dm-bow: Fix 5.15 compatibility issue
[platform/kernel/linux-rpi.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 40
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99         __le32 csum;    /* Checksum of superblock except for this field. */
100         __le32 flags;
101         __le64 blocknr; /* This block number, dm_block_t. */
102
103         __u8 uuid[16];
104         __le64 magic;
105         __le32 version;
106         __le32 time;
107
108         __le64 trans_id;
109
110         /*
111          * Root held by userspace transactions.
112          */
113         __le64 held_root;
114
115         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118         /*
119          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120          */
121         __le64 data_mapping_root;
122
123         /*
124          * Device detail root mapping dev_id -> device_details
125          */
126         __le64 device_details_root;
127
128         __le32 data_block_size;         /* In 512-byte sectors. */
129
130         __le32 metadata_block_size;     /* In 512-byte sectors. */
131         __le64 metadata_nr_blocks;
132
133         __le32 compat_flags;
134         __le32 compat_ro_flags;
135         __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139         __le64 mapped_blocks;
140         __le64 transaction_id;          /* When created. */
141         __le32 creation_time;
142         __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146         struct hlist_node hash;
147
148         struct block_device *bdev;
149         struct dm_block_manager *bm;
150         struct dm_space_map *metadata_sm;
151         struct dm_space_map *data_sm;
152         struct dm_transaction_manager *tm;
153         struct dm_transaction_manager *nb_tm;
154
155         /*
156          * Two-level btree.
157          * First level holds thin_dev_t.
158          * Second level holds mappings.
159          */
160         struct dm_btree_info info;
161
162         /*
163          * Non-blocking version of the above.
164          */
165         struct dm_btree_info nb_info;
166
167         /*
168          * Just the top level for deleting whole devices.
169          */
170         struct dm_btree_info tl_info;
171
172         /*
173          * Just the bottom level for creating new devices.
174          */
175         struct dm_btree_info bl_info;
176
177         /*
178          * Describes the device details btree.
179          */
180         struct dm_btree_info details_info;
181
182         struct rw_semaphore root_lock;
183         uint32_t time;
184         dm_block_t root;
185         dm_block_t details_root;
186         struct list_head thin_devices;
187         uint64_t trans_id;
188         unsigned long flags;
189         sector_t data_block_size;
190
191         /*
192          * Pre-commit callback.
193          *
194          * This allows the thin provisioning target to run a callback before
195          * the metadata are committed.
196          */
197         dm_pool_pre_commit_fn pre_commit_fn;
198         void *pre_commit_context;
199
200         /*
201          * We reserve a section of the metadata for commit overhead.
202          * All reported space does *not* include this.
203          */
204         dm_block_t metadata_reserve;
205
206         /*
207          * Set if a transaction has to be aborted but the attempt to roll back
208          * to the previous (good) transaction failed.  The only pool metadata
209          * operation possible in this state is the closing of the device.
210          */
211         bool fail_io:1;
212
213         /*
214          * Set once a thin-pool has been accessed through one of the interfaces
215          * that imply the pool is in-service (e.g. thin devices created/deleted,
216          * thin-pool message, metadata snapshots, etc).
217          */
218         bool in_service:1;
219
220         /*
221          * Reading the space map roots can fail, so we read it into these
222          * buffers before the superblock is locked and updated.
223          */
224         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227
228 struct dm_thin_device {
229         struct list_head list;
230         struct dm_pool_metadata *pmd;
231         dm_thin_id id;
232
233         int open_count;
234         bool changed:1;
235         bool aborted_with_changes:1;
236         uint64_t mapped_blocks;
237         uint64_t transaction_id;
238         uint32_t creation_time;
239         uint32_t snapshotted_time;
240 };
241
242 /*----------------------------------------------------------------
243  * superblock validator
244  *--------------------------------------------------------------*/
245
246 #define SUPERBLOCK_CSUM_XOR 160774
247
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249                                  struct dm_block *b,
250                                  size_t block_size)
251 {
252         struct thin_disk_superblock *disk_super = dm_block_data(b);
253
254         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256                                                       block_size - sizeof(__le32),
257                                                       SUPERBLOCK_CSUM_XOR));
258 }
259
260 static int sb_check(struct dm_block_validator *v,
261                     struct dm_block *b,
262                     size_t block_size)
263 {
264         struct thin_disk_superblock *disk_super = dm_block_data(b);
265         __le32 csum_le;
266
267         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268                 DMERR("sb_check failed: blocknr %llu: "
269                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
270                       (unsigned long long)dm_block_location(b));
271                 return -ENOTBLK;
272         }
273
274         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275                 DMERR("sb_check failed: magic %llu: "
276                       "wanted %llu", le64_to_cpu(disk_super->magic),
277                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278                 return -EILSEQ;
279         }
280
281         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282                                              block_size - sizeof(__le32),
283                                              SUPERBLOCK_CSUM_XOR));
284         if (csum_le != disk_super->csum) {
285                 DMERR("sb_check failed: csum %u: wanted %u",
286                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287                 return -EILSEQ;
288         }
289
290         return 0;
291 }
292
293 static struct dm_block_validator sb_validator = {
294         .name = "superblock",
295         .prepare_for_write = sb_prepare_for_write,
296         .check = sb_check
297 };
298
299 /*----------------------------------------------------------------
300  * Methods for the btree value types
301  *--------------------------------------------------------------*/
302
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305         return (b << 24) | t;
306 }
307
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310         *b = v >> 24;
311         *t = v & ((1 << 24) - 1);
312 }
313
314 /*
315  * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
316  * possible.  'with_runs' reads contiguous runs of blocks, and calls the
317  * given sm function.
318  */
319 typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
320
321 static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned count, run_fn fn)
322 {
323         uint64_t b, begin, end;
324         uint32_t t;
325         bool in_run = false;
326         unsigned i;
327
328         for (i = 0; i < count; i++, value_le++) {
329                 /* We know value_le is 8 byte aligned */
330                 unpack_block_time(le64_to_cpu(*value_le), &b, &t);
331
332                 if (in_run) {
333                         if (b == end) {
334                                 end++;
335                         } else {
336                                 fn(sm, begin, end);
337                                 begin = b;
338                                 end = b + 1;
339                         }
340                 } else {
341                         in_run = true;
342                         begin = b;
343                         end = b + 1;
344                 }
345         }
346
347         if (in_run)
348                 fn(sm, begin, end);
349 }
350
351 static void data_block_inc(void *context, const void *value_le, unsigned count)
352 {
353         with_runs((struct dm_space_map *) context,
354                   (const __le64 *) value_le, count, dm_sm_inc_blocks);
355 }
356
357 static void data_block_dec(void *context, const void *value_le, unsigned count)
358 {
359         with_runs((struct dm_space_map *) context,
360                   (const __le64 *) value_le, count, dm_sm_dec_blocks);
361 }
362
363 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
364 {
365         __le64 v1_le, v2_le;
366         uint64_t b1, b2;
367         uint32_t t;
368
369         memcpy(&v1_le, value1_le, sizeof(v1_le));
370         memcpy(&v2_le, value2_le, sizeof(v2_le));
371         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
372         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
373
374         return b1 == b2;
375 }
376
377 static void subtree_inc(void *context, const void *value, unsigned count)
378 {
379         struct dm_btree_info *info = context;
380         const __le64 *root_le = value;
381         unsigned i;
382
383         for (i = 0; i < count; i++, root_le++)
384                 dm_tm_inc(info->tm, le64_to_cpu(*root_le));
385 }
386
387 static void subtree_dec(void *context, const void *value, unsigned count)
388 {
389         struct dm_btree_info *info = context;
390         const __le64 *root_le = value;
391         unsigned i;
392
393         for (i = 0; i < count; i++, root_le++)
394                 if (dm_btree_del(info, le64_to_cpu(*root_le)))
395                         DMERR("btree delete failed");
396 }
397
398 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
399 {
400         __le64 v1_le, v2_le;
401         memcpy(&v1_le, value1_le, sizeof(v1_le));
402         memcpy(&v2_le, value2_le, sizeof(v2_le));
403
404         return v1_le == v2_le;
405 }
406
407 /*----------------------------------------------------------------*/
408
409 /*
410  * Variant that is used for in-core only changes or code that
411  * shouldn't put the pool in service on its own (e.g. commit).
