_add(&info->issue_bios, bio);
929 static void inc_remap_and_issue_cell(struct thin_c *tc,
930 struct dm_bio_prison_cell *cell,
934 struct remap_info info;
937 bio_list_init(&info.defer_bios);
938 bio_list_init(&info.issue_bios);
941 * We have to be careful to inc any bios we're about to issue
942 * before the cell is released, and avoid a race with new bios
943 * being added to the cell.
945 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
948 while ((bio = bio_list_pop(&info.defer_bios)))
949 thin_defer_bio(tc, bio);
951 while ((bio = bio_list_pop(&info.issue_bios)))
952 remap_and_issue(info.tc, bio, block);
955 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
957 cell_error(m->tc->pool, m->cell);
959 mempool_free(m, &m->tc->pool->mapping_pool);
962 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
964 struct pool *pool = tc->pool;
968 * If the bio has the REQ_FUA flag set we must commit the metadata
969 * before signaling its completion.
971 if (!bio_triggers_commit(tc, bio)) {
977 * Complete bio with an error if earlier I/O caused changes to the
978 * metadata that can't be committed, e.g, due to I/O errors on the
981 if (dm_thin_aborted_changes(tc->td)) {
987 * Batch together any bios that trigger commits and then issue a
988 * single commit for them in process_deferred_bios().
990 spin_lock_irqsave(&pool->lock, flags);
991 bio_list_add(&pool->deferred_flush_completions, bio);
992 spin_unlock_irqrestore(&pool->lock, flags);
995 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
997 struct thin_c *tc = m->tc;
998 struct pool *pool = tc->pool;
999 struct bio *bio = m->bio;
1003 cell_error(pool, m->cell);
1008 * Commit the prepared block into the mapping btree.
1009 * Any I/O for this block arriving after this point will get
1010 * remapped to it directly.
1012 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1014 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1015 cell_error(pool, m->cell);
1020 * Release any bios held while the block was being provisioned.
1021 * If we are processing a write bio that completely covers the block,
1022 * we already processed it so can ignore it now when processing
1023 * the bios in the cell.
1026 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1027 complete_overwrite_bio(tc, bio);
1029 inc_all_io_entry(tc->pool, m->cell->holder);
1030 remap_and_issue(tc, m->cell->holder, m->data_block);
1031 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1036 mempool_free(m, &pool->mapping_pool);
1039 /*----------------------------------------------------------------*/
1041 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1043 struct thin_c *tc = m->tc;
1045 cell_defer_no_holder(tc, m->cell);
1046 mempool_free(m, &tc->pool->mapping_pool);
1049 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1051 bio_io_error(m->bio);
1052 free_discard_mapping(m);
1055 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1058 free_discard_mapping(m);
1061 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1064 struct thin_c *tc = m->tc;
1066 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1068 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1069 bio_io_error(m->bio);
1073 cell_defer_no_holder(tc, m->cell);
1074 mempool_free(m, &tc->pool->mapping_pool);
1077 /*----------------------------------------------------------------*/
1079 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1080 struct bio *discard_parent)
1083 * We've already unmapped this range of blocks, but before we
1084 * passdown we have to check that these blocks are now unused.
1088 struct thin_c *tc = m->tc;
1089 struct pool *pool = tc->pool;
1090 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1091 struct discard_op op;
1093 begin_discard(&op, tc, discard_parent);
1095 /* find start of unmapped run */
1096 for (; b < end; b++) {
1097 r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1108 /* find end of run */
1109 for (e = b + 1; e != end; e++) {
1110 r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1118 r = issue_discard(&op, b, e);
1125 end_discard(&op, r);
1128 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1130 unsigned long flags;
1131 struct pool *pool = m->tc->pool;
1133 spin_lock_irqsave(&pool->lock, flags);
1134 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1135 spin_unlock_irqrestore(&pool->lock, flags);
1139 static void passdown_endio(struct bio *bio)
1142 * It doesn't matter if the passdown discard failed, we still want
1143 * to unmap (we ignore err).
1145 queue_passdown_pt2(bio->bi_private);
1149 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1152 struct thin_c *tc = m->tc;
1153 struct pool *pool = tc->pool;
1154 struct bio *discard_parent;
1155 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1158 * Only this thread allocates blocks, so we can be sure that the
1159 * newly unmapped blocks will not be allocated before the end of
1162 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1164 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1165 bio_io_error(m->bio);
1166 cell_defer_no_holder(tc, m->cell);
1167 mempool_free(m, &pool->mapping_pool);
1172 * Increment the unmapped blocks. This prevents a race between the
1173 * passdown io and reallocation of freed blocks.
1175 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1177 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1178 bio_io_error(m->bio);
1179 cell_defer_no_holder(tc, m->cell);
1180 mempool_free(m, &pool->mapping_pool);
1184 discard_parent = bio_alloc(GFP_NOIO, 1);
1185 if (!discard_parent) {
1186 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1187 dm_device_name(tc->pool->pool_md));
1188 queue_passdown_pt2(m);
1191 discard_parent->bi_end_io = passdown_endio;
1192 discard_parent->bi_private = m;
1194 if (m->maybe_shared)
1195 passdown_double_checking_shared_status(m, discard_parent);
1197 struct discard_op op;
1199 begin_discard(&op, tc, discard_parent);
1200 r = issue_discard(&op, m->data_block, data_end);
1201 end_discard(&op, r);
1206 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1209 struct thin_c *tc = m->tc;
1210 struct pool *pool = tc->pool;
1213 * The passdown has completed, so now we can decrement all those
1216 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1217 m->data_block + (m->virt_end - m->virt_begin));
1219 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1220 bio_io_error(m->bio);
1224 cell_defer_no_holder(tc, m->cell);
1225 mempool_free(m, &pool->mapping_pool);
1228 static void process_prepared(struct pool *pool, struct list_head *head,
1229 process_mapping_fn *fn)
1231 unsigned long flags;
1232 struct list_head maps;
1233 struct dm_thin_new_mapping *m, *tmp;
1235 INIT_LIST_HEAD(&maps);
1236 spin_lock_irqsave(&pool->lock, flags);
1237 list_splice_init(head, &maps);
1238 spin_unlock_irqrestore(&pool->lock, flags);
1240 list_for_each_entry_safe(m, tmp, &maps, list)
1245 * Deferred bio jobs.
1247 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1249 return bio->bi_iter.bi_size ==
1250 (pool->sectors_per_block << SECTOR_SHIFT);
1253 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1255 return (bio_data_dir(bio) == WRITE) &&
1256 io_overlaps_block(pool, bio);
1259 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1262 *save = bio->bi_end_io;
1263 bio->bi_end_io = fn;
1266 static int ensure_next_mapping(struct pool *pool)
1268 if (pool->next_mapping)
1271 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1273 return pool->next_mapping ? 0 : -ENOMEM;
1276 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1278 struct dm_thin_new_mapping *m = pool->next_mapping;
1280 BUG_ON(!pool->next_mapping);
1282 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1283 INIT_LIST_HEAD(&m->list);
1286 pool->next_mapping = NULL;
1291 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1292 sector_t begin, sector_t end)
1294 struct dm_io_region to;
1296 to.bdev = tc->pool_dev->bdev;
1298 to.count = end - begin;
1300 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1303 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1304 dm_block_t data_begin,
1305 struct dm_thin_new_mapping *m)
1307 struct pool *pool = tc->pool;
1308 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1310 h->overwrite_mapping = m;
1312 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1313 inc_all_io_entry(pool, bio);
1314 remap_and_issue(tc, bio, data_begin);
1318 * A partial copy also needs to zero the uncopied region.
1320 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1321 struct dm_dev *origin, dm_block_t data_origin,
1322 dm_block_t data_dest,
1323 struct dm_bio_prison_cell *cell, struct bio *bio,
1326 struct pool *pool = tc->pool;
1327 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1330 m->virt_begin = virt_block;
1331 m->virt_end = virt_block + 1u;
1332 m->data_block = data_dest;
1336 * quiesce action + copy action + an extra reference held for the
1337 * duration of this function (we may need to inc later for a
1340 atomic_set(&m->prepare_actions, 3);
1342 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1343 complete_mapping_preparation(m); /* already quiesced */
1346 * IO to pool_dev remaps to the pool target's data_dev.
1348 * If the whole block of data is being overwritten, we can issue the
1349 * bio immediately. Otherwise we use kcopyd to clone the data first.
1351 if (io_overwrites_block(pool, bio))
1352 remap_and_issue_overwrite(tc, bio, data_dest, m);
1354 struct dm_io_region from, to;
1356 from.bdev = origin->bdev;
1357 from.sector = data_origin * pool->sectors_per_block;
1360 to.bdev = tc->pool_dev->bdev;
1361 to.sector = data_dest * pool->sectors_per_block;
1364 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1365 0, copy_complete, m);
1368 * Do we need to zero a tail region?
1370 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1371 atomic_inc(&m->prepare_actions);
1373 data_dest * pool->sectors_per_block + len,
1374 (data_dest + 1) * pool->sectors_per_block);
1378 complete_mapping_preparation(m); /* drop our ref */
1381 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1382 dm_block_t data_origin, dm_block_t data_dest,
1383 struct dm_bio_prison_cell *cell, struct bio *bio)
1385 schedule_copy(tc, virt_block, tc->pool_dev,
1386 data_origin, data_dest, cell, bio,
1387 tc->pool->sectors_per_block);
1390 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1391 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1394 struct pool *pool = tc->pool;
1395 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1397 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1399 m->virt_begin = virt_block;
1400 m->virt_end = virt_block + 1u;
1401 m->data_block = data_block;
1405 * If the whole block of data is being overwritten or we are not
1406 * zeroing pre-existing data, we can issue the bio immediately.
