2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/module.h>
12 #include <linux/vmalloc.h>
13 #include <linux/blkdev.h>
14 #include <linux/blk-integrity.h>
15 #include <linux/namei.h>
16 #include <linux/ctype.h>
17 #include <linux/string.h>
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/atomic.h>
23 #include <linux/blk-mq.h>
24 #include <linux/mount.h>
25 #include <linux/dax.h>
27 #define DM_MSG_PREFIX "table"
29 #define NODE_SIZE L1_CACHE_BYTES
30 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
31 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
34 * Similar to ceiling(log_size(n))
36 static unsigned int int_log(unsigned int n, unsigned int base)
41 n = dm_div_up(n, base);
49 * Calculate the index of the child node of the n'th node k'th key.
51 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 return (n * CHILDREN_PER_NODE) + k;
57 * Return the n'th node of level l from table t.
59 static inline sector_t *get_node(struct dm_table *t,
60 unsigned int l, unsigned int n)
62 return t->index[l] + (n * KEYS_PER_NODE);
66 * Return the highest key that you could lookup from the n'th
67 * node on level l of the btree.
69 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 for (; l < t->depth - 1; l++)
72 n = get_child(n, CHILDREN_PER_NODE - 1);
74 if (n >= t->counts[l])
75 return (sector_t) - 1;
77 return get_node(t, l, n)[KEYS_PER_NODE - 1];
81 * Fills in a level of the btree based on the highs of the level
84 static int setup_btree_index(unsigned int l, struct dm_table *t)
89 for (n = 0U; n < t->counts[l]; n++) {
90 node = get_node(t, l, n);
92 for (k = 0U; k < KEYS_PER_NODE; k++)
93 node[k] = high(t, l + 1, get_child(n, k));
100 * highs, and targets are managed as dynamic arrays during a
103 static int alloc_targets(struct dm_table *t, unsigned int num)
106 struct dm_target *n_targets;
109 * Allocate both the target array and offset array at once.
111 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
116 n_targets = (struct dm_target *) (n_highs + num);
118 memset(n_highs, -1, sizeof(*n_highs) * num);
121 t->num_allocated = num;
123 t->targets = n_targets;
128 int dm_table_create(struct dm_table **result, fmode_t mode,
129 unsigned num_targets, struct mapped_device *md)
131 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
136 INIT_LIST_HEAD(&t->devices);
139 num_targets = KEYS_PER_NODE;
141 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
148 if (alloc_targets(t, num_targets)) {
153 t->type = DM_TYPE_NONE;
160 static void free_devices(struct list_head *devices, struct mapped_device *md)
162 struct list_head *tmp, *next;
164 list_for_each_safe(tmp, next, devices) {
165 struct dm_dev_internal *dd =
166 list_entry(tmp, struct dm_dev_internal, list);
167 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
168 dm_device_name(md), dd->dm_dev->name);
169 dm_put_table_device(md, dd->dm_dev);
174 static void dm_table_destroy_crypto_profile(struct dm_table *t);
176 void dm_table_destroy(struct dm_table *t)
181 /* free the indexes */
183 kvfree(t->index[t->depth - 2]);
185 /* free the targets */
186 for (unsigned int i = 0; i < t->num_targets; i++) {
187 struct dm_target *ti = dm_table_get_target(t, i);
192 dm_put_target_type(ti->type);
197 /* free the device list */
198 free_devices(&t->devices, t->md);
200 dm_free_md_mempools(t->mempools);
202 dm_table_destroy_crypto_profile(t);
208 * See if we've already got a device in the list.
210 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
212 struct dm_dev_internal *dd;
214 list_for_each_entry (dd, l, list)
215 if (dd->dm_dev->bdev->bd_dev == dev)
222 * If possible, this checks an area of a destination device is invalid.
224 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
225 sector_t start, sector_t len, void *data)
227 struct queue_limits *limits = data;
228 struct block_device *bdev = dev->bdev;
229 sector_t dev_size = bdev_nr_sectors(bdev);
230 unsigned short logical_block_size_sectors =
231 limits->logical_block_size >> SECTOR_SHIFT;
236 if ((start >= dev_size) || (start + len > dev_size)) {
237 DMERR("%s: %pg too small for target: "
238 "start=%llu, len=%llu, dev_size=%llu",
239 dm_device_name(ti->table->md), bdev,
240 (unsigned long long)start,
241 (unsigned long long)len,
242 (unsigned long long)dev_size);
247 * If the target is mapped to zoned block device(s), check
248 * that the zones are not partially mapped.
250 if (bdev_is_zoned(bdev)) {
251 unsigned int zone_sectors = bdev_zone_sectors(bdev);
253 if (start & (zone_sectors - 1)) {
254 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
255 dm_device_name(ti->table->md),
256 (unsigned long long)start,
262 * Note: The last zone of a zoned block device may be smaller
263 * than other zones. So for a target mapping the end of a
264 * zoned block device with such a zone, len would not be zone
265 * aligned. We do not allow such last smaller zone to be part
266 * of the mapping here to ensure that mappings with multiple
267 * devices do not end up with a smaller zone in the middle of
270 if (len & (zone_sectors - 1)) {
271 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
272 dm_device_name(ti->table->md),
273 (unsigned long long)len,
279 if (logical_block_size_sectors <= 1)
282 if (start & (logical_block_size_sectors - 1)) {
283 DMERR("%s: start=%llu not aligned to h/w "
284 "logical block size %u of %pg",
285 dm_device_name(ti->table->md),
286 (unsigned long long)start,
287 limits->logical_block_size, bdev);
291 if (len & (logical_block_size_sectors - 1)) {
292 DMERR("%s: len=%llu not aligned to h/w "
293 "logical block size %u of %pg",
294 dm_device_name(ti->table->md),
295 (unsigned long long)len,
296 limits->logical_block_size, bdev);
304 * This upgrades the mode on an already open dm_dev, being
305 * careful to leave things as they were if we fail to reopen the
306 * device and not to touch the existing bdev field in case
307 * it is accessed concurrently.
