2 * Copyright (C) 2011-2012 Red Hat, Inc.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
20 * - A superblock in block zero, taking up fewer than 512 bytes for
23 * - A space map managing the metadata blocks.
25 * - A space map managing the data blocks.
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 40
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
42 * Space maps have 2 btrees:
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
54 * 3 - ref count is higher than 2
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
75 #define DM_MSG_PREFIX "thin metadata"
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
87 * 2 for shadow spine +
88 * 4 for rebalance 3 child node
90 #define THIN_MAX_CONCURRENT_LOCKS 6
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
96 * Little endian on-disk superblock and device details.
98 struct thin_disk_superblock {
99 __le32 csum; /* Checksum of superblock except for this field. */
101 __le64 blocknr; /* This block number, dm_block_t. */
111 * Root held by userspace transactions.
115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
121 __le64 data_mapping_root;
124 * Device detail root mapping dev_id -> device_details
126 __le64 device_details_root;
128 __le32 data_block_size; /* In 512-byte sectors. */
130 __le32 metadata_block_size; /* In 512-byte sectors. */
131 __le64 metadata_nr_blocks;
134 __le32 compat_ro_flags;
135 __le32 incompat_flags;
138 struct disk_device_details {
139 __le64 mapped_blocks;
140 __le64 transaction_id; /* When created. */
141 __le32 creation_time;
142 __le32 snapshotted_time;
145 struct dm_pool_metadata {
146 struct hlist_node hash;
148 struct block_device *bdev;
149 struct dm_block_manager *bm;
150 struct dm_space_map *metadata_sm;
151 struct dm_space_map *data_sm;
152 struct dm_transaction_manager *tm;
153 struct dm_transaction_manager *nb_tm;
157 * First level holds thin_dev_t.
158 * Second level holds mappings.
160 struct dm_btree_info info;
163 * Non-blocking version of the above.
165 struct dm_btree_info nb_info;
168 * Just the top level for deleting whole devices.
170 struct dm_btree_info tl_info;
173 * Just the bottom level for creating new devices.
175 struct dm_btree_info bl_info;
178 * Describes the device details btree.
180 struct dm_btree_info details_info;
182 struct rw_semaphore root_lock;
185 dm_block_t details_root;
186 struct list_head thin_devices;
189 sector_t data_block_size;
192 * Pre-commit callback.
194 * This allows the thin provisioning target to run a callback before
195 * the metadata are committed.
197 dm_pool_pre_commit_fn pre_commit_fn;
198 void *pre_commit_context;
201 * We reserve a section of the metadata for commit overhead.
202 * All reported space does *not* include this.
204 dm_block_t metadata_reserve;
207 * Set if a transaction has to be aborted but the attempt to roll back
208 * to the previous (good) transaction failed. The only pool metadata
209 * operation possible in this state is the closing of the device.
214 * Set once a thin-pool has been accessed through one of the interfaces
215 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 * thin-pool message, metadata snapshots, etc).
221 * Reading the space map roots can fail, so we read it into these
222 * buffers before the superblock is locked and updated.
224 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
228 struct dm_thin_device {
229 struct list_head list;
230 struct dm_pool_metadata *pmd;
235 bool aborted_with_changes:1;
236 uint64_t mapped_blocks;
237 uint64_t transaction_id;
238 uint32_t creation_time;
239 uint32_t snapshotted_time;
242 /*----------------------------------------------------------------
243 * superblock validator
244 *--------------------------------------------------------------*/
246 #define SUPERBLOCK_CSUM_XOR 160774
248 static void sb_prepare_for_write(struct dm_block_validator *v,
252 struct thin_disk_superblock *disk_super = dm_block_data(b);
254 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 block_size - sizeof(__le32),
257 SUPERBLOCK_CSUM_XOR));
260 static int sb_check(struct dm_block_validator *v,
264 struct thin_disk_superblock *disk_super = dm_block_data(b);
267 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 DMERR("sb_check failed: blocknr %llu: "
269 "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 (unsigned long long)dm_block_location(b));
274 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 DMERR("sb_check failed: magic %llu: "
276 "wanted %llu", le64_to_cpu(disk_super->magic),
277 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
281 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 block_size - sizeof(__le32),
283 SUPERBLOCK_CSUM_XOR));
284 if (csum_le != disk_super->csum) {
285 DMERR("sb_check failed: csum %u: wanted %u",
286 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
293 static struct dm_block_validator sb_validator = {
