2 * Copyright (C) 2011-2012 Red Hat, Inc.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
20 * - A superblock in block zero, taking up fewer than 512 bytes for
23 * - A space map managing the metadata blocks.
25 * - A space map managing the data blocks.
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
42 * Space maps have 2 btrees:
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
54 * 3 - ref count is higher than 2
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
75 #define DM_MSG_PREFIX "thin metadata"
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
87 #define THIN_MAX_CONCURRENT_LOCKS 5
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
93 * Little endian on-disk superblock and device details.
95 struct thin_disk_superblock {
96 __le32 csum; /* Checksum of superblock except for this field. */
98 __le64 blocknr; /* This block number, dm_block_t. */
108 * Root held by userspace transactions.
112 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
116 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
118 __le64 data_mapping_root;
121 * Device detail root mapping dev_id -> device_details
123 __le64 device_details_root;
125 __le32 data_block_size; /* In 512-byte sectors. */
127 __le32 metadata_block_size; /* In 512-byte sectors. */
128 __le64 metadata_nr_blocks;
131 __le32 compat_ro_flags;
132 __le32 incompat_flags;
135 struct disk_device_details {
136 __le64 mapped_blocks;
137 __le64 transaction_id; /* When created. */
138 __le32 creation_time;
139 __le32 snapshotted_time;
142 struct dm_pool_metadata {
143 struct hlist_node hash;
145 struct block_device *bdev;
146 struct dm_block_manager *bm;
147 struct dm_space_map *metadata_sm;
148 struct dm_space_map *data_sm;
149 struct dm_transaction_manager *tm;
150 struct dm_transaction_manager *nb_tm;
154 * First level holds thin_dev_t.
155 * Second level holds mappings.
157 struct dm_btree_info info;
160 * Non-blocking version of the above.
162 struct dm_btree_info nb_info;
165 * Just the top level for deleting whole devices.
167 struct dm_btree_info tl_info;
170 * Just the bottom level for creating new devices.
172 struct dm_btree_info bl_info;
175 * Describes the device details btree.
177 struct dm_btree_info details_info;
179 struct rw_semaphore root_lock;
182 dm_block_t details_root;
183 struct list_head thin_devices;
186 sector_t data_block_size;
190 * Set if a transaction has to be aborted but the attempt to roll back
191 * to the previous (good) transaction failed. The only pool metadata
192 * operation possible in this state is the closing of the device.
197 struct dm_thin_device {
198 struct list_head list;
199 struct dm_pool_metadata *pmd;
204 bool aborted_with_changes:1;
205 uint64_t mapped_blocks;
206 uint64_t transaction_id;
207 uint32_t creation_time;
208 uint32_t snapshotted_time;
211 /*----------------------------------------------------------------
212 * superblock validator
213 *--------------------------------------------------------------*/
215 #define SUPERBLOCK_CSUM_XOR 160774
217 static void sb_prepare_for_write(struct dm_block_validator *v,
221 struct thin_disk_superblock *disk_super = dm_block_data(b);
223 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
224 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
225 block_size - sizeof(__le32),
226 SUPERBLOCK_CSUM_XOR));
229 static int sb_check(struct dm_block_validator *v,
233 struct thin_disk_superblock *disk_super = dm_block_data(b);
236 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
237 DMERR("sb_check failed: blocknr %llu: "
238 "wanted %llu", le64_to_cpu(disk_super->blocknr),
239 (unsigned long long)dm_block_location(b));
243 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
244 DMERR("sb_check failed: magic %llu: "
245 "wanted %llu", le64_to_cpu(disk_super->magic),
246 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
250 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
251 block_size - sizeof(__le32),
252 SUPERBLOCK_CSUM_XOR));
253 if (csum_le != disk_super->csum) {
254 DMERR("sb_check failed: csum %u: wanted %u",
255 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
262 static struct dm_block_validator sb_validator = {
263 .name = "superblock",
264 .prepare_for_write = sb_prepare_for_write,
268 /*----------------------------------------------------------------
269 * Methods for the btree value types
270 *--------------------------------------------------------------*/
272 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
274 return (b << 24) | t;