309 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
310 struct mapped_device *md)
313 struct dm_dev *old_dev, *new_dev;
315 old_dev = dd->dm_dev;
317 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
318 dd->dm_dev->mode | new_mode, &new_dev);
322 dd->dm_dev = new_dev;
323 dm_put_table_device(md, old_dev);
329 * Convert the path to a device
331 dev_t dm_get_dev_t(const char *path)
335 if (lookup_bdev(path, &dev))
336 dev = name_to_dev_t(path);
339 EXPORT_SYMBOL_GPL(dm_get_dev_t);
342 * Add a device to the list, or just increment the usage count if
343 * it's already present.
345 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
346 struct dm_dev **result)
350 unsigned int major, minor;
352 struct dm_dev_internal *dd;
353 struct dm_table *t = ti->table;
357 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
358 /* Extract the major/minor numbers */
359 dev = MKDEV(major, minor);
360 if (MAJOR(dev) != major || MINOR(dev) != minor)
363 dev = dm_get_dev_t(path);
368 dd = find_device(&t->devices, dev);
370 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
374 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
379 refcount_set(&dd->count, 1);
380 list_add(&dd->list, &t->devices);
383 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
384 r = upgrade_mode(dd, mode, t->md);
388 refcount_inc(&dd->count);
390 *result = dd->dm_dev;
393 EXPORT_SYMBOL(dm_get_device);
395 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
396 sector_t start, sector_t len, void *data)
398 struct queue_limits *limits = data;
399 struct block_device *bdev = dev->bdev;
400 struct request_queue *q = bdev_get_queue(bdev);
403 DMWARN("%s: Cannot set limits for nonexistent device %pg",
404 dm_device_name(ti->table->md), bdev);
408 if (blk_stack_limits(limits, &q->limits,
409 get_start_sect(bdev) + start) < 0)
410 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
411 "physical_block_size=%u, logical_block_size=%u, "
412 "alignment_offset=%u, start=%llu",
413 dm_device_name(ti->table->md), bdev,
414 q->limits.physical_block_size,
415 q->limits.logical_block_size,
416 q->limits.alignment_offset,
417 (unsigned long long) start << SECTOR_SHIFT);
422 * Decrement a device's use count and remove it if necessary.
424 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
427 struct list_head *devices = &ti->table->devices;
428 struct dm_dev_internal *dd;
430 list_for_each_entry(dd, devices, list) {
431 if (dd->dm_dev == d) {
437 DMERR("%s: device %s not in table devices list",
438 dm_device_name(ti->table->md), d->name);
441 if (refcount_dec_and_test(&dd->count)) {
442 dm_put_table_device(ti->table->md, d);
447 EXPORT_SYMBOL(dm_put_device);
450 * Checks to see if the target joins onto the end of the table.
452 static int adjoin(struct dm_table *t, struct dm_target *ti)
454 struct dm_target *prev;
459 prev = &t->targets[t->num_targets - 1];
460 return (ti->begin == (prev->begin + prev->len));
464 * Used to dynamically allocate the arg array.
466 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
467 * process messages even if some device is suspended. These messages have a
468 * small fixed number of arguments.
470 * On the other hand, dm-switch needs to process bulk data using messages and
471 * excessive use of GFP_NOIO could cause trouble.
473 static char **realloc_argv(unsigned *size, char **old_argv)
480 new_size = *size * 2;
486 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
487 if (argv && old_argv) {
488 memcpy(argv, old_argv, *size * sizeof(*argv));
497 * Destructively splits up the argument list to pass to ctr.
499 int dm_split_args(int *argc, char ***argvp, char *input)
501 char *start, *end = input, *out, **argv = NULL;
502 unsigned array_size = 0;
511 argv = realloc_argv(&array_size, argv);
516 /* Skip whitespace */
517 start = skip_spaces(end);
520 break; /* success, we hit the end */
522 /* 'out' is used to remove any back-quotes */
525 /* Everything apart from '\0' can be quoted */
526 if (*end == '\\' && *(end + 1)) {
533 break; /* end of token */
538 /* have we already filled the array ? */
539 if ((*argc + 1) > array_size) {
540 argv = realloc_argv(&array_size, argv);
545 /* we know this is whitespace */
549 /* terminate the string and put it in the array */
560 * Impose necessary and sufficient conditions on a devices's table such
561 * that any incoming bio which respects its logical_block_size can be
562 * processed successfully. If it falls across the boundary between
563 * two or more targets, the size of each piece it gets split into must
564 * be compatible with the logical_block_size of the target processing it.
566 static int validate_hardware_logical_block_alignment(struct dm_table *t,
567 struct queue_limits *limits)
570 * This function uses arithmetic modulo the logical_block_size
571 * (in units of 512-byte sectors).
573 unsigned short device_logical_block_size_sects =
574 limits->logical_block_size >> SECTOR_SHIFT;
577 * Offset of the start of the next table entry, mod logical_block_size.
579 unsigned short next_target_start = 0;
582 * Given an aligned bio that extends beyond the end of a
583 * target, how many sectors must the next target handle?
585 unsigned short remaining = 0;
587 struct dm_target *ti;
588 struct queue_limits ti_limits;
592 * Check each entry in the table in turn.
