dm clone metadata: Use a two phase commit
[platform/kernel/linux-rpi.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99         __le32 csum;    /* Checksum of superblock except for this field. */
100         __le32 flags;
101         __le64 blocknr; /* This block number, dm_block_t. */
102
103         __u8 uuid[16];
104         __le64 magic;
105         __le32 version;
106         __le32 time;
107
108         __le64 trans_id;
109
110         /*
111          * Root held by userspace transactions.
112          */
113         __le64 held_root;
114
115         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118         /*
119          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120          */
121         __le64 data_mapping_root;
122
123         /*
124          * Device detail root mapping dev_id -> device_details
125          */
126         __le64 device_details_root;
127
128         __le32 data_block_size;         /* In 512-byte sectors. */
129
130         __le32 metadata_block_size;     /* In 512-byte sectors. */
131         __le64 metadata_nr_blocks;
132
133         __le32 compat_flags;
134         __le32 compat_ro_flags;
135         __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139         __le64 mapped_blocks;
140         __le64 transaction_id;          /* When created. */
141         __le32 creation_time;
142         __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146         struct hlist_node hash;
147
148         struct block_device *bdev;
149         struct dm_block_manager *bm;
150         struct dm_space_map *metadata_sm;
151         struct dm_space_map *data_sm;
152         struct dm_transaction_manager *tm;
153         struct dm_transaction_manager *nb_tm;
154
155         /*
156          * Two-level btree.
157          * First level holds thin_dev_t.
158          * Second level holds mappings.
159          */
160         struct dm_btree_info info;
161
162         /*
163          * Non-blocking version of the above.
164          */
165         struct dm_btree_info nb_info;
166
167         /*
168          * Just the top level for deleting whole devices.
169          */
170         struct dm_btree_info tl_info;
171
172         /*
173          * Just the bottom level for creating new devices.
174          */
175         struct dm_btree_info bl_info;
176
177         /*
178          * Describes the device details btree.
179          */
180         struct dm_btree_info details_info;
181
182         struct rw_semaphore root_lock;
183         uint32_t time;
184         dm_block_t root;
185         dm_block_t details_root;
186         struct list_head thin_devices;
187         uint64_t trans_id;
188         unsigned long flags;
189         sector_t data_block_size;
190
191         /*
192          * We reserve a section of the metadata for commit overhead.
193          * All reported space does *not* include this.
194          */
195         dm_block_t metadata_reserve;
196
197         /*
198          * Set if a transaction has to be aborted but the attempt to roll back
199          * to the previous (good) transaction failed.  The only pool metadata
200          * operation possible in this state is the closing of the device.
201          */
202         bool fail_io:1;
203
204         /*
205          * Set once a thin-pool has been accessed through one of the interfaces
206          * that imply the pool is in-service (e.g. thin devices created/deleted,
207          * thin-pool message, metadata snapshots, etc).
208          */
209         bool in_service:1;
210
211         /*
212          * Reading the space map roots can fail, so we read it into these
213          * buffers before the superblock is locked and updated.
214          */
215         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
216         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
217 };
218
219 struct dm_thin_device {
220         struct list_head list;
221         struct dm_pool_metadata *pmd;
222         dm_thin_id id;
223
224         int open_count;
225         bool changed:1;
226         bool aborted_with_changes:1;
227         uint64_t mapped_blocks;
228         uint64_t transaction_id;
229         uint32_t creation_time;
230         uint32_t snapshotted_time;
231 };
232
233 /*----------------------------------------------------------------
234  * superblock validator
235  *--------------------------------------------------------------*/
236
237 #define SUPERBLOCK_CSUM_XOR 160774
238
239 static void sb_prepare_for_write(struct dm_block_validator *v,
240                                  struct dm_block *b,
241                                  size_t block_size)
242 {
243         struct thin_disk_superblock *disk_super = dm_block_data(b);
244
245         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
246         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
247                                                       block_size - sizeof(__le32),
248                                                       SUPERBLOCK_CSUM_XOR));
249 }
250
251 static int sb_check(struct dm_block_validator *v,
252                     struct dm_block *b,
253                     size_t block_size)
254 {
255         struct thin_disk_superblock *disk_super = dm_block_data(b);
256         __le32 csum_le;
257
258         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
259                 DMERR("sb_check failed: blocknr %llu: "
260                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
261                       (unsigned long long)dm_block_location(b));
262                 return -ENOTBLK;
263         }
264
265         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
266                 DMERR("sb_check failed: magic %llu: "
267                       "wanted %llu", le64_to_cpu(disk_super->magic),
268                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
269                 return -EILSEQ;
270         }
271
272         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
273                                              block_size - sizeof(__le32),
274                                              SUPERBLOCK_CSUM_XOR));
275         if (csum_le != disk_super->csum) {
276                 DMERR("sb_check failed: csum %u: wanted %u",
277                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
278                 return -EILSEQ;
279         }
280
281         return 0;
282 }
283
284 static struct dm_block_validator sb_validator = {
285         .name = "superblock",
286         .prepare_for_write = sb_prepare_for_write,
287         .check = sb_check
288 };
289
290 /*----------------------------------------------------------------
291  * Methods for the btree value types
292  *--------------------------------------------------------------*/
293
294 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
295 {
296         return (b << 24) | t;
297 }
298
299 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
300 {
301         *b = v >> 24;
302         *t = v & ((1 << 24) - 1);
303 }
304
305 static void data_block_inc(void *context, const void *value_le)
306 {
307         struct dm_space_map *sm = context;
308         __le64 v_le;
309         uint64_t b;
310         uint32_t t;
311
312         memcpy(&v_le, value_le, sizeof(v_le));
313         unpack_block_time(le64_to_cpu(v_le), &b, &t);
314         dm_sm_inc_block(sm, b);
315 }
316
317 static void data_block_dec(void *context, const void *value_le)
318 {
319         struct dm_space_map *sm = context;
320         __le64 v_le;
321         uint64_t b;
322         uint32_t t;
323
324         memcpy(&v_le, value_le, sizeof(v_le));
325         unpack_block_time(le64_to_cpu(v_le), &b, &t);
326         dm_sm_dec_block(sm, b);
327 }
328
329 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
330 {
331         __le64 v1_le, v2_le;
332         uint64_t b1, b2;
333         uint32_t t;
334
335         memcpy(&v1_le, value1_le, sizeof(v1_le));
336         memcpy(&v2_le, value2_le, sizeof(v2_le));
337         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
338         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
339
340         return b1 == b2;
341 }
342
343 static void subtree_inc(void *context, const void *value)
344 {
345         struct dm_btree_info *info = context;
346         __le64 root_le;
347         uint64_t root;
348
349         memcpy(&root_le, value, sizeof(root_le));
350         root = le64_to_cpu(root_le);
351         dm_tm_inc(info->tm, root);
352 }
353
354 static void subtree_dec(void *context, const void *value)
355 {
356         struct dm_btree_info *info = context;
357         __le64 root_le;
358         uint64_t root;
359
360         memcpy(&root_le, value, sizeof(root_le));
361         root = le64_to_cpu(root_le);
362         if (dm_btree_del(info, root))
363                 DMERR("btree delete failed");
364 }
365
366 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
367 {
368         __le64 v1_le, v2_le;
369         memcpy(&v1_le, value1_le, sizeof(v1_le));
370         memcpy(&v2_le, value2_le, sizeof(v2_le));
371
372         return v1_le == v2_le;
373 }
374
375 /*----------------------------------------------------------------*/
376
377 /*
378  * Variant that is used for in-core only changes or code that
379  * shouldn't put the pool in service on its own (e.g. commit).