277 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
280 *t = v & ((1 << 24) - 1);
283 static void data_block_inc(void *context, const void *value_le)
285 struct dm_space_map *sm = context;
290 memcpy(&v_le, value_le, sizeof(v_le));
291 unpack_block_time(le64_to_cpu(v_le), &b, &t);
292 dm_sm_inc_block(sm, b);
295 static void data_block_dec(void *context, const void *value_le)
297 struct dm_space_map *sm = context;
302 memcpy(&v_le, value_le, sizeof(v_le));
303 unpack_block_time(le64_to_cpu(v_le), &b, &t);
304 dm_sm_dec_block(sm, b);
307 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
313 memcpy(&v1_le, value1_le, sizeof(v1_le));
314 memcpy(&v2_le, value2_le, sizeof(v2_le));
315 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
316 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
321 static void subtree_inc(void *context, const void *value)
323 struct dm_btree_info *info = context;
327 memcpy(&root_le, value, sizeof(root_le));
328 root = le64_to_cpu(root_le);
329 dm_tm_inc(info->tm, root);
332 static void subtree_dec(void *context, const void *value)
334 struct dm_btree_info *info = context;
338 memcpy(&root_le, value, sizeof(root_le));
339 root = le64_to_cpu(root_le);
340 if (dm_btree_del(info, root))
341 DMERR("btree delete failed\n");
344 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
347 memcpy(&v1_le, value1_le, sizeof(v1_le));
348 memcpy(&v2_le, value2_le, sizeof(v2_le));
350 return v1_le == v2_le;
353 /*----------------------------------------------------------------*/
355 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
356 struct dm_block **sblock)
358 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
359 &sb_validator, sblock);
362 static int superblock_lock(struct dm_pool_metadata *pmd,
363 struct dm_block **sblock)
365 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
366 &sb_validator, sblock);
369 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
374 __le64 *data_le, zero = cpu_to_le64(0);
375 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
378 * We can't use a validator here - it may be all zeroes.
380 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
384 data_le = dm_block_data(b);
386 for (i = 0; i < block_size; i++) {
387 if (data_le[i] != zero) {
393 return dm_bm_unlock(b);
396 static void __setup_btree_details(struct dm_pool_metadata *pmd)
398 pmd->info.tm = pmd->tm;
399 pmd->info.levels = 2;
400 pmd->info.value_type.context = pmd->data_sm;
401 pmd->info.value_type.size = sizeof(__le64);
402 pmd->info.value_type.inc = data_block_inc;
403 pmd->info.value_type.dec = data_block_dec;
404 pmd->info.value_type.equal = data_block_equal;
406 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
407 pmd->nb_info.tm = pmd->nb_tm;
409 pmd->tl_info.tm = pmd->tm;
410 pmd->tl_info.levels = 1;
411 pmd->tl_info.value_type.context = &pmd->bl_info;
412 pmd->tl_info.value_type.size = sizeof(__le64);
413 pmd->tl_info.value_type.inc = subtree_inc;
414 pmd->tl_info.value_type.dec = subtree_dec;
415 pmd->tl_info.value_type.equal = subtree_equal;
417 pmd->bl_info.tm = pmd->tm;
418 pmd->bl_info.levels = 1;
419 pmd->bl_info.value_type.context = pmd->data_sm;
420 pmd->bl_info.value_type.size = sizeof(__le64);
421 pmd->bl_info.value_type.inc = data_block_inc;
422 pmd->bl_info.value_type.dec = data_block_dec;
423 pmd->bl_info.value_type.equal = data_block_equal;
425 pmd->details_info.tm = pmd->tm;
426 pmd->details_info.levels = 1;
427 pmd->details_info.value_type.context = NULL;
428 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
429 pmd->details_info.value_type.inc = NULL;
430 pmd->details_info.value_type.dec = NULL;
431 pmd->details_info.value_type.equal = NULL;
434 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
437 struct dm_block *sblock;
438 size_t metadata_len, data_len;
439 struct thin_disk_superblock *disk_super;
440 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
442 if (bdev_size > THIN_METADATA_MAX_SECTORS)
443 bdev_size = THIN_METADATA_MAX_SECTORS;
445 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
449 r = dm_sm_root_size(pmd->data_sm, &data_len);
453 r = dm_sm_commit(pmd->data_sm);
457 r = dm_tm_pre_commit(pmd->tm);
461 r = superblock_lock_zero(pmd, &sblock);
465 disk_super = dm_block_data(sblock);
466 disk_super->flags = 0;
467 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
468 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
469 disk_super->version = cpu_to_le32(THIN_VERSION);
470 disk_super->time = 0;
471 disk_super->trans_id = 0;
