8f8783533ac7e13383aed49eff8a40ba3a0218bf
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21
22 #define DM_MSG_PREFIX "table"
23
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29 struct dm_table {
30         struct mapped_device *md;
31         unsigned type;
32
33         /* btree table */
34         unsigned int depth;
35         unsigned int counts[MAX_DEPTH]; /* in nodes */
36         sector_t *index[MAX_DEPTH];
37
38         unsigned int num_targets;
39         unsigned int num_allocated;
40         sector_t *highs;
41         struct dm_target *targets;
42
43         struct target_type *immutable_target_type;
44         unsigned integrity_supported:1;
45         unsigned singleton:1;
46
47         /*
48          * Indicates the rw permissions for the new logical
49          * device.  This should be a combination of FMODE_READ
50          * and FMODE_WRITE.
51          */
52         fmode_t mode;
53
54         /* a list of devices used by this table */
55         struct list_head devices;
56
57         /* events get handed up using this callback */
58         void (*event_fn)(void *);
59         void *event_context;
60
61         struct dm_md_mempools *mempools;
62
63         struct list_head target_callbacks;
64 };
65
66 /*
67  * Similar to ceiling(log_size(n))
68  */
69 static unsigned int int_log(unsigned int n, unsigned int base)
70 {
71         int result = 0;
72
73         while (n > 1) {
74                 n = dm_div_up(n, base);
75                 result++;
76         }
77
78         return result;
79 }
80
81 /*
82  * Calculate the index of the child node of the n'th node k'th key.
83  */
84 static inline unsigned int get_child(unsigned int n, unsigned int k)
85 {
86         return (n * CHILDREN_PER_NODE) + k;
87 }
88
89 /*
90  * Return the n'th node of level l from table t.
91  */
92 static inline sector_t *get_node(struct dm_table *t,
93                                  unsigned int l, unsigned int n)
94 {
95         return t->index[l] + (n * KEYS_PER_NODE);
96 }
97
98 /*
99  * Return the highest key that you could lookup from the n'th
100  * node on level l of the btree.
101  */
102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
103 {
104         for (; l < t->depth - 1; l++)
105                 n = get_child(n, CHILDREN_PER_NODE - 1);
106
107         if (n >= t->counts[l])
108                 return (sector_t) - 1;
109
110         return get_node(t, l, n)[KEYS_PER_NODE - 1];
111 }
112
113 /*
114  * Fills in a level of the btree based on the highs of the level
115  * below it.
116  */
117 static int setup_btree_index(unsigned int l, struct dm_table *t)
118 {
119         unsigned int n, k;
120         sector_t *node;
121
122         for (n = 0U; n < t->counts[l]; n++) {
123                 node = get_node(t, l, n);
124
125                 for (k = 0U; k < KEYS_PER_NODE; k++)
126                         node[k] = high(t, l + 1, get_child(n, k));
127         }
128
129         return 0;
130 }
131
132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
133 {
134         unsigned long size;
135         void *addr;
136
137         /*
138          * Check that we're not going to overflow.
139          */
140         if (nmemb > (ULONG_MAX / elem_size))
141                 return NULL;
142
143         size = nmemb * elem_size;
144         addr = vzalloc(size);
145
146         return addr;
147 }
148 EXPORT_SYMBOL(dm_vcalloc);
149
150 /*
151  * highs, and targets are managed as dynamic arrays during a
152  * table load.
153  */
154 static int alloc_targets(struct dm_table *t, unsigned int num)
155 {
156         sector_t *n_highs;
157         struct dm_target *n_targets;
158         int n = t->num_targets;
159
160         /*
161          * Allocate both the target array and offset array at once.
162          * Append an empty entry to catch sectors beyond the end of
163          * the device.