594 for (i = 0; i < t->num_targets; i++) {
595 ti = dm_table_get_target(t, i);
597 blk_set_stacking_limits(&ti_limits);
599 /* combine all target devices' limits */
600 if (ti->type->iterate_devices)
601 ti->type->iterate_devices(ti, dm_set_device_limits,
605 * If the remaining sectors fall entirely within this
606 * table entry are they compatible with its logical_block_size?
608 if (remaining < ti->len &&
609 remaining & ((ti_limits.logical_block_size >>
614 (unsigned short) ((next_target_start + ti->len) &
615 (device_logical_block_size_sects - 1));
616 remaining = next_target_start ?
617 device_logical_block_size_sects - next_target_start : 0;
621 DMERR("%s: table line %u (start sect %llu len %llu) "
622 "not aligned to h/w logical block size %u",
623 dm_device_name(t->md), i,
624 (unsigned long long) ti->begin,
625 (unsigned long long) ti->len,
626 limits->logical_block_size);
633 int dm_table_add_target(struct dm_table *t, const char *type,
634 sector_t start, sector_t len, char *params)
636 int r = -EINVAL, argc;
638 struct dm_target *ti;
641 DMERR("%s: target type %s must appear alone in table",
642 dm_device_name(t->md), t->targets->type->name);
646 BUG_ON(t->num_targets >= t->num_allocated);
648 ti = t->targets + t->num_targets;
649 memset(ti, 0, sizeof(*ti));
652 DMERR("%s: zero-length target", dm_device_name(t->md));
656 ti->type = dm_get_target_type(type);
658 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
662 if (dm_target_needs_singleton(ti->type)) {
663 if (t->num_targets) {
664 ti->error = "singleton target type must appear alone in table";
670 if (dm_target_always_writeable(ti->type) && !(t->mode & FMODE_WRITE)) {
671 ti->error = "target type may not be included in a read-only table";
675 if (t->immutable_target_type) {
676 if (t->immutable_target_type != ti->type) {
677 ti->error = "immutable target type cannot be mixed with other target types";
680 } else if (dm_target_is_immutable(ti->type)) {
681 if (t->num_targets) {
682 ti->error = "immutable target type cannot be mixed with other target types";
685 t->immutable_target_type = ti->type;
688 if (dm_target_has_integrity(ti->type))
689 t->integrity_added = 1;
694 ti->error = "Unknown error";
697 * Does this target adjoin the previous one ?
699 if (!adjoin(t, ti)) {
700 ti->error = "Gap in table";
704 r = dm_split_args(&argc, &argv, params);
706 ti->error = "couldn't split parameters";
710 r = ti->type->ctr(ti, argc, argv);
715 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
717 if (!ti->num_discard_bios && ti->discards_supported)
718 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
719 dm_device_name(t->md), type);
721 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
722 static_branch_enable(&swap_bios_enabled);
727 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
728 dm_put_target_type(ti->type);
733 * Target argument parsing helpers.
735 static int validate_next_arg(const struct dm_arg *arg,
736 struct dm_arg_set *arg_set,
737 unsigned *value, char **error, unsigned grouped)
739 const char *arg_str = dm_shift_arg(arg_set);
743 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
744 (*value < arg->min) ||
745 (*value > arg->max) ||
746 (grouped && arg_set->argc < *value)) {
754 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
755 unsigned *value, char **error)
757 return validate_next_arg(arg, arg_set, value, error, 0);
759 EXPORT_SYMBOL(dm_read_arg);
761 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
762 unsigned *value, char **error)
764 return validate_next_arg(arg, arg_set, value, error, 1);
766 EXPORT_SYMBOL(dm_read_arg_group);
768 const char *dm_shift_arg(struct dm_arg_set *as)
781 EXPORT_SYMBOL(dm_shift_arg);
783 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
785 BUG_ON(as->argc < num_args);
786 as->argc -= num_args;
787 as->argv += num_args;
789 EXPORT_SYMBOL(dm_consume_args);
791 static bool __table_type_bio_based(enum dm_queue_mode table_type)
793 return (table_type == DM_TYPE_BIO_BASED ||
794 table_type == DM_TYPE_DAX_BIO_BASED);
797 static bool __table_type_request_based(enum dm_queue_mode table_type)
799 return table_type == DM_TYPE_REQUEST_BASED;
802 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
806 EXPORT_SYMBOL_GPL(dm_table_set_type);
808 /* validate the dax capability of the target device span */
809 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
810 sector_t start, sector_t len, void *data)
815 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
819 /* Check devices support synchronous DAX */
820 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
821 sector_t start, sector_t len, void *data)
823 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
826 static bool dm_table_supports_dax(struct dm_table *t,
827 iterate_devices_callout_fn iterate_fn)
829 /* Ensure that all targets support DAX. */
830 for (unsigned int i = 0; i < t->num_targets; i++) {
831 struct dm_target *ti = dm_table_get_target(t, i);
833 if (!ti->type->direct_access)
836 if (!ti->type->iterate_devices ||
837 ti->type->iterate_devices(ti, iterate_fn, NULL))
844 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
845 sector_t start, sector_t len, void *data)
847 struct block_device *bdev = dev->bdev;
848 struct request_queue *q = bdev_get_queue(bdev);
850 /* request-based cannot stack on partitions! */
851 if (bdev_is_partition(bdev))
854 return queue_is_mq(q);
857 static int dm_table_determine_type(struct dm_table *t)
859 unsigned bio_based = 0, request_based = 0, hybrid = 0;
860 struct dm_target *ti;
861 struct list_head *devices = dm_table_get_devices(t);
862 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
864 if (t->type != DM_TYPE_NONE) {
865 /* target already set the table's type */
866 if (t->type == DM_TYPE_BIO_BASED) {
867 /* possibly upgrade to a variant of bio-based */
868 goto verify_bio_based;
870 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
871 goto verify_rq_based;
874 for (unsigned int i = 0; i < t->num_targets; i++) {
875 ti = dm_table_get_target(t, i);
876 if (dm_target_hybrid(ti))
878 else if (dm_target_request_based(ti))
883 if (bio_based && request_based) {
884 DMERR("Inconsistent table: different target types"
885 " can't be mixed up");
890 if (hybrid && !bio_based && !request_based) {
892 * The targets can work either way.