380  */
381 static inline void __pmd_write_lock(struct dm_pool_metadata *pmd)
382         __acquires(pmd->root_lock)
383 {
384         down_write(&pmd->root_lock);
385 }
386 #define pmd_write_lock_in_core(pmd) __pmd_write_lock((pmd))
387
388 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
389 {
390         __pmd_write_lock(pmd);
391         if (unlikely(!pmd->in_service))
392                 pmd->in_service = true;
393 }
394
395 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
396         __releases(pmd->root_lock)
397 {
398         up_write(&pmd->root_lock);
399 }
400
401 /*----------------------------------------------------------------*/
402
403 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
404                                 struct dm_block **sblock)
405 {
406         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
407                                      &sb_validator, sblock);
408 }
409
410 static int superblock_lock(struct dm_pool_metadata *pmd,
411                            struct dm_block **sblock)
412 {
413         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
414                                 &sb_validator, sblock);
415 }
416
417 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
418 {
419         int r;
420         unsigned i;
421         struct dm_block *b;
422         __le64 *data_le, zero = cpu_to_le64(0);
423         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
424
425         /*
426          * We can't use a validator here - it may be all zeroes.
427          */
428         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
429         if (r)
430                 return r;
431
432         data_le = dm_block_data(b);
433         *result = 1;
434         for (i = 0; i < block_size; i++) {
435                 if (data_le[i] != zero) {
436                         *result = 0;
437                         break;
438                 }
439         }
440
441         dm_bm_unlock(b);
442
443         return 0;
444 }
445
446 static void __setup_btree_details(struct dm_pool_metadata *pmd)
447 {
448         pmd->info.tm = pmd->tm;
449         pmd->info.levels = 2;
450         pmd->info.value_type.context = pmd->data_sm;
451         pmd->info.value_type.size = sizeof(__le64);
452         pmd->info.value_type.inc = data_block_inc;
453         pmd->info.value_type.dec = data_block_dec;
454         pmd->info.value_type.equal = data_block_equal;
455
456         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
457         pmd->nb_info.tm = pmd->nb_tm;
458
459         pmd->tl_info.tm = pmd->tm;
460         pmd->tl_info.levels = 1;
461         pmd->tl_info.value_type.context = &pmd->bl_info;
462         pmd->tl_info.value_type.size = sizeof(__le64);
463         pmd->tl_info.value_type.inc = subtree_inc;
464         pmd->tl_info.value_type.dec = subtree_dec;
465         pmd->tl_info.value_type.equal = subtree_equal;
466
467         pmd->bl_info.tm = pmd->tm;
468         pmd->bl_info.levels = 1;
469         pmd->bl_info.value_type.context = pmd->data_sm;
470         pmd->bl_info.value_type.size = sizeof(__le64);
471         pmd->bl_info.value_type.inc = data_block_inc;
472         pmd->bl_info.value_type.dec = data_block_dec;
473         pmd->bl_info.value_type.equal = data_block_equal;
474
475         pmd->details_info.tm = pmd->tm;
476         pmd->details_info.levels = 1;
477         pmd->details_info.value_type.context = NULL;
478         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
479         pmd->details_info.value_type.inc = NULL;
480         pmd->details_info.value_type.dec = NULL;
481         pmd->details_info.value_type.equal = NULL;
482 }
483
484 static int save_sm_roots(struct dm_pool_metadata *pmd)
485 {
486         int r;
487         size_t len;
488
489         r = dm_sm_root_size(pmd->metadata_sm, &len);
490         if (r < 0)
491                 return r;
492
493         r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
494         if (r < 0)
495                 return r;
496
497         r = dm_sm_root_size(pmd->data_sm, &len);
498         if (r < 0)
499                 return r;
500
501         return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
502 }
503
504 static void copy_sm_roots(struct dm_pool_metadata *pmd,
505                           struct thin_disk_superblock *disk)
506 {
507         memcpy(&disk->metadata_space_map_root,
508                &pmd->metadata_space_map_root,
509                sizeof(pmd->metadata_space_map_root));
510
511         memcpy(&disk->data_space_map_root,
512                &pmd->data_space_map_root,
513                sizeof(pmd->data_space_map_root));
514 }
515
516 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
517 {
518         int r;
519         struct dm_block *sblock;
520         struct thin_disk_superblock *disk_super;
521         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
522
523         if (bdev_size > THIN_METADATA_MAX_SECTORS)
524                 bdev_size = THIN_METADATA_MAX_SECTORS;
525
526         r = dm_sm_commit(pmd->data_sm);
527         if (r < 0)
528                 return r;
529
530         r = dm_tm_pre_commit(pmd->tm);
531         if (r < 0)
532                 return r;
533
534         r = save_sm_roots(pmd);
535         if (r < 0)
536                 return r;
537
538         r = superblock_lock_zero(pmd, &sblock);
539         if (r)
540                 return r;
541
542         disk_super = dm_block_data(sblock);
543         disk_super->flags = 0;
544         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
545         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
546         disk_super->version = cpu_to_le32(THIN_VERSION);
547         disk_super->time = 0;
548         disk_super->trans_id = 0;
549         disk_super->held_root = 0;
550
551         copy_sm_roots(pmd, disk_super);
552
553         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
554         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
555         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
556         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
557         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
558
559         return dm_tm_commit(pmd->tm, sblock);
560 }
561
562 static int __format_metadata(struct dm_pool_metadata *pmd)
563 {
564         int r;
565
566         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
567                                  &pmd->tm, &pmd->metadata_sm);
568         if (r < 0) {
569                 DMERR("tm_create_with_sm failed");
570                 return r;
571         }
572
573         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
574         if (IS_ERR(pmd->data_sm)) {
575                 DMERR("sm_disk_create failed");
576                 r = PTR_ERR(pmd->data_sm);
577                 goto bad_cleanup_tm;
578         }
579
580         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
581         if (!pmd->nb_tm) {
582                 DMERR("could not create non-blocking clone tm");
583                 r = -ENOMEM;
584                 goto bad_cleanup_data_sm;
585         }
586
587         __setup_btree_details(pmd);
588
589         r = dm_btree_empty(&pmd->info, &pmd->root);
590         if (r < 0)
591                 goto bad_cleanup_nb_tm;
592
593         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
594         if (r < 0) {
595                 DMERR("couldn't create devices root");
596                 goto bad_cleanup_nb_tm;
597         }
598
599         r = __write_initial_superblock(pmd);
600         if (r)
601                 goto bad_cleanup_nb_tm;
602
603         return 0;
604
605 bad_cleanup_nb_tm:
606         dm_tm_destroy(pmd->nb_tm);
607 bad_cleanup_data_sm:
608         dm_sm_destroy(pmd->data_sm);
609 bad_cleanup_tm:
610         dm_tm_destroy(pmd->tm);
611         dm_sm_destroy(pmd->metadata_sm);
612
613         return r;
614 }
615
616 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
617                                      struct dm_pool_metadata *pmd)
618 {
619         uint32_t features;
620
621         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
622         if (features) {
623                 DMERR("could not access metadata due to unsupported optional features (%lx).",
624                       (unsigned long)features);
625                 return -EINVAL;
626         }
627
628         /*
629          * Check for read-only metadata to skip the following RDWR checks.