294 .name = "superblock",
295 .prepare_for_write = sb_prepare_for_write,
299 /*----------------------------------------------------------------
300 * Methods for the btree value types
301 *--------------------------------------------------------------*/
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
305 return (b << 24) | t;
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
311 *t = v & ((1 << 24) - 1);
315 * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
316 * possible. 'with_runs' reads contiguous runs of blocks, and calls the
319 typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
321 static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned count, run_fn fn)
323 uint64_t b, begin, end;
328 for (i = 0; i < count; i++, value_le++) {
329 /* We know value_le is 8 byte aligned */
330 unpack_block_time(le64_to_cpu(*value_le), &b, &t);
351 static void data_block_inc(void *context, const void *value_le, unsigned count)
353 with_runs((struct dm_space_map *) context,
354 (const __le64 *) value_le, count, dm_sm_inc_blocks);
357 static void data_block_dec(void *context, const void *value_le, unsigned count)
359 with_runs((struct dm_space_map *) context,
360 (const __le64 *) value_le, count, dm_sm_dec_blocks);
363 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
369 memcpy(&v1_le, value1_le, sizeof(v1_le));
370 memcpy(&v2_le, value2_le, sizeof(v2_le));
371 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
372 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
377 static void subtree_inc(void *context, const void *value, unsigned count)
379 struct dm_btree_info *info = context;
380 const __le64 *root_le = value;
383 for (i = 0; i < count; i++, root_le++)
384 dm_tm_inc(info->tm, le64_to_cpu(*root_le));
387 static void subtree_dec(void *context, const void *value, unsigned count)
389 struct dm_btree_info *info = context;
390 const __le64 *root_le = value;
393 for (i = 0; i < count; i++, root_le++)
394 if (dm_btree_del(info, le64_to_cpu(*root_le)))
395 DMERR("btree delete failed");
398 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
401 memcpy(&v1_le, value1_le, sizeof(v1_le));
402 memcpy(&v2_le, value2_le, sizeof(v2_le));
404 return v1_le == v2_le;
407 /*----------------------------------------------------------------*/
410 * Variant that is used for in-core only changes or code that
411 * shouldn't put the pool in service on its own (e.g. commit).
413 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
414 __acquires(pmd->root_lock)
416 down_write(&pmd->root_lock);
419 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
421 pmd_write_lock_in_core(pmd);
422 if (unlikely(!pmd->in_service))
423 pmd->in_service = true;
426 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
427 __releases(pmd->root_lock)
429 up_write(&pmd->root_lock);
432 /*----------------------------------------------------------------*/
434 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
435 struct dm_block **sblock)
437 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
438 &sb_validator, sblock);
441 static int superblock_lock(struct dm_pool_metadata *pmd,
442 struct dm_block **sblock)
444 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
445 &sb_validator, sblock);
448 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
453 __le64 *data_le, zero = cpu_to_le64(0);
454 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
457 * We can't use a validator here - it may be all zeroes.
459 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
463 data_le = dm_block_data(b);
465 for (i = 0; i < block_size; i++) {
466 if (data_le[i] != zero) {
477 static void __setup_btree_details(struct dm_pool_metadata *pmd)
479 pmd->info.tm = pmd->tm;
480 pmd->info.levels = 2;
481 pmd->info.value_type.context = pmd->data_sm;
482 pmd->info.value_type.size = sizeof(__le64);
483 pmd->info.value_type.inc = data_block_inc;
484 pmd->info.value_type.dec = data_block_dec;
485 pmd->info.value_type.equal = data_block_equal;
487 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
488 pmd->nb_info.tm = pmd->nb_tm;
490 pmd->tl_info.tm = pmd->tm;
491 pmd->tl_info.levels = 1;
492 pmd->tl_info.value_type.context = &pmd->bl_info;
493 pmd->tl_info.value_type.size = sizeof(__le64);
494 pmd->tl_info.value_type.inc = subtree_inc;
495 pmd->tl_info.value_type.dec = subtree_dec;
496 pmd->tl_info.value_type.equal = subtree_equal;
498 pmd->bl_info.tm = pmd->tm;
499 pmd->bl_info.levels = 1;
500 pmd->bl_info.value_type.context = pmd->data_sm;
501 pmd->bl_info.value_type.size = sizeof(__le64);
502 pmd->bl_info.value_type.inc = data_block_inc;
503 pmd->bl_info.value_type.dec = data_block_dec;
504 pmd->bl_info.value_type.equal = data_block_equal;
506 pmd->details_info.tm = pmd->tm;
507 pmd->details_info.levels = 1;
508 pmd->details_info.value_type.context = NULL;