412  */
413 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
414         __acquires(pmd->root_lock)
415 {
416         down_write(&pmd->root_lock);
417 }
418
419 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
420 {
421         pmd_write_lock_in_core(pmd);
422         if (unlikely(!pmd->in_service))
423                 pmd->in_service = true;
424 }
425
426 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
427         __releases(pmd->root_lock)
428 {
429         up_write(&pmd->root_lock);
430 }
431
432 /*----------------------------------------------------------------*/
433
434 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
435                                 struct dm_block **sblock)
436 {
437         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
438                                      &sb_validator, sblock);
439 }
440
441 static int superblock_lock(struct dm_pool_metadata *pmd,
442                            struct dm_block **sblock)
443 {
444         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
445                                 &sb_validator, sblock);
446 }
447
448 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
449 {
450         int r;
451         unsigned i;
452         struct dm_block *b;
453         __le64 *data_le, zero = cpu_to_le64(0);
454         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
455
456         /*
457          * We can't use a validator here - it may be all zeroes.
458          */
459         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
460         if (r)
461                 return r;
462
463         data_le = dm_block_data(b);
464         *result = 1;
465         for (i = 0; i < block_size; i++) {
466                 if (data_le[i] != zero) {
467                         *result = 0;
468                         break;
469                 }
470         }
471
472         dm_bm_unlock(b);
473
474         return 0;
475 }
476
477 static void __setup_btree_details(struct dm_pool_metadata *pmd)
478 {
479         pmd->info.tm = pmd->tm;
480         pmd->info.levels = 2;
481         pmd->info.value_type.context = pmd->data_sm;
482         pmd->info.value_type.size = sizeof(__le64);
483         pmd->info.value_type.inc = data_block_inc;
484         pmd->info.value_type.dec = data_block_dec;
485         pmd->info.value_type.equal = data_block_equal;
486
487         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
488         pmd->nb_info.tm = pmd->nb_tm;
489
490         pmd->tl_info.tm = pmd->tm;
491         pmd->tl_info.levels = 1;
492         pmd->tl_info.value_type.context = &pmd->bl_info;
493         pmd->tl_info.value_type.size = sizeof(__le64);
494         pmd->tl_info.value_type.inc = subtree_inc;
495         pmd->tl_info.value_type.dec = subtree_dec;
496         pmd->tl_info.value_type.equal = subtree_equal;
497
498         pmd->bl_info.tm = pmd->tm;
499         pmd->bl_info.levels = 1;
500         pmd->bl_info.value_type.context = pmd->data_sm;
501         pmd->bl_info.value_type.size = sizeof(__le64);
502         pmd->bl_info.value_type.inc = data_block_inc;
503         pmd->bl_info.value_type.dec = data_block_dec;
504         pmd->bl_info.value_type.equal = data_block_equal;
505
506         pmd->details_info.tm = pmd->tm;
507         pmd->details_info.levels = 1;
508         pmd->details_info.value_type.context = NULL;
509         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
510         pmd->details_info.value_type.inc = NULL;
511         pmd->details_info.value_type.dec = NULL;
512         pmd->details_info.value_type.equal = NULL;
513 }
514
515 static int save_sm_roots(struct dm_pool_metadata *pmd)
516 {
517         int r;
518         size_t len;
519
520         r = dm_sm_root_size(pmd->metadata_sm, &len);
521         if (r < 0)
522                 return r;
523
524         r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
525         if (r < 0)
526                 return r;
527
528         r = dm_sm_root_size(pmd->data_sm, &len);
529         if (r < 0)
530                 return r;
531
532         return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
533 }
534
535 static void copy_sm_roots(struct dm_pool_metadata *pmd,
536                           struct thin_disk_superblock *disk)
537 {
538         memcpy(&disk->metadata_space_map_root,
539                &pmd->metadata_space_map_root,
540                sizeof(pmd->metadata_space_map_root));
541
542         memcpy(&disk->data_space_map_root,
543                &pmd->data_space_map_root,
544                sizeof(pmd->data_space_map_root));
545 }
546
547 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
548 {
549         int r;
550         struct dm_block *sblock;
551         struct thin_disk_superblock *disk_super;
552         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
553
554         if (bdev_size > THIN_METADATA_MAX_SECTORS)
555                 bdev_size = THIN_METADATA_MAX_SECTORS;
556
557         r = dm_sm_commit(pmd->data_sm);
558         if (r < 0)
559                 return r;
560
561         r = dm_tm_pre_commit(pmd->tm);
562         if (r < 0)
563                 return r;
564
565         r = save_sm_roots(pmd);
566         if (r < 0)
567                 return r;
568
569         r = superblock_lock_zero(pmd, &sblock);
570         if (r)
571                 return r;
572
573         disk_super = dm_block_data(sblock);
574         disk_super->flags = 0;
575         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
576         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
577         disk_super->version = cpu_to_le32(THIN_VERSION);
578         disk_super->time = 0;
579         disk_super->trans_id = 0;
580         disk_super->held_root = 0;
581
582         copy_sm_roots(pmd, disk_super);
583
584         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
585         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
586         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
587         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
588         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
589
590         return dm_tm_commit(pmd->tm, sblock);
591 }
592
593 static int __format_metadata(struct dm_pool_metadata *pmd)
594 {
595         int r;
596
597         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
598                                  &pmd->tm, &pmd->metadata_sm);
599         if (r < 0) {
600                 DMERR("tm_create_with_sm failed");
601                 return r;
602         }
603
604         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
605         if (IS_ERR(pmd->data_sm)) {
606                 DMERR("sm_disk_create failed");
607                 r = PTR_ERR(pmd->data_sm);
608                 goto bad_cleanup_tm;
609         }
610
611         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
612         if (!pmd->nb_tm) {
613                 DMERR("could not create non-blocking clone tm");
614                 r = -ENOMEM;
615                 goto bad_cleanup_data_sm;
616         }
617
618         __setup_btree_details(pmd);
619
620         r = dm_btree_empty(&pmd->info, &pmd->root);
621         if (r < 0)
622                 goto bad_cleanup_nb_tm;
623
624         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
625         if (r < 0) {
626                 DMERR("couldn't create devices root");
627                 goto bad_cleanup_nb_tm;
628         }
629
630         r = __write_initial_superblock(pmd);
631         if (r)
632                 goto bad_cleanup_nb_tm;
633
634         return 0;
635
636 bad_cleanup_nb_tm:
637         dm_tm_destroy(pmd->nb_tm);
638 bad_cleanup_data_sm:
639         dm_sm_destroy(pmd->data_sm);
640 bad_cleanup_tm:
641         dm_tm_destroy(pmd->tm);
642         dm_sm_destroy(pmd->metadata_sm);
643
644         return r;
645 }
646
647 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
648                                      struct dm_pool_metadata *pmd)
649 {
650         uint32_t features;
651
652         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
653         if (features) {
654                 DMERR("could not access metadata due to unsupported optional features (%lx).",
655                       (unsigned long)features);
656                 return -EINVAL;
657         }
658
659         /*
660          * Check for read-only metadata to skip the following RDWR checks.