472 disk_super->held_root = 0;
474 r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
479 r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
484 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
485 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
486 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
487 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
488 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
490 return dm_tm_commit(pmd->tm, sblock);
493 dm_bm_unlock(sblock);
497 static int __format_metadata(struct dm_pool_metadata *pmd)
501 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
502 &pmd->tm, &pmd->metadata_sm);
504 DMERR("tm_create_with_sm failed");
508 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
509 if (IS_ERR(pmd->data_sm)) {
510 DMERR("sm_disk_create failed");
511 r = PTR_ERR(pmd->data_sm);
515 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
517 DMERR("could not create non-blocking clone tm");
519 goto bad_cleanup_data_sm;
522 __setup_btree_details(pmd);
524 r = dm_btree_empty(&pmd->info, &pmd->root);
526 goto bad_cleanup_nb_tm;
528 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
530 DMERR("couldn't create devices root");
531 goto bad_cleanup_nb_tm;
534 r = __write_initial_superblock(pmd);
536 goto bad_cleanup_nb_tm;
541 dm_tm_destroy(pmd->nb_tm);
543 dm_sm_destroy(pmd->data_sm);
545 dm_tm_destroy(pmd->tm);
546 dm_sm_destroy(pmd->metadata_sm);
551 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
552 struct dm_pool_metadata *pmd)
556 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
558 DMERR("could not access metadata due to unsupported optional features (%lx).",
559 (unsigned long)features);
564 * Check for read-only metadata to skip the following RDWR checks.
566 if (get_disk_ro(pmd->bdev->bd_disk))
569 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
571 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
572 (unsigned long)features);
579 static int __open_metadata(struct dm_pool_metadata *pmd)
582 struct dm_block *sblock;
583 struct thin_disk_superblock *disk_super;
585 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
586 &sb_validator, &sblock);
588 DMERR("couldn't read superblock");
592 disk_super = dm_block_data(sblock);
594 r = __check_incompat_features(disk_super, pmd);
596 goto bad_unlock_sblock;
598 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
599 disk_super->metadata_space_map_root,
600 sizeof(disk_super->metadata_space_map_root),
601 &pmd->tm, &pmd->metadata_sm);
603 DMERR("tm_open_with_sm failed");
604 goto bad_unlock_sblock;
607 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
608 sizeof(disk_super->data_space_map_root));
609 if (IS_ERR(pmd->data_sm)) {
610 DMERR("sm_disk_open failed");
611 r = PTR_ERR(pmd->data_sm);
615 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
617 DMERR("could not create non-blocking clone tm");
619 goto bad_cleanup_data_sm;
622 __setup_btree_details(pmd);
623 return dm_bm_unlock(sblock);
626 dm_sm_destroy(pmd->data_sm);
628 dm_tm_destroy(pmd->tm);
629 dm_sm_destroy(pmd->metadata_sm);
631 dm_bm_unlock(sblock);
636 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
640 r = __superblock_all_zeroes(pmd->bm, &unformatted);
645 return format_device ? __format_metadata(pmd) : -EPERM;
647 return __open_metadata(pmd);
650 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
654 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
655 THIN_METADATA_CACHE_SIZE,
656 THIN_MAX_CONCURRENT_LOCKS);
657 if (IS_ERR(pmd->bm)) {
658 DMERR("could not create block manager");
659 return PTR_ERR(pmd->bm);
662 r = __open_or_format_metadata(pmd, format_device);
664 dm_block_manager_destroy(pmd->bm);
669 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
671 dm_sm_destroy(pmd->data_sm);
672 dm_sm_destroy(pmd->metadata_sm);
673 dm_tm_destroy(pmd->nb_tm);
674 dm_tm_destroy(pmd->tm);
675 dm_block_manager_destroy(pmd->bm);
678 static int __begin_transaction(struct dm_pool_metadata *pmd)
681 struct thin_disk_superblock *disk_super;
682 struct dm_block *sblock;
685 * We re-read the superblock every time. Shouldn't need to do this
688 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
689 &sb_validator, &sblock);
693 disk_super = dm_block_data(sblock);
694 pmd->time = le32_to_cpu(disk_super->time);
695 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
696 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
697 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
698 pmd->flags = le32_to_cpu(disk_super->flags);