509 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
510 pmd->details_info.value_type.inc = NULL;
511 pmd->details_info.value_type.dec = NULL;
512 pmd->details_info.value_type.equal = NULL;
515 static int save_sm_roots(struct dm_pool_metadata *pmd)
520 r = dm_sm_root_size(pmd->metadata_sm, &len);
524 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
528 r = dm_sm_root_size(pmd->data_sm, &len);
532 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
535 static void copy_sm_roots(struct dm_pool_metadata *pmd,
536 struct thin_disk_superblock *disk)
538 memcpy(&disk->metadata_space_map_root,
539 &pmd->metadata_space_map_root,
540 sizeof(pmd->metadata_space_map_root));
542 memcpy(&disk->data_space_map_root,
543 &pmd->data_space_map_root,
544 sizeof(pmd->data_space_map_root));
547 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
550 struct dm_block *sblock;
551 struct thin_disk_superblock *disk_super;
552 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
554 if (bdev_size > THIN_METADATA_MAX_SECTORS)
555 bdev_size = THIN_METADATA_MAX_SECTORS;
557 r = dm_sm_commit(pmd->data_sm);
561 r = dm_tm_pre_commit(pmd->tm);
565 r = save_sm_roots(pmd);
569 r = superblock_lock_zero(pmd, &sblock);
573 disk_super = dm_block_data(sblock);
574 disk_super->flags = 0;
575 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
576 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
577 disk_super->version = cpu_to_le32(THIN_VERSION);
578 disk_super->time = 0;
579 disk_super->trans_id = 0;
580 disk_super->held_root = 0;
582 copy_sm_roots(pmd, disk_super);
584 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
585 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
586 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
587 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
588 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
590 return dm_tm_commit(pmd->tm, sblock);
593 static int __format_metadata(struct dm_pool_metadata *pmd)
597 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
598 &pmd->tm, &pmd->metadata_sm);
600 DMERR("tm_create_with_sm failed");
604 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
605 if (IS_ERR(pmd->data_sm)) {
606 DMERR("sm_disk_create failed");
607 r = PTR_ERR(pmd->data_sm);
611 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
613 DMERR("could not create non-blocking clone tm");
615 goto bad_cleanup_data_sm;
618 __setup_btree_details(pmd);
620 r = dm_btree_empty(&pmd->info, &pmd->root);
622 goto bad_cleanup_nb_tm;
624 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
626 DMERR("couldn't create devices root");
627 goto bad_cleanup_nb_tm;
630 r = __write_initial_superblock(pmd);
632 goto bad_cleanup_nb_tm;
637 dm_tm_destroy(pmd->nb_tm);
639 dm_sm_destroy(pmd->data_sm);
641 dm_tm_destroy(pmd->tm);
642 dm_sm_destroy(pmd->metadata_sm);
647 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
648 struct dm_pool_metadata *pmd)
652 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
654 DMERR("could not access metadata due to unsupported optional features (%lx).",
655 (unsigned long)features);
660 * Check for read-only metadata to skip the following RDWR checks.
662 if (bdev_read_only(pmd->bdev))
665 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
667 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
668 (unsigned long)features);
675 static int __open_metadata(struct dm_pool_metadata *pmd)
678 struct dm_block *sblock;
679 struct thin_disk_superblock *disk_super;
681 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
682 &sb_validator, &sblock);
684 DMERR("couldn't read superblock");
688 disk_super = dm_block_data(sblock);
690 /* Verify the data block size hasn't changed */
691 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
692 DMERR("changing the data block size (from %u to %llu) is not supported",
693 le32_to_cpu(disk_super->data_block_size),
694 (unsigned long long)pmd->data_block_size);
696 goto bad_unlock_sblock;
699 r = __check_incompat_features(disk_super, pmd);
701 goto bad_unlock_sblock;
703 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
704 disk_super->metadata_space_map_root,
705 sizeof(disk_super->metadata_space_map_root),
706 &pmd->tm, &pmd->metadata_sm);
708 DMERR("tm_open_with_sm failed");
709 goto bad_unlock_sblock;
712 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
713 sizeof(disk_super->data_space_map_root));
714 if (IS_ERR(pmd->data_sm)) {
715 DMERR("sm_disk_open failed");
716 r = PTR_ERR(pmd->data_sm);
720 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
722 DMERR("could not create non-blocking clone tm");
724 goto bad_cleanup_data_sm;
728 * For pool metadata opening process, root setting is redundant
729 * because it will be set again in __begin_transaction(). But dm
730 * pool aborting process really needs to get last transaction's
731 * root to avoid accessing broken btree.