164          */
165         n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
166                                           sizeof(sector_t));
167         if (!n_highs)
168                 return -ENOMEM;
169
170         n_targets = (struct dm_target *) (n_highs + num);
171
172         if (n) {
173                 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
174                 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
175         }
176
177         memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
178         vfree(t->highs);
179
180         t->num_allocated = num;
181         t->highs = n_highs;
182         t->targets = n_targets;
183
184         return 0;
185 }
186
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188                     unsigned num_targets, struct mapped_device *md)
189 {
190         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191
192         if (!t)
193                 return -ENOMEM;
194
195         INIT_LIST_HEAD(&t->devices);
196         INIT_LIST_HEAD(&t->target_callbacks);
197
198         if (!num_targets)
199                 num_targets = KEYS_PER_NODE;
200
201         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202
203         if (alloc_targets(t, num_targets)) {
204                 kfree(t);
205                 return -ENOMEM;
206         }
207
208         t->mode = mode;
209         t->md = md;
210         *result = t;
211         return 0;
212 }
213
214 static void free_devices(struct list_head *devices)
215 {
216         struct list_head *tmp, *next;
217
218         list_for_each_safe(tmp, next, devices) {
219                 struct dm_dev_internal *dd =
220                     list_entry(tmp, struct dm_dev_internal, list);
221                 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
222                        dd->dm_dev.name);
223                 kfree(dd);
224         }
225 }
226
227 void dm_table_destroy(struct dm_table *t)
228 {
229         unsigned int i;
230
231         if (!t)
232                 return;
233
234         /* free the indexes */
235         if (t->depth >= 2)
236                 vfree(t->index[t->depth - 2]);
237
238         /* free the targets */
239         for (i = 0; i < t->num_targets; i++) {
240                 struct dm_target *tgt = t->targets + i;
241
242                 if (tgt->type->dtr)
243                         tgt->type->dtr(tgt);
244
245                 dm_put_target_type(tgt->type);
246         }
247
248         vfree(t->highs);
249
250         /* free the device list */
251         free_devices(&t->devices);
252
253         dm_free_md_mempools(t->mempools);
254
255         kfree(t);
256 }
257
258 /*
259  * Checks to see if we need to extend highs or targets.
260  */
261 static inline int check_space(struct dm_table *t)
262 {
263         if (t->num_targets >= t->num_allocated)
264                 return alloc_targets(t, t->num_allocated * 2);
265
266         return 0;
267 }
268
269 /*
270  * See if we've already got a device in the list.
271  */
272 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
273 {
274         struct dm_dev_internal *dd;
275
276         list_for_each_entry (dd, l, list)
277                 if (dd->dm_dev.bdev->bd_dev == dev)
278                         return dd;
279
280         return NULL;
281 }
282
283 /*
284  * Open a device so we can use it as a map destination.
285  */
286 static int open_dev(struct dm_dev_internal *d, dev_t dev,
287                     struct mapped_device *md)
288 {
289         static char *_claim_ptr = "I belong to device-mapper";
290         struct block_device *bdev;
291
292         int r;
293
294         BUG_ON(d->dm_dev.bdev);
295
296         bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
297         if (IS_ERR(bdev))
298                 return PTR_ERR(bdev);
299
300         r = bd_link_disk_holder(bdev, dm_disk(md));
301         if (r) {
302                 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
303                 return r;
304         }
305
306         d->dm_dev.bdev = bdev;
307         return 0;
308 }
309
310 /*
311  * Close a device that we've been using.
312  */
313 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
314 {
315         if (!d->dm_dev.bdev)
316                 return;
317
318         bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
319         blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
320         d->dm_dev.bdev = NULL;
321 }
322
323 /*
324  * If possible, this checks an area of a destination device is invalid.
325  */
326 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
327                                   sector_t start, sector_t len, void *data)
328 {
329         struct request_queue *q;
330         struct queue_limits *limits = data;
331         struct block_device *bdev = dev->bdev;
332         sector_t dev_size =
333                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
334         unsigned short logical_block_size_sectors =
335                 limits->logical_block_size >> SECTOR_SHIFT;
336         char b[BDEVNAME_SIZE];
337
338         /*
339          * Some devices exist without request functions,
340          * such as loop devices not yet bound to backing files.