1407 * Otherwise we use kcopyd to zero the data first.
1409 if (pool->pf.zero_new_blocks) {
1410 if (io_overwrites_block(pool, bio))
1411 remap_and_issue_overwrite(tc, bio, data_block, m);
1413 ll_zero(tc, m, data_block * pool->sectors_per_block,
1414 (data_block + 1) * pool->sectors_per_block);
1416 process_prepared_mapping(m);
1419 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1420 dm_block_t data_dest,
1421 struct dm_bio_prison_cell *cell, struct bio *bio)
1423 struct pool *pool = tc->pool;
1424 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1425 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1427 if (virt_block_end <= tc->origin_size)
1428 schedule_copy(tc, virt_block, tc->origin_dev,
1429 virt_block, data_dest, cell, bio,
1430 pool->sectors_per_block);
1432 else if (virt_block_begin < tc->origin_size)
1433 schedule_copy(tc, virt_block, tc->origin_dev,
1434 virt_block, data_dest, cell, bio,
1435 tc->origin_size - virt_block_begin);
1438 schedule_zero(tc, virt_block, data_dest, cell, bio);
1441 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1443 static void requeue_bios(struct pool *pool);
1445 static bool is_read_only_pool_mode(enum pool_mode mode)
1447 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1450 static bool is_read_only(struct pool *pool)
1452 return is_read_only_pool_mode(get_pool_mode(pool));
1455 static void check_for_metadata_space(struct pool *pool)
1458 const char *ooms_reason = NULL;
1461 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1463 ooms_reason = "Could not get free metadata blocks";
1465 ooms_reason = "No free metadata blocks";
1467 if (ooms_reason && !is_read_only(pool)) {
1468 DMERR("%s", ooms_reason);
1469 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1473 static void check_for_data_space(struct pool *pool)
1478 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1481 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1486 set_pool_mode(pool, PM_WRITE);
1492 * A non-zero return indicates read_only or fail_io mode.
1493 * Many callers don't care about the return value.
1495 static int commit(struct pool *pool)
1499 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1502 r = dm_pool_commit_metadata(pool->pmd);
1504 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1506 check_for_metadata_space(pool);
1507 check_for_data_space(pool);
1513 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1515 unsigned long flags;
1517 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1518 DMWARN("%s: reached low water mark for data device: sending event.",
1519 dm_device_name(pool->pool_md));
1520 spin_lock_irqsave(&pool->lock, flags);
1521 pool->low_water_triggered = true;
1522 spin_unlock_irqrestore(&pool->lock, flags);
1523 dm_table_event(pool->ti->table);
1527 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1530 dm_block_t free_blocks;
1531 struct pool *pool = tc->pool;
1533 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1536 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1538 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1542 check_low_water_mark(pool, free_blocks);
1546 * Try to commit to see if that will free up some
1553 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1555 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1560 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1565 r = dm_pool_alloc_data_block(pool->pmd, result);
1568 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1570 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1574 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1576 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1581 /* Let's commit before we use up the metadata reserve. */
1591 * If we have run out of space, queue bios until the device is
1592 * resumed, presumably after having been reloaded with more space.
1594 static void retry_on_resume(struct bio *bio)
1596 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1597 struct thin_c *tc = h->tc;
1598 unsigned long flags;
1600 spin_lock_irqsave(&tc->lock, flags);
1601 bio_list_add(&tc->retry_on_resume_list, bio);
1602 spin_unlock_irqrestore(&tc->lock, flags);
1605 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1607 enum pool_mode m = get_pool_mode(pool);
1611 /* Shouldn't get here */
1612 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1613 return BLK_STS_IOERR;
1615 case PM_OUT_OF_DATA_SPACE:
1616 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1618 case PM_OUT_OF_METADATA_SPACE:
1621 return BLK_STS_IOERR;
1623 /* Shouldn't get here */
1624 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1625 return BLK_STS_IOERR;
1629 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1631 blk_status_t error = should_error_unserviceable_bio(pool);
1634 bio->bi_status = error;
1637 retry_on_resume(bio);
1640 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1643 struct bio_list bios;
1646 error = should_error_unserviceable_bio(pool);
1648 cell_error_with_code(pool, cell, error);
1652 bio_list_init(&bios);
1653 cell_release(pool, cell, &bios);
1655 while ((bio = bio_list_pop(&bios)))
1656 retry_on_resume(bio);
1659 static void process_discard_cell_no_passdown(struct thin_c *tc,
1660 struct dm_bio_prison_cell *virt_cell)
1662 struct pool *pool = tc->pool;
1663 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1666 * We don't need to lock the data blocks, since there's no
1667 * passdown. We only lock data blocks for allocation and breaking sharing.
1670 m->virt_begin = virt_cell->key.block_begin;
1671 m->virt_end = virt_cell->key.block_end;
1672 m->cell = virt_cell;
1673 m->bio = virt_cell->holder;
1675 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1676 pool->process_prepared_discard(m);
1679 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1682 struct pool *pool = tc->pool;
1686 struct dm_cell_key data_key;
1687 struct dm_bio_prison_cell *data_cell;
1688 struct dm_thin_new_mapping *m;
1689 dm_block_t virt_begin, virt_end, data_begin;
1691 while (begin != end) {
1692 r = ensure_next_mapping(pool);
1694 /* we did our best */
1697 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1698 &data_begin, &maybe_shared);
1701 * Silently fail, letting any mappings we've
1706 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1707 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1708 /* contention, we'll give up with this range */
1714 * IO may still be going to the destination block. We must
1715 * quiesce before we can do the removal.
1717 m = get_next_mapping(pool);
1719 m->maybe_shared = maybe_shared;
1720 m->virt_begin = virt_begin;
1721 m->virt_end = virt_end;
1722 m->data_block = data_begin;
1723 m->cell = data_cell;
1727 * The parent bio must not complete before sub discard bios are
1728 * chained to it (see end_discard's bio_chain)!
1730 * This per-mapping bi_remaining increment is paired with
1731 * the implicit decrement that occurs via bio_endio() in
1734 bio_inc_remaining(bio);
1735 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1736 pool->process_prepared_discard(m);
1742 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1744 struct bio *bio = virt_cell->holder;
1745 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1748 * The virt_cell will only get freed once the origin bio completes.
1749 * This means it will remain locked while all the individual
1750 * passdown bios are in flight.
1752 h->cell = virt_cell;
1753 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1756 * We complete the bio now, knowing that the bi_remaining field
1757 * will prevent completion until the sub range discards have
1763 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1765 dm_block_t begin, end;
1766 struct dm_cell_key virt_key;
1767 struct dm_bio_prison_cell *virt_cell;
1769 get_bio_block_range(tc, bio, &begin, &end);
1772 * The discard covers less than a block.
1778 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1779 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1781 * Potential starvation issue: We're relying on the
1782 * fs/application being well behaved, and not trying to
1783 * send IO to a region at the same time as discarding it.
1784 * If they do this persistently then it's possible this
1785 * cell will never be granted.
1789 tc->pool->process_discard_cell(tc, virt_cell);
1792 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1793 struct dm_cell_key *key,
1794 struct dm_thin_lookup_result *lookup_result,
1795 struct dm_bio_prison_cell *cell)
1798 dm_block_t data_block;
1799 struct pool *pool = tc->pool;
1801 r = alloc_data_block(tc, &data_block);
1804 schedule_internal_copy(tc, block, lookup_result->block,
1805 data_block, cell, bio);
1809 retry_bios_on_resume(pool, cell);
1813 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1815 cell_error(pool, cell);
1820 static void __remap_and_issue_shared_cell(void *context,
1821 struct dm_bio_prison_cell *cell)
1823 struct remap_info *info = context;
1826 while ((bio = bio_list_pop(&cell->bios))) {
1827 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1828 bio_op(bio) == REQ_OP_DISCARD)
1829 bio_list_add(&info->defer_bios, bio);
1831 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1833 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1834 inc_all_io_entry(info->tc->pool, bio);
1835 bio_list_add(&info->issue_bios, bio);
1840 static void remap_and_issue_shared_cell(struct thin_c *tc,
1841 struct dm_bio_prison_cell *cell,
1845 struct remap_info info;
1848 bio_list_init(&info.defer_bios);
1849 bio_list_init(&info.issue_bios);
1851 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1854 while ((bio = bio_list_pop(&info.defer_bios)))
1855 thin_defer_bio(tc, bio);
1857 while ((bio = bio_list_pop(&info.issue_bios)))
1858 remap_and_issue(tc, bio, block);
1861 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1863 struct dm_thin_lookup_result *lookup_result,
1864 struct dm_bio_prison_cell *virt_cell)
1866 struct dm_bio_prison_cell *data_cell;
1867 struct pool *pool = tc->pool;
1868 struct dm_cell_key key;
1871 * If cell is already occupied, then sharing is already in the process
1872 * of being broken so we have nothing further to do here.
1874 build_data_key(tc->td, lookup_result->block, &key);
1875 if (bio_detain(pool, &key, bio, &data_cell)) {
1876 cell_defer_no_holder(tc, virt_cell);
1880 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1881 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1882 cell_defer_no_holder(tc, virt_cell);
1884 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1886 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1887 inc_all_io_entry(pool, bio);
1888 remap_and_issue(tc, bio, lookup_result->block);
1890 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1891 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1895 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1896 struct dm_bio_prison_cell *cell)
1899 dm_block_t data_block;
1900 struct pool *pool = tc->pool;
1903 * Remap empty bios (flushes) immediately, without provisioning.
1905 if (!bio->bi_iter.bi_size) {
1906 inc_all_io_entry(pool, bio);
1907 cell_defer_no_holder(tc, cell);
1909 remap_and_issue(tc, bio, 0);
1914 * Fill read bios with zeroes and complete them immediately.