733 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
734 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
736 __setup_btree_details(pmd);
737 dm_bm_unlock(sblock);
742 dm_sm_destroy(pmd->data_sm);
744 dm_tm_destroy(pmd->tm);
745 dm_sm_destroy(pmd->metadata_sm);
747 dm_bm_unlock(sblock);
752 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
756 r = __superblock_all_zeroes(pmd->bm, &unformatted);
761 return format_device ? __format_metadata(pmd) : -EPERM;
763 return __open_metadata(pmd);
766 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
770 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
771 THIN_MAX_CONCURRENT_LOCKS);
772 if (IS_ERR(pmd->bm)) {
773 DMERR("could not create block manager");
774 r = PTR_ERR(pmd->bm);
779 r = __open_or_format_metadata(pmd, format_device);
781 dm_block_manager_destroy(pmd->bm);
788 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd,
791 dm_sm_destroy(pmd->data_sm);
792 dm_sm_destroy(pmd->metadata_sm);
793 dm_tm_destroy(pmd->nb_tm);
794 dm_tm_destroy(pmd->tm);
796 dm_block_manager_destroy(pmd->bm);
799 static int __begin_transaction(struct dm_pool_metadata *pmd)
802 struct thin_disk_superblock *disk_super;
803 struct dm_block *sblock;
806 * We re-read the superblock every time. Shouldn't need to do this
809 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
810 &sb_validator, &sblock);
814 disk_super = dm_block_data(sblock);
815 pmd->time = le32_to_cpu(disk_super->time);
816 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
817 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
818 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
819 pmd->flags = le32_to_cpu(disk_super->flags);
820 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
822 dm_bm_unlock(sblock);
826 static int __write_changed_details(struct dm_pool_metadata *pmd)
829 struct dm_thin_device *td, *tmp;
830 struct disk_device_details details;
833 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
839 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
840 details.transaction_id = cpu_to_le64(td->transaction_id);
841 details.creation_time = cpu_to_le32(td->creation_time);
842 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
843 __dm_bless_for_disk(&details);
845 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
846 &key, &details, &pmd->details_root);
861 static int __commit_transaction(struct dm_pool_metadata *pmd)
864 struct thin_disk_superblock *disk_super;
865 struct dm_block *sblock;
868 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
870 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
871 BUG_ON(!rwsem_is_locked(&pmd->root_lock));
873 if (unlikely(!pmd->in_service))
876 if (pmd->pre_commit_fn) {
877 r = pmd->pre_commit_fn(pmd->pre_commit_context);
879 DMERR("pre-commit callback failed");
884 r = __write_changed_details(pmd);
888 r = dm_sm_commit(pmd->data_sm);
892 r = dm_tm_pre_commit(pmd->tm);
896 r = save_sm_roots(pmd);
900 r = superblock_lock(pmd, &sblock);
904 disk_super = dm_block_data(sblock);
905 disk_super->time = cpu_to_le32(pmd->time);
906 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
907 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
908 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
909 disk_super->flags = cpu_to_le32(pmd->flags);
911 copy_sm_roots(pmd, disk_super);
913 return dm_tm_commit(pmd->tm, sblock);
916 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
920 dm_block_t max_blocks = 4096; /* 16M */
922 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
924 DMERR("could not get size of metadata device");
925 pmd->metadata_reserve = max_blocks;
927 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
930 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
931 sector_t data_block_size,
935 struct dm_pool_metadata *pmd;
937 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
939 DMERR("could not allocate metadata struct");
940 return ERR_PTR(-ENOMEM);
943 init_rwsem(&pmd->root_lock);
945 INIT_LIST_HEAD(&pmd->thin_devices);
946 pmd->fail_io = false;
947 pmd->in_service = false;
949 pmd->data_block_size = data_block_size;
950 pmd->pre_commit_fn = NULL;
951 pmd->pre_commit_context = NULL;
953 r = __create_persistent_data_objects(pmd, format_device);
959 r = __begin_transaction(pmd);
961 if (dm_pool_metadata_close(pmd) < 0)
962 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
966 __set_metadata_reserve(pmd);
971 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
974 unsigned open_devices = 0;
975 struct dm_thin_device *td, *tmp;
977 down_read(&pmd->root_lock);
978 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
986 up_read(&pmd->root_lock);
989 DMERR("attempt to close pmd when %u device(s) are still open",
994 pmd_write_lock_in_core(pmd);
995 if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
996 r = __commit_transaction(pmd);
998 DMWARN("%s: __commit_transaction() failed, error = %d",
1001 pmd_write_unlock(pmd);
1003 __destroy_persistent_data_objects(pmd, true);
1010 * __open_device: Returns @td corresponding to device with id @dev,
1011 * creating it if @create is set and incrementing @td->open_count.
1012 * On failure, @td is undefined.
1014 static int __open_device(struct dm_pool_metadata *pmd,
1015 dm_thin_id dev, int create,
1016 struct dm_thin_device **td)
1019 struct dm_thin_device *td2;
1021 struct disk_device_details details_le;
1024 * If the device is already open, return it.
1026 list_for_each_entry(td2, &pmd->thin_devices, list)
1027 if (td2->id == dev) {
1029 * May not create an already-open device.