893 * Determine the type from the live device.
894 * Default to bio-based if device is new.
896 if (__table_type_request_based(live_md_type))
904 /* We must use this table as bio-based */
905 t->type = DM_TYPE_BIO_BASED;
906 if (dm_table_supports_dax(t, device_not_dax_capable) ||
907 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
908 t->type = DM_TYPE_DAX_BIO_BASED;
913 BUG_ON(!request_based); /* No targets in this table */
915 t->type = DM_TYPE_REQUEST_BASED;
919 * Request-based dm supports only tables that have a single target now.
920 * To support multiple targets, request splitting support is needed,
921 * and that needs lots of changes in the block-layer.
922 * (e.g. request completion process for partial completion.)
924 if (t->num_targets > 1) {
925 DMERR("request-based DM doesn't support multiple targets");
929 if (list_empty(devices)) {
931 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
933 /* inherit live table's type */
935 t->type = live_table->type;
936 dm_put_live_table(t->md, srcu_idx);
940 ti = dm_table_get_immutable_target(t);
942 DMERR("table load rejected: immutable target is required");
944 } else if (ti->max_io_len) {
945 DMERR("table load rejected: immutable target that splits IO is not supported");
949 /* Non-request-stackable devices can't be used for request-based dm */
950 if (!ti->type->iterate_devices ||
951 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
952 DMERR("table load rejected: including non-request-stackable devices");
959 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
964 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
966 return t->immutable_target_type;
969 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
971 /* Immutable target is implicitly a singleton */
972 if (t->num_targets > 1 ||
973 !dm_target_is_immutable(t->targets[0].type))
979 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
981 for (unsigned int i = 0; i < t->num_targets; i++) {
982 struct dm_target *ti = dm_table_get_target(t, i);
984 if (dm_target_is_wildcard(ti->type))
991 bool dm_table_bio_based(struct dm_table *t)
993 return __table_type_bio_based(dm_table_get_type(t));
996 bool dm_table_request_based(struct dm_table *t)
998 return __table_type_request_based(dm_table_get_type(t));
1001 static bool dm_table_supports_poll(struct dm_table *t);
1003 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1005 enum dm_queue_mode type = dm_table_get_type(t);
1006 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1007 unsigned int min_pool_size = 0, pool_size;
1008 struct dm_md_mempools *pools;
1010 if (unlikely(type == DM_TYPE_NONE)) {
1011 DMERR("no table type is set, can't allocate mempools");
1015 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1019 if (type == DM_TYPE_REQUEST_BASED) {
1020 pool_size = dm_get_reserved_rq_based_ios();
1021 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1025 for (unsigned int i = 0; i < t->num_targets; i++) {
1026 struct dm_target *ti = dm_table_get_target(t, i);
1028 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1029 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1031 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1032 front_pad = roundup(per_io_data_size,
1033 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1035 io_front_pad = roundup(per_io_data_size,
1036 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1037 if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1038 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1039 goto out_free_pools;
1040 if (t->integrity_supported &&
1041 bioset_integrity_create(&pools->io_bs, pool_size))
1042 goto out_free_pools;
1044 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1045 goto out_free_pools;
1046 if (t->integrity_supported &&
1047 bioset_integrity_create(&pools->bs, pool_size))
1048 goto out_free_pools;
1050 t->mempools = pools;
1054 dm_free_md_mempools(pools);
1058 static int setup_indexes(struct dm_table *t)
1061 unsigned int total = 0;
1064 /* allocate the space for *all* the indexes */
1065 for (i = t->depth - 2; i >= 0; i--) {
1066 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1067 total += t->counts[i];
1070 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1074 /* set up internal nodes, bottom-up */
1075 for (i = t->depth - 2; i >= 0; i--) {
1076 t->index[i] = indexes;
1077 indexes += (KEYS_PER_NODE * t->counts[i]);
1078 setup_btree_index(i, t);
1085 * Builds the btree to index the map.
1087 static int dm_table_build_index(struct dm_table *t)
1090 unsigned int leaf_nodes;
1092 /* how many indexes will the btree have ? */
1093 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1094 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1096 /* leaf layer has already been set up */
1097 t->counts[t->depth - 1] = leaf_nodes;
1098 t->index[t->depth - 1] = t->highs;
1101 r = setup_indexes(t);
1106 static bool integrity_profile_exists(struct gendisk *disk)
1108 return !!blk_get_integrity(disk);
1112 * Get a disk whose integrity profile reflects the table's profile.
1113 * Returns NULL if integrity support was inconsistent or unavailable.