630          */
631         if (get_disk_ro(pmd->bdev->bd_disk))
632                 return 0;
633
634         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
635         if (features) {
636                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
637                       (unsigned long)features);
638                 return -EINVAL;
639         }
640
641         return 0;
642 }
643
644 static int __open_metadata(struct dm_pool_metadata *pmd)
645 {
646         int r;
647         struct dm_block *sblock;
648         struct thin_disk_superblock *disk_super;
649
650         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
651                             &sb_validator, &sblock);
652         if (r < 0) {
653                 DMERR("couldn't read superblock");
654                 return r;
655         }
656
657         disk_super = dm_block_data(sblock);
658
659         /* Verify the data block size hasn't changed */
660         if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
661                 DMERR("changing the data block size (from %u to %llu) is not supported",
662                       le32_to_cpu(disk_super->data_block_size),
663                       (unsigned long long)pmd->data_block_size);
664                 r = -EINVAL;
665                 goto bad_unlock_sblock;
666         }
667
668         r = __check_incompat_features(disk_super, pmd);
669         if (r < 0)
670                 goto bad_unlock_sblock;
671
672         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
673                                disk_super->metadata_space_map_root,
674                                sizeof(disk_super->metadata_space_map_root),
675                                &pmd->tm, &pmd->metadata_sm);
676         if (r < 0) {
677                 DMERR("tm_open_with_sm failed");
678                 goto bad_unlock_sblock;
679         }
680
681         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
682                                        sizeof(disk_super->data_space_map_root));
683         if (IS_ERR(pmd->data_sm)) {
684                 DMERR("sm_disk_open failed");
685                 r = PTR_ERR(pmd->data_sm);
686                 goto bad_cleanup_tm;
687         }
688
689         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
690         if (!pmd->nb_tm) {
691                 DMERR("could not create non-blocking clone tm");
692                 r = -ENOMEM;
693                 goto bad_cleanup_data_sm;
694         }
695
696         __setup_btree_details(pmd);
697         dm_bm_unlock(sblock);
698
699         return 0;
700
701 bad_cleanup_data_sm:
702         dm_sm_destroy(pmd->data_sm);
703 bad_cleanup_tm:
704         dm_tm_destroy(pmd->tm);
705         dm_sm_destroy(pmd->metadata_sm);
706 bad_unlock_sblock:
707         dm_bm_unlock(sblock);
708
709         return r;
710 }
711
712 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
713 {
714         int r, unformatted;
715
716         r = __superblock_all_zeroes(pmd->bm, &unformatted);
717         if (r)
718                 return r;
719
720         if (unformatted)
721                 return format_device ? __format_metadata(pmd) : -EPERM;
722
723         return __open_metadata(pmd);
724 }
725
726 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
727 {
728         int r;
729
730         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
731                                           THIN_MAX_CONCURRENT_LOCKS);
732         if (IS_ERR(pmd->bm)) {
733                 DMERR("could not create block manager");
734                 return PTR_ERR(pmd->bm);
735         }
736
737         r = __open_or_format_metadata(pmd, format_device);
738         if (r)
739                 dm_block_manager_destroy(pmd->bm);
740
741         return r;
742 }
743
744 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
745 {
746         dm_sm_destroy(pmd->data_sm);
747         dm_sm_destroy(pmd->metadata_sm);
748         dm_tm_destroy(pmd->nb_tm);
749         dm_tm_destroy(pmd->tm);
750         dm_block_manager_destroy(pmd->bm);
751 }
752
753 static int __begin_transaction(struct dm_pool_metadata *pmd)
754 {
755         int r;
756         struct thin_disk_superblock *disk_super;
757         struct dm_block *sblock;
758
759         /*
760          * We re-read the superblock every time.  Shouldn't need to do this
761          * really.