1916 if (bio_data_dir(bio) == READ) {
1918 cell_defer_no_holder(tc, cell);
1923 r = alloc_data_block(tc, &data_block);
1927 schedule_external_copy(tc, block, data_block, cell, bio);
1929 schedule_zero(tc, block, data_block, cell, bio);
1933 retry_bios_on_resume(pool, cell);
1937 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1939 cell_error(pool, cell);
1944 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1947 struct pool *pool = tc->pool;
1948 struct bio *bio = cell->holder;
1949 dm_block_t block = get_bio_block(tc, bio);
1950 struct dm_thin_lookup_result lookup_result;
1952 if (tc->requeue_mode) {
1953 cell_requeue(pool, cell);
1957 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1960 if (lookup_result.shared)
1961 process_shared_bio(tc, bio, block, &lookup_result, cell);
1963 inc_all_io_entry(pool, bio);
1964 remap_and_issue(tc, bio, lookup_result.block);
1965 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1970 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1971 inc_all_io_entry(pool, bio);
1972 cell_defer_no_holder(tc, cell);
1974 if (bio_end_sector(bio) <= tc->origin_size)
1975 remap_to_origin_and_issue(tc, bio);
1977 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1979 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1980 remap_to_origin_and_issue(tc, bio);
1987 provision_block(tc, bio, block, cell);
1991 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1993 cell_defer_no_holder(tc, cell);
1999 static void process_bio(struct thin_c *tc, struct bio *bio)
2001 struct pool *pool = tc->pool;
2002 dm_block_t block = get_bio_block(tc, bio);
2003 struct dm_bio_prison_cell *cell;
2004 struct dm_cell_key key;
2007 * If cell is already occupied, then the block is already
2008 * being provisioned so we have nothing further to do here.
2010 build_virtual_key(tc->td, block, &key);
2011 if (bio_detain(pool, &key, bio, &cell))
2014 process_cell(tc, cell);
2017 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2018 struct dm_bio_prison_cell *cell)
2021 int rw = bio_data_dir(bio);
2022 dm_block_t block = get_bio_block(tc, bio);
2023 struct dm_thin_lookup_result lookup_result;
2025 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2028 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2029 handle_unserviceable_bio(tc->pool, bio);
2031 cell_defer_no_holder(tc, cell);
2033 inc_all_io_entry(tc->pool, bio);
2034 remap_and_issue(tc, bio, lookup_result.block);
2036 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2042 cell_defer_no_holder(tc, cell);
2044 handle_unserviceable_bio(tc->pool, bio);
2048 if (tc->origin_dev) {
2049 inc_all_io_entry(tc->pool, bio);
2050 remap_to_origin_and_issue(tc, bio);
2059 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2062 cell_defer_no_holder(tc, cell);
2068 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2070 __process_bio_read_only(tc, bio, NULL);
2073 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2075 __process_bio_read_only(tc, cell->holder, cell);
2078 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2083 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2088 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2090 cell_success(tc->pool, cell);
2093 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2095 cell_error(tc->pool, cell);
2099 * FIXME: should we also commit due to size of transaction, measured in
2102 static int need_commit_due_to_time(struct pool *pool)
2104 return !time_in_range(jiffies, pool->last_commit_jiffies,
2105 pool->last_commit_jiffies + COMMIT_PERIOD);
2108 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2109 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2111 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2113 struct rb_node **rbp, *parent;
2114 struct dm_thin_endio_hook *pbd;
2115 sector_t bi_sector = bio->bi_iter.bi_sector;
2117 rbp = &tc->sort_bio_list.rb_node;
2121 pbd = thin_pbd(parent);
2123 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2124 rbp = &(*rbp)->rb_left;
2126 rbp = &(*rbp)->rb_right;
2129 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2130 rb_link_node(&pbd->rb_node, parent, rbp);
2131 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2134 static void __extract_sorted_bios(struct thin_c *tc)
2136 struct rb_node *node;
2137 struct dm_thin_endio_hook *pbd;
2140 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2141 pbd = thin_pbd(node);
2142 bio = thin_bio(pbd);
2144 bio_list_add(&tc->deferred_bio_list, bio);
2145 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2148 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2151 static void __sort_thin_deferred_bios(struct thin_c *tc)
2154 struct bio_list bios;
2156 bio_list_init(&bios);
2157 bio_list_merge(&bios, &tc->deferred_bio_list);
2158 bio_list_init(&tc->deferred_bio_list);
2160 /* Sort deferred_bio_list using rb-tree */
2161 while ((bio = bio_list_pop(&bios)))
2162 __thin_bio_rb_add(tc, bio);
2165 * Transfer the sorted bios in sort_bio_list back to
2166 * deferred_bio_list to allow lockless submission of
2169 __extract_sorted_bios(tc);
2172 static void process_thin_deferred_bios(struct thin_c *tc)
2174 struct pool *pool = tc->pool;
2175 unsigned long flags;
2177 struct bio_list bios;
2178 struct blk_plug plug;
2181 if (tc->requeue_mode) {
2182 error_thin_bio_list(tc, &tc->deferred_bio_list,
2183 BLK_STS_DM_REQUEUE);
2187 bio_list_init(&bios);
2189 spin_lock_irqsave(&tc->lock, flags);
2191 if (bio_list_empty(&tc->deferred_bio_list)) {
2192 spin_unlock_irqrestore(&tc->lock, flags);
2196 __sort_thin_deferred_bios(tc);
2198 bio_list_merge(&bios, &tc->deferred_bio_list);
2199 bio_list_init(&tc->deferred_bio_list);
2201 spin_unlock_irqrestore(&tc->lock, flags);
2203 blk_start_plug(&plug);
2204 while ((bio = bio_list_pop(&bios))) {
2206 * If we've got no free new_mapping structs, and processing
2207 * this bio might require one, we pause until there are some
2208 * prepared mappings to process.
2210 if (ensure_next_mapping(pool)) {
2211 spin_lock_irqsave(&tc->lock, flags);
2212 bio_list_add(&tc->deferred_bio_list, bio);
2213 bio_list_merge(&tc->deferred_bio_list, &bios);
2214 spin_unlock_irqrestore(&tc->lock, flags);
2218 if (bio_op(bio) == REQ_OP_DISCARD)
2219 pool->process_discard(tc, bio);
2221 pool->process_bio(tc, bio);
2223 if ((count++ & 127) == 0) {
2224 throttle_work_update(&pool->throttle);
2225 dm_pool_issue_prefetches(pool->pmd);
2228 blk_finish_plug(&plug);
2231 static int cmp_cells(const void *lhs, const void *rhs)
2233 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2234 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2236 BUG_ON(!lhs_cell->holder);
2237 BUG_ON(!rhs_cell->holder);
2239 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2242 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2248 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2251 struct dm_bio_prison_cell *cell, *tmp;
2253 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2254 if (count >= CELL_SORT_ARRAY_SIZE)
2257 pool->cell_sort_array[count++] = cell;
2258 list_del(&cell->user_list);
2261 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2266 static void process_thin_deferred_cells(struct thin_c *tc)
2268 struct pool *pool = tc->pool;
2269 unsigned long flags;
2270 struct list_head cells;
2271 struct dm_bio_prison_cell *cell;
2272 unsigned i, j, count;
2274 INIT_LIST_HEAD(&cells);
2276 spin_lock_irqsave(&tc->lock, flags);
2277 list_splice_init(&tc->deferred_cells, &cells);
2278 spin_unlock_irqrestore(&tc->lock, flags);
2280 if (list_empty(&cells))
2284 count = sort_cells(tc->pool, &cells);
2286 for (i = 0; i < count; i++) {
2287 cell = pool->cell_sort_array[i];
2288 BUG_ON(!cell->holder);
2291 * If we've got no free new_mapping structs, and processing
2292 * this bio might require one, we pause until there are some
2293 * prepared mappings to process.
2295 if (ensure_next_mapping(pool)) {
2296 for (j = i; j < count; j++)
2297 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2299 spin_lock_irqsave(&tc->lock, flags);
2300 list_splice(&cells, &tc->deferred_cells);
2301 spin_unlock_irqrestore(&tc->lock, flags);
2305 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2306 pool->process_discard_cell(tc, cell);
2308 pool->process_cell(tc, cell);
2310 } while (!list_empty(&cells));
2313 static void thin_get(struct thin_c *tc);
2314 static void thin_put(struct thin_c *tc);
2317 * We can't hold rcu_read_lock() around code that can block. So we
2318 * find a thin with the rcu lock held; bump a refcount; then drop
2321 static struct thin_c *get_first_thin(struct pool *pool)
2323 struct thin_c *tc = NULL;
2326 if (!list_empty(&pool->active_thins)) {
2327 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2335 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2337 struct thin_c *old_tc = tc;
2340 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2352 static void process_deferred_bios(struct pool *pool)
2354 unsigned long flags;
2356 struct bio_list bios, bio_completions;
2359 tc = get_first_thin(pool);
2361 process_thin_deferred_cells(tc);
2362 process_thin_deferred_bios(tc);
2363 tc = get_next_thin(pool, tc);
2367 * If there are any deferred flush bios, we must commit the metadata
2368 * before issuing them or signaling their completion.
2370 bio_list_init(&bios);
2371 bio_list_init(&bio_completions);
2373 spin_lock_irqsave(&pool->lock, flags);
2374 bio_list_merge(&bios, &pool->deferred_flush_bios);
2375 bio_list_init(&pool->deferred_flush_bios);
2377 bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2378 bio_list_init(&pool->deferred_flush_completions);
2379 spin_unlock_irqrestore(&pool->lock, flags);
2381 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2382 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2386 bio_list_merge(&bios, &bio_completions);
2388 while ((bio = bio_list_pop(&bios)))
2392 pool->last_commit_jiffies = jiffies;
2394 while ((bio = bio_list_pop(&bio_completions)))
2397 while ((bio = bio_list_pop(&bios))) {
2399 * The data device was flushed as part of metadata commit,
2400 * so complete redundant flushes immediately.