699 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
701 dm_bm_unlock(sblock);
705 static int __write_changed_details(struct dm_pool_metadata *pmd)
708 struct dm_thin_device *td, *tmp;
709 struct disk_device_details details;
712 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
718 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
719 details.transaction_id = cpu_to_le64(td->transaction_id);
720 details.creation_time = cpu_to_le32(td->creation_time);
721 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
722 __dm_bless_for_disk(&details);
724 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
725 &key, &details, &pmd->details_root);
740 static int __commit_transaction(struct dm_pool_metadata *pmd)
743 size_t metadata_len, data_len;
744 struct thin_disk_superblock *disk_super;
745 struct dm_block *sblock;
748 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
750 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
752 r = __write_changed_details(pmd);
756 r = dm_sm_commit(pmd->data_sm);
760 r = dm_tm_pre_commit(pmd->tm);
764 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
768 r = dm_sm_root_size(pmd->data_sm, &data_len);
772 r = superblock_lock(pmd, &sblock);
776 disk_super = dm_block_data(sblock);
777 disk_super->time = cpu_to_le32(pmd->time);
778 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
779 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
780 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
781 disk_super->flags = cpu_to_le32(pmd->flags);
783 r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
788 r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
793 return dm_tm_commit(pmd->tm, sblock);
796 dm_bm_unlock(sblock);
800 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
801 sector_t data_block_size,
805 struct dm_pool_metadata *pmd;
807 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
809 DMERR("could not allocate metadata struct");
810 return ERR_PTR(-ENOMEM);
813 init_rwsem(&pmd->root_lock);
815 INIT_LIST_HEAD(&pmd->thin_devices);
816 pmd->read_only = false;
817 pmd->fail_io = false;
819 pmd->data_block_size = data_block_size;
821 r = __create_persistent_data_objects(pmd, format_device);
827 r = __begin_transaction(pmd);
829 if (dm_pool_metadata_close(pmd) < 0)
830 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
837 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
840 unsigned open_devices = 0;
841 struct dm_thin_device *td, *tmp;
843 down_read(&pmd->root_lock);
844 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
852 up_read(&pmd->root_lock);
855 DMERR("attempt to close pmd when %u device(s) are still open",
860 if (!pmd->read_only && !pmd->fail_io) {
861 r = __commit_transaction(pmd);
863 DMWARN("%s: __commit_transaction() failed, error = %d",
868 __destroy_persistent_data_objects(pmd);
875 * __open_device: Returns @td corresponding to device with id @dev,
876 * creating it if @create is set and incrementing @td->open_count.
877 * On failure, @td is undefined.
879 static int __open_device(struct dm_pool_metadata *pmd,
880 dm_thin_id dev, int create,
881 struct dm_thin_device **td)
884 struct dm_thin_device *td2;
886 struct disk_device_details details_le;
889 * If the device is already open, return it.
891 list_for_each_entry(td2, &pmd->thin_devices, list)
892 if (td2->id == dev) {
894 * May not create an already-open device.
905 * Check the device exists.
907 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
910 if (r != -ENODATA || !create)
917 details_le.mapped_blocks = 0;
918 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
919 details_le.creation_time = cpu_to_le32(pmd->time);
920 details_le.snapshotted_time = cpu_to_le32(pmd->time);
923 *td = kmalloc(sizeof(**td), GFP_NOIO);
929 (*td)->open_count = 1;
930 (*td)->changed = changed;
931 (*td)->aborted_with_changes = false;
932 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
933 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
934 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
935 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
937 list_add(&(*td)->list, &pmd->thin_devices);
942 static void __close_device(struct dm_thin_device *td)
947 static int __create_thin(struct dm_pool_metadata *pmd,
953 struct disk_device_details details_le;
954 struct dm_thin_device *td;
957 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
963 * Create an empty btree for the mappings.
965 r = dm_btree_empty(&pmd->bl_info, &dev_root);
970 * Insert it into the main mapping tree.