762          */
763         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
764                             &sb_validator, &sblock);
765         if (r)
766                 return r;
767
768         disk_super = dm_block_data(sblock);
769         pmd->time = le32_to_cpu(disk_super->time);
770         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
771         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
772         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
773         pmd->flags = le32_to_cpu(disk_super->flags);
774         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
775
776         dm_bm_unlock(sblock);
777         return 0;
778 }
779
780 static int __write_changed_details(struct dm_pool_metadata *pmd)
781 {
782         int r;
783         struct dm_thin_device *td, *tmp;
784         struct disk_device_details details;
785         uint64_t key;
786
787         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
788                 if (!td->changed)
789                         continue;
790
791                 key = td->id;
792
793                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
794                 details.transaction_id = cpu_to_le64(td->transaction_id);
795                 details.creation_time = cpu_to_le32(td->creation_time);
796                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
797                 __dm_bless_for_disk(&details);
798
799                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
800                                     &key, &details, &pmd->details_root);
801                 if (r)
802                         return r;
803
804                 if (td->open_count)
805                         td->changed = 0;
806                 else {
807                         list_del(&td->list);
808                         kfree(td);
809                 }
810         }
811
812         return 0;
813 }
814
815 static int __commit_transaction(struct dm_pool_metadata *pmd)
816 {
817         int r;
818         struct thin_disk_superblock *disk_super;
819         struct dm_block *sblock;
820
821         /*
822          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
823          */
824         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
825
826         if (unlikely(!pmd->in_service))
827                 return 0;
828
829         r = __write_changed_details(pmd);
830         if (r < 0)
831                 return r;
832
833         r = dm_sm_commit(pmd->data_sm);
834         if (r < 0)
835                 return r;
836
837         r = dm_tm_pre_commit(pmd->tm);
838         if (r < 0)
839                 return r;
840
841         r = save_sm_roots(pmd);
842         if (r < 0)
843                 return r;
844
845         r = superblock_lock(pmd, &sblock);
846         if (r)
847                 return r;
848
849         disk_super = dm_block_data(sblock);
850         disk_super->time = cpu_to_le32(pmd->time);
851         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
852         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
853         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
854         disk_super->flags = cpu_to_le32(pmd->flags);
855
856         copy_sm_roots(pmd, disk_super);
857
858         return dm_tm_commit(pmd->tm, sblock);
859 }
860
861 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
862 {
863         int r;
864         dm_block_t total;
865         dm_block_t max_blocks = 4096; /* 16M */
866
867         r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
868         if (r) {
869                 DMERR("could not get size of metadata device");
870                 pmd->metadata_reserve = max_blocks;
871         } else
872                 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
873 }
874
875 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
876                                                sector_t data_block_size,
877                                                bool format_device)
878 {
879         int r;
880         struct dm_pool_metadata *pmd;
881
882         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
883         if (!pmd) {
884                 DMERR("could not allocate metadata struct");
885                 return ERR_PTR(-ENOMEM);
886         }
887
888         init_rwsem(&pmd->root_lock);
889         pmd->time = 0;
890         INIT_LIST_HEAD(&pmd->thin_devices);
891         pmd->fail_io = false;
892         pmd->in_service = false;
893         pmd->bdev = bdev;
894         pmd->data_block_size = data_block_size;
895
896         r = __create_persistent_data_objects(pmd, format_device);
897         if (r) {
898                 kfree(pmd);
899                 return ERR_PTR(r);
900         }
901
902         r = __begin_transaction(pmd);
903         if (r < 0) {
904                 if (dm_pool_metadata_close(pmd) < 0)
905                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
906                 return ERR_PTR(r);
907         }
908
909         __set_metadata_reserve(pmd);
910
911         return pmd;
912 }
913
914 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
915 {
916         int r;
917         unsigned open_devices = 0;
918         struct dm_thin_device *td, *tmp;
919
920         down_read(&pmd->root_lock);
921         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
922                 if (td->open_count)
923                         open_devices++;
924                 else {
925                         list_del(&td->list);
926                         kfree(td);
927                 }
928         }
929         up_read(&pmd->root_lock);
930
931         if (open_devices) {
932                 DMERR("attempt to close pmd when %u device(s) are still open",
933                        open_devices);
934                 return -EBUSY;
935         }
936
937         if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
938                 r = __commit_transaction(pmd);
939                 if (r < 0)
940                         DMWARN("%s: __commit_transaction() failed, error = %d",
941                                __func__, r);
942         }
943         if (!pmd->fail_io)
944                 __destroy_persistent_data_objects(pmd);
945
946         kfree(pmd);
947         return 0;
948 }
949
950 /*
951  * __open_device: Returns @td corresponding to device with id @dev,
952  * creating it if @create is set and incrementing @td->open_count.
953  * On failure, @td is undefined.
954  */
955 static int __open_device(struct dm_pool_metadata *pmd,
956                          dm_thin_id dev, int create,
957                          struct dm_thin_device **td)
958 {
959         int r, changed = 0;
960         struct dm_thin_device *td2;
961         uint64_t key = dev;
962         struct disk_device_details details_le;
963
964         /*
965          * If the device is already open, return it.
966          */
967         list_for_each_entry(td2, &pmd->thin_devices, list)
968                 if (td2->id == dev) {
969                         /*
970                          * May not create an already-open device.
971                          */
972                         if (create)
973                                 return -EEXIST;
974
975                         td2->open_count++;
976                         *td = td2;
977                         return 0;
978                 }
979
980         /*
981          * Check the device exists.
982          */
983         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
984                             &key, &details_le);
985         if (r) {
986                 if (r != -ENODATA || !create)
987                         return r;
988
989                 /*
990                  * Create new device.
991                  */
992                 changed = 1;
993                 details_le.mapped_blocks = 0;
994                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
995                 details_le.creation_time = cpu_to_le32(pmd->time);
996                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
997         }
998
999         *td = kmalloc(sizeof(**td), GFP_NOIO);
1000         if (!*td)
1001                 return -ENOMEM;
1002
1003         (*td)->pmd = pmd;
1004         (*td)->id = dev;
1005         (*td)->open_count = 1;
1006         (*td)->changed = changed;
1007         (*td)->aborted_with_changes = false;
1008         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1009         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1010         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1011         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1012
1013         list_add(&(*td)->list, &pmd->thin_devices);
1014
1015         return 0;
1016 }
1017
1018 static void __close_device(struct dm_thin_device *td)
1019 {
1020         --td->open_count;
1021 }
1022
1023 static int __create_thin(struct dm_pool_metadata *pmd,
1024                          dm_thin_id dev)
1025 {
1026         int r;
1027         dm_block_t dev_root;
1028         uint64_t key = dev;
1029         struct disk_device_details details_le;
1030         struct dm_thin_device *td;
1031         __le64 value;
1032
1033         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1034                             &key, &details_le);
1035         if (!r)
1036                 return -EEXIST;
1037
1038         /*
1039          * Create an empty btree for the mappings.
1040          */
1041         r = dm_btree_empty(&pmd->bl_info, &dev_root);
1042         if (r)
1043                 return r;
1044
1045         /*
1046          * Insert it into the main mapping tree.