2402 if (bio->bi_opf & REQ_PREFLUSH)
2405 generic_make_request(bio);
2409 static void do_worker(struct work_struct *ws)
2411 struct pool *pool = container_of(ws, struct pool, worker);
2413 throttle_work_start(&pool->throttle);
2414 dm_pool_issue_prefetches(pool->pmd);
2415 throttle_work_update(&pool->throttle);
2416 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2417 throttle_work_update(&pool->throttle);
2418 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2419 throttle_work_update(&pool->throttle);
2420 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2421 throttle_work_update(&pool->throttle);
2422 process_deferred_bios(pool);
2423 throttle_work_complete(&pool->throttle);
2427 * We want to commit periodically so that not too much
2428 * unwritten data builds up.
2430 static void do_waker(struct work_struct *ws)
2432 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2434 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2438 * We're holding onto IO to allow userland time to react. After the
2439 * timeout either the pool will have been resized (and thus back in
2440 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2442 static void do_no_space_timeout(struct work_struct *ws)
2444 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2447 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2448 pool->pf.error_if_no_space = true;
2449 notify_of_pool_mode_change(pool);
2450 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2454 /*----------------------------------------------------------------*/
2457 struct work_struct worker;
2458 struct completion complete;
2461 static struct pool_work *to_pool_work(struct work_struct *ws)
2463 return container_of(ws, struct pool_work, worker);
2466 static void pool_work_complete(struct pool_work *pw)
2468 complete(&pw->complete);
2471 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2472 void (*fn)(struct work_struct *))
2474 INIT_WORK_ONSTACK(&pw->worker, fn);
2475 init_completion(&pw->complete);
2476 queue_work(pool->wq, &pw->worker);
2477 wait_for_completion(&pw->complete);
2480 /*----------------------------------------------------------------*/
2482 struct noflush_work {
2483 struct pool_work pw;
2487 static struct noflush_work *to_noflush(struct work_struct *ws)
2489 return container_of(to_pool_work(ws), struct noflush_work, pw);
2492 static void do_noflush_start(struct work_struct *ws)
2494 struct noflush_work *w = to_noflush(ws);
2495 w->tc->requeue_mode = true;
2497 pool_work_complete(&w->pw);
2500 static void do_noflush_stop(struct work_struct *ws)
2502 struct noflush_work *w = to_noflush(ws);
2503 w->tc->requeue_mode = false;
2504 pool_work_complete(&w->pw);
2507 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2509 struct noflush_work w;
2512 pool_work_wait(&w.pw, tc->pool, fn);
2515 /*----------------------------------------------------------------*/
2517 static bool passdown_enabled(struct pool_c *pt)
2519 return pt->adjusted_pf.discard_passdown;
2522 static void set_discard_callbacks(struct pool *pool)
2524 struct pool_c *pt = pool->ti->private;
2526 if (passdown_enabled(pt)) {
2527 pool->process_discard_cell = process_discard_cell_passdown;
2528 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2529 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2531 pool->process_discard_cell = process_discard_cell_no_passdown;
2532 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2536 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2538 struct pool_c *pt = pool->ti->private;
2539 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2540 enum pool_mode old_mode = get_pool_mode(pool);
2541 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2544 * Never allow the pool to transition to PM_WRITE mode if user
2545 * intervention is required to verify metadata and data consistency.
2547 if (new_mode == PM_WRITE && needs_check) {
2548 DMERR("%s: unable to switch pool to write mode until repaired.",
2549 dm_device_name(pool->pool_md));
2550 if (old_mode != new_mode)
2551 new_mode = old_mode;
2553 new_mode = PM_READ_ONLY;
2556 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2557 * not going to recover without a thin_repair. So we never let the
2558 * pool move out of the old mode.
2560 if (old_mode == PM_FAIL)
2561 new_mode = old_mode;
2565 dm_pool_metadata_read_only(pool->pmd);
2566 pool->process_bio = process_bio_fail;
2567 pool->process_discard = process_bio_fail;
2568 pool->process_cell = process_cell_fail;
2569 pool->process_discard_cell = process_cell_fail;
2570 pool->process_prepared_mapping = process_prepared_mapping_fail;
2571 pool->process_prepared_discard = process_prepared_discard_fail;
2573 error_retry_list(pool);
2576 case PM_OUT_OF_METADATA_SPACE:
2578 dm_pool_metadata_read_only(pool->pmd);
2579 pool->process_bio = process_bio_read_only;
2580 pool->process_discard = process_bio_success;
2581 pool->process_cell = process_cell_read_only;
2582 pool->process_discard_cell = process_cell_success;
2583 pool->process_prepared_mapping = process_prepared_mapping_fail;
2584 pool->process_prepared_discard = process_prepared_discard_success;
2586 error_retry_list(pool);
2589 case PM_OUT_OF_DATA_SPACE:
2591 * Ideally we'd never hit this state; the low water mark
2592 * would trigger userland to extend the pool before we
2593 * completely run out of data space. However, many small
2594 * IOs to unprovisioned space can consume data space at an
2595 * alarming rate. Adjust your low water mark if you're
2596 * frequently seeing this mode.
2598 pool->out_of_data_space = true;
2599 pool->process_bio = process_bio_read_only;
2600 pool->process_discard = process_discard_bio;
2601 pool->process_cell = process_cell_read_only;
2602 pool->process_prepared_mapping = process_prepared_mapping;
2603 set_discard_callbacks(pool);
2605 if (!pool->pf.error_if_no_space && no_space_timeout)
2606 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2610 if (old_mode == PM_OUT_OF_DATA_SPACE)
2611 cancel_delayed_work_sync(&pool->no_space_timeout);
2612 pool->out_of_data_space = false;
2613 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2614 dm_pool_metadata_read_write(pool->pmd);
2615 pool->process_bio = process_bio;
2616 pool->process_discard = process_discard_bio;
2617 pool->process_cell = process_cell;
2618 pool->process_prepared_mapping = process_prepared_mapping;
2619 set_discard_callbacks(pool);
2623 pool->pf.mode = new_mode;
2625 * The pool mode may have changed, sync it so bind_control_target()
2626 * doesn't cause an unexpected mode transition on resume.
2628 pt->adjusted_pf.mode = new_mode;
2630 if (old_mode != new_mode)
2631 notify_of_pool_mode_change(pool);
2634 static void abort_transaction(struct pool *pool)
2636 const char *dev_name = dm_device_name(pool->pool_md);
2638 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2639 if (dm_pool_abort_metadata(pool->pmd)) {
2640 DMERR("%s: failed to abort metadata transaction", dev_name);
2641 set_pool_mode(pool, PM_FAIL);
2644 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2645 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2646 set_pool_mode(pool, PM_FAIL);
2650 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2652 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2653 dm_device_name(pool->pool_md), op, r);
2655 abort_transaction(pool);
2656 set_pool_mode(pool, PM_READ_ONLY);
2659 /*----------------------------------------------------------------*/
2662 * Mapping functions.
2666 * Called only while mapping a thin bio to hand it over to the workqueue.
2668 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2670 unsigned long flags;
2671 struct pool *pool = tc->pool;
2673 spin_lock_irqsave(&tc->lock, flags);
2674 bio_list_add(&tc->deferred_bio_list, bio);
2675 spin_unlock_irqrestore(&tc->lock, flags);
2680 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2682 struct pool *pool = tc->pool;
2684 throttle_lock(&pool->throttle);
2685 thin_defer_bio(tc, bio);
2686 throttle_unlock(&pool->throttle);
2689 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2691 unsigned long flags;
2692 struct pool *pool = tc->pool;
2694 throttle_lock(&pool->throttle);
2695 spin_lock_irqsave(&tc->lock, flags);
2696 list_add_tail(&cell->user_list, &tc->deferred_cells);
2697 spin_unlock_irqrestore(&tc->lock, flags);
2698 throttle_unlock(&pool->throttle);
2703 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2705 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2708 h->shared_read_entry = NULL;
2709 h->all_io_entry = NULL;
2710 h->overwrite_mapping = NULL;
2715 * Non-blocking function called from the thin target's map function.
2717 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2720 struct thin_c *tc = ti->private;
2721 dm_block_t block = get_bio_block(tc, bio);
2722 struct dm_thin_device *td = tc->td;
2723 struct dm_thin_lookup_result result;
2724 struct dm_bio_prison_cell *virt_cell, *data_cell;
2725 struct dm_cell_key key;
2727 thin_hook_bio(tc, bio);
2729 if (tc->requeue_mode) {
2730 bio->bi_status = BLK_STS_DM_REQUEUE;
2732 return DM_MAPIO_SUBMITTED;
2735 if (get_pool_mode(tc->pool) == PM_FAIL) {
2737 return DM_MAPIO_SUBMITTED;
2740 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2741 thin_defer_bio_with_throttle(tc, bio);
2742 return DM_MAPIO_SUBMITTED;
2746 * We must hold the virtual cell before doing the lookup, otherwise
2747 * there's a race with discard.
2749 build_virtual_key(tc->td, block, &key);
2750 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2751 return DM_MAPIO_SUBMITTED;
2753 r = dm_thin_find_block(td, block, 0, &result);
2756 * Note that we defer readahead too.
2760 if (unlikely(result.shared)) {
2762 * We have a race condition here between the
2763 * result.shared value returned by the lookup and
2764 * snapshot creation, which may cause new
2767 * To avoid this always quiesce the origin before
2768 * taking the snap. You want to do this anyway to
2769 * ensure a consistent application view
2772 * More distant ancestors are irrelevant. The
2773 * shared flag will be set in their case.