972 value = cpu_to_le64(dev_root);
973 __dm_bless_for_disk(&value);
974 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
976 dm_btree_del(&pmd->bl_info, dev_root);
980 r = __open_device(pmd, dev, 1, &td);
982 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
983 dm_btree_del(&pmd->bl_info, dev_root);
991 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
995 down_write(&pmd->root_lock);
997 r = __create_thin(pmd, dev);
998 up_write(&pmd->root_lock);
1003 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1004 struct dm_thin_device *snap,
1005 dm_thin_id origin, uint32_t time)
1008 struct dm_thin_device *td;
1010 r = __open_device(pmd, origin, 0, &td);
1015 td->snapshotted_time = time;
1017 snap->mapped_blocks = td->mapped_blocks;
1018 snap->snapshotted_time = time;
1024 static int __create_snap(struct dm_pool_metadata *pmd,
1025 dm_thin_id dev, dm_thin_id origin)
1028 dm_block_t origin_root;
1029 uint64_t key = origin, dev_key = dev;
1030 struct dm_thin_device *td;
1031 struct disk_device_details details_le;
1034 /* check this device is unused */
1035 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1036 &dev_key, &details_le);
1040 /* find the mapping tree for the origin */
1041 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1044 origin_root = le64_to_cpu(value);
1046 /* clone the origin, an inc will do */
1047 dm_tm_inc(pmd->tm, origin_root);
1049 /* insert into the main mapping tree */
1050 value = cpu_to_le64(origin_root);
1051 __dm_bless_for_disk(&value);
1053 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1055 dm_tm_dec(pmd->tm, origin_root);
1061 r = __open_device(pmd, dev, 1, &td);
1065 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1074 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1075 dm_btree_remove(&pmd->details_info, pmd->details_root,
1076 &key, &pmd->details_root);
1080 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1086 down_write(&pmd->root_lock);
1088 r = __create_snap(pmd, dev, origin);
1089 up_write(&pmd->root_lock);
1094 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1098 struct dm_thin_device *td;
1100 /* TODO: failure should mark the transaction invalid */
1101 r = __open_device(pmd, dev, 0, &td);
1105 if (td->open_count > 1) {
1110 list_del(&td->list);
1112 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1113 &key, &pmd->details_root);
1117 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1124 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1129 down_write(&pmd->root_lock);
1131 r = __delete_device(pmd, dev);
1132 up_write(&pmd->root_lock);
1137 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1138 uint64_t current_id,
1143 down_write(&pmd->root_lock);
1148 if (pmd->trans_id != current_id) {
1149 DMERR("mismatched transaction id");
1153 pmd->trans_id = new_id;
1157 up_write(&pmd->root_lock);
1162 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1167 down_read(&pmd->root_lock);
1168 if (!pmd->fail_io) {
1169 *result = pmd->trans_id;
1172 up_read(&pmd->root_lock);
1177 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1180 struct thin_disk_superblock *disk_super;
1181 struct dm_block *copy, *sblock;
1182 dm_block_t held_root;
1185 * Copy the superblock.
1187 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1188 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1189 &sb_validator, ©, &inc);
1195 held_root = dm_block_location(copy);
1196 disk_super = dm_block_data(copy);
1198 if (le64_to_cpu(disk_super->held_root)) {
1199 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1201 dm_tm_dec(pmd->tm, held_root);
1202 dm_tm_unlock(pmd->tm, copy);
1207 * Wipe the spacemap since we're not publishing this.
1209 memset(&disk_super->data_space_map_root, 0,
1210 sizeof(disk_super->data_space_map_root));
1211 memset(&disk_super->metadata_space_map_root, 0,
1212 sizeof(disk_super->metadata_space_map_root));
1215 * Increment the data structures that need to be preserved.
1217 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1218 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1219 dm_tm_unlock(pmd->tm, copy);
1222 * Write the held root into the superblock.