1047          */
1048         value = cpu_to_le64(dev_root);
1049         __dm_bless_for_disk(&value);
1050         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1051         if (r) {
1052                 dm_btree_del(&pmd->bl_info, dev_root);
1053                 return r;
1054         }
1055
1056         r = __open_device(pmd, dev, 1, &td);
1057         if (r) {
1058                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1059                 dm_btree_del(&pmd->bl_info, dev_root);
1060                 return r;
1061         }
1062         __close_device(td);
1063
1064         return r;
1065 }
1066
1067 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1068 {
1069         int r = -EINVAL;
1070
1071         pmd_write_lock(pmd);
1072         if (!pmd->fail_io)
1073                 r = __create_thin(pmd, dev);
1074         pmd_write_unlock(pmd);
1075
1076         return r;
1077 }
1078
1079 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1080                                   struct dm_thin_device *snap,
1081                                   dm_thin_id origin, uint32_t time)
1082 {
1083         int r;
1084         struct dm_thin_device *td;
1085
1086         r = __open_device(pmd, origin, 0, &td);
1087         if (r)
1088                 return r;
1089
1090         td->changed = 1;
1091         td->snapshotted_time = time;
1092
1093         snap->mapped_blocks = td->mapped_blocks;
1094         snap->snapshotted_time = time;
1095         __close_device(td);
1096
1097         return 0;
1098 }
1099
1100 static int __create_snap(struct dm_pool_metadata *pmd,
1101                          dm_thin_id dev, dm_thin_id origin)
1102 {
1103         int r;
1104         dm_block_t origin_root;
1105         uint64_t key = origin, dev_key = dev;
1106         struct dm_thin_device *td;
1107         struct disk_device_details details_le;
1108         __le64 value;
1109
1110         /* check this device is unused */
1111         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1112                             &dev_key, &details_le);
1113         if (!r)
1114                 return -EEXIST;
1115
1116         /* find the mapping tree for the origin */
1117         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1118         if (r)
1119                 return r;
1120         origin_root = le64_to_cpu(value);
1121
1122         /* clone the origin, an inc will do */
1123         dm_tm_inc(pmd->tm, origin_root);
1124
1125         /* insert into the main mapping tree */
1126         value = cpu_to_le64(origin_root);
1127         __dm_bless_for_disk(&value);
1128         key = dev;
1129         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1130         if (r) {
1131                 dm_tm_dec(pmd->tm, origin_root);
1132                 return r;
1133         }
1134
1135         pmd->time++;
1136
1137         r = __open_device(pmd, dev, 1, &td);
1138         if (r)
1139                 goto bad;
1140
1141         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1142         __close_device(td);
1143
1144         if (r)
1145                 goto bad;
1146
1147         return 0;
1148
1149 bad:
1150         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1151         dm_btree_remove(&pmd->details_info, pmd->details_root,
1152                         &key, &pmd->details_root);
1153         return r;
1154 }
1155
1156 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1157                                  dm_thin_id dev,
1158                                  dm_thin_id origin)
1159 {
1160         int r = -EINVAL;
1161
1162         pmd_write_lock(pmd);
1163         if (!pmd->fail_io)
1164                 r = __create_snap(pmd, dev, origin);
1165         pmd_write_unlock(pmd);
1166
1167         return r;
1168 }
1169
1170 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1171 {
1172         int r;
1173         uint64_t key = dev;
1174         struct dm_thin_device *td;
1175
1176         /* TODO: failure should mark the transaction invalid */
1177         r = __open_device(pmd, dev, 0, &td);
1178         if (r)
1179                 return r;
1180
1181         if (td->open_count > 1) {
1182                 __close_device(td);
1183                 return -EBUSY;
1184         }
1185
1186         list_del(&td->list);
1187         kfree(td);
1188         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1189                             &key, &pmd->details_root);
1190         if (r)
1191                 return r;
1192
1193         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1194         if (r)
1195                 return r;
1196
1197         return 0;
1198 }
1199
1200 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1201                                dm_thin_id dev)
1202 {
1203         int r = -EINVAL;
1204
1205         pmd_write_lock(pmd);
1206         if (!pmd->fail_io)
1207                 r = __delete_device(pmd, dev);
1208         pmd_write_unlock(pmd);
1209
1210         return r;
1211 }
1212
1213 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1214                                         uint64_t current_id,
1215                                         uint64_t new_id)
1216 {
1217         int r = -EINVAL;
1218
1219         pmd_write_lock(pmd);
1220
1221         if (pmd->fail_io)
1222                 goto out;
1223
1224         if (pmd->trans_id != current_id) {
1225                 DMERR("mismatched transaction id");
1226                 goto out;
1227         }
1228
1229         pmd->trans_id = new_id;
1230         r = 0;
1231
1232 out:
1233         pmd_write_unlock(pmd);
1234
1235         return r;
1236 }
1237
1238 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1239                                         uint64_t *result)
1240 {
1241         int r = -EINVAL;
1242
1243         down_read(&pmd->root_lock);
1244         if (!pmd->fail_io) {
1245                 *result = pmd->trans_id;
1246                 r = 0;
1247         }
1248         up_read(&pmd->root_lock);
1249
1250         return r;
1251 }
1252
1253 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1254 {
1255         int r, inc;
1256         struct thin_disk_superblock *disk_super;
1257         struct dm_block *copy, *sblock;
1258         dm_block_t held_root;
1259
1260         /*
1261          * We commit to ensure the btree roots which we increment in a
1262          * moment are up to date.
1263          */
1264         r = __commit_transaction(pmd);
1265         if (r < 0) {
1266                 DMWARN("%s: __commit_transaction() failed, error = %d",
1267                        __func__, r);
1268                 return r;
1269         }
1270
1271         /*
1272          * Copy the superblock.
1273          */
1274         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1275         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1276                                &sb_validator, &copy, &inc);
1277         if (r)
1278                 return r;
1279
1280         BUG_ON(!inc);
1281
1282         held_root = dm_block_location(copy);
1283         disk_super = dm_block_data(copy);
1284
1285         if (le64_to_cpu(disk_super->held_root)) {
1286                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1287
1288                 dm_tm_dec(pmd->tm, held_root);
1289                 dm_tm_unlock(pmd->tm, copy);
1290                 return -EBUSY;
1291         }
1292
1293         /*
1294          * Wipe the spacemap since we're not publishing this.
1295          */
1296         memset(&disk_super->data_space_map_root, 0,
1297                sizeof(disk_super->data_space_map_root));
1298         memset(&disk_super->metadata_space_map_root, 0,
1299                sizeof(disk_super->metadata_space_map_root));
1300
1301         /*
1302          * Increment the data structures that need to be preserved.
1303          */
1304         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1305         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1306         dm_tm_unlock(pmd->tm, copy);
1307
1308         /*
1309          * Write the held root into the superblock.