661          */
662         if (bdev_read_only(pmd->bdev))
663                 return 0;
664
665         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
666         if (features) {
667                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
668                       (unsigned long)features);
669                 return -EINVAL;
670         }
671
672         return 0;
673 }
674
675 static int __open_metadata(struct dm_pool_metadata *pmd)
676 {
677         int r;
678         struct dm_block *sblock;
679         struct thin_disk_superblock *disk_super;
680
681         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
682                             &sb_validator, &sblock);
683         if (r < 0) {
684                 DMERR("couldn't read superblock");
685                 return r;
686         }
687
688         disk_super = dm_block_data(sblock);
689
690         /* Verify the data block size hasn't changed */
691         if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
692                 DMERR("changing the data block size (from %u to %llu) is not supported",
693                       le32_to_cpu(disk_super->data_block_size),
694                       (unsigned long long)pmd->data_block_size);
695                 r = -EINVAL;
696                 goto bad_unlock_sblock;
697         }
698
699         r = __check_incompat_features(disk_super, pmd);
700         if (r < 0)
701                 goto bad_unlock_sblock;
702
703         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
704                                disk_super->metadata_space_map_root,
705                                sizeof(disk_super->metadata_space_map_root),
706                                &pmd->tm, &pmd->metadata_sm);
707         if (r < 0) {
708                 DMERR("tm_open_with_sm failed");
709                 goto bad_unlock_sblock;
710         }
711
712         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
713                                        sizeof(disk_super->data_space_map_root));
714         if (IS_ERR(pmd->data_sm)) {
715                 DMERR("sm_disk_open failed");
716                 r = PTR_ERR(pmd->data_sm);
717                 goto bad_cleanup_tm;
718         }
719
720         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
721         if (!pmd->nb_tm) {
722                 DMERR("could not create non-blocking clone tm");
723                 r = -ENOMEM;
724                 goto bad_cleanup_data_sm;
725         }
726
727         /*
728          * For pool metadata opening process, root setting is redundant
729          * because it will be set again in __begin_transaction(). But dm
730          * pool aborting process really needs to get last transaction's
731          * root to avoid accessing broken btree.
732          */
733         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
734         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
735
736         __setup_btree_details(pmd);
737         dm_bm_unlock(sblock);
738
739         return 0;
740
741 bad_cleanup_data_sm:
742         dm_sm_destroy(pmd->data_sm);
743 bad_cleanup_tm:
744         dm_tm_destroy(pmd->tm);
745         dm_sm_destroy(pmd->metadata_sm);
746 bad_unlock_sblock:
747         dm_bm_unlock(sblock);
748
749         return r;
750 }
751
752 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
753 {
754         int r, unformatted;
755
756         r = __superblock_all_zeroes(pmd->bm, &unformatted);
757         if (r)
758                 return r;
759
760         if (unformatted)
761                 return format_device ? __format_metadata(pmd) : -EPERM;
762
763         return __open_metadata(pmd);
764 }
765
766 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
767 {
768         int r;
769
770         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
771                                           THIN_MAX_CONCURRENT_LOCKS);
772         if (IS_ERR(pmd->bm)) {
773                 DMERR("could not create block manager");
774                 r = PTR_ERR(pmd->bm);
775                 pmd->bm = NULL;
776                 return r;
777         }
778
779         r = __open_or_format_metadata(pmd, format_device);
780         if (r) {
781                 dm_block_manager_destroy(pmd->bm);
782                 pmd->bm = NULL;
783         }
784
785         return r;
786 }
787
788 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd,
789                                               bool destroy_bm)
790 {
791         dm_sm_destroy(pmd->data_sm);
792         dm_sm_destroy(pmd->metadata_sm);
793         dm_tm_destroy(pmd->nb_tm);
794         dm_tm_destroy(pmd->tm);
795         if (destroy_bm)
796                 dm_block_manager_destroy(pmd->bm);
797 }
798
799 static int __begin_transaction(struct dm_pool_metadata *pmd)
800 {
801         int r;
802         struct thin_disk_superblock *disk_super;
803         struct dm_block *sblock;
804
805         /*
806          * We re-read the superblock every time.  Shouldn't need to do this
807          * really.