1224 r = superblock_lock(pmd, &sblock);
1226 dm_tm_dec(pmd->tm, held_root);
1230 disk_super = dm_block_data(sblock);
1231 disk_super->held_root = cpu_to_le64(held_root);
1232 dm_bm_unlock(sblock);
1236 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1240 down_write(&pmd->root_lock);
1242 r = __reserve_metadata_snap(pmd);
1243 up_write(&pmd->root_lock);
1248 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1251 struct thin_disk_superblock *disk_super;
1252 struct dm_block *sblock, *copy;
1253 dm_block_t held_root;
1255 r = superblock_lock(pmd, &sblock);
1259 disk_super = dm_block_data(sblock);
1260 held_root = le64_to_cpu(disk_super->held_root);
1261 disk_super->held_root = cpu_to_le64(0);
1263 dm_bm_unlock(sblock);
1266 DMWARN("No pool metadata snapshot found: nothing to release.");
1270 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©);
1274 disk_super = dm_block_data(copy);
1275 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1276 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1277 dm_sm_dec_block(pmd->metadata_sm, held_root);
1279 return dm_tm_unlock(pmd->tm, copy);
1282 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1286 down_write(&pmd->root_lock);
1288 r = __release_metadata_snap(pmd);
1289 up_write(&pmd->root_lock);
1294 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1298 struct thin_disk_superblock *disk_super;
1299 struct dm_block *sblock;
1301 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1302 &sb_validator, &sblock);
1306 disk_super = dm_block_data(sblock);
1307 *result = le64_to_cpu(disk_super->held_root);
1309 return dm_bm_unlock(sblock);
1312 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1317 down_read(&pmd->root_lock);
1319 r = __get_metadata_snap(pmd, result);
1320 up_read(&pmd->root_lock);
1325 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1326 struct dm_thin_device **td)
1330 down_write(&pmd->root_lock);
1332 r = __open_device(pmd, dev, 0, td);
1333 up_write(&pmd->root_lock);
1338 int dm_pool_close_thin_device(struct dm_thin_device *td)
1340 down_write(&td->pmd->root_lock);
1342 up_write(&td->pmd->root_lock);
1347 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1353 * Check whether @time (of block creation) is older than @td's last snapshot.
1354 * If so then the associated block is shared with the last snapshot device.
1355 * Any block on a device created *after* the device last got snapshotted is
1356 * necessarily not shared.
1358 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1360 return td->snapshotted_time > time;
1363 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1364 int can_block, struct dm_thin_lookup_result *result)
1367 uint64_t block_time = 0;
1369 struct dm_pool_metadata *pmd = td->pmd;
1370 dm_block_t keys[2] = { td->id, block };
1371 struct dm_btree_info *info;
1374 down_read(&pmd->root_lock);
1376 } else if (down_read_trylock(&pmd->root_lock))
1377 info = &pmd->nb_info;
1379 return -EWOULDBLOCK;
1384 r = dm_btree_lookup(info, pmd->root, keys, &value);
1386 block_time = le64_to_cpu(value);
1389 up_read(&pmd->root_lock);
1392 dm_block_t exception_block;
1393 uint32_t exception_time;
1394 unpack_block_time(block_time, &exception_block,
1396 result->block = exception_block;
1397 result->shared = __snapshotted_since(td, exception_time);
1403 static int __insert(struct dm_thin_device *td, dm_block_t block,
1404 dm_block_t data_block)
1408 struct dm_pool_metadata *pmd = td->pmd;
1409 dm_block_t keys[2] = { td->id, block };
1411 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1412 __dm_bless_for_disk(&value);
1414 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1415 &pmd->root, &inserted);
1421 td->mapped_blocks++;
1426 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1427 dm_block_t data_block)
1431 down_write(&td->pmd->root_lock);
1432 if (!td->pmd->fail_io)
1433 r = __insert(td, block, data_block);
1434 up_write(&td->pmd->root_lock);
1439 static int __remove(struct dm_thin_device *td, dm_block_t block)
1442 struct dm_pool_metadata *pmd = td->pmd;
1443 dm_block_t keys[2] = { td->id, block };
1445 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1449 td->mapped_blocks--;
1455 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1459 down_write(&td->pmd->root_lock);
1460 if (!td->pmd->fail_io)
1461 r = __remove(td, block);
1462 up_write(&td->pmd->root_lock);
1467 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1472 down_read(&pmd->root_lock);
1473 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1475 *result = (ref_count != 0);
1476 up_read(&pmd->root_lock);
1481 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1485 down_read(&td->pmd->root_lock);
1487 up_read(&td->pmd->root_lock);
1492 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1495 struct dm_thin_device *td, *tmp;
1497 down_read(&pmd->root_lock);
1498 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1504 up_read(&pmd->root_lock);
1509 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1513 down_read(&td->pmd->root_lock);
1514 r = td->aborted_with_changes;
1515 up_read(&td->pmd->root_lock);
1520 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1524 down_write(&pmd->root_lock);
1526 r = dm_sm_new_block(pmd->data_sm, result);
1527 up_write(&pmd->root_lock);
1532 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1536 down_write(&pmd->root_lock);
1540 r = __commit_transaction(pmd);
1545 * Open the next transaction.