1310          */
1311         r = superblock_lock(pmd, &sblock);
1312         if (r) {
1313                 dm_tm_dec(pmd->tm, held_root);
1314                 return r;
1315         }
1316
1317         disk_super = dm_block_data(sblock);
1318         disk_super->held_root = cpu_to_le64(held_root);
1319         dm_bm_unlock(sblock);
1320         return 0;
1321 }
1322
1323 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1324 {
1325         int r = -EINVAL;
1326
1327         pmd_write_lock(pmd);
1328         if (!pmd->fail_io)
1329                 r = __reserve_metadata_snap(pmd);
1330         pmd_write_unlock(pmd);
1331
1332         return r;
1333 }
1334
1335 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1336 {
1337         int r;
1338         struct thin_disk_superblock *disk_super;
1339         struct dm_block *sblock, *copy;
1340         dm_block_t held_root;
1341
1342         r = superblock_lock(pmd, &sblock);
1343         if (r)
1344                 return r;
1345
1346         disk_super = dm_block_data(sblock);
1347         held_root = le64_to_cpu(disk_super->held_root);
1348         disk_super->held_root = cpu_to_le64(0);
1349
1350         dm_bm_unlock(sblock);
1351
1352         if (!held_root) {
1353                 DMWARN("No pool metadata snapshot found: nothing to release.");
1354                 return -EINVAL;
1355         }
1356
1357         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1358         if (r)
1359                 return r;
1360
1361         disk_super = dm_block_data(copy);
1362         dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1363         dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1364         dm_sm_dec_block(pmd->metadata_sm, held_root);
1365
1366         dm_tm_unlock(pmd->tm, copy);
1367
1368         return 0;
1369 }
1370
1371 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1372 {
1373         int r = -EINVAL;
1374
1375         pmd_write_lock(pmd);
1376         if (!pmd->fail_io)
1377                 r = __release_metadata_snap(pmd);
1378         pmd_write_unlock(pmd);
1379
1380         return r;
1381 }
1382
1383 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1384                                dm_block_t *result)
1385 {
1386         int r;
1387         struct thin_disk_superblock *disk_super;
1388         struct dm_block *sblock;
1389
1390         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1391                             &sb_validator, &sblock);
1392         if (r)
1393                 return r;
1394
1395         disk_super = dm_block_data(sblock);
1396         *result = le64_to_cpu(disk_super->held_root);
1397
1398         dm_bm_unlock(sblock);
1399
1400         return 0;
1401 }
1402
1403 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1404                               dm_block_t *result)
1405 {
1406         int r = -EINVAL;
1407
1408         down_read(&pmd->root_lock);
1409         if (!pmd->fail_io)
1410                 r = __get_metadata_snap(pmd, result);
1411         up_read(&pmd->root_lock);
1412
1413         return r;
1414 }
1415
1416 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1417                              struct dm_thin_device **td)
1418 {
1419         int r = -EINVAL;
1420
1421         pmd_write_lock_in_core(pmd);
1422         if (!pmd->fail_io)
1423                 r = __open_device(pmd, dev, 0, td);
1424         pmd_write_unlock(pmd);
1425
1426         return r;
1427 }
1428
1429 int dm_pool_close_thin_device(struct dm_thin_device *td)
1430 {
1431         pmd_write_lock_in_core(td->pmd);
1432         __close_device(td);
1433         pmd_write_unlock(td->pmd);
1434
1435         return 0;
1436 }
1437
1438 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1439 {
1440         return td->id;
1441 }
1442
1443 /*
1444  * Check whether @time (of block creation) is older than @td's last snapshot.
1445  * If so then the associated block is shared with the last snapshot device.
1446  * Any block on a device created *after* the device last got snapshotted is
1447  * necessarily not shared.
1448  */
1449 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1450 {
1451         return td->snapshotted_time > time;
1452 }
1453
1454 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1455                                  struct dm_thin_lookup_result *result)
1456 {
1457         uint64_t block_time = 0;
1458         dm_block_t exception_block;
1459         uint32_t exception_time;
1460
1461         block_time = le64_to_cpu(value);
1462         unpack_block_time(block_time, &exception_block, &exception_time);
1463         result->block = exception_block;
1464         result->shared = __snapshotted_since(td, exception_time);
1465 }
1466
1467 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1468                         int can_issue_io, struct dm_thin_lookup_result *result)
1469 {
1470         int r;
1471         __le64 value;
1472         struct dm_pool_metadata *pmd = td->pmd;
1473         dm_block_t keys[2] = { td->id, block };
1474         struct dm_btree_info *info;
1475
1476         if (can_issue_io) {
1477                 info = &pmd->info;
1478         } else
1479                 info = &pmd->nb_info;
1480
1481         r = dm_btree_lookup(info, pmd->root, keys, &value);
1482         if (!r)
1483                 unpack_lookup_result(td, value, result);
1484
1485         return r;
1486 }
1487
1488 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1489                        int can_issue_io, struct dm_thin_lookup_result *result)
1490 {
1491         int r;
1492         struct dm_pool_metadata *pmd = td->pmd;
1493
1494         down_read(&pmd->root_lock);
1495         if (pmd->fail_io) {
1496                 up_read(&pmd->root_lock);
1497                 return -EINVAL;
1498         }
1499
1500         r = __find_block(td, block, can_issue_io, result);
1501
1502         up_read(&pmd->root_lock);
1503         return r;
1504 }
1505
1506 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1507                                           dm_block_t *vblock,
1508                                           struct dm_thin_lookup_result *result)
1509 {
1510         int r;
1511         __le64 value;
1512         struct dm_pool_metadata *pmd = td->pmd;
1513         dm_block_t keys[2] = { td->id, block };
1514
1515         r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1516         if (!r)
1517                 unpack_lookup_result(td, value, result);
1518
1519         return r;
1520 }
1521
1522 static int __find_mapped_range(struct dm_thin_device *td,
1523                                dm_block_t begin, dm_block_t end,
1524                                dm_block_t *thin_begin, dm_block_t *thin_end,
1525                                dm_block_t *pool_begin, bool *maybe_shared)
1526 {
1527         int r;
1528         dm_block_t pool_end;
1529         struct dm_thin_lookup_result lookup;
1530
1531         if (end < begin)
1532                 return -ENODATA;
1533
1534         r = __find_next_mapped_block(td, begin, &begin, &lookup);
1535         if (r)
1536                 return r;
1537
1538         if (begin >= end)
1539                 return -ENODATA;
1540
1541         *thin_begin = begin;
1542         *pool_begin = lookup.block;
1543         *maybe_shared = lookup.shared;
1544
1545         begin++;
1546         pool_end = *pool_begin + 1;
1547         while (begin != end) {
1548                 r = __find_block(td, begin, true, &lookup);
1549                 if (r) {
1550                         if (r == -ENODATA)
1551                                 break;
1552                         else
1553                                 return r;
1554                 }
1555
1556                 if ((lookup.block != pool_end) ||