1040 * Check the device exists.
1042 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1045 if (r != -ENODATA || !create)
1049 * Create new device.
1052 details_le.mapped_blocks = 0;
1053 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1054 details_le.creation_time = cpu_to_le32(pmd->time);
1055 details_le.snapshotted_time = cpu_to_le32(pmd->time);
1058 *td = kmalloc(sizeof(**td), GFP_NOIO);
1064 (*td)->open_count = 1;
1065 (*td)->changed = changed;
1066 (*td)->aborted_with_changes = false;
1067 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1068 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1069 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1070 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1072 list_add(&(*td)->list, &pmd->thin_devices);
1077 static void __close_device(struct dm_thin_device *td)
1082 static int __create_thin(struct dm_pool_metadata *pmd,
1086 dm_block_t dev_root;
1088 struct dm_thin_device *td;
1091 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1097 * Create an empty btree for the mappings.
1099 r = dm_btree_empty(&pmd->bl_info, &dev_root);
1104 * Insert it into the main mapping tree.
1106 value = cpu_to_le64(dev_root);
1107 __dm_bless_for_disk(&value);
1108 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1110 dm_btree_del(&pmd->bl_info, dev_root);
1114 r = __open_device(pmd, dev, 1, &td);
1116 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1117 dm_btree_del(&pmd->bl_info, dev_root);
1125 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1129 pmd_write_lock(pmd);
1131 r = __create_thin(pmd, dev);
1132 pmd_write_unlock(pmd);
1137 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1138 struct dm_thin_device *snap,
1139 dm_thin_id origin, uint32_t time)
1142 struct dm_thin_device *td;
1144 r = __open_device(pmd, origin, 0, &td);
1149 td->snapshotted_time = time;
1151 snap->mapped_blocks = td->mapped_blocks;
1152 snap->snapshotted_time = time;
1158 static int __create_snap(struct dm_pool_metadata *pmd,
1159 dm_thin_id dev, dm_thin_id origin)
1162 dm_block_t origin_root;
1163 uint64_t key = origin, dev_key = dev;
1164 struct dm_thin_device *td;
1167 /* check this device is unused */
1168 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1173 /* find the mapping tree for the origin */
1174 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1177 origin_root = le64_to_cpu(value);
1179 /* clone the origin, an inc will do */
1180 dm_tm_inc(pmd->tm, origin_root);
1182 /* insert into the main mapping tree */
1183 value = cpu_to_le64(origin_root);
1184 __dm_bless_for_disk(&value);
1186 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1188 dm_tm_dec(pmd->tm, origin_root);
1194 r = __open_device(pmd, dev, 1, &td);
1198 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1207 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1208 dm_btree_remove(&pmd->details_info, pmd->details_root,
1209 &key, &pmd->details_root);
1213 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1219 pmd_write_lock(pmd);
1221 r = __create_snap(pmd, dev, origin);
1222 pmd_write_unlock(pmd);
1227 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1231 struct dm_thin_device *td;
1233 /* TODO: failure should mark the transaction invalid */
1234 r = __open_device(pmd, dev, 0, &td);
1238 if (td->open_count > 1) {
1243 list_del(&td->list);
1245 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1246 &key, &pmd->details_root);
1250 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1257 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1262 pmd_write_lock(pmd);
1264 r = __delete_device(pmd, dev);
1265 pmd_write_unlock(pmd);
1270 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1271 uint64_t current_id,
1276 pmd_write_lock(pmd);
1281 if (pmd->trans_id != current_id) {
1282 DMERR("mismatched transaction id");
1286 pmd->trans_id = new_id;
1290 pmd_write_unlock(pmd);
1295 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1300 down_read(&pmd->root_lock);
1301 if (!pmd->fail_io) {
1302 *result = pmd->trans_id;
1305 up_read(&pmd->root_lock);
1310 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1313 struct thin_disk_superblock *disk_super;
1314 struct dm_block *copy, *sblock;
1315 dm_block_t held_root;
1318 * We commit to ensure the btree roots which we increment in a
1319 * moment are up to date.
1321 r = __commit_transaction(pmd);
1323 DMWARN("%s: __commit_transaction() failed, error = %d",
1329 * Copy the superblock.
1331 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1332 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1333 &sb_validator, ©, &inc);
1339 held_root = dm_block_location(copy);
1340 disk_super = dm_block_data(copy);
1342 if (le64_to_cpu(disk_super->held_root)) {
1343 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1345 dm_tm_dec(pmd->tm, held_root);
1346 dm_tm_unlock(pmd->tm, copy);
1351 * Wipe the spacemap since we're not publishing this.