341          * Forbid the use of such devices.
342          */
343         q = bdev_get_queue(bdev);
344         if (!q || !q->make_request_fn) {
345                 DMWARN("%s: %s is not yet initialised: "
346                        "start=%llu, len=%llu, dev_size=%llu",
347                        dm_device_name(ti->table->md), bdevname(bdev, b),
348                        (unsigned long long)start,
349                        (unsigned long long)len,
350                        (unsigned long long)dev_size);
351                 return 1;
352         }
353
354         if (!dev_size)
355                 return 0;
356
357         if ((start >= dev_size) || (start + len > dev_size)) {
358                 DMWARN("%s: %s too small for target: "
359                        "start=%llu, len=%llu, dev_size=%llu",
360                        dm_device_name(ti->table->md), bdevname(bdev, b),
361                        (unsigned long long)start,
362                        (unsigned long long)len,
363                        (unsigned long long)dev_size);
364                 return 1;
365         }
366
367         if (logical_block_size_sectors <= 1)
368                 return 0;
369
370         if (start & (logical_block_size_sectors - 1)) {
371                 DMWARN("%s: start=%llu not aligned to h/w "
372                        "logical block size %u of %s",
373                        dm_device_name(ti->table->md),
374                        (unsigned long long)start,
375                        limits->logical_block_size, bdevname(bdev, b));
376                 return 1;
377         }
378
379         if (len & (logical_block_size_sectors - 1)) {
380                 DMWARN("%s: len=%llu not aligned to h/w "
381                        "logical block size %u of %s",
382                        dm_device_name(ti->table->md),
383                        (unsigned long long)len,
384                        limits->logical_block_size, bdevname(bdev, b));
385                 return 1;
386         }
387
388         return 0;
389 }
390
391 /*
392  * This upgrades the mode on an already open dm_dev, being
393  * careful to leave things as they were if we fail to reopen the
394  * device and not to touch the existing bdev field in case
395  * it is accessed concurrently inside dm_table_any_congested().
396  */
397 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
398                         struct mapped_device *md)
399 {
400         int r;
401         struct dm_dev_internal dd_new, dd_old;
402
403         dd_new = dd_old = *dd;
404
405         dd_new.dm_dev.mode |= new_mode;
406         dd_new.dm_dev.bdev = NULL;
407
408         r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
409         if (r)
410                 return r;
411
412         dd->dm_dev.mode |= new_mode;
413         close_dev(&dd_old, md);
414
415         return 0;
416 }
417
418 /*
419  * Add a device to the list, or just increment the usage count if
420  * it's already present.