2775 thin_defer_cell(tc, virt_cell);
2776 return DM_MAPIO_SUBMITTED;
2779 build_data_key(tc->td, result.block, &key);
2780 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2781 cell_defer_no_holder(tc, virt_cell);
2782 return DM_MAPIO_SUBMITTED;
2785 inc_all_io_entry(tc->pool, bio);
2786 cell_defer_no_holder(tc, data_cell);
2787 cell_defer_no_holder(tc, virt_cell);
2789 remap(tc, bio, result.block);
2790 return DM_MAPIO_REMAPPED;
2794 thin_defer_cell(tc, virt_cell);
2795 return DM_MAPIO_SUBMITTED;
2799 * Must always call bio_io_error on failure.
2800 * dm_thin_find_block can fail with -EINVAL if the
2801 * pool is switched to fail-io mode.
2804 cell_defer_no_holder(tc, virt_cell);
2805 return DM_MAPIO_SUBMITTED;
2809 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2811 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2812 struct request_queue *q;
2814 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2817 q = bdev_get_queue(pt->data_dev->bdev);
2818 return bdi_congested(q->backing_dev_info, bdi_bits);
2821 static void requeue_bios(struct pool *pool)
2823 unsigned long flags;
2827 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2828 spin_lock_irqsave(&tc->lock, flags);
2829 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2830 bio_list_init(&tc->retry_on_resume_list);
2831 spin_unlock_irqrestore(&tc->lock, flags);
2836 /*----------------------------------------------------------------
2837 * Binding of control targets to a pool object
2838 *--------------------------------------------------------------*/
2839 static bool data_dev_supports_discard(struct pool_c *pt)
2841 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2843 return q && blk_queue_discard(q);
2846 static bool is_factor(sector_t block_size, uint32_t n)
2848 return !sector_div(block_size, n);
2852 * If discard_passdown was enabled verify that the data device
2853 * supports discards. Disable discard_passdown if not.
2855 static void disable_passdown_if_not_supported(struct pool_c *pt)
2857 struct pool *pool = pt->pool;
2858 struct block_device *data_bdev = pt->data_dev->bdev;
2859 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2860 const char *reason = NULL;
2861 char buf[BDEVNAME_SIZE];
2863 if (!pt->adjusted_pf.discard_passdown)
2866 if (!data_dev_supports_discard(pt))
2867 reason = "discard unsupported";
2869 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2870 reason = "max discard sectors smaller than a block";
2873 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2874 pt->adjusted_pf.discard_passdown = false;
2878 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2880 struct pool_c *pt = ti->private;
2883 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2885 enum pool_mode old_mode = get_pool_mode(pool);
2886 enum pool_mode new_mode = pt->adjusted_pf.mode;
2889 * Don't change the pool's mode until set_pool_mode() below.
2890 * Otherwise the pool's process_* function pointers may
2891 * not match the desired pool mode.
2893 pt->adjusted_pf.mode = old_mode;
2896 pool->pf = pt->adjusted_pf;
2897 pool->low_water_blocks = pt->low_water_blocks;
2899 set_pool_mode(pool, new_mode);
2904 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2910 /*----------------------------------------------------------------
2912 *--------------------------------------------------------------*/
2913 /* Initialize pool features. */
2914 static void pool_features_init(struct pool_features *pf)
2916 pf->mode = PM_WRITE;
2917 pf->zero_new_blocks = true;
2918 pf->discard_enabled = true;
2919 pf->discard_passdown = true;
2920 pf->error_if_no_space = false;
2923 static void __pool_destroy(struct pool *pool)
2925 __pool_table_remove(pool);
2927 vfree(pool->cell_sort_array);
2928 if (dm_pool_metadata_close(pool->pmd) < 0)
2929 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2931 dm_bio_prison_destroy(pool->prison);
2932 dm_kcopyd_client_destroy(pool->copier);
2935 destroy_workqueue(pool->wq);
2937 if (pool->next_mapping)
2938 mempool_free(pool->next_mapping, &pool->mapping_pool);
2939 mempool_exit(&pool->mapping_pool);
2940 dm_deferred_set_destroy(pool->shared_read_ds);
2941 dm_deferred_set_destroy(pool->all_io_ds);
2945 static struct kmem_cache *_new_mapping_cache;
2947 static struct pool *pool_create(struct mapped_device *pool_md,
2948 struct block_device *metadata_dev,
2949 struct block_device *data_dev,
2950 unsigned long block_size,
2951 int read_only, char **error)
2956 struct dm_pool_metadata *pmd;
2957 bool format_device = read_only ? false : true;
2959 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2961 *error = "Error creating metadata object";
2962 return (struct pool *)pmd;
2965 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2967 *error = "Error allocating memory for pool";
2968 err_p = ERR_PTR(-ENOMEM);
2973 pool->sectors_per_block = block_size;
2974 if (block_size & (block_size - 1))
2975 pool->sectors_per_block_shift = -1;
2977 pool->sectors_per_block_shift = __ffs(block_size);
2978 pool->low_water_blocks = 0;
2979 pool_features_init(&pool->pf);
2980 pool->prison = dm_bio_prison_create();
2981 if (!pool->prison) {
2982 *error = "Error creating pool's bio prison";
2983 err_p = ERR_PTR(-ENOMEM);
2987 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2988 if (IS_ERR(pool->copier)) {
2989 r = PTR_ERR(pool->copier);
2990 *error = "Error creating pool's kcopyd client";
2992 goto bad_kcopyd_client;
2996 * Create singlethreaded workqueue that will service all devices
2997 * that use this metadata.
2999 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
3001 *error = "Error creating pool's workqueue";
3002 err_p = ERR_PTR(-ENOMEM);
3006 throttle_init(&pool->throttle);
3007 INIT_WORK(&pool->worker, do_worker);
3008 INIT_DELAYED_WORK(&pool->waker, do_waker);
3009 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3010 spin_lock_init(&pool->lock);
3011 bio_list_init(&pool->deferred_flush_bios);
3012 bio_list_init(&pool->deferred_flush_completions);
3013 INIT_LIST_HEAD(&pool->prepared_mappings);
3014 INIT_LIST_HEAD(&pool->prepared_discards);
3015 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3016 INIT_LIST_HEAD(&pool->active_thins);
3017 pool->low_water_triggered = false;
3018 pool->suspended = true;
3019 pool->out_of_data_space = false;
3021 pool->shared_read_ds = dm_deferred_set_create();
3022 if (!pool->shared_read_ds) {
3023 *error = "Error creating pool's shared read deferred set";
3024 err_p = ERR_PTR(-ENOMEM);
3025 goto bad_shared_read_ds;
3028 pool->all_io_ds = dm_deferred_set_create();
3029 if (!pool->all_io_ds) {
3030 *error = "Error creating pool's all io deferred set";
3031 err_p = ERR_PTR(-ENOMEM);
3035 pool->next_mapping = NULL;
3036 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3037 _new_mapping_cache);
3039 *error = "Error creating pool's mapping mempool";
3041 goto bad_mapping_pool;
3044 pool->cell_sort_array =
3045 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3046 sizeof(*pool->cell_sort_array)));
3047 if (!pool->cell_sort_array) {
3048 *error = "Error allocating cell sort array";
3049 err_p = ERR_PTR(-ENOMEM);
3050 goto bad_sort_array;
3053 pool->ref_count = 1;
3054 pool->last_commit_jiffies = jiffies;
3055 pool->pool_md = pool_md;
3056 pool->md_dev = metadata_dev;
3057 pool->data_dev = data_dev;
3058 __pool_table_insert(pool);
3063 mempool_exit(&pool->mapping_pool);
3065 dm_deferred_set_destroy(pool->all_io_ds);
3067 dm_deferred_set_destroy(pool->shared_read_ds);
3069 destroy_workqueue(pool->wq);
3071 dm_kcopyd_client_destroy(pool->copier);
3073 dm_bio_prison_destroy(pool->prison);
3077 if (dm_pool_metadata_close(pmd))
3078 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3083 static void __pool_inc(struct pool *pool)
3085 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3089 static void __pool_dec(struct pool *pool)
3091 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3092 BUG_ON(!pool->ref_count);
3093 if (!--pool->ref_count)
3094 __pool_destroy(pool);
3097 static struct pool *__pool_find(struct mapped_device *pool_md,
3098 struct block_device *metadata_dev,
3099 struct block_device *data_dev,
3100 unsigned long block_size, int read_only,
3101 char **error, int *created)
3103 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3106 if (pool->pool_md != pool_md) {
3107 *error = "metadata device already in use by a pool";
3108 return ERR_PTR(-EBUSY);
3110 if (pool->data_dev != data_dev) {
3111 *error = "data device already in use by a pool";
3112 return ERR_PTR(-EBUSY);
3117 pool = __pool_table_lookup(pool_md);
3119 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3120 *error = "different pool cannot replace a pool";
3121 return ERR_PTR(-EINVAL);
3126 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3134 /*----------------------------------------------------------------
3135 * Pool target methods
3136 *--------------------------------------------------------------*/
3137 static void pool_dtr(struct dm_target *ti)
3139 struct pool_c *pt = ti->private;
3141 mutex_lock(&dm_thin_pool_table.mutex);
3143 unbind_control_target(pt->pool, ti);
3144 __pool_dec(pt->pool);
3145 dm_put_device(ti, pt->metadata_dev);
3146 dm_put_device(ti, pt->data_dev);
3147 bio_uninit(&pt->flush_bio);
3150 mutex_unlock(&dm_thin_pool_table.mutex);
3153 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3154 struct dm_target *ti)
3158 const char *arg_name;
3160 static const struct dm_arg _args[] = {
3161 {0, 4, "Invalid number of pool feature arguments"},
3165 * No feature arguments supplied.