1353 memset(&disk_super->data_space_map_root, 0,
1354 sizeof(disk_super->data_space_map_root));
1355 memset(&disk_super->metadata_space_map_root, 0,
1356 sizeof(disk_super->metadata_space_map_root));
1359 * Increment the data structures that need to be preserved.
1361 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1362 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1363 dm_tm_unlock(pmd->tm, copy);
1366 * Write the held root into the superblock.
1368 r = superblock_lock(pmd, &sblock);
1370 dm_tm_dec(pmd->tm, held_root);
1374 disk_super = dm_block_data(sblock);
1375 disk_super->held_root = cpu_to_le64(held_root);
1376 dm_bm_unlock(sblock);
1380 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1384 pmd_write_lock(pmd);
1386 r = __reserve_metadata_snap(pmd);
1387 pmd_write_unlock(pmd);
1392 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1395 struct thin_disk_superblock *disk_super;
1396 struct dm_block *sblock, *copy;
1397 dm_block_t held_root;
1399 r = superblock_lock(pmd, &sblock);
1403 disk_super = dm_block_data(sblock);
1404 held_root = le64_to_cpu(disk_super->held_root);
1405 disk_super->held_root = cpu_to_le64(0);
1407 dm_bm_unlock(sblock);
1410 DMWARN("No pool metadata snapshot found: nothing to release.");
1414 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©);
1418 disk_super = dm_block_data(copy);
1419 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1420 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1421 dm_sm_dec_block(pmd->metadata_sm, held_root);
1423 dm_tm_unlock(pmd->tm, copy);
1428 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1432 pmd_write_lock(pmd);
1434 r = __release_metadata_snap(pmd);
1435 pmd_write_unlock(pmd);
1440 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1444 struct thin_disk_superblock *disk_super;
1445 struct dm_block *sblock;
1447 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1448 &sb_validator, &sblock);
1452 disk_super = dm_block_data(sblock);
1453 *result = le64_to_cpu(disk_super->held_root);
1455 dm_bm_unlock(sblock);
1460 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1465 down_read(&pmd->root_lock);
1467 r = __get_metadata_snap(pmd, result);
1468 up_read(&pmd->root_lock);
1473 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1474 struct dm_thin_device **td)
1478 pmd_write_lock_in_core(pmd);
1480 r = __open_device(pmd, dev, 0, td);
1481 pmd_write_unlock(pmd);
1486 int dm_pool_close_thin_device(struct dm_thin_device *td)
1488 pmd_write_lock_in_core(td->pmd);
1490 pmd_write_unlock(td->pmd);
1495 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1501 * Check whether @time (of block creation) is older than @td's last snapshot.
1502 * If so then the associated block is shared with the last snapshot device.
1503 * Any block on a device created *after* the device last got snapshotted is
1504 * necessarily not shared.
1506 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1508 return td->snapshotted_time > time;
1511 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1512 struct dm_thin_lookup_result *result)
1514 uint64_t block_time = 0;
1515 dm_block_t exception_block;
1516 uint32_t exception_time;
1518 block_time = le64_to_cpu(value);
1519 unpack_block_time(block_time, &exception_block, &exception_time);
1520 result->block = exception_block;
1521 result->shared = __snapshotted_since(td, exception_time);
1524 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1525 int can_issue_io, struct dm_thin_lookup_result *result)
1529 struct dm_pool_metadata *pmd = td->pmd;
1530 dm_block_t keys[2] = { td->id, block };
1531 struct dm_btree_info *info;
1536 info = &pmd->nb_info;
1538 r = dm_btree_lookup(info, pmd->root, keys, &value);
1540 unpack_lookup_result(td, value, result);
1545 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1546 int can_issue_io, struct dm_thin_lookup_result *result)
1549 struct dm_pool_metadata *pmd = td->pmd;
1551 down_read(&pmd->root_lock);
1553 up_read(&pmd->root_lock);
1557 r = __find_block(td, block, can_issue_io, result);
1559 up_read(&pmd->root_lock);
1563 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1565 struct dm_thin_lookup_result *result)
1569 struct dm_pool_metadata *pmd = td->pmd;
1570 dm_block_t keys[2] = { td->id, block };
1572 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1574 unpack_lookup_result(td, value, result);
1579 static int __find_mapped_range(struct dm_thin_device *td,
1580 dm_block_t begin, dm_block_t end,
1581 dm_block_t *thin_begin, dm_block_t *thin_end,
1582 dm_block_t *pool_begin, bool *maybe_shared)
1585 dm_block_t pool_end;
1586 struct dm_thin_lookup_result lookup;
1591 r = __find_next_mapped_block(td, begin, &begin, &lookup);
1598 *thin_begin = begin;
1599 *pool_begin = lookup.block;
1600 *maybe_shared = lookup.shared;
1603 pool_end = *pool_begin + 1;
1604 while (begin != end) {
1605 r = __find_block(td, begin, true, &lookup);
1613 if ((lookup.block != pool_end) ||