1547 r = __begin_transaction(pmd);
1549 up_write(&pmd->root_lock);
1553 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1555 struct dm_thin_device *td;
1557 list_for_each_entry(td, &pmd->thin_devices, list)
1558 td->aborted_with_changes = td->changed;
1561 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1565 down_write(&pmd->root_lock);
1569 __set_abort_with_changes_flags(pmd);
1570 __destroy_persistent_data_objects(pmd);
1571 r = __create_persistent_data_objects(pmd, false);
1573 pmd->fail_io = true;
1576 up_write(&pmd->root_lock);
1581 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1585 down_read(&pmd->root_lock);
1587 r = dm_sm_get_nr_free(pmd->data_sm, result);
1588 up_read(&pmd->root_lock);
1593 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1598 down_read(&pmd->root_lock);
1600 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1601 up_read(&pmd->root_lock);
1606 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1611 down_read(&pmd->root_lock);
1613 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1614 up_read(&pmd->root_lock);
1619 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1621 down_read(&pmd->root_lock);
1622 *result = pmd->data_block_size;
1623 up_read(&pmd->root_lock);
1628 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1632 down_read(&pmd->root_lock);
1634 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1635 up_read(&pmd->root_lock);
1640 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1643 struct dm_pool_metadata *pmd = td->pmd;
1645 down_read(&pmd->root_lock);
1646 if (!pmd->fail_io) {
1647 *result = td->mapped_blocks;
1650 up_read(&pmd->root_lock);
1655 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1659 dm_block_t thin_root;
1660 struct dm_pool_metadata *pmd = td->pmd;
1662 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1666 thin_root = le64_to_cpu(value_le);
1668 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1671 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1675 struct dm_pool_metadata *pmd = td->pmd;
1677 down_read(&pmd->root_lock);
1679 r = __highest_block(td, result);
1680 up_read(&pmd->root_lock);
1685 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1688 dm_block_t old_count;
1690 r = dm_sm_get_nr_blocks(sm, &old_count);
1694 if (new_count == old_count)
1697 if (new_count < old_count) {
1698 DMERR("cannot reduce size of space map");
1702 return dm_sm_extend(sm, new_count - old_count);
1705 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1709 down_write(&pmd->root_lock);
1711 r = __resize_space_map(pmd->data_sm, new_count);
1712 up_write(&pmd->root_lock);
1717 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1721 down_write(&pmd->root_lock);
1723 r = __resize_space_map(pmd->metadata_sm, new_count);
1724 up_write(&pmd->root_lock);
1729 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1731 down_write(&pmd->root_lock);
1732 pmd->read_only = true;
1733 dm_bm_set_read_only(pmd->bm);
1734 up_write(&pmd->root_lock);
1737 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1739 down_write(&pmd->root_lock);
1740 pmd->read_only = false;
1741 dm_bm_set_read_write(pmd->bm);
1742 up_write(&pmd->root_lock);
1745 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1746 dm_block_t threshold,
1747 dm_sm_threshold_fn fn,
1752 down_write(&pmd->root_lock);
1753 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1754 up_write(&pmd->root_lock);
1759 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1762 struct dm_block *sblock;
1763 struct thin_disk_superblock *disk_super;
1765 down_write(&pmd->root_lock);
1766 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1768 r = superblock_lock(pmd, &sblock);
1770 DMERR("couldn't read superblock");
1774 disk_super = dm_block_data(sblock);
1775 disk_super->flags = cpu_to_le32(pmd->flags);
1777 dm_bm_unlock(sblock);
1779 up_write(&pmd->root_lock);
1783 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
1787 down_read(&pmd->root_lock);
1788 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
1789 up_read(&pmd->root_lock);