1557                     (lookup.shared != *maybe_shared))
1558                         break;
1559
1560                 pool_end++;
1561                 begin++;
1562         }
1563
1564         *thin_end = begin;
1565         return 0;
1566 }
1567
1568 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1569                               dm_block_t begin, dm_block_t end,
1570                               dm_block_t *thin_begin, dm_block_t *thin_end,
1571                               dm_block_t *pool_begin, bool *maybe_shared)
1572 {
1573         int r = -EINVAL;
1574         struct dm_pool_metadata *pmd = td->pmd;
1575
1576         down_read(&pmd->root_lock);
1577         if (!pmd->fail_io) {
1578                 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1579                                         pool_begin, maybe_shared);
1580         }
1581         up_read(&pmd->root_lock);
1582
1583         return r;
1584 }
1585
1586 static int __insert(struct dm_thin_device *td, dm_block_t block,
1587                     dm_block_t data_block)
1588 {
1589         int r, inserted;
1590         __le64 value;
1591         struct dm_pool_metadata *pmd = td->pmd;
1592         dm_block_t keys[2] = { td->id, block };
1593
1594         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1595         __dm_bless_for_disk(&value);
1596
1597         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1598                                    &pmd->root, &inserted);
1599         if (r)
1600                 return r;
1601
1602         td->changed = 1;
1603         if (inserted)
1604                 td->mapped_blocks++;
1605
1606         return 0;
1607 }
1608
1609 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1610                          dm_block_t data_block)
1611 {
1612         int r = -EINVAL;
1613
1614         pmd_write_lock(td->pmd);
1615         if (!td->pmd->fail_io)
1616                 r = __insert(td, block, data_block);
1617         pmd_write_unlock(td->pmd);
1618
1619         return r;
1620 }
1621
1622 static int __remove(struct dm_thin_device *td, dm_block_t block)
1623 {
1624         int r;
1625         struct dm_pool_metadata *pmd = td->pmd;
1626         dm_block_t keys[2] = { td->id, block };
1627
1628         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1629         if (r)
1630                 return r;
1631
1632         td->mapped_blocks--;
1633         td->changed = 1;
1634
1635         return 0;
1636 }
1637
1638 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1639 {
1640         int r;
1641         unsigned count, total_count = 0;
1642         struct dm_pool_metadata *pmd = td->pmd;
1643         dm_block_t keys[1] = { td->id };
1644         __le64 value;
1645         dm_block_t mapping_root;
1646
1647         /*
1648          * Find the mapping tree
1649          */
1650         r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1651         if (r)
1652                 return r;
1653
1654         /*
1655          * Remove from the mapping tree, taking care to inc the
1656          * ref count so it doesn't get deleted.
1657          */
1658         mapping_root = le64_to_cpu(value);
1659         dm_tm_inc(pmd->tm, mapping_root);
1660         r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1661         if (r)
1662                 return r;
1663
1664         /*
1665          * Remove leaves stops at the first unmapped entry, so we have to
1666          * loop round finding mapped ranges.
1667          */
1668         while (begin < end) {
1669                 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1670                 if (r == -ENODATA)
1671                         break;
1672
1673                 if (r)
1674                         return r;
1675
1676                 if (begin >= end)
1677                         break;
1678
1679                 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1680                 if (r)
1681                         return r;
1682
1683                 total_count += count;
1684         }
1685
1686         td->mapped_blocks -= total_count;
1687         td->changed = 1;
1688
1689         /*
1690          * Reinsert the mapping tree.
1691          */
1692         value = cpu_to_le64(mapping_root);
1693         __dm_bless_for_disk(&value);
1694         return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1695 }
1696
1697 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1698 {
1699         int r = -EINVAL;
1700
1701         pmd_write_lock(td->pmd);
1702         if (!td->pmd->fail_io)
1703                 r = __remove(td, block);
1704         pmd_write_unlock(td->pmd);
1705
1706         return r;
1707 }
1708
1709 int dm_thin_remove_range(struct dm_thin_device *td,
1710                          dm_block_t begin, dm_block_t end)
1711 {
1712         int r = -EINVAL;
1713
1714         pmd_write_lock(td->pmd);
1715         if (!td->pmd->fail_io)
1716                 r = __remove_range(td, begin, end);
1717         pmd_write_unlock(td->pmd);
1718
1719         return r;
1720 }
1721
1722 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1723 {
1724         int r;
1725         uint32_t ref_count;
1726
1727         down_read(&pmd->root_lock);
1728         r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1729         if (!r)
1730                 *result = (ref_count > 1);
1731         up_read(&pmd->root_lock);
1732
1733         return r;
1734 }
1735
1736 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1737 {
1738         int r = 0;
1739
1740         pmd_write_lock(pmd);
1741         for (; b != e; b++) {
1742                 r = dm_sm_inc_block(pmd->data_sm, b);
1743                 if (r)
1744                         break;
1745         }
1746         pmd_write_unlock(pmd);
1747
1748         return r;
1749 }
1750
1751 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1752 {
1753         int r = 0;
1754
1755         pmd_write_lock(pmd);
1756         for (; b != e; b++) {
1757                 r = dm_sm_dec_block(pmd->data_sm, b);
1758                 if (r)
1759                         break;
1760         }
1761         pmd_write_unlock(pmd);
1762
1763         return r;
1764 }
1765
1766 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1767 {
1768         int r;
1769
1770         down_read(&td->pmd->root_lock);
1771         r = td->changed;
1772         up_read(&td->pmd->root_lock);
1773
1774         return r;
1775 }
1776
1777 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1778 {
1779         bool r = false;
1780         struct dm_thin_device *td, *tmp;
1781
1782         down_read(&pmd->root_lock);
1783         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1784                 if (td->changed) {
1785                         r = td->changed;
1786                         break;
1787                 }
1788         }
1789         up_read(&pmd->root_lock);
1790
1791         return r;
1792 }
1793
1794 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1795 {
1796         bool r;
1797
1798         down_read(&td->pmd->root_lock);
1799         r = td->aborted_with_changes;
1800         up_read(&td->pmd->root_lock);
1801
1802         return r;
1803 }
1804
1805 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1806 {
1807         int r = -EINVAL;
1808
1809         pmd_write_lock(pmd);
1810         if (!pmd->fail_io)
1811                 r = dm_sm_new_block(pmd->data_sm, result);
1812         pmd_write_unlock(pmd);
1813
1814         return r;
1815 }
1816
1817 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1818 {
1819         int r = -EINVAL;
1820
1821         /*
1822          * Care is taken to not have commit be what
1823          * triggers putting the thin-pool in-service.