1115 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1117 struct list_head *devices = dm_table_get_devices(t);
1118 struct dm_dev_internal *dd = NULL;
1119 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1121 for (unsigned int i = 0; i < t->num_targets; i++) {
1122 struct dm_target *ti = dm_table_get_target(t, i);
1124 if (!dm_target_passes_integrity(ti->type))
1128 list_for_each_entry(dd, devices, list) {
1129 template_disk = dd->dm_dev->bdev->bd_disk;
1130 if (!integrity_profile_exists(template_disk))
1132 else if (prev_disk &&
1133 blk_integrity_compare(prev_disk, template_disk) < 0)
1135 prev_disk = template_disk;
1138 return template_disk;
1142 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1143 dm_device_name(t->md),
1144 prev_disk->disk_name,
1145 template_disk->disk_name);
1150 * Register the mapped device for blk_integrity support if the
1151 * underlying devices have an integrity profile. But all devices may
1152 * not have matching profiles (checking all devices isn't reliable
1153 * during table load because this table may use other DM device(s) which
1154 * must be resumed before they will have an initialized integity
1155 * profile). Consequently, stacked DM devices force a 2 stage integrity
1156 * profile validation: First pass during table load, final pass during
1159 static int dm_table_register_integrity(struct dm_table *t)
1161 struct mapped_device *md = t->md;
1162 struct gendisk *template_disk = NULL;
1164 /* If target handles integrity itself do not register it here. */
1165 if (t->integrity_added)
1168 template_disk = dm_table_get_integrity_disk(t);
1172 if (!integrity_profile_exists(dm_disk(md))) {
1173 t->integrity_supported = true;
1175 * Register integrity profile during table load; we can do
1176 * this because the final profile must match during resume.
1178 blk_integrity_register(dm_disk(md),
1179 blk_get_integrity(template_disk));
1184 * If DM device already has an initialized integrity
1185 * profile the new profile should not conflict.
1187 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1188 DMERR("%s: conflict with existing integrity profile: "
1189 "%s profile mismatch",
1190 dm_device_name(t->md),
1191 template_disk->disk_name);
1195 /* Preserve existing integrity profile */
1196 t->integrity_supported = true;
1200 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1202 struct dm_crypto_profile {
1203 struct blk_crypto_profile profile;
1204 struct mapped_device *md;
1207 struct dm_keyslot_evict_args {
1208 const struct blk_crypto_key *key;
1212 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1213 sector_t start, sector_t len, void *data)
1215 struct dm_keyslot_evict_args *args = data;
1218 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1221 /* Always try to evict the key from all devices. */
1226 * When an inline encryption key is evicted from a device-mapper device, evict
1227 * it from all the underlying devices.
1229 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1230 const struct blk_crypto_key *key, unsigned int slot)
1232 struct mapped_device *md =
1233 container_of(profile, struct dm_crypto_profile, profile)->md;
1234 struct dm_keyslot_evict_args args = { key };
1238 t = dm_get_live_table(md, &srcu_idx);
1242 for (unsigned int i = 0; i < t->num_targets; i++) {
1243 struct dm_target *ti = dm_table_get_target(t, i);
1245 if (!ti->type->iterate_devices)
1247 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1250 dm_put_live_table(md, srcu_idx);
1255 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1256 sector_t start, sector_t len, void *data)
1258 struct blk_crypto_profile *parent = data;
1259 struct blk_crypto_profile *child =
1260 bdev_get_queue(dev->bdev)->crypto_profile;
1262 blk_crypto_intersect_capabilities(parent, child);
1266 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1268 struct dm_crypto_profile *dmcp = container_of(profile,
1269 struct dm_crypto_profile,
1275 blk_crypto_profile_destroy(profile);
1279 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1281 dm_destroy_crypto_profile(t->crypto_profile);
1282 t->crypto_profile = NULL;
1286 * Constructs and initializes t->crypto_profile with a crypto profile that
1287 * represents the common set of crypto capabilities of the devices described by
1288 * the dm_table. However, if the constructed crypto profile doesn't support all
1289 * crypto capabilities that are supported by the current mapped_device, it
1290 * returns an error instead, since we don't support removing crypto capabilities
1291 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1292 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1294 static int dm_table_construct_crypto_profile(struct dm_table *t)
1296 struct dm_crypto_profile *dmcp;
1297 struct blk_crypto_profile *profile;
1299 bool empty_profile = true;
1301 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1306 profile = &dmcp->profile;
1307 blk_crypto_profile_init(profile, 0);
1308 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1309 profile->max_dun_bytes_supported = UINT_MAX;
1310 memset(profile->modes_supported, 0xFF,
1311 sizeof(profile->modes_supported));
1313 for (i = 0; i < t->num_targets; i++) {
1314 struct dm_target *ti = dm_table_get_target(t, i);
1316 if (!dm_target_passes_crypto(ti->type)) {
1317 blk_crypto_intersect_capabilities(profile, NULL);
1320 if (!ti->type->iterate_devices)
1322 ti->type->iterate_devices(ti,
1323 device_intersect_crypto_capabilities,
1328 !blk_crypto_has_capabilities(profile,
1329 t->md->queue->crypto_profile)) {
1330 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1331 dm_destroy_crypto_profile(profile);
1336 * If the new profile doesn't actually support any crypto capabilities,
1337 * we may as well represent it with a NULL profile.
1339 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1340 if (profile->modes_supported[i]) {
1341 empty_profile = false;
1346 if (empty_profile) {
1347 dm_destroy_crypto_profile(profile);
1352 * t->crypto_profile is only set temporarily while the table is being
1353 * set up, and it gets set to NULL after the profile has been
1354 * transferred to the request_queue.
1356 t->crypto_profile = profile;
1361 static void dm_update_crypto_profile(struct request_queue *q,
1364 if (!t->crypto_profile)
1367 /* Make the crypto profile less restrictive. */
1368 if (!q->crypto_profile) {
1369 blk_crypto_register(t->crypto_profile, q);
1371 blk_crypto_update_capabilities(q->crypto_profile,
1373 dm_destroy_crypto_profile(t->crypto_profile);
1375 t->crypto_profile = NULL;
1378 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1380 static int dm_table_construct_crypto_profile(struct dm_table *t)
1385 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1389 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1393 static void dm_update_crypto_profile(struct request_queue *q,
1398 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1401 * Prepares the table for use by building the indices,
1402 * setting the type, and allocating mempools.