421  */
422 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
423                   struct dm_dev **result)
424 {
425         int r;
426         dev_t uninitialized_var(dev);
427         struct dm_dev_internal *dd;
428         unsigned int major, minor;
429         struct dm_table *t = ti->table;
430         char dummy;
431
432         BUG_ON(!t);
433
434         if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
435                 /* Extract the major/minor numbers */
436                 dev = MKDEV(major, minor);
437                 if (MAJOR(dev) != major || MINOR(dev) != minor)
438                         return -EOVERFLOW;
439         } else {
440                 /* convert the path to a device */
441                 struct block_device *bdev = lookup_bdev(path);
442
443                 if (IS_ERR(bdev))
444                         return PTR_ERR(bdev);
445                 dev = bdev->bd_dev;
446                 bdput(bdev);
447         }
448
449         dd = find_device(&t->devices, dev);
450         if (!dd) {
451                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
452                 if (!dd)
453                         return -ENOMEM;
454
455                 dd->dm_dev.mode = mode;
456                 dd->dm_dev.bdev = NULL;
457
458                 if ((r = open_dev(dd, dev, t->md))) {
459                         kfree(dd);
460                         return r;
461                 }
462
463                 format_dev_t(dd->dm_dev.name, dev);
464
465                 atomic_set(&dd->count, 0);
466                 list_add(&dd->list, &t->devices);
467
468         } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
469                 r = upgrade_mode(dd, mode, t->md);
470                 if (r)
471                         return r;
472         }
473         atomic_inc(&dd->count);
474
475         *result = &dd->dm_dev;
476         return 0;
477 }
478 EXPORT_SYMBOL(dm_get_device);
479
480 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
481                          sector_t start, sector_t len, void *data)
482 {
483         struct queue_limits *limits = data;
484         struct block_device *bdev = dev->bdev;
485         struct request_queue *q = bdev_get_queue(bdev);
486         char b[BDEVNAME_SIZE];
487
488         if (unlikely(!q)) {
489                 DMWARN("%s: Cannot set limits for nonexistent device %s",
490                        dm_device_name(ti->table->md), bdevname(bdev, b));
491                 return 0;
492         }
493
494         if (bdev_stack_limits(limits, bdev, start) < 0)
495                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
496                        "physical_block_size=%u, logical_block_size=%u, "
497                        "alignment_offset=%u, start=%llu",
498                        dm_device_name(ti->table->md), bdevname(bdev, b),
499                        q->limits.physical_block_size,
500                        q->limits.logical_block_size,
501                        q->limits.alignment_offset,
502                        (unsigned long long) start << SECTOR_SHIFT);
503
504         /*
505          * Check if merge fn is supported.
506          * If not we'll force DM to use PAGE_SIZE or
507          * smaller I/O, just to be safe.
508          */
509         if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
510                 blk_limits_max_hw_sectors(limits,
511                                           (unsigned int) (PAGE_SIZE >> 9));
512         return 0;
513 }
514 EXPORT_SYMBOL_GPL(dm_set_device_limits);
515
516 /*
517  * Decrement a device's use count and remove it if necessary.
518  */
519 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
520 {
521         struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
522                                                   dm_dev);
523
524         if (atomic_dec_and_test(&dd->count)) {
525                 close_dev(dd, ti->table->md);
526                 list_del(&dd->list);
527                 kfree(dd);
528         }
529 }
530 EXPORT_SYMBOL(dm_put_device);
531
532 /*
533  * Checks to see if the target joins onto the end of the table.
534  */
535 static int adjoin(struct dm_table *table, struct dm_target *ti)
536 {
537         struct dm_target *prev;
538
539         if (!table->num_targets)
540                 return !ti->begin;
541
542         prev = &table->targets[table->num_targets - 1];
543         return (ti->begin == (prev->begin + prev->len));
544 }
545
546 /*
547  * Used to dynamically allocate the arg array.
548  */
549 static char **realloc_argv(unsigned *array_size, char **old_argv)
550 {
551         char **argv;
552         unsigned new_size;
553
554         new_size = *array_size ? *array_size * 2 : 64;
555         argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
556         if (argv) {
557                 memcpy(argv, old_argv, *array_size * sizeof(*argv));
558                 *array_size = new_size;
559         }
560
561         kfree(old_argv);
562         return argv;
563 }
564
565 /*
566  * Destructively splits up the argument list to pass to ctr.