808          */
809         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
810                             &sb_validator, &sblock);
811         if (r)
812                 return r;
813
814         disk_super = dm_block_data(sblock);
815         pmd->time = le32_to_cpu(disk_super->time);
816         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
817         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
818         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
819         pmd->flags = le32_to_cpu(disk_super->flags);
820         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
821
822         dm_bm_unlock(sblock);
823         return 0;
824 }
825
826 static int __write_changed_details(struct dm_pool_metadata *pmd)
827 {
828         int r;
829         struct dm_thin_device *td, *tmp;
830         struct disk_device_details details;
831         uint64_t key;
832
833         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
834                 if (!td->changed)
835                         continue;
836
837                 key = td->id;
838
839                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
840                 details.transaction_id = cpu_to_le64(td->transaction_id);
841                 details.creation_time = cpu_to_le32(td->creation_time);
842                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
843                 __dm_bless_for_disk(&details);
844
845                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
846                                     &key, &details, &pmd->details_root);
847                 if (r)
848                         return r;
849
850                 if (td->open_count)
851                         td->changed = false;
852                 else {
853                         list_del(&td->list);
854                         kfree(td);
855                 }
856         }
857
858         return 0;
859 }
860
861 static int __commit_transaction(struct dm_pool_metadata *pmd)
862 {
863         int r;
864         struct thin_disk_superblock *disk_super;
865         struct dm_block *sblock;
866
867         /*
868          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
869          */
870         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
871         BUG_ON(!rwsem_is_locked(&pmd->root_lock));
872
873         if (unlikely(!pmd->in_service))
874                 return 0;
875
876         if (pmd->pre_commit_fn) {
877                 r = pmd->pre_commit_fn(pmd->pre_commit_context);
878                 if (r < 0) {
879                         DMERR("pre-commit callback failed");
880                         return r;
881                 }
882         }
883
884         r = __write_changed_details(pmd);
885         if (r < 0)
886                 return r;
887
888         r = dm_sm_commit(pmd->data_sm);
889         if (r < 0)
890                 return r;
891
892         r = dm_tm_pre_commit(pmd->tm);
893         if (r < 0)
894                 return r;
895
896         r = save_sm_roots(pmd);
897         if (r < 0)
898                 return r;
899
900         r = superblock_lock(pmd, &sblock);
901         if (r)
902                 return r;
903
904         disk_super = dm_block_data(sblock);
905         disk_super->time = cpu_to_le32(pmd->time);
906         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
907         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
908         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
909         disk_super->flags = cpu_to_le32(pmd->flags);
910
911         copy_sm_roots(pmd, disk_super);
912
913         return dm_tm_commit(pmd->tm, sblock);
914 }
915
916 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
917 {
918         int r;
919         dm_block_t total;
920         dm_block_t max_blocks = 4096; /* 16M */
921
922         r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
923         if (r) {
924                 DMERR("could not get size of metadata device");
925                 pmd->metadata_reserve = max_blocks;
926         } else
927                 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
928 }
929
930 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
931                                                sector_t data_block_size,
932                                                bool format_device)
933 {
934         int r;
935         struct dm_pool_metadata *pmd;
936
937         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
938         if (!pmd) {
939                 DMERR("could not allocate metadata struct");
940                 return ERR_PTR(-ENOMEM);
941         }
942
943         init_rwsem(&pmd->root_lock);
944         pmd->time = 0;
945         INIT_LIST_HEAD(&pmd->thin_devices);
946         pmd->fail_io = false;
947         pmd->in_service = false;
948         pmd->bdev = bdev;
949         pmd->data_block_size = data_block_size;
950         pmd->pre_commit_fn = NULL;
951         pmd->pre_commit_context = NULL;
952
953         r = __create_persistent_data_objects(pmd, format_device);
954         if (r) {
955                 kfree(pmd);
956                 return ERR_PTR(r);
957         }
958
959         r = __begin_transaction(pmd);
960         if (r < 0) {
961                 if (dm_pool_metadata_close(pmd) < 0)
962                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
963                 return ERR_PTR(r);
964         }
965
966         __set_metadata_reserve(pmd);
967
968         return pmd;
969 }
970
971 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
972 {
973         int r;
974         unsigned open_devices = 0;
975         struct dm_thin_device *td, *tmp;
976
977         down_read(&pmd->root_lock);
978         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
979                 if (td->open_count)
980                         open_devices++;
981                 else {
982                         list_del(&td->list);
983                         kfree(td);
984                 }
985         }
986         up_read(&pmd->root_lock);
987
988         if (open_devices) {
989                 DMERR("attempt to close pmd when %u device(s) are still open",
990                        open_devices);
991                 return -EBUSY;
992         }
993
994         pmd_write_lock_in_core(pmd);
995         if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
996                 r = __commit_transaction(pmd);
997                 if (r < 0)
998                         DMWARN("%s: __commit_transaction() failed, error = %d",
999                                __func__, r);
1000         }
1001         pmd_write_unlock(pmd);
1002         if (!pmd->fail_io)
1003                 __destroy_persistent_data_objects(pmd, true);
1004
1005         kfree(pmd);
1006         return 0;
1007 }
1008
1009 /*
1010  * __open_device: Returns @td corresponding to device with id @dev,
1011  * creating it if @create is set and incrementing @td->open_count.
1012  * On failure, @td is undefined.
1013  */
1014 static int __open_device(struct dm_pool_metadata *pmd,
1015                          dm_thin_id dev, int create,
1016                          struct dm_thin_device **td)
1017 {
1018         int r, changed = 0;
1019         struct dm_thin_device *td2;
1020         uint64_t key = dev;
1021         struct disk_device_details details_le;
1022
1023         /*
1024          * If the device is already open, return it.
1025          */
1026         list_for_each_entry(td2, &pmd->thin_devices, list)
1027                 if (td2->id == dev) {
1028                         /*
1029                          * May not create an already-open device.
1030                          */
1031                         if (create)
1032                                 return -EEXIST;
1033
1034                         td2->open_count++;
1035                         *td = td2;
1036                         return 0;
1037                 }
1038
1039         /*
1040          * Check the device exists.
1041          */
1042         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1043                             &key, &details_le);
1044         if (r) {
1045                 if (r != -ENODATA || !create)
1046                         return r;
1047
1048                 /*
1049                  * Create new device.
1050                  */
1051                 changed = 1;
1052                 details_le.mapped_blocks = 0;
1053                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1054                 details_le.creation_time = cpu_to_le32(pmd->time);
1055                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
1056         }
1057
1058         *td = kmalloc(sizeof(**td), GFP_NOIO);
1059         if (!*td)
1060                 return -ENOMEM;
1061
1062         (*td)->pmd = pmd;
1063         (*td)->id = dev;
1064         (*td)->open_count = 1;
1065         (*td)->changed = changed;
1066         (*td)->aborted_with_changes = false;
1067         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1068         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1069         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1070         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1071
1072         list_add(&(*td)->list, &pmd->thin_devices);
1073
1074         return 0;
1075 }
1076
1077 static void __close_device(struct dm_thin_device *td)
1078 {
1079         --td->open_count;
1080 }
1081
1082 static int __create_thin(struct dm_pool_metadata *pmd,
1083                          dm_thin_id dev)
1084 {
1085         int r;
1086         dm_block_t dev_root;
1087         uint64_t key = dev;
1088         struct dm_thin_device *td;
1089         __le64 value;
1090
1091         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1092                             &key, NULL);
1093         if (!r)
1094                 return -EEXIST;
1095
1096         /*
1097          * Create an empty btree for the mappings.
1098          */
1099         r = dm_btree_empty(&pmd->bl_info, &dev_root);
1100         if (r)
1101                 return r;
1102
1103         /*
1104          * Insert it into the main mapping tree.