3170 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3174 while (argc && !r) {
3175 arg_name = dm_shift_arg(as);
3178 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3179 pf->zero_new_blocks = false;
3181 else if (!strcasecmp(arg_name, "ignore_discard"))
3182 pf->discard_enabled = false;
3184 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3185 pf->discard_passdown = false;
3187 else if (!strcasecmp(arg_name, "read_only"))
3188 pf->mode = PM_READ_ONLY;
3190 else if (!strcasecmp(arg_name, "error_if_no_space"))
3191 pf->error_if_no_space = true;
3194 ti->error = "Unrecognised pool feature requested";
3203 static void metadata_low_callback(void *context)
3205 struct pool *pool = context;
3207 DMWARN("%s: reached low water mark for metadata device: sending event.",
3208 dm_device_name(pool->pool_md));
3210 dm_table_event(pool->ti->table);
3214 * We need to flush the data device **before** committing the metadata.
3216 * This ensures that the data blocks of any newly inserted mappings are
3217 * properly written to non-volatile storage and won't be lost in case of a
3220 * Failure to do so can result in data corruption in the case of internal or
3221 * external snapshots and in the case of newly provisioned blocks, when block
3222 * zeroing is enabled.
3224 static int metadata_pre_commit_callback(void *context)
3226 struct pool_c *pt = context;
3227 struct bio *flush_bio = &pt->flush_bio;
3229 bio_reset(flush_bio);
3230 bio_set_dev(flush_bio, pt->data_dev->bdev);
3231 flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3233 return submit_bio_wait(flush_bio);
3236 static sector_t get_dev_size(struct block_device *bdev)
3238 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3241 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3243 sector_t metadata_dev_size = get_dev_size(bdev);
3244 char buffer[BDEVNAME_SIZE];
3246 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3247 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3248 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3251 static sector_t get_metadata_dev_size(struct block_device *bdev)
3253 sector_t metadata_dev_size = get_dev_size(bdev);
3255 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3256 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3258 return metadata_dev_size;
3261 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3263 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3265 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3267 return metadata_dev_size;
3271 * When a metadata threshold is crossed a dm event is triggered, and
3272 * userland should respond by growing the metadata device. We could let
3273 * userland set the threshold, like we do with the data threshold, but I'm
3274 * not sure they know enough to do this well.
3276 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3279 * 4M is ample for all ops with the possible exception of thin
3280 * device deletion which is harmless if it fails (just retry the
3281 * delete after you've grown the device).
3283 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3284 return min((dm_block_t)1024ULL /* 4M */, quarter);
3288 * thin-pool <metadata dev> <data dev>
3289 * <data block size (sectors)>
3290 * <low water mark (blocks)>
3291 * [<#feature args> [<arg>]*]
3293 * Optional feature arguments are:
3294 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3295 * ignore_discard: disable discard
3296 * no_discard_passdown: don't pass discards down to the data device
3297 * read_only: Don't allow any changes to be made to the pool metadata.
3298 * error_if_no_space: error IOs, instead of queueing, if no space.
3300 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3302 int r, pool_created = 0;
3305 struct pool_features pf;
3306 struct dm_arg_set as;
3307 struct dm_dev *data_dev;
3308 unsigned long block_size;
3309 dm_block_t low_water_blocks;
3310 struct dm_dev *metadata_dev;
3311 fmode_t metadata_mode;
3314 * FIXME Remove validation from scope of lock.
3316 mutex_lock(&dm_thin_pool_table.mutex);
3319 ti->error = "Invalid argument count";
3327 /* make sure metadata and data are different devices */
3328 if (!strcmp(argv[0], argv[1])) {
3329 ti->error = "Error setting metadata or data device";
3335 * Set default pool features.
3337 pool_features_init(&pf);
3339 dm_consume_args(&as, 4);
3340 r = parse_pool_features(&as, &pf, ti);
3344 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3345 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3347 ti->error = "Error opening metadata block device";
3350 warn_if_metadata_device_too_big(metadata_dev->bdev);
3352 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3354 ti->error = "Error getting data device";
3358 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3359 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3360 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3361 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3362 ti->error = "Invalid block size";
3367 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3368 ti->error = "Invalid low water mark";
3373 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3379 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3380 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3387 * 'pool_created' reflects whether this is the first table load.
3388 * Top level discard support is not allowed to be changed after
3389 * initial load. This would require a pool reload to trigger thin
3392 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3393 ti->error = "Discard support cannot be disabled once enabled";
3395 goto out_flags_changed;
3400 pt->metadata_dev = metadata_dev;
3401 pt->data_dev = data_dev;
3402 pt->low_water_blocks = low_water_blocks;
3403 pt->adjusted_pf = pt->requested_pf = pf;
3404 bio_init(&pt->flush_bio, NULL, 0);
3405 ti->num_flush_bios = 1;
3408 * Only need to enable discards if the pool should pass
3409 * them down to the data device. The thin device's discard
3410 * processing will cause mappings to be removed from the btree.
3412 if (pf.discard_enabled && pf.discard_passdown) {
3413 ti->num_discard_bios = 1;
3416 * Setting 'discards_supported' circumvents the normal
3417 * stacking of discard limits (this keeps the pool and
3418 * thin devices' discard limits consistent).
3420 ti->discards_supported = true;
3424 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3425 calc_metadata_threshold(pt),
3426 metadata_low_callback,
3429 goto out_flags_changed;
3431 pt->callbacks.congested_fn = pool_is_congested;
3432 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3434 mutex_unlock(&dm_thin_pool_table.mutex);
3443 dm_put_device(ti, data_dev);
3445 dm_put_device(ti, metadata_dev);
3447 mutex_unlock(&dm_thin_pool_table.mutex);
3452 static int pool_map(struct dm_target *ti, struct bio *bio)
3455 struct pool_c *pt = ti->private;
3456 struct pool *pool = pt->pool;
3457 unsigned long flags;
3460 * As this is a singleton target, ti->begin is always zero.
3462 spin_lock_irqsave(&pool->lock, flags);
3463 bio_set_dev(bio, pt->data_dev->bdev);
3464 r = DM_MAPIO_REMAPPED;
3465 spin_unlock_irqrestore(&pool->lock, flags);
3470 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3473 struct pool_c *pt = ti->private;
3474 struct pool *pool = pt->pool;
3475 sector_t data_size = ti->len;
3476 dm_block_t sb_data_size;
3478 *need_commit = false;
3480 (void) sector_div(data_size, pool->sectors_per_block);
3482 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3484 DMERR("%s: failed to retrieve data device size",
3485 dm_device_name(pool->pool_md));
3489 if (data_size < sb_data_size) {
3490 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3491 dm_device_name(pool->pool_md),
3492 (unsigned long long)data_size, sb_data_size);
3495 } else if (data_size > sb_data_size) {
3496 if (dm_pool_metadata_needs_check(pool->pmd)) {
3497 DMERR("%s: unable to grow the data device until repaired.",
3498 dm_device_name(pool->pool_md));
3503 DMINFO("%s: growing the data device from %llu to %llu blocks",
3504 dm_device_name(pool->pool_md),
3505 sb_data_size, (unsigned long long)data_size);
3506 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3508 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3512 *need_commit = true;
3518 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3521 struct pool_c *pt = ti->private;
3522 struct pool *pool = pt->pool;
3523 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3525 *need_commit = false;
3527 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3529 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3531 DMERR("%s: failed to retrieve metadata device size",
3532 dm_device_name(pool->pool_md));
3536 if (metadata_dev_size < sb_metadata_dev_size) {
3537 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3538 dm_device_name(pool->pool_md),
3539 metadata_dev_size, sb_metadata_dev_size);
3542 } else if (metadata_dev_size > sb_metadata_dev_size) {
3543 if (dm_pool_metadata_needs_check(pool->pmd)) {
3544 DMERR("%s: unable to grow the metadata device until repaired.",
3545 dm_device_name(pool->pool_md));
3549 warn_if_metadata_device_too_big(pool->md_dev);
3550 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3551 dm_device_name(pool->pool_md),
3552 sb_metadata_dev_size, metadata_dev_size);
3554 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3555 set_pool_mode(pool, PM_WRITE);
3557 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3559 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3563 *need_commit = true;
3570 * Retrieves the number of blocks of the data device from
3571 * the superblock and compares it to the actual device size,
3572 * thus resizing the data device in case it has grown.
3574 * This both copes with opening preallocated data devices in the ctr
3575 * being followed by a resume
3577 * calling the resume method individually after userspace has
3578 * grown the data device in reaction to a table event.
3580 static int pool_preresume(struct dm_target *ti)
3583 bool need_commit1, need_commit2;
3584 struct pool_c *pt = ti->private;
3585 struct pool *pool = pt->pool;
3588 * Take control of the pool object.
3590 r = bind_control_target(pool, ti);
3594 dm_pool_register_pre_commit_callback(pool->pmd,
3595 metadata_pre_commit_callback, pt);
3597 r = maybe_resize_data_dev(ti, &need_commit1);
3601 r = maybe_resize_metadata_dev(ti, &need_commit2);
3605 if (need_commit1 || need_commit2)
3606 (void) commit(pool);
3611 static void pool_suspend_active_thins(struct pool *pool)
3615 /* Suspend all active thin devices */
3616 tc = get_first_thin(pool);
3618 dm_internal_suspend_noflush(tc->thin_md);
3619 tc = get_next_thin(pool, tc);
3623 static void pool_resume_active_thins(struct pool *pool)
3627 /* Resume all active thin devices */
3628 tc = get_first_thin(pool);
3630 dm_internal_resume(tc->thin_md);
3631 tc = get_next_thin(pool, tc);
3635 static void pool_resume(struct dm_target *ti)
3637 struct pool_c *pt = ti->private;
3638 struct pool *pool = pt->pool;
3639 unsigned long flags;
3642 * Must requeue active_thins' bios and then resume
3643 * active_thins _before_ clearing 'suspend' flag.