567  */
568 int dm_split_args(int *argc, char ***argvp, char *input)
569 {
570         char *start, *end = input, *out, **argv = NULL;
571         unsigned array_size = 0;
572
573         *argc = 0;
574
575         if (!input) {
576                 *argvp = NULL;
577                 return 0;
578         }
579
580         argv = realloc_argv(&array_size, argv);
581         if (!argv)
582                 return -ENOMEM;
583
584         while (1) {
585                 /* Skip whitespace */
586                 start = skip_spaces(end);
587
588                 if (!*start)
589                         break;  /* success, we hit the end */
590
591                 /* 'out' is used to remove any back-quotes */
592                 end = out = start;
593                 while (*end) {
594                         /* Everything apart from '\0' can be quoted */
595                         if (*end == '\\' && *(end + 1)) {
596                                 *out++ = *(end + 1);
597                                 end += 2;
598                                 continue;
599                         }
600
601                         if (isspace(*end))
602                                 break;  /* end of token */
603
604                         *out++ = *end++;
605                 }
606
607                 /* have we already filled the array ? */
608                 if ((*argc + 1) > array_size) {
609                         argv = realloc_argv(&array_size, argv);
610                         if (!argv)
611                                 return -ENOMEM;
612                 }
613
614                 /* we know this is whitespace */
615                 if (*end)
616                         end++;
617
618                 /* terminate the string and put it in the array */
619                 *out = '\0';
620                 argv[*argc] = start;
621                 (*argc)++;
622         }
623
624         *argvp = argv;
625         return 0;
626 }
627
628 /*
629  * Impose necessary and sufficient conditions on a devices's table such
630  * that any incoming bio which respects its logical_block_size can be
631  * processed successfully.  If it falls across the boundary between
632  * two or more targets, the size of each piece it gets split into must
633  * be compatible with the logical_block_size of the target processing it.
634  */
635 static int validate_hardware_logical_block_alignment(struct dm_table *table,
636                                                  struct queue_limits *limits)
637 {
638         /*
639          * This function uses arithmetic modulo the logical_block_size
640          * (in units of 512-byte sectors).
641          */
642         unsigned short device_logical_block_size_sects =
643                 limits->logical_block_size >> SECTOR_SHIFT;
644
645         /*
646          * Offset of the start of the next table entry, mod logical_block_size.
647          */
648         unsigned short next_target_start = 0;
649
650         /*
651          * Given an aligned bio that extends beyond the end of a
652          * target, how many sectors must the next target handle?
653          */
654         unsigned short remaining = 0;
655
656         struct dm_target *uninitialized_var(ti);
657         struct queue_limits ti_limits;
658         unsigned i = 0;
659
660         /*
661          * Check each entry in the table in turn.
662          */
663         while (i < dm_table_get_num_targets(table)) {
664                 ti = dm_table_get_target(table, i++);
665
666                 blk_set_stacking_limits(&ti_limits);
667
668                 /* combine all target devices' limits */
669                 if (ti->type->iterate_devices)
670                         ti->type->iterate_devices(ti, dm_set_device_limits,
671                                                   &ti_limits);
672
673                 /*
674                  * If the remaining sectors fall entirely within this
675                  * table entry are they compatible with its logical_block_size?
676                  */
677                 if (remaining < ti->len &&
678                     remaining & ((ti_limits.logical_block_size >>
679                                   SECTOR_SHIFT) - 1))
680                         break;  /* Error */
681
682                 next_target_start =
683                     (unsigned short) ((next_target_start + ti->len) &
684                                       (device_logical_block_size_sects - 1));
685                 remaining = next_target_start ?