1105          */
1106         value = cpu_to_le64(dev_root);
1107         __dm_bless_for_disk(&value);
1108         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1109         if (r) {
1110                 dm_btree_del(&pmd->bl_info, dev_root);
1111                 return r;
1112         }
1113
1114         r = __open_device(pmd, dev, 1, &td);
1115         if (r) {
1116                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1117                 dm_btree_del(&pmd->bl_info, dev_root);
1118                 return r;
1119         }
1120         __close_device(td);
1121
1122         return r;
1123 }
1124
1125 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1126 {
1127         int r = -EINVAL;
1128
1129         pmd_write_lock(pmd);
1130         if (!pmd->fail_io)
1131                 r = __create_thin(pmd, dev);
1132         pmd_write_unlock(pmd);
1133
1134         return r;
1135 }
1136
1137 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1138                                   struct dm_thin_device *snap,
1139                                   dm_thin_id origin, uint32_t time)
1140 {
1141         int r;
1142         struct dm_thin_device *td;
1143
1144         r = __open_device(pmd, origin, 0, &td);
1145         if (r)
1146                 return r;
1147
1148         td->changed = true;
1149         td->snapshotted_time = time;
1150
1151         snap->mapped_blocks = td->mapped_blocks;
1152         snap->snapshotted_time = time;
1153         __close_device(td);
1154
1155         return 0;
1156 }
1157
1158 static int __create_snap(struct dm_pool_metadata *pmd,
1159                          dm_thin_id dev, dm_thin_id origin)
1160 {
1161         int r;
1162         dm_block_t origin_root;
1163         uint64_t key = origin, dev_key = dev;
1164         struct dm_thin_device *td;
1165         __le64 value;
1166
1167         /* check this device is unused */
1168         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1169                             &dev_key, NULL);
1170         if (!r)
1171                 return -EEXIST;
1172
1173         /* find the mapping tree for the origin */
1174         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1175         if (r)
1176                 return r;
1177         origin_root = le64_to_cpu(value);
1178
1179         /* clone the origin, an inc will do */
1180         dm_tm_inc(pmd->tm, origin_root);
1181
1182         /* insert into the main mapping tree */
1183         value = cpu_to_le64(origin_root);
1184         __dm_bless_for_disk(&value);
1185         key = dev;
1186         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1187         if (r) {
1188                 dm_tm_dec(pmd->tm, origin_root);
1189                 return r;
1190         }
1191
1192         pmd->time++;
1193
1194         r = __open_device(pmd, dev, 1, &td);
1195         if (r)
1196                 goto bad;
1197
1198         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1199         __close_device(td);
1200
1201         if (r)
1202                 goto bad;
1203
1204         return 0;
1205
1206 bad:
1207         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1208         dm_btree_remove(&pmd->details_info, pmd->details_root,
1209                         &key, &pmd->details_root);
1210         return r;
1211 }
1212
1213 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1214                                  dm_thin_id dev,
1215                                  dm_thin_id origin)
1216 {
1217         int r = -EINVAL;
1218
1219         pmd_write_lock(pmd);
1220         if (!pmd->fail_io)
1221                 r = __create_snap(pmd, dev, origin);
1222         pmd_write_unlock(pmd);
1223
1224         return r;
1225 }
1226
1227 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1228 {
1229         int r;
1230         uint64_t key = dev;
1231         struct dm_thin_device *td;
1232
1233         /* TODO: failure should mark the transaction invalid */
1234         r = __open_device(pmd, dev, 0, &td);
1235         if (r)
1236                 return r;
1237
1238         if (td->open_count > 1) {
1239                 __close_device(td);
1240                 return -EBUSY;
1241         }
1242
1243         list_del(&td->list);
1244         kfree(td);
1245         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1246                             &key, &pmd->details_root);
1247         if (r)
1248                 return r;
1249
1250         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1251         if (r)
1252                 return r;
1253
1254         return 0;
1255 }
1256
1257 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1258                                dm_thin_id dev)
1259 {
1260         int r = -EINVAL;
1261
1262         pmd_write_lock(pmd);
1263         if (!pmd->fail_io)
1264                 r = __delete_device(pmd, dev);
1265         pmd_write_unlock(pmd);
1266
1267         return r;
1268 }
1269
1270 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1271                                         uint64_t current_id,
1272                                         uint64_t new_id)
1273 {
1274         int r = -EINVAL;
1275
1276         pmd_write_lock(pmd);
1277
1278         if (pmd->fail_io)
1279                 goto out;
1280
1281         if (pmd->trans_id != current_id) {
1282                 DMERR("mismatched transaction id");
1283                 goto out;
1284         }
1285
1286         pmd->trans_id = new_id;
1287         r = 0;
1288
1289 out:
1290         pmd_write_unlock(pmd);
1291
1292         return r;
1293 }
1294
1295 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1296                                         uint64_t *result)
1297 {
1298         int r = -EINVAL;
1299
1300         down_read(&pmd->root_lock);
1301         if (!pmd->fail_io) {
1302                 *result = pmd->trans_id;
1303                 r = 0;
1304         }
1305         up_read(&pmd->root_lock);
1306
1307         return r;
1308 }
1309
1310 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1311 {
1312         int r, inc;
1313         struct thin_disk_superblock *disk_super;
1314         struct dm_block *copy, *sblock;
1315         dm_block_t held_root;
1316
1317         /*
1318          * We commit to ensure the btree roots which we increment in a
1319          * moment are up to date.
1320          */
1321         r = __commit_transaction(pmd);
1322         if (r < 0) {
1323                 DMWARN("%s: __commit_transaction() failed, error = %d",
1324                        __func__, r);
1325                 return r;
1326         }
1327
1328         /*
1329          * Copy the superblock.
1330          */
1331         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1332         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1333                                &sb_validator, &copy, &inc);
1334         if (r)
1335                 return r;
1336
1337         BUG_ON(!inc);
1338
1339         held_root = dm_block_location(copy);
1340         disk_super = dm_block_data(copy);
1341
1342         if (le64_to_cpu(disk_super->held_root)) {
1343                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1344
1345                 dm_tm_dec(pmd->tm, held_root);
1346                 dm_tm_unlock(pmd->tm, copy);
1347                 return -EBUSY;
1348         }
1349
1350         /*
1351          * Wipe the spacemap since we're not publishing this.
1352          */
1353         memset(&disk_super->data_space_map_root, 0,
1354                sizeof(disk_super->data_space_map_root));
1355         memset(&disk_super->metadata_space_map_root, 0,
1356                sizeof(disk_super->metadata_space_map_root));
1357
1358         /*
1359          * Increment the data structures that need to be preserved.
1360          */
1361         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1362         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1363         dm_tm_unlock(pmd->tm, copy);
1364
1365         /*
1366          * Write the held root into the superblock.