1614 (lookup.shared != *maybe_shared))
1625 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1626 dm_block_t begin, dm_block_t end,
1627 dm_block_t *thin_begin, dm_block_t *thin_end,
1628 dm_block_t *pool_begin, bool *maybe_shared)
1631 struct dm_pool_metadata *pmd = td->pmd;
1633 down_read(&pmd->root_lock);
1634 if (!pmd->fail_io) {
1635 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1636 pool_begin, maybe_shared);
1638 up_read(&pmd->root_lock);
1643 static int __insert(struct dm_thin_device *td, dm_block_t block,
1644 dm_block_t data_block)
1648 struct dm_pool_metadata *pmd = td->pmd;
1649 dm_block_t keys[2] = { td->id, block };
1651 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1652 __dm_bless_for_disk(&value);
1654 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1655 &pmd->root, &inserted);
1661 td->mapped_blocks++;
1666 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1667 dm_block_t data_block)
1671 pmd_write_lock(td->pmd);
1672 if (!td->pmd->fail_io)
1673 r = __insert(td, block, data_block);
1674 pmd_write_unlock(td->pmd);
1679 static int __remove(struct dm_thin_device *td, dm_block_t block)
1682 struct dm_pool_metadata *pmd = td->pmd;
1683 dm_block_t keys[2] = { td->id, block };
1685 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1689 td->mapped_blocks--;
1695 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1698 unsigned count, total_count = 0;
1699 struct dm_pool_metadata *pmd = td->pmd;
1700 dm_block_t keys[1] = { td->id };
1702 dm_block_t mapping_root;
1705 * Find the mapping tree
1707 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1712 * Remove from the mapping tree, taking care to inc the
1713 * ref count so it doesn't get deleted.
1715 mapping_root = le64_to_cpu(value);
1716 dm_tm_inc(pmd->tm, mapping_root);
1717 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1722 * Remove leaves stops at the first unmapped entry, so we have to
1723 * loop round finding mapped ranges.
1725 while (begin < end) {
1726 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1736 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1740 total_count += count;
1743 td->mapped_blocks -= total_count;
1747 * Reinsert the mapping tree.
1749 value = cpu_to_le64(mapping_root);
1750 __dm_bless_for_disk(&value);
1751 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1754 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1758 pmd_write_lock(td->pmd);
1759 if (!td->pmd->fail_io)
1760 r = __remove(td, block);
1761 pmd_write_unlock(td->pmd);
1766 int dm_thin_remove_range(struct dm_thin_device *td,
1767 dm_block_t begin, dm_block_t end)
1771 pmd_write_lock(td->pmd);
1772 if (!td->pmd->fail_io)
1773 r = __remove_range(td, begin, end);
1774 pmd_write_unlock(td->pmd);
1779 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1784 down_read(&pmd->root_lock);
1785 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1787 *result = (ref_count > 1);
1788 up_read(&pmd->root_lock);
1793 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1797 pmd_write_lock(pmd);
1798 r = dm_sm_inc_blocks(pmd->data_sm, b, e);
1799 pmd_write_unlock(pmd);
1804 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1808 pmd_write_lock(pmd);
1809 r = dm_sm_dec_blocks(pmd->data_sm, b, e);
1810 pmd_write_unlock(pmd);
1815 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1819 down_read(&td->pmd->root_lock);
1821 up_read(&td->pmd->root_lock);
1826 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1829 struct dm_thin_device *td, *tmp;
1831 down_read(&pmd->root_lock);
1832 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1838 up_read(&pmd->root_lock);
1843 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1847 down_read(&td->pmd->root_lock);
1848 r = td->aborted_with_changes;
1849 up_read(&td->pmd->root_lock);
1854 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1858 pmd_write_lock(pmd);
1860 r = dm_sm_new_block(pmd->data_sm, result);
1861 pmd_write_unlock(pmd);
1866 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1871 * Care is taken to not have commit be what
1872 * triggers putting the thin-pool in-service.
1874 pmd_write_lock_in_core(pmd);
1878 r = __commit_transaction(pmd);
1883 * Open the next transaction.
1885 r = __begin_transaction(pmd);
1887 pmd_write_unlock(pmd);
1891 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1893 struct dm_thin_device *td;
1895 list_for_each_entry(td, &pmd->thin_devices, list)
1896 td->aborted_with_changes = td->changed;
1899 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1902 struct dm_block_manager *old_bm = NULL, *new_bm = NULL;
1904 /* fail_io is double-checked with pmd->root_lock held below */
1905 if (unlikely(pmd->fail_io))
1909 * Replacement block manager (new_bm) is created and old_bm destroyed outside of
1910 * pmd root_lock to avoid ABBA deadlock that would result (due to life-cycle of
1911 * shrinker associated with the block manager's bufio client vs pmd root_lock).