686                     device_logical_block_size_sects - next_target_start : 0;
687         }
688
689         if (remaining) {
690                 DMWARN("%s: table line %u (start sect %llu len %llu) "
691                        "not aligned to h/w logical block size %u",
692                        dm_device_name(table->md), i,
693                        (unsigned long long) ti->begin,
694                        (unsigned long long) ti->len,
695                        limits->logical_block_size);
696                 return -EINVAL;
697         }
698
699         return 0;
700 }
701
702 int dm_table_add_target(struct dm_table *t, const char *type,
703                         sector_t start, sector_t len, char *params)
704 {
705         int r = -EINVAL, argc;
706         char **argv;
707         struct dm_target *tgt;
708
709         if (t->singleton) {
710                 DMERR("%s: target type %s must appear alone in table",
711                       dm_device_name(t->md), t->targets->type->name);
712                 return -EINVAL;
713         }
714
715         if ((r = check_space(t)))
716                 return r;
717
718         tgt = t->targets + t->num_targets;
719         memset(tgt, 0, sizeof(*tgt));
720
721         if (!len) {
722                 DMERR("%s: zero-length target", dm_device_name(t->md));
723                 return -EINVAL;
724         }
725
726         tgt->type = dm_get_target_type(type);
727         if (!tgt->type) {
728                 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
729                       type);
730                 return -EINVAL;
731         }
732
733         if (dm_target_needs_singleton(tgt->type)) {
734                 if (t->num_targets) {
735                         DMERR("%s: target type %s must appear alone in table",
736                               dm_device_name(t->md), type);
737                         return -EINVAL;
738                 }
739                 t->singleton = 1;
740         }
741
742         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
743                 DMERR("%s: target type %s may not be included in read-only tables",
744                       dm_device_name(t->md), type);
745                 return -EINVAL;
746         }
747
748         if (t->immutable_target_type) {
749                 if (t->immutable_target_type != tgt->type) {
750                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
751                               dm_device_name(t->md), t->immutable_target_type->name);
752                         return -EINVAL;
753                 }
754         } else if (dm_target_is_immutable(tgt->type)) {
755                 if (t->num_targets) {
756                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
757                               dm_device_name(t->md), tgt->type->name);
758                         return -EINVAL;
759                 }
760                 t->immutable_target_type = tgt->type;
761         }
762
763         tgt->table = t;
764         tgt->begin = start;
765         tgt->len = len;
766         tgt->error = "Unknown error";
767
768         /*
769          * Does this target adjoin the previous one ?
770          */
771         if (!adjoin(t, tgt)) {
772                 tgt->error = "Gap in table";
773                 r = -EINVAL;
774                 goto bad;
775         }
776
777         r = dm_split_args(&argc, &argv, params);
778         if (r) {
779                 tgt->error = "couldn't split parameters (insufficient memory)";
780                 goto bad;
781         }
782
783         r = tgt->type->ctr(tgt, argc, argv);
784         kfree(argv);
785         if (r)
786                 goto bad;
787
788         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
789
790         if (!tgt->num_discard_bios && tgt->discards_supported)
791                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
792                        dm_device_name(t->md), type);
793
794         return 0;
795
796  bad:
797         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
798         dm_put_target_type(tgt->type);
799         return r;
800 }
801
802 /*
803  * Target argument parsing helpers.
804  */
805 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
806                              unsigned *value, char **error, unsigned grouped)
807 {
808         const char *arg_str = dm_shift_arg(arg_set);
809         char dummy;
810
811         if (!arg_str ||
812             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
813             (*value < arg->min) ||
814             (*value > arg->max) ||
815             (grouped && arg_set->argc < *value)) {
816                 *error = arg->error;
817                 return -EINVAL;
818         }
819
820         return 0;
821 }
822
823 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
824                 unsigned *value, char **error)
825 {
826         return validate_next_arg(arg, arg_set, value, error, 0);
827 }
828 EXPORT_SYMBOL(dm_read_arg);
829
830 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
831                       unsigned *value, char **error)
832 {
833         return validate_next_arg(arg, arg_set, value, error, 1);
834 }
835 EXPORT_SYMBOL(dm_read_arg_group);
836
837 const char *dm_shift_arg(struct dm_arg_set *as)
838 {
839         char *r;
840
841         if (as->argc) {
842                 as->argc--;
843                 r = *as->argv;
844                 as->argv++;
845                 return r;
846         }
847
848         return NULL;
849 }
850 EXPORT_SYMBOL(dm_shift_arg);
851
852 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
853 {
854         BUG_ON(as->argc < num_args);
855         as->argc -= num_args;
856         as->argv += num_args;
857 }
858 EXPORT_SYMBOL(dm_consume_args);
859
860 static int dm_table_set_type(struct dm_table *t)
861 {
862         unsigned i;
863         unsigned bio_based = 0, request_based = 0, hybrid = 0;
864         struct dm_target *tgt;
865         struct dm_dev_internal *dd;
866         struct list_head *devices;
867         unsigned live_md_type;
868
869         for (i = 0; i < t->num_targets; i++) {
870                 tgt = t->targets + i;
871                 if (dm_target_hybrid(tgt))
872                         hybrid = 1;
873                 else if (dm_target_request_based(tgt))
874                         request_based = 1;
875                 else
876                         bio_based = 1;
877
878                 if (bio_based && request_based) {
879                         DMWARN("Inconsistent table: different target types"
880                                " can't be mixed up");
881                         return -EINVAL;
882                 }
883         }
884
885         if (hybrid && !bio_based && !request_based) {
886                 /*
887                  * The targets can work either way.