1367          */
1368         r = superblock_lock(pmd, &sblock);
1369         if (r) {
1370                 dm_tm_dec(pmd->tm, held_root);
1371                 return r;
1372         }
1373
1374         disk_super = dm_block_data(sblock);
1375         disk_super->held_root = cpu_to_le64(held_root);
1376         dm_bm_unlock(sblock);
1377         return 0;
1378 }
1379
1380 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1381 {
1382         int r = -EINVAL;
1383
1384         pmd_write_lock(pmd);
1385         if (!pmd->fail_io)
1386                 r = __reserve_metadata_snap(pmd);
1387         pmd_write_unlock(pmd);
1388
1389         return r;
1390 }
1391
1392 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1393 {
1394         int r;
1395         struct thin_disk_superblock *disk_super;
1396         struct dm_block *sblock, *copy;
1397         dm_block_t held_root;
1398
1399         r = superblock_lock(pmd, &sblock);
1400         if (r)
1401                 return r;
1402
1403         disk_super = dm_block_data(sblock);
1404         held_root = le64_to_cpu(disk_super->held_root);
1405         disk_super->held_root = cpu_to_le64(0);
1406
1407         dm_bm_unlock(sblock);
1408
1409         if (!held_root) {
1410                 DMWARN("No pool metadata snapshot found: nothing to release.");
1411                 return -EINVAL;
1412         }
1413
1414         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1415         if (r)
1416                 return r;
1417
1418         disk_super = dm_block_data(copy);
1419         dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1420         dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1421         dm_sm_dec_block(pmd->metadata_sm, held_root);
1422
1423         dm_tm_unlock(pmd->tm, copy);
1424
1425         return 0;
1426 }
1427
1428 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1429 {
1430         int r = -EINVAL;
1431
1432         pmd_write_lock(pmd);
1433         if (!pmd->fail_io)
1434                 r = __release_metadata_snap(pmd);
1435         pmd_write_unlock(pmd);
1436
1437         return r;
1438 }
1439
1440 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1441                                dm_block_t *result)
1442 {
1443         int r;
1444         struct thin_disk_superblock *disk_super;
1445         struct dm_block *sblock;
1446
1447         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1448                             &sb_validator, &sblock);
1449         if (r)
1450                 return r;
1451
1452         disk_super = dm_block_data(sblock);
1453         *result = le64_to_cpu(disk_super->held_root);
1454
1455         dm_bm_unlock(sblock);
1456
1457         return 0;
1458 }
1459
1460 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1461                               dm_block_t *result)
1462 {
1463         int r = -EINVAL;
1464
1465         down_read(&pmd->root_lock);
1466         if (!pmd->fail_io)
1467                 r = __get_metadata_snap(pmd, result);
1468         up_read(&pmd->root_lock);
1469
1470         return r;
1471 }
1472
1473 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1474                              struct dm_thin_device **td)
1475 {
1476         int r = -EINVAL;
1477
1478         pmd_write_lock_in_core(pmd);
1479         if (!pmd->fail_io)
1480                 r = __open_device(pmd, dev, 0, td);
1481         pmd_write_unlock(pmd);
1482
1483         return r;
1484 }
1485
1486 int dm_pool_close_thin_device(struct dm_thin_device *td)
1487 {
1488         pmd_write_lock_in_core(td->pmd);
1489         __close_device(td);
1490         pmd_write_unlock(td->pmd);
1491
1492         return 0;
1493 }
1494
1495 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1496 {
1497         return td->id;
1498 }
1499
1500 /*
1501  * Check whether @time (of block creation) is older than @td's last snapshot.
1502  * If so then the associated block is shared with the last snapshot device.
1503  * Any block on a device created *after* the device last got snapshotted is
1504  * necessarily not shared.
1505  */
1506 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1507 {
1508         return td->snapshotted_time > time;
1509 }
1510
1511 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1512                                  struct dm_thin_lookup_result *result)
1513 {
1514         uint64_t block_time = 0;
1515         dm_block_t exception_block;
1516         uint32_t exception_time;
1517
1518         block_time = le64_to_cpu(value);
1519         unpack_block_time(block_time, &exception_block, &exception_time);
1520         result->block = exception_block;
1521         result->shared = __snapshotted_since(td, exception_time);
1522 }
1523
1524 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1525                         int can_issue_io, struct dm_thin_lookup_result *result)
1526 {
1527         int r;
1528         __le64 value;
1529         struct dm_pool_metadata *pmd = td->pmd;
1530         dm_block_t keys[2] = { td->id, block };
1531         struct dm_btree_info *info;
1532
1533         if (can_issue_io) {
1534                 info = &pmd->info;
1535         } else
1536                 info = &pmd->nb_info;
1537
1538         r = dm_btree_lookup(info, pmd->root, keys, &value);
1539         if (!r)
1540                 unpack_lookup_result(td, value, result);
1541
1542         return r;
1543 }
1544
1545 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1546                        int can_issue_io, struct dm_thin_lookup_result *result)
1547 {
1548         int r;
1549         struct dm_pool_metadata *pmd = td->pmd;
1550
1551         down_read(&pmd->root_lock);
1552         if (pmd->fail_io) {
1553                 up_read(&pmd->root_lock);
1554                 return -EINVAL;
1555         }
1556
1557         r = __find_block(td, block, can_issue_io, result);
1558
1559         up_read(&pmd->root_lock);
1560         return r;
1561 }
1562
1563 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1564                                           dm_block_t *vblock,
1565                                           struct dm_thin_lookup_result *result)
1566 {
1567         int r;
1568         __le64 value;
1569         struct dm_pool_metadata *pmd = td->pmd;
1570         dm_block_t keys[2] = { td->id, block };
1571
1572         r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1573         if (!r)
1574                 unpack_lookup_result(td, value, result);
1575
1576         return r;
1577 }
1578
1579 static int __find_mapped_range(struct dm_thin_device *td,
1580                                dm_block_t begin, dm_block_t end,
1581                                dm_block_t *thin_begin, dm_block_t *thin_end,
1582                                dm_block_t *pool_begin, bool *maybe_shared)
1583 {
1584         int r;
1585         dm_block_t pool_end;
1586         struct dm_thin_lookup_result lookup;
1587
1588         if (end < begin)
1589                 return -ENODATA;
1590
1591         r = __find_next_mapped_block(td, begin, &begin, &lookup);
1592         if (r)
1593                 return r;
1594
1595         if (begin >= end)
1596                 return -ENODATA;
1597
1598         *thin_begin = begin;
1599         *pool_begin = lookup.block;
1600         *maybe_shared = lookup.shared;
1601
1602         begin++;
1603         pool_end = *pool_begin + 1;
1604         while (begin != end) {
1605                 r = __find_block(td, begin, true, &lookup);
1606                 if (r) {
1607                         if (r == -ENODATA)
1608                                 break;
1609                         else
1610                                 return r;
1611                 }
1612
1613                 if ((lookup.block != pool_end) ||
1614                     (lookup.shared != *maybe_shared))
1615                         break;
1616
1617                 pool_end++;
1618                 begin++;
1619         }
1620
1621         *thin_end = begin;
1622         return 0;
1623 }
1624
1625 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1626                               dm_block_t begin, dm_block_t end,
1627                               dm_block_t *thin_begin, dm_block_t *thin_end,
1628                               dm_block_t *pool_begin, bool *maybe_shared)
1629 {
1630         int r = -EINVAL;
1631         struct dm_pool_metadata *pmd = td->pmd;
1632
1633         down_read(&pmd->root_lock);
1634         if (!pmd->fail_io) {
1635                 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1636                                         pool_begin, maybe_shared);
1637         }
1638         up_read(&pmd->root_lock);
1639
1640         return r;
1641 }
1642
1643 static int __insert(struct dm_thin_device *td, dm_block_t block,
1644                     dm_block_t data_block)
1645 {
1646         int r, inserted;
1647         __le64 value;
1648         struct dm_pool_metadata *pmd = td->pmd;
1649         dm_block_t keys[2] = { td->id, block };
1650
1651         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1652         __dm_bless_for_disk(&value);
1653
1654         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1655                                    &pmd->root, &inserted);
1656         if (r)
1657                 return r;
1658
1659         td->changed = true;
1660         if (inserted)
1661                 td->mapped_blocks++;
1662
1663         return 0;
1664 }
1665
1666 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1667                          dm_block_t data_block)
1668 {
1669         int r = -EINVAL;
1670
1671         pmd_write_lock(td->pmd);
1672         if (!td->pmd->fail_io)
1673                 r = __insert(td, block, data_block);
1674         pmd_write_unlock(td->pmd);
1675
1676         return r;
1677 }
1678
1679 static int __remove(struct dm_thin_device *td, dm_block_t block)
1680 {
1681         int r;
1682         struct dm_pool_metadata *pmd = td->pmd;
1683         dm_block_t keys[2] = { td->id, block };
1684
1685         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1686         if (r)
1687                 return r;
1688
1689         td->mapped_blocks--;
1690         td->changed = true;
1691
1692         return 0;
1693 }
1694
1695 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1696 {
1697         int r;
1698         unsigned count, total_count = 0;
1699         struct dm_pool_metadata *pmd = td->pmd;
1700         dm_block_t keys[1] = { td->id };
1701         __le64 value;
1702         dm_block_t mapping_root;
1703
1704         /*
1705          * Find the mapping tree
1706          */
1707         r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1708         if (r)
1709                 return r;
1710
1711         /*
1712          * Remove from the mapping tree, taking care to inc the
1713          * ref count so it doesn't get deleted.