1912 * - must take shrinker_rwsem without holding pmd->root_lock
1914 new_bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
1915 THIN_MAX_CONCURRENT_LOCKS);
1917 pmd_write_lock(pmd);
1919 pmd_write_unlock(pmd);
1923 __set_abort_with_changes_flags(pmd);
1924 __destroy_persistent_data_objects(pmd, false);
1926 if (IS_ERR(new_bm)) {
1927 DMERR("could not create block manager during abort");
1929 r = PTR_ERR(new_bm);
1934 r = __open_or_format_metadata(pmd, false);
1942 pmd->fail_io = true;
1943 pmd_write_unlock(pmd);
1944 dm_block_manager_destroy(old_bm);
1946 if (new_bm && !IS_ERR(new_bm))
1947 dm_block_manager_destroy(new_bm);
1952 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1956 down_read(&pmd->root_lock);
1958 r = dm_sm_get_nr_free(pmd->data_sm, result);
1959 up_read(&pmd->root_lock);
1964 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1969 down_read(&pmd->root_lock);
1971 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1974 if (*result < pmd->metadata_reserve)
1977 *result -= pmd->metadata_reserve;
1979 up_read(&pmd->root_lock);
1984 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1989 down_read(&pmd->root_lock);
1991 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1992 up_read(&pmd->root_lock);
1997 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
2001 down_read(&pmd->root_lock);
2003 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
2004 up_read(&pmd->root_lock);
2009 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
2012 struct dm_pool_metadata *pmd = td->pmd;
2014 down_read(&pmd->root_lock);
2015 if (!pmd->fail_io) {
2016 *result = td->mapped_blocks;
2019 up_read(&pmd->root_lock);
2024 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
2028 dm_block_t thin_root;
2029 struct dm_pool_metadata *pmd = td->pmd;
2031 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
2035 thin_root = le64_to_cpu(value_le);
2037 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
2040 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
2044 struct dm_pool_metadata *pmd = td->pmd;
2046 down_read(&pmd->root_lock);
2048 r = __highest_block(td, result);
2049 up_read(&pmd->root_lock);
2054 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2057 dm_block_t old_count;
2059 r = dm_sm_get_nr_blocks(sm, &old_count);
2063 if (new_count == old_count)
2066 if (new_count < old_count) {
2067 DMERR("cannot reduce size of space map");
2071 return dm_sm_extend(sm, new_count - old_count);
2074 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2078 pmd_write_lock(pmd);
2080 r = __resize_space_map(pmd->data_sm, new_count);
2081 pmd_write_unlock(pmd);
2086 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2090 pmd_write_lock(pmd);
2091 if (!pmd->fail_io) {
2092 r = __resize_space_map(pmd->metadata_sm, new_count);
2094 __set_metadata_reserve(pmd);
2096 pmd_write_unlock(pmd);
2101 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2103 pmd_write_lock_in_core(pmd);
2104 dm_bm_set_read_only(pmd->bm);
2105 pmd_write_unlock(pmd);
2108 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2110 pmd_write_lock_in_core(pmd);
2111 dm_bm_set_read_write(pmd->bm);
2112 pmd_write_unlock(pmd);
2115 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2116 dm_block_t threshold,
2117 dm_sm_threshold_fn fn,
2122 pmd_write_lock_in_core(pmd);
2123 if (!pmd->fail_io) {
2124 r = dm_sm_register_threshold_callback(pmd->metadata_sm,
2125 threshold, fn, context);
2127 pmd_write_unlock(pmd);
2132 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2133 dm_pool_pre_commit_fn fn,
2136 pmd_write_lock_in_core(pmd);
2137 pmd->pre_commit_fn = fn;
2138 pmd->pre_commit_context = context;
2139 pmd_write_unlock(pmd);
2142 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2145 struct dm_block *sblock;
2146 struct thin_disk_superblock *disk_super;
2148 pmd_write_lock(pmd);
2152 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2154 r = superblock_lock(pmd, &sblock);
2156 DMERR("couldn't lock superblock");
2160 disk_super = dm_block_data(sblock);
2161 disk_super->flags = cpu_to_le32(pmd->flags);
2163 dm_bm_unlock(sblock);
2165 pmd_write_unlock(pmd);
2169 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2173 down_read(&pmd->root_lock);
2174 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2175 up_read(&pmd->root_lock);
2180 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2182 down_read(&pmd->root_lock);
2184 dm_tm_issue_prefetches(pmd->tm);
2185 up_read(&pmd->root_lock);