1404 int dm_table_complete(struct dm_table *t)
1408 r = dm_table_determine_type(t);
1410 DMERR("unable to determine table type");
1414 r = dm_table_build_index(t);
1416 DMERR("unable to build btrees");
1420 r = dm_table_register_integrity(t);
1422 DMERR("could not register integrity profile.");
1426 r = dm_table_construct_crypto_profile(t);
1428 DMERR("could not construct crypto profile.");
1432 r = dm_table_alloc_md_mempools(t, t->md);
1434 DMERR("unable to allocate mempools");
1439 static DEFINE_MUTEX(_event_lock);
1440 void dm_table_event_callback(struct dm_table *t,
1441 void (*fn)(void *), void *context)
1443 mutex_lock(&_event_lock);
1445 t->event_context = context;
1446 mutex_unlock(&_event_lock);
1449 void dm_table_event(struct dm_table *t)
1451 mutex_lock(&_event_lock);
1453 t->event_fn(t->event_context);
1454 mutex_unlock(&_event_lock);
1456 EXPORT_SYMBOL(dm_table_event);
1458 inline sector_t dm_table_get_size(struct dm_table *t)
1460 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1462 EXPORT_SYMBOL(dm_table_get_size);
1465 * Search the btree for the correct target.
1467 * Caller should check returned pointer for NULL
1468 * to trap I/O beyond end of device.
1470 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1472 unsigned int l, n = 0, k = 0;
1475 if (unlikely(sector >= dm_table_get_size(t)))
1478 for (l = 0; l < t->depth; l++) {
1479 n = get_child(n, k);
1480 node = get_node(t, l, n);
1482 for (k = 0; k < KEYS_PER_NODE; k++)
1483 if (node[k] >= sector)
1487 return &t->targets[(KEYS_PER_NODE * n) + k];
1490 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1491 sector_t start, sector_t len, void *data)
1493 struct request_queue *q = bdev_get_queue(dev->bdev);
1495 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1499 * type->iterate_devices() should be called when the sanity check needs to
1500 * iterate and check all underlying data devices. iterate_devices() will
1501 * iterate all underlying data devices until it encounters a non-zero return
1502 * code, returned by whether the input iterate_devices_callout_fn, or
1503 * iterate_devices() itself internally.
1505 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1506 * iterate multiple underlying devices internally, in which case a non-zero
1507 * return code returned by iterate_devices_callout_fn will stop the iteration
1510 * Cases requiring _any_ underlying device supporting some kind of attribute,
1511 * should use the iteration structure like dm_table_any_dev_attr(), or call
1512 * it directly. @func should handle semantics of positive examples, e.g.
1513 * capable of something.
1515 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1516 * should use the iteration structure like dm_table_supports_nowait() or
1517 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1518 * uses an @anti_func that handle semantics of counter examples, e.g. not
1519 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1521 static bool dm_table_any_dev_attr(struct dm_table *t,
1522 iterate_devices_callout_fn func, void *data)
1524 for (unsigned int i = 0; i < t->num_targets; i++) {
1525 struct dm_target *ti = dm_table_get_target(t, i);
1527 if (ti->type->iterate_devices &&
1528 ti->type->iterate_devices(ti, func, data))
1535 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1536 sector_t start, sector_t len, void *data)
1538 unsigned *num_devices = data;
1545 static bool dm_table_supports_poll(struct dm_table *t)
1547 for (unsigned int i = 0; i < t->num_targets; i++) {
1548 struct dm_target *ti = dm_table_get_target(t, i);
1550 if (!ti->type->iterate_devices ||
1551 ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1559 * Check whether a table has no data devices attached using each
1560 * target's iterate_devices method.
1561 * Returns false if the result is unknown because a target doesn't
1562 * support iterate_devices.
1564 bool dm_table_has_no_data_devices(struct dm_table *t)
1566 for (unsigned int i = 0; i < t->num_targets; i++) {
1567 struct dm_target *ti = dm_table_get_target(t, i);
1568 unsigned num_devices = 0;
1570 if (!ti->type->iterate_devices)
1573 ti->type->iterate_devices(ti, count_device, &num_devices);
1581 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1582 sector_t start, sector_t len, void *data)
1584 struct request_queue *q = bdev_get_queue(dev->bdev);
1585 enum blk_zoned_model *zoned_model = data;
1587 return blk_queue_zoned_model(q) != *zoned_model;
1591 * Check the device zoned model based on the target feature flag. If the target
1592 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1593 * also accepted but all devices must have the same zoned model. If the target
1594 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1595 * zoned model with all zoned devices having the same zone size.
1597 static bool dm_table_supports_zoned_model(struct dm_table *t,
1598 enum blk_zoned_model zoned_model)
1600 for (unsigned int i = 0; i < t->num_targets; i++) {
1601 struct dm_target *ti = dm_table_get_target(t, i);
1603 if (dm_target_supports_zoned_hm(ti->type)) {
1604 if (!ti->type->iterate_devices ||
1605 ti->type->iterate_devices(ti, device_not_zoned_model,
1608 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1609 if (zoned_model == BLK_ZONED_HM)
1617 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1618 sector_t start, sector_t len, void *data)
1620 unsigned int *zone_sectors = data;
1622 if (!bdev_is_zoned(dev->bdev))
1624 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1628 * Check consistency of zoned model and zone sectors across all targets. For
1629 * zone sectors, if the destination device is a zoned block device, it shall
1630 * have the specified zone_sectors.
1632 static int validate_hardware_zoned_model(struct dm_table *t,
1633 enum blk_zoned_model zoned_model,
1634 unsigned int zone_sectors)
1636 if (zoned_model == BLK_ZONED_NONE)
1639 if (!dm_table_supports_zoned_model(t, zoned_model)) {
1640 DMERR("%s: zoned model is not consistent across all devices",
1641 dm_device_name(t->md));
1645 /* Check zone size validity and compatibility */
1646 if (!zone_sectors || !is_power_of_2(zone_sectors))
1649 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1650 DMERR("%s: zone sectors is not consistent across all zoned devices",
1651 dm_device_name(t->md));
1659 * Establish the new table's queue_limits and validate them.