1714          */
1715         mapping_root = le64_to_cpu(value);
1716         dm_tm_inc(pmd->tm, mapping_root);
1717         r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1718         if (r)
1719                 return r;
1720
1721         /*
1722          * Remove leaves stops at the first unmapped entry, so we have to
1723          * loop round finding mapped ranges.
1724          */
1725         while (begin < end) {
1726                 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1727                 if (r == -ENODATA)
1728                         break;
1729
1730                 if (r)
1731                         return r;
1732
1733                 if (begin >= end)
1734                         break;
1735
1736                 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1737                 if (r)
1738                         return r;
1739
1740                 total_count += count;
1741         }
1742
1743         td->mapped_blocks -= total_count;
1744         td->changed = true;
1745
1746         /*
1747          * Reinsert the mapping tree.
1748          */
1749         value = cpu_to_le64(mapping_root);
1750         __dm_bless_for_disk(&value);
1751         return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1752 }
1753
1754 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1755 {
1756         int r = -EINVAL;
1757
1758         pmd_write_lock(td->pmd);
1759         if (!td->pmd->fail_io)
1760                 r = __remove(td, block);
1761         pmd_write_unlock(td->pmd);
1762
1763         return r;
1764 }
1765
1766 int dm_thin_remove_range(struct dm_thin_device *td,
1767                          dm_block_t begin, dm_block_t end)
1768 {
1769         int r = -EINVAL;
1770
1771         pmd_write_lock(td->pmd);
1772         if (!td->pmd->fail_io)
1773                 r = __remove_range(td, begin, end);
1774         pmd_write_unlock(td->pmd);
1775
1776         return r;
1777 }
1778
1779 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1780 {
1781         int r;
1782         uint32_t ref_count;
1783
1784         down_read(&pmd->root_lock);
1785         r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1786         if (!r)
1787                 *result = (ref_count > 1);
1788         up_read(&pmd->root_lock);
1789
1790         return r;
1791 }
1792
1793 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1794 {
1795         int r = 0;
1796
1797         pmd_write_lock(pmd);
1798         r = dm_sm_inc_blocks(pmd->data_sm, b, e);
1799         pmd_write_unlock(pmd);
1800
1801         return r;
1802 }
1803
1804 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1805 {
1806         int r = 0;
1807
1808         pmd_write_lock(pmd);
1809         r = dm_sm_dec_blocks(pmd->data_sm, b, e);
1810         pmd_write_unlock(pmd);
1811
1812         return r;
1813 }
1814
1815 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1816 {
1817         int r;
1818
1819         down_read(&td->pmd->root_lock);
1820         r = td->changed;
1821         up_read(&td->pmd->root_lock);
1822
1823         return r;
1824 }
1825
1826 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1827 {
1828         bool r = false;
1829         struct dm_thin_device *td, *tmp;
1830
1831         down_read(&pmd->root_lock);
1832         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1833                 if (td->changed) {
1834                         r = td->changed;
1835                         break;
1836                 }
1837         }
1838         up_read(&pmd->root_lock);
1839
1840         return r;
1841 }
1842
1843 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1844 {
1845         bool r;
1846
1847         down_read(&td->pmd->root_lock);
1848         r = td->aborted_with_changes;
1849         up_read(&td->pmd->root_lock);
1850
1851         return r;
1852 }
1853
1854 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1855 {
1856         int r = -EINVAL;
1857
1858         pmd_write_lock(pmd);
1859         if (!pmd->fail_io)
1860                 r = dm_sm_new_block(pmd->data_sm, result);
1861         pmd_write_unlock(pmd);
1862
1863         return r;
1864 }
1865
1866 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1867 {
1868         int r = -EINVAL;
1869
1870         /*
1871          * Care is taken to not have commit be what
1872          * triggers putting the thin-pool in-service.
1873          */
1874         pmd_write_lock_in_core(pmd);
1875         if (pmd->fail_io)
1876                 goto out;
1877
1878         r = __commit_transaction(pmd);
1879         if (r < 0)
1880                 goto out;
1881
1882         /*
1883          * Open the next transaction.
1884          */
1885         r = __begin_transaction(pmd);
1886 out:
1887         pmd_write_unlock(pmd);
1888         return r;
1889 }
1890
1891 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1892 {
1893         struct dm_thin_device *td;
1894
1895         list_for_each_entry(td, &pmd->thin_devices, list)
1896                 td->aborted_with_changes = td->changed;
1897 }
1898
1899 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1900 {
1901         int r = -EINVAL;
1902         struct dm_block_manager *old_bm = NULL, *new_bm = NULL;
1903
1904         /* fail_io is double-checked with pmd->root_lock held below */
1905         if (unlikely(pmd->fail_io))
1906                 return r;
1907
1908         /*
1909          * Replacement block manager (new_bm) is created and old_bm destroyed outside of
1910          * pmd root_lock to avoid ABBA deadlock that would result (due to life-cycle of
1911          * shrinker associated with the block manager's bufio client vs pmd root_lock).