3646 pool_resume_active_thins(pool);
3648 spin_lock_irqsave(&pool->lock, flags);
3649 pool->low_water_triggered = false;
3650 pool->suspended = false;
3651 spin_unlock_irqrestore(&pool->lock, flags);
3653 do_waker(&pool->waker.work);
3656 static void pool_presuspend(struct dm_target *ti)
3658 struct pool_c *pt = ti->private;
3659 struct pool *pool = pt->pool;
3660 unsigned long flags;
3662 spin_lock_irqsave(&pool->lock, flags);
3663 pool->suspended = true;
3664 spin_unlock_irqrestore(&pool->lock, flags);
3666 pool_suspend_active_thins(pool);
3669 static void pool_presuspend_undo(struct dm_target *ti)
3671 struct pool_c *pt = ti->private;
3672 struct pool *pool = pt->pool;
3673 unsigned long flags;
3675 pool_resume_active_thins(pool);
3677 spin_lock_irqsave(&pool->lock, flags);
3678 pool->suspended = false;
3679 spin_unlock_irqrestore(&pool->lock, flags);
3682 static void pool_postsuspend(struct dm_target *ti)
3684 struct pool_c *pt = ti->private;
3685 struct pool *pool = pt->pool;
3687 cancel_delayed_work_sync(&pool->waker);
3688 cancel_delayed_work_sync(&pool->no_space_timeout);
3689 flush_workqueue(pool->wq);
3690 (void) commit(pool);
3693 static int check_arg_count(unsigned argc, unsigned args_required)
3695 if (argc != args_required) {
3696 DMWARN("Message received with %u arguments instead of %u.",
3697 argc, args_required);
3704 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3706 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3707 *dev_id <= MAX_DEV_ID)
3711 DMWARN("Message received with invalid device id: %s", arg);
3716 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3721 r = check_arg_count(argc, 2);
3725 r = read_dev_id(argv[1], &dev_id, 1);
3729 r = dm_pool_create_thin(pool->pmd, dev_id);
3731 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3739 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3742 dm_thin_id origin_dev_id;
3745 r = check_arg_count(argc, 3);
3749 r = read_dev_id(argv[1], &dev_id, 1);
3753 r = read_dev_id(argv[2], &origin_dev_id, 1);
3757 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3759 DMWARN("Creation of new snapshot %s of device %s failed.",
3767 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3772 r = check_arg_count(argc, 2);
3776 r = read_dev_id(argv[1], &dev_id, 1);
3780 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3782 DMWARN("Deletion of thin device %s failed.", argv[1]);
3787 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3789 dm_thin_id old_id, new_id;
3792 r = check_arg_count(argc, 3);
3796 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3797 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3801 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3802 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3806 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3808 DMWARN("Failed to change transaction id from %s to %s.",
3816 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3820 r = check_arg_count(argc, 1);
3824 (void) commit(pool);
3826 r = dm_pool_reserve_metadata_snap(pool->pmd);
3828 DMWARN("reserve_metadata_snap message failed.");
3833 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3837 r = check_arg_count(argc, 1);
3841 r = dm_pool_release_metadata_snap(pool->pmd);
3843 DMWARN("release_metadata_snap message failed.");
3849 * Messages supported:
3850 * create_thin <dev_id>
3851 * create_snap <dev_id> <origin_id>
3853 * set_transaction_id <current_trans_id> <new_trans_id>
3854 * reserve_metadata_snap
3855 * release_metadata_snap
3857 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3858 char *result, unsigned maxlen)
3861 struct pool_c *pt = ti->private;
3862 struct pool *pool = pt->pool;
3864 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3865 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3866 dm_device_name(pool->pool_md));
3870 if (!strcasecmp(argv[0], "create_thin"))
3871 r = process_create_thin_mesg(argc, argv, pool);
3873 else if (!strcasecmp(argv[0], "create_snap"))
3874 r = process_create_snap_mesg(argc, argv, pool);
3876 else if (!strcasecmp(argv[0], "delete"))
3877 r = process_delete_mesg(argc, argv, pool);
3879 else if (!strcasecmp(argv[0], "set_transaction_id"))
3880 r = process_set_transaction_id_mesg(argc, argv, pool);
3882 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3883 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3885 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3886 r = process_release_metadata_snap_mesg(argc, argv, pool);
3889 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3892 (void) commit(pool);
3897 static void emit_flags(struct pool_features *pf, char *result,
3898 unsigned sz, unsigned maxlen)
3900 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3901 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3902 pf->error_if_no_space;
3903 DMEMIT("%u ", count);
3905 if (!pf->zero_new_blocks)
3906 DMEMIT("skip_block_zeroing ");
3908 if (!pf->discard_enabled)
3909 DMEMIT("ignore_discard ");
3911 if (!pf->discard_passdown)
3912 DMEMIT("no_discard_passdown ");
3914 if (pf->mode == PM_READ_ONLY)
3915 DMEMIT("read_only ");
3917 if (pf->error_if_no_space)
3918 DMEMIT("error_if_no_space ");
3923 * <transaction id> <used metadata sectors>/<total metadata sectors>
3924 * <used data sectors>/<total data sectors> <held metadata root>
3925 * <pool mode> <discard config> <no space config> <needs_check>
3927 static void pool_status(struct dm_target *ti, status_type_t type,
3928 unsigned status_flags, char *result, unsigned maxlen)
3932 uint64_t transaction_id;
3933 dm_block_t nr_free_blocks_data;
3934 dm_block_t nr_free_blocks_metadata;
3935 dm_block_t nr_blocks_data;
3936 dm_block_t nr_blocks_metadata;
3937 dm_block_t held_root;
3938 enum pool_mode mode;
3939 char buf[BDEVNAME_SIZE];
3940 char buf2[BDEVNAME_SIZE];
3941 struct pool_c *pt = ti->private;
3942 struct pool *pool = pt->pool;
3945 case STATUSTYPE_INFO:
3946 if (get_pool_mode(pool) == PM_FAIL) {
3951 /* Commit to ensure statistics aren't out-of-date */
3952 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3953 (void) commit(pool);
3955 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3957 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3958 dm_device_name(pool->pool_md), r);
3962 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3964 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3965 dm_device_name(pool->pool_md), r);
3969 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3971 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3972 dm_device_name(pool->pool_md), r);
3976 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3978 DMERR("%s: dm_pool_get_free_block_count returned %d",
3979 dm_device_name(pool->pool_md), r);
3983 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3985 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3986 dm_device_name(pool->pool_md), r);
3990 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3992 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3993 dm_device_name(pool->pool_md), r);
3997 DMEMIT("%llu %llu/%llu %llu/%llu ",
3998 (unsigned long long)transaction_id,
3999 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
4000 (unsigned long long)nr_blocks_metadata,
4001 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
4002 (unsigned long long)nr_blocks_data);
4005 DMEMIT("%llu ", held_root);
4009 mode = get_pool_mode(pool);
4010 if (mode == PM_OUT_OF_DATA_SPACE)
4011 DMEMIT("out_of_data_space ");
4012 else if (is_read_only_pool_mode(mode))
4017 if (!pool->pf.discard_enabled)
4018 DMEMIT("ignore_discard ");
4019 else if (pool->pf.discard_passdown)
4020 DMEMIT("discard_passdown ");
4022 DMEMIT("no_discard_passdown ");
4024 if (pool->pf.error_if_no_space)
4025 DMEMIT("error_if_no_space ");
4027 DMEMIT("queue_if_no_space ");
4029 if (dm_pool_metadata_needs_check(pool->pmd))
4030 DMEMIT("needs_check ");
4034 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4038 case STATUSTYPE_TABLE:
4039 DMEMIT("%s %s %lu %llu ",
4040 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4041 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4042 (unsigned long)pool->sectors_per_block,
4043 (unsigned long long)pt->low_water_blocks);
4044 emit_flags(&pt->requested_pf, result, sz, maxlen);
4053 static int pool_iterate_devices(struct dm_target *ti,
4054 iterate_devices_callout_fn fn, void *data)
4056 struct pool_c *pt = ti->private;
4058 return fn(ti, pt->data_dev, 0, ti->len, data);
4061 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4063 struct pool_c *pt = ti->private;
4064 struct pool *pool = pt->pool;
4065 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4068 * If max_sectors is smaller than pool->sectors_per_block adjust it
4069 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4070 * This is especially beneficial when the pool's data device is a RAID
4071 * device that has a full stripe width that matches pool->sectors_per_block
4072 * -- because even though partial RAID stripe-sized IOs will be issued to a
4073 * single RAID stripe; when aggregated they will end on a full RAID stripe
4074 * boundary.. which avoids additional partial RAID stripe writes cascading
4076 if (limits->max_sectors < pool->sectors_per_block) {
4077 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4078 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4079 limits->max_sectors--;
4080 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4085 * If the system-determined stacked limits are compatible with the
4086 * pool's blocksize (io_opt is a factor) do not override them.
4088 if (io_opt_sectors < pool->sectors_per_block ||
4089 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4090 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4091 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4093 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4094 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4098 * pt->adjusted_pf is a staging area for the actual features to use.
4099 * They get transferred to the live pool in bind_control_target()
4100 * called from pool_preresume().
4102 if (!pt->adjusted_pf.discard_enabled) {
4104 * Must explicitly disallow stacking discard limits otherwise the
4105 * block layer will stack them if pool's data device has support.
4106 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4107 * user to see that, so make sure to set all discard limits to 0.