1661 int dm_calculate_queue_limits(struct dm_table *t,
1662 struct queue_limits *limits)
1664 struct queue_limits ti_limits;
1665 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1666 unsigned int zone_sectors = 0;
1668 blk_set_stacking_limits(limits);
1670 for (unsigned int i = 0; i < t->num_targets; i++) {
1671 struct dm_target *ti = dm_table_get_target(t, i);
1673 blk_set_stacking_limits(&ti_limits);
1675 if (!ti->type->iterate_devices)
1676 goto combine_limits;
1679 * Combine queue limits of all the devices this target uses.
1681 ti->type->iterate_devices(ti, dm_set_device_limits,
1684 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1686 * After stacking all limits, validate all devices
1687 * in table support this zoned model and zone sectors.
1689 zoned_model = ti_limits.zoned;
1690 zone_sectors = ti_limits.chunk_sectors;
1693 /* Set I/O hints portion of queue limits */
1694 if (ti->type->io_hints)
1695 ti->type->io_hints(ti, &ti_limits);
1698 * Check each device area is consistent with the target's
1699 * overall queue limits.
1701 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1707 * Merge this target's queue limits into the overall limits
1710 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1711 DMWARN("%s: adding target device "
1712 "(start sect %llu len %llu) "
1713 "caused an alignment inconsistency",
1714 dm_device_name(t->md),
1715 (unsigned long long) ti->begin,
1716 (unsigned long long) ti->len);
1720 * Verify that the zoned model and zone sectors, as determined before
1721 * any .io_hints override, are the same across all devices in the table.
1722 * - this is especially relevant if .io_hints is emulating a disk-managed
1723 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1726 if (limits->zoned != BLK_ZONED_NONE) {
1728 * ...IF the above limits stacking determined a zoned model
1729 * validate that all of the table's devices conform to it.
1731 zoned_model = limits->zoned;
1732 zone_sectors = limits->chunk_sectors;
1734 if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
1737 return validate_hardware_logical_block_alignment(t, limits);
1741 * Verify that all devices have an integrity profile that matches the
1742 * DM device's registered integrity profile. If the profiles don't
1743 * match then unregister the DM device's integrity profile.
1745 static void dm_table_verify_integrity(struct dm_table *t)
1747 struct gendisk *template_disk = NULL;
1749 if (t->integrity_added)
1752 if (t->integrity_supported) {
1754 * Verify that the original integrity profile
1755 * matches all the devices in this table.
1757 template_disk = dm_table_get_integrity_disk(t);
1758 if (template_disk &&
1759 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1763 if (integrity_profile_exists(dm_disk(t->md))) {
1764 DMWARN("%s: unable to establish an integrity profile",
1765 dm_device_name(t->md));
1766 blk_integrity_unregister(dm_disk(t->md));
1770 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1771 sector_t start, sector_t len, void *data)
1773 unsigned long flush = (unsigned long) data;
1774 struct request_queue *q = bdev_get_queue(dev->bdev);
1776 return (q->queue_flags & flush);
1779 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1782 * Require at least one underlying device to support flushes.
1783 * t->devices includes internal dm devices such as mirror logs
1784 * so we need to use iterate_devices here, which targets
1785 * supporting flushes must provide.
1787 for (unsigned int i = 0; i < t->num_targets; i++) {
1788 struct dm_target *ti = dm_table_get_target(t, i);
1790 if (!ti->num_flush_bios)
1793 if (ti->flush_supported)
1796 if (ti->type->iterate_devices &&
1797 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1804 static int device_dax_write_cache_enabled(struct dm_target *ti,
1805 struct dm_dev *dev, sector_t start,
1806 sector_t len, void *data)
1808 struct dax_device *dax_dev = dev->dax_dev;
1813 if (dax_write_cache_enabled(dax_dev))
1818 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1819 sector_t start, sector_t len, void *data)
1821 return !bdev_nonrot(dev->bdev);
1824 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1825 sector_t start, sector_t len, void *data)
1827 struct request_queue *q = bdev_get_queue(dev->bdev);
1829 return !blk_queue_add_random(q);
1832 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1833 sector_t start, sector_t len, void *data)
1835 struct request_queue *q = bdev_get_queue(dev->bdev);
1837 return !q->limits.max_write_zeroes_sectors;
1840 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1842 for (unsigned int i = 0; i < t->num_targets; i++) {
1843 struct dm_target *ti = dm_table_get_target(t, i);
1845 if (!ti->num_write_zeroes_bios)
1848 if (!ti->type->iterate_devices ||
1849 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1856 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1857 sector_t start, sector_t len, void *data)
1859 return !bdev_nowait(dev->bdev);
1862 static bool dm_table_supports_nowait(struct dm_table *t)
1864 for (unsigned int i = 0; i < t->num_targets; i++) {
1865 struct dm_target *ti = dm_table_get_target(t, i);
1867 if (!dm_target_supports_nowait(ti->type))
1870 if (!ti->type->iterate_devices ||
1871 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1878 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1879 sector_t start, sector_t len, void *data)
1881 return !bdev_max_discard_sectors(dev->bdev);
1884 static bool dm_table_supports_discards(struct dm_table *t)
1886 for (unsigned int i = 0; i < t->num_targets; i++) {
1887 struct dm_target *ti = dm_table_get_target(t, i);
1889 if (!ti->num_discard_bios)
1893 * Either the target provides discard support (as implied by setting
1894 * 'discards_supported') or it relies on _all_ data devices having
1897 if (!ti->discards_supported &&
1898 (!ti->type->iterate_devices ||