1912          * - must take shrinker_rwsem without holding pmd->root_lock
1913          */
1914         new_bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
1915                                          THIN_MAX_CONCURRENT_LOCKS);
1916
1917         pmd_write_lock(pmd);
1918         if (pmd->fail_io) {
1919                 pmd_write_unlock(pmd);
1920                 goto out;
1921         }
1922
1923         __set_abort_with_changes_flags(pmd);
1924         __destroy_persistent_data_objects(pmd, false);
1925         old_bm = pmd->bm;
1926         if (IS_ERR(new_bm)) {
1927                 DMERR("could not create block manager during abort");
1928                 pmd->bm = NULL;
1929                 r = PTR_ERR(new_bm);
1930                 goto out_unlock;
1931         }
1932
1933         pmd->bm = new_bm;
1934         r = __open_or_format_metadata(pmd, false);
1935         if (r) {
1936                 pmd->bm = NULL;
1937                 goto out_unlock;
1938         }
1939         new_bm = NULL;
1940 out_unlock:
1941         if (r)
1942                 pmd->fail_io = true;
1943         pmd_write_unlock(pmd);
1944         dm_block_manager_destroy(old_bm);
1945 out:
1946         if (new_bm && !IS_ERR(new_bm))
1947                 dm_block_manager_destroy(new_bm);
1948
1949         return r;
1950 }
1951
1952 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1953 {
1954         int r = -EINVAL;
1955
1956         down_read(&pmd->root_lock);
1957         if (!pmd->fail_io)
1958                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1959         up_read(&pmd->root_lock);
1960
1961         return r;
1962 }
1963
1964 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1965                                           dm_block_t *result)
1966 {
1967         int r = -EINVAL;
1968
1969         down_read(&pmd->root_lock);
1970         if (!pmd->fail_io)
1971                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1972
1973         if (!r) {
1974                 if (*result < pmd->metadata_reserve)
1975                         *result = 0;
1976                 else
1977                         *result -= pmd->metadata_reserve;
1978         }
1979         up_read(&pmd->root_lock);
1980
1981         return r;
1982 }
1983
1984 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1985                                   dm_block_t *result)
1986 {
1987         int r = -EINVAL;
1988
1989         down_read(&pmd->root_lock);
1990         if (!pmd->fail_io)
1991                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1992         up_read(&pmd->root_lock);
1993
1994         return r;
1995 }
1996
1997 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1998 {
1999         int r = -EINVAL;
2000
2001         down_read(&pmd->root_lock);
2002         if (!pmd->fail_io)
2003                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
2004         up_read(&pmd->root_lock);
2005
2006         return r;
2007 }
2008
2009 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
2010 {
2011         int r = -EINVAL;
2012         struct dm_pool_metadata *pmd = td->pmd;
2013
2014         down_read(&pmd->root_lock);
2015         if (!pmd->fail_io) {
2016                 *result = td->mapped_blocks;
2017                 r = 0;
2018         }
2019         up_read(&pmd->root_lock);
2020
2021         return r;
2022 }
2023
2024 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
2025 {
2026         int r;
2027         __le64 value_le;
2028         dm_block_t thin_root;
2029         struct dm_pool_metadata *pmd = td->pmd;
2030
2031         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
2032         if (r)
2033                 return r;
2034
2035         thin_root = le64_to_cpu(value_le);
2036
2037         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
2038 }
2039
2040 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
2041                                      dm_block_t *result)
2042 {
2043         int r = -EINVAL;
2044         struct dm_pool_metadata *pmd = td->pmd;
2045
2046         down_read(&pmd->root_lock);
2047         if (!pmd->fail_io)
2048                 r = __highest_block(td, result);
2049         up_read(&pmd->root_lock);
2050
2051         return r;
2052 }
2053
2054 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2055 {
2056         int r;
2057         dm_block_t old_count;
2058
2059         r = dm_sm_get_nr_blocks(sm, &old_count);
2060         if (r)
2061                 return r;
2062
2063         if (new_count == old_count)
2064                 return 0;
2065
2066         if (new_count < old_count) {
2067                 DMERR("cannot reduce size of space map");
2068                 return -EINVAL;
2069         }
2070
2071         return dm_sm_extend(sm, new_count - old_count);
2072 }
2073
2074 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2075 {
2076         int r = -EINVAL;
2077
2078         pmd_write_lock(pmd);
2079         if (!pmd->fail_io)
2080                 r = __resize_space_map(pmd->data_sm, new_count);
2081         pmd_write_unlock(pmd);
2082
2083         return r;
2084 }
2085
2086 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2087 {
2088         int r = -EINVAL;
2089
2090         pmd_write_lock(pmd);
2091         if (!pmd->fail_io) {
2092                 r = __resize_space_map(pmd->metadata_sm, new_count);
2093                 if (!r)
2094                         __set_metadata_reserve(pmd);
2095         }
2096         pmd_write_unlock(pmd);
2097
2098         return r;
2099 }
2100
2101 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2102 {
2103         pmd_write_lock_in_core(pmd);
2104         dm_bm_set_read_only(pmd->bm);
2105         pmd_write_unlock(pmd);
2106 }
2107
2108 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2109 {
2110         pmd_write_lock_in_core(pmd);
2111         dm_bm_set_read_write(pmd->bm);
2112         pmd_write_unlock(pmd);
2113 }
2114
2115 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2116                                         dm_block_t threshold,
2117                                         dm_sm_threshold_fn fn,
2118                                         void *context)
2119 {
2120         int r = -EINVAL;
2121
2122         pmd_write_lock_in_core(pmd);
2123         if (!pmd->fail_io) {
2124                 r = dm_sm_register_threshold_callback(pmd->metadata_sm,
2125                                                       threshold, fn, context);
2126         }
2127         pmd_write_unlock(pmd);
2128
2129         return r;
2130 }
2131
2132 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2133                                           dm_pool_pre_commit_fn fn,
2134                                           void *context)
2135 {
2136         pmd_write_lock_in_core(pmd);
2137         pmd->pre_commit_fn = fn;
2138         pmd->pre_commit_context = context;
2139         pmd_write_unlock(pmd);
2140 }
2141
2142 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2143 {
2144         int r = -EINVAL;
2145         struct dm_block *sblock;
2146         struct thin_disk_superblock *disk_super;
2147
2148         pmd_write_lock(pmd);
2149         if (pmd->fail_io)
2150                 goto out;
2151
2152         pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2153
2154         r = superblock_lock(pmd, &sblock);
2155         if (r) {
2156                 DMERR("couldn't lock superblock");
2157                 goto out;
2158         }
2159
2160         disk_super = dm_block_data(sblock);
2161         disk_super->flags = cpu_to_le32(pmd->flags);
2162
2163         dm_bm_unlock(sblock);
2164 out:
2165         pmd_write_unlock(pmd);
2166         return r;
2167 }
2168
2169 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2170 {
2171         bool needs_check;
2172
2173         down_read(&pmd->root_lock);
2174         needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2175         up_read(&pmd->root_lock);
2176
2177         return needs_check;
2178 }
2179
2180 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2181 {
2182         down_read(&pmd->root_lock);
2183         if (!pmd->fail_io)
2184                 dm_tm_issue_prefetches(pmd->tm);
2185         up_read(&pmd->root_lock);
2186 }