4109 limits->discard_granularity = 0;
4113 disable_passdown_if_not_supported(pt);
4116 * The pool uses the same discard limits as the underlying data
4117 * device. DM core has already set this up.
4121 static struct target_type pool_target = {
4122 .name = "thin-pool",
4123 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4124 DM_TARGET_IMMUTABLE,
4125 .version = {1, 22, 0},
4126 .module = THIS_MODULE,
4130 .presuspend = pool_presuspend,
4131 .presuspend_undo = pool_presuspend_undo,
4132 .postsuspend = pool_postsuspend,
4133 .preresume = pool_preresume,
4134 .resume = pool_resume,
4135 .message = pool_message,
4136 .status = pool_status,
4137 .iterate_devices = pool_iterate_devices,
4138 .io_hints = pool_io_hints,
4141 /*----------------------------------------------------------------
4142 * Thin target methods
4143 *--------------------------------------------------------------*/
4144 static void thin_get(struct thin_c *tc)
4146 refcount_inc(&tc->refcount);
4149 static void thin_put(struct thin_c *tc)
4151 if (refcount_dec_and_test(&tc->refcount))
4152 complete(&tc->can_destroy);
4155 static void thin_dtr(struct dm_target *ti)
4157 struct thin_c *tc = ti->private;
4158 unsigned long flags;
4160 spin_lock_irqsave(&tc->pool->lock, flags);
4161 list_del_rcu(&tc->list);
4162 spin_unlock_irqrestore(&tc->pool->lock, flags);
4166 wait_for_completion(&tc->can_destroy);
4168 mutex_lock(&dm_thin_pool_table.mutex);
4170 __pool_dec(tc->pool);
4171 dm_pool_close_thin_device(tc->td);
4172 dm_put_device(ti, tc->pool_dev);
4174 dm_put_device(ti, tc->origin_dev);
4177 mutex_unlock(&dm_thin_pool_table.mutex);
4181 * Thin target parameters:
4183 * <pool_dev> <dev_id> [origin_dev]
4185 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4186 * dev_id: the internal device identifier
4187 * origin_dev: a device external to the pool that should act as the origin
4189 * If the pool device has discards disabled, they get disabled for the thin
4192 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4196 struct dm_dev *pool_dev, *origin_dev;
4197 struct mapped_device *pool_md;
4198 unsigned long flags;
4200 mutex_lock(&dm_thin_pool_table.mutex);
4202 if (argc != 2 && argc != 3) {
4203 ti->error = "Invalid argument count";
4208 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4210 ti->error = "Out of memory";
4214 tc->thin_md = dm_table_get_md(ti->table);
4215 spin_lock_init(&tc->lock);
4216 INIT_LIST_HEAD(&tc->deferred_cells);
4217 bio_list_init(&tc->deferred_bio_list);
4218 bio_list_init(&tc->retry_on_resume_list);
4219 tc->sort_bio_list = RB_ROOT;
4222 if (!strcmp(argv[0], argv[2])) {
4223 ti->error = "Error setting origin device";
4225 goto bad_origin_dev;
4228 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4230 ti->error = "Error opening origin device";
4231 goto bad_origin_dev;
4233 tc->origin_dev = origin_dev;
4236 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4238 ti->error = "Error opening pool device";
4241 tc->pool_dev = pool_dev;
4243 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4244 ti->error = "Invalid device id";
4249 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4251 ti->error = "Couldn't get pool mapped device";
4256 tc->pool = __pool_table_lookup(pool_md);
4258 ti->error = "Couldn't find pool object";
4260 goto bad_pool_lookup;
4262 __pool_inc(tc->pool);
4264 if (get_pool_mode(tc->pool) == PM_FAIL) {
4265 ti->error = "Couldn't open thin device, Pool is in fail mode";
4270 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4272 ti->error = "Couldn't open thin internal device";
4276 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4280 ti->num_flush_bios = 1;
4281 ti->flush_supported = true;
4282 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4284 /* In case the pool supports discards, pass them on. */
4285 if (tc->pool->pf.discard_enabled) {
4286 ti->discards_supported = true;
4287 ti->num_discard_bios = 1;
4290 mutex_unlock(&dm_thin_pool_table.mutex);
4292 spin_lock_irqsave(&tc->pool->lock, flags);
4293 if (tc->pool->suspended) {
4294 spin_unlock_irqrestore(&tc->pool->lock, flags);
4295 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4296 ti->error = "Unable to activate thin device while pool is suspended";
4300 refcount_set(&tc->refcount, 1);
4301 init_completion(&tc->can_destroy);
4302 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4303 spin_unlock_irqrestore(&tc->pool->lock, flags);
4305 * This synchronize_rcu() call is needed here otherwise we risk a
4306 * wake_worker() call finding no bios to process (because the newly
4307 * added tc isn't yet visible). So this reduces latency since we
4308 * aren't then dependent on the periodic commit to wake_worker().
4317 dm_pool_close_thin_device(tc->td);
4319 __pool_dec(tc->pool);
4323 dm_put_device(ti, tc->pool_dev);
4326 dm_put_device(ti, tc->origin_dev);
4330 mutex_unlock(&dm_thin_pool_table.mutex);
4335 static int thin_map(struct dm_target *ti, struct bio *bio)
4337 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4339 return thin_bio_map(ti, bio);
4342 static int thin_endio(struct dm_target *ti, struct bio *bio,
4345 unsigned long flags;
4346 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4347 struct list_head work;
4348 struct dm_thin_new_mapping *m, *tmp;
4349 struct pool *pool = h->tc->pool;
4351 if (h->shared_read_entry) {
4352 INIT_LIST_HEAD(&work);
4353 dm_deferred_entry_dec(h->shared_read_entry, &work);
4355 spin_lock_irqsave(&pool->lock, flags);
4356 list_for_each_entry_safe(m, tmp, &work, list) {
4358 __complete_mapping_preparation(m);
4360 spin_unlock_irqrestore(&pool->lock, flags);
4363 if (h->all_io_entry) {
4364 INIT_LIST_HEAD(&work);
4365 dm_deferred_entry_dec(h->all_io_entry, &work);
4366 if (!list_empty(&work)) {
4367 spin_lock_irqsave(&pool->lock, flags);
4368 list_for_each_entry_safe(m, tmp, &work, list)
4369 list_add_tail(&m->list, &pool->prepared_discards);
4370 spin_unlock_irqrestore(&pool->lock, flags);
4376 cell_defer_no_holder(h->tc, h->cell);
4378 return DM_ENDIO_DONE;
4381 static void thin_presuspend(struct dm_target *ti)
4383 struct thin_c *tc = ti->private;
4385 if (dm_noflush_suspending(ti))
4386 noflush_work(tc, do_noflush_start);
4389 static void thin_postsuspend(struct dm_target *ti)
4391 struct thin_c *tc = ti->private;
4394 * The dm_noflush_suspending flag has been cleared by now, so
4395 * unfortunately we must always run this.
4397 noflush_work(tc, do_noflush_stop);
4400 static int thin_preresume(struct dm_target *ti)
4402 struct thin_c *tc = ti->private;
4405 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4411 * <nr mapped sectors> <highest mapped sector>
4413 static void thin_status(struct dm_target *ti, status_type_t type,
4414 unsigned status_flags, char *result, unsigned maxlen)
4418 dm_block_t mapped, highest;
4419 char buf[BDEVNAME_SIZE];
4420 struct thin_c *tc = ti->private;
4422 if (get_pool_mode(tc->pool) == PM_FAIL) {
4431 case STATUSTYPE_INFO:
4432 r = dm_thin_get_mapped_count(tc->td, &mapped);
4434 DMERR("dm_thin_get_mapped_count returned %d", r);
4438 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4440 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4444 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4446 DMEMIT("%llu", ((highest + 1) *
4447 tc->pool->sectors_per_block) - 1);
4452 case STATUSTYPE_TABLE:
4454 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4455 (unsigned long) tc->dev_id);
4457 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4468 static int thin_iterate_devices(struct dm_target *ti,
4469 iterate_devices_callout_fn fn, void *data)
4472 struct thin_c *tc = ti->private;
4473 struct pool *pool = tc->pool;
4476 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4477 * we follow a more convoluted path through to the pool's target.
4480 return 0; /* nothing is bound */
4482 blocks = pool->ti->len;
4483 (void) sector_div(blocks, pool->sectors_per_block);
4485 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4490 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4492 struct thin_c *tc = ti->private;
4493 struct pool *pool = tc->pool;
4495 if (!pool->pf.discard_enabled)
4498 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4499 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4502 static struct target_type thin_target = {
4504 .version = {1, 22, 0},
4505 .module = THIS_MODULE,
4509 .end_io = thin_endio,
4510 .preresume = thin_preresume,
4511 .presuspend = thin_presuspend,
4512 .postsuspend = thin_postsuspend,
4513 .status = thin_status,
4514 .iterate_devices = thin_iterate_devices,
4515 .io_hints = thin_io_hints,
4518 /*----------------------------------------------------------------*/
4520 static int __init dm_thin_init(void)
4526 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4527 if (!_new_mapping_cache)
4530 r = dm_register_target(&thin_target);
4532 goto bad_new_mapping_cache;
4534 r = dm_register_target(&pool_target);
4536 goto bad_thin_target;
4541 dm_unregister_target(&thin_target);
4542 bad_new_mapping_cache:
4543 kmem_cache_destroy(_new_mapping_cache);
4548 static void dm_thin_exit(void)
4550 dm_unregister_target(&thin_target);
4551 dm_unregister_target(&pool_target);
4553 kmem_cache_destroy(_new_mapping_cache);
4558 module_init(dm_thin_init);
4559 module_exit(dm_thin_exit);
4561 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4562 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4564 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4565 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4566 MODULE_LICENSE("GPL");