1899 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1906 static int device_not_secure_erase_capable(struct dm_target *ti,
1907 struct dm_dev *dev, sector_t start,
1908 sector_t len, void *data)
1910 return !bdev_max_secure_erase_sectors(dev->bdev);
1913 static bool dm_table_supports_secure_erase(struct dm_table *t)
1915 for (unsigned int i = 0; i < t->num_targets; i++) {
1916 struct dm_target *ti = dm_table_get_target(t, i);
1918 if (!ti->num_secure_erase_bios)
1921 if (!ti->type->iterate_devices ||
1922 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1929 static int device_requires_stable_pages(struct dm_target *ti,
1930 struct dm_dev *dev, sector_t start,
1931 sector_t len, void *data)
1933 return bdev_stable_writes(dev->bdev);
1936 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1937 struct queue_limits *limits)
1939 bool wc = false, fua = false;
1943 * Copy table's limits to the DM device's request_queue
1945 q->limits = *limits;
1947 if (dm_table_supports_nowait(t))
1948 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1950 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1952 if (!dm_table_supports_discards(t)) {
1953 q->limits.max_discard_sectors = 0;
1954 q->limits.max_hw_discard_sectors = 0;
1955 q->limits.discard_granularity = 0;
1956 q->limits.discard_alignment = 0;
1957 q->limits.discard_misaligned = 0;
1960 if (!dm_table_supports_secure_erase(t))
1961 q->limits.max_secure_erase_sectors = 0;
1963 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1965 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1968 blk_queue_write_cache(q, wc, fua);
1970 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1971 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1972 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1973 set_dax_synchronous(t->md->dax_dev);
1976 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1978 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1979 dax_write_cache(t->md->dax_dev, true);
1981 /* Ensure that all underlying devices are non-rotational. */
1982 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1983 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1985 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1987 if (!dm_table_supports_write_zeroes(t))
1988 q->limits.max_write_zeroes_sectors = 0;
1990 dm_table_verify_integrity(t);
1993 * Some devices don't use blk_integrity but still want stable pages
1994 * because they do their own checksumming.
1995 * If any underlying device requires stable pages, a table must require
1996 * them as well. Only targets that support iterate_devices are considered:
1997 * don't want error, zero, etc to require stable pages.
1999 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2000 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2002 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2005 * Determine whether or not this queue's I/O timings contribute
2006 * to the entropy pool, Only request-based targets use this.
2007 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2010 if (blk_queue_add_random(q) &&
2011 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2012 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2015 * For a zoned target, setup the zones related queue attributes
2016 * and resources necessary for zone append emulation if necessary.
2018 if (blk_queue_is_zoned(q)) {
2019 r = dm_set_zones_restrictions(t, q);
2022 if (!static_key_enabled(&zoned_enabled.key))
2023 static_branch_enable(&zoned_enabled);
2026 dm_update_crypto_profile(q, t);
2027 disk_update_readahead(t->md->disk);
2030 * Check for request-based device is left to
2031 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2033 * For bio-based device, only set QUEUE_FLAG_POLL when all
2034 * underlying devices supporting polling.
2036 if (__table_type_bio_based(t->type)) {
2037 if (dm_table_supports_poll(t))
2038 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2040 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2046 struct list_head *dm_table_get_devices(struct dm_table *t)
2051 fmode_t dm_table_get_mode(struct dm_table *t)
2055 EXPORT_SYMBOL(dm_table_get_mode);
2063 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2065 lockdep_assert_held(&t->md->suspend_lock);
2067 for (unsigned int i = 0; i < t->num_targets; i++) {
2068 struct dm_target *ti = dm_table_get_target(t, i);
2072 if (ti->type->presuspend)
2073 ti->type->presuspend(ti);
2075 case PRESUSPEND_UNDO:
2076 if (ti->type->presuspend_undo)
2077 ti->type->presuspend_undo(ti);
2080 if (ti->type->postsuspend)
2081 ti->type->postsuspend(ti);
2087 void dm_table_presuspend_targets(struct dm_table *t)
2092 suspend_targets(t, PRESUSPEND);
2095 void dm_table_presuspend_undo_targets(struct dm_table *t)
2100 suspend_targets(t, PRESUSPEND_UNDO);
2103 void dm_table_postsuspend_targets(struct dm_table *t)
2108 suspend_targets(t, POSTSUSPEND);
2111 int dm_table_resume_targets(struct dm_table *t)
2116 lockdep_assert_held(&t->md->suspend_lock);
2118 for (i = 0; i < t->num_targets; i++) {
2119 struct dm_target *ti = dm_table_get_target(t, i);
2121 if (!ti->type->preresume)
2124 r = ti->type->preresume(ti);
2126 DMERR("%s: %s: preresume failed, error = %d",
2127 dm_device_name(t->md), ti->type->name, r);
2132 for (i = 0; i < t->num_targets; i++) {
2133 struct dm_target *ti = dm_table_get_target(t, i);
2135 if (ti->type->resume)
2136 ti->type->resume(ti);
2142 struct mapped_device *dm_table_get_md(struct dm_table *t)
2146 EXPORT_SYMBOL(dm_table_get_md);
2148 const char *dm_table_device_name(struct dm_table *t)
2150 return dm_device_name(t->md);
2152 EXPORT_SYMBOL_GPL(dm_table_device_name);
2154 void dm_table_run_md_queue_async(struct dm_table *t)
2156 if (!dm_table_request_based(t))
2160 blk_mq_run_hw_queues(t->md->queue, true);
2162 EXPORT_SYMBOL(dm_table_run_md_queue_async);