888                  * Determine the type from the live device.
889                  * Default to bio-based if device is new.
890                  */
891                 live_md_type = dm_get_md_type(t->md);
892                 if (live_md_type == DM_TYPE_REQUEST_BASED)
893                         request_based = 1;
894                 else
895                         bio_based = 1;
896         }
897
898         if (bio_based) {
899                 /* We must use this table as bio-based */
900                 t->type = DM_TYPE_BIO_BASED;
901                 return 0;
902         }
903
904         BUG_ON(!request_based); /* No targets in this table */
905
906         /* Non-request-stackable devices can't be used for request-based dm */
907         devices = dm_table_get_devices(t);
908         list_for_each_entry(dd, devices, list) {
909                 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
910                         DMWARN("table load rejected: including"
911                                " non-request-stackable devices");
912                         return -EINVAL;
913                 }
914         }
915
916         /*
917          * Request-based dm supports only tables that have a single target now.
918          * To support multiple targets, request splitting support is needed,
919          * and that needs lots of changes in the block-layer.
920          * (e.g. request completion process for partial completion.)
921          */
922         if (t->num_targets > 1) {
923                 DMWARN("Request-based dm doesn't support multiple targets yet");
924                 return -EINVAL;
925         }
926
927         t->type = DM_TYPE_REQUEST_BASED;
928
929         return 0;
930 }
931
932 unsigned dm_table_get_type(struct dm_table *t)
933 {
934         return t->type;
935 }
936
937 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
938 {
939         return t->immutable_target_type;
940 }
941
942 bool dm_table_request_based(struct dm_table *t)
943 {
944         return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
945 }
946
947 int dm_table_alloc_md_mempools(struct dm_table *t)
948 {
949         unsigned type = dm_table_get_type(t);
950         unsigned per_bio_data_size = 0;
951         struct dm_target *tgt;
952         unsigned i;
953
954         if (unlikely(type == DM_TYPE_NONE)) {
955                 DMWARN("no table type is set, can't allocate mempools");
956                 return -EINVAL;
957         }
958
959         if (type == DM_TYPE_BIO_BASED)
960                 for (i = 0; i < t->num_targets; i++) {
961                         tgt = t->targets + i;
962                         per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
963                 }
964
965         t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
966         if (!t->mempools)
967                 return -ENOMEM;
968
969         return 0;
970 }
971
972 void dm_table_free_md_mempools(struct dm_table *t)
973 {
974         dm_free_md_mempools(t->mempools);
975         t->mempools = NULL;
976 }
977
978 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
979 {
980         return t->mempools;
981 }
982
983 static int setup_indexes(struct dm_table *t)
984 {
985         int i;
986         unsigned int total = 0;
987         sector_t *indexes;
988
989         /* allocate the space for *all* the indexes */
990         for (i = t->depth - 2; i >= 0; i--) {
991                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
992                 total += t->counts[i];
993         }
994
995         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
996         if (!indexes)
997                 return -ENOMEM;
998
999         /* set up internal nodes, bottom-up */