1824          */
1825         __pmd_write_lock(pmd);
1826         if (pmd->fail_io)
1827                 goto out;
1828
1829         r = __commit_transaction(pmd);
1830         if (r < 0)
1831                 goto out;
1832
1833         /*
1834          * Open the next transaction.
1835          */
1836         r = __begin_transaction(pmd);
1837 out:
1838         pmd_write_unlock(pmd);
1839         return r;
1840 }
1841
1842 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1843 {
1844         struct dm_thin_device *td;
1845
1846         list_for_each_entry(td, &pmd->thin_devices, list)
1847                 td->aborted_with_changes = td->changed;
1848 }
1849
1850 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1851 {
1852         int r = -EINVAL;
1853
1854         pmd_write_lock(pmd);
1855         if (pmd->fail_io)
1856                 goto out;
1857
1858         __set_abort_with_changes_flags(pmd);
1859         __destroy_persistent_data_objects(pmd);
1860         r = __create_persistent_data_objects(pmd, false);
1861         if (r)
1862                 pmd->fail_io = true;
1863
1864 out:
1865         pmd_write_unlock(pmd);
1866
1867         return r;
1868 }
1869
1870 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1871 {
1872         int r = -EINVAL;
1873
1874         down_read(&pmd->root_lock);
1875         if (!pmd->fail_io)
1876                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1877         up_read(&pmd->root_lock);
1878
1879         return r;
1880 }
1881
1882 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1883                                           dm_block_t *result)
1884 {
1885         int r = -EINVAL;
1886
1887         down_read(&pmd->root_lock);
1888         if (!pmd->fail_io)
1889                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1890
1891         if (!r) {
1892                 if (*result < pmd->metadata_reserve)
1893                         *result = 0;
1894                 else
1895                         *result -= pmd->metadata_reserve;
1896         }
1897         up_read(&pmd->root_lock);
1898
1899         return r;
1900 }
1901
1902 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1903                                   dm_block_t *result)
1904 {
1905         int r = -EINVAL;
1906
1907         down_read(&pmd->root_lock);
1908         if (!pmd->fail_io)
1909                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1910         up_read(&pmd->root_lock);
1911
1912         return r;
1913 }
1914
1915 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1916 {
1917         int r = -EINVAL;
1918
1919         down_read(&pmd->root_lock);
1920         if (!pmd->fail_io)
1921                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1922         up_read(&pmd->root_lock);
1923
1924         return r;
1925 }
1926
1927 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1928 {
1929         int r = -EINVAL;
1930         struct dm_pool_metadata *pmd = td->pmd;
1931
1932         down_read(&pmd->root_lock);
1933         if (!pmd->fail_io) {
1934                 *result = td->mapped_blocks;
1935                 r = 0;
1936         }
1937         up_read(&pmd->root_lock);
1938
1939         return r;
1940 }
1941
1942 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1943 {
1944         int r;
1945         __le64 value_le;
1946         dm_block_t thin_root;
1947         struct dm_pool_metadata *pmd = td->pmd;
1948
1949         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1950         if (r)
1951                 return r;
1952
1953         thin_root = le64_to_cpu(value_le);
1954
1955         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1956 }
1957
1958 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1959                                      dm_block_t *result)
1960 {
1961         int r = -EINVAL;
1962         struct dm_pool_metadata *pmd = td->pmd;
1963
1964         down_read(&pmd->root_lock);
1965         if (!pmd->fail_io)
1966                 r = __highest_block(td, result);
1967         up_read(&pmd->root_lock);
1968
1969         return r;
1970 }
1971
1972 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1973 {
1974         int r;
1975         dm_block_t old_count;
1976
1977         r = dm_sm_get_nr_blocks(sm, &old_count);
1978         if (r)
1979                 return r;
1980
1981         if (new_count == old_count)
1982                 return 0;
1983
1984         if (new_count < old_count) {
1985                 DMERR("cannot reduce size of space map");
1986                 return -EINVAL;
1987         }
1988
1989         return dm_sm_extend(sm, new_count - old_count);
1990 }
1991
1992 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1993 {
1994         int r = -EINVAL;
1995
1996         pmd_write_lock(pmd);
1997         if (!pmd->fail_io)
1998                 r = __resize_space_map(pmd->data_sm, new_count);
1999         pmd_write_unlock(pmd);
2000
2001         return r;
2002 }
2003
2004 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2005 {
2006         int r = -EINVAL;
2007
2008         pmd_write_lock(pmd);
2009         if (!pmd->fail_io) {
2010                 r = __resize_space_map(pmd->metadata_sm, new_count);
2011                 if (!r)
2012                         __set_metadata_reserve(pmd);
2013         }
2014         pmd_write_unlock(pmd);
2015
2016         return r;
2017 }
2018
2019 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2020 {
2021         pmd_write_lock_in_core(pmd);
2022         dm_bm_set_read_only(pmd->bm);
2023         pmd_write_unlock(pmd);
2024 }
2025
2026 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2027 {
2028         pmd_write_lock_in_core(pmd);
2029         dm_bm_set_read_write(pmd->bm);
2030         pmd_write_unlock(pmd);
2031 }
2032
2033 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2034                                         dm_block_t threshold,
2035                                         dm_sm_threshold_fn fn,
2036                                         void *context)
2037 {
2038         int r;
2039
2040         pmd_write_lock_in_core(pmd);
2041         r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2042         pmd_write_unlock(pmd);
2043
2044         return r;
2045 }
2046
2047 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2048 {
2049         int r = -EINVAL;
2050         struct dm_block *sblock;
2051         struct thin_disk_superblock *disk_super;
2052
2053         pmd_write_lock(pmd);
2054         if (pmd->fail_io)
2055                 goto out;
2056
2057         pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2058
2059         r = superblock_lock(pmd, &sblock);
2060         if (r) {
2061                 DMERR("couldn't lock superblock");
2062                 goto out;
2063         }
2064
2065         disk_super = dm_block_data(sblock);
2066         disk_super->flags = cpu_to_le32(pmd->flags);
2067
2068         dm_bm_unlock(sblock);
2069 out:
2070         pmd_write_unlock(pmd);
2071         return r;
2072 }
2073
2074 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2075 {
2076         bool needs_check;
2077
2078         down_read(&pmd->root_lock);
2079         needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2080         up_read(&pmd->root_lock);
2081
2082         return needs_check;
2083 }
2084
2085 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2086 {
2087         down_read(&pmd->root_lock);
2088         if (!pmd->fail_io)
2089                 dm_tm_issue_prefetches(pmd->tm);
2090         up_read(&pmd->root_lock);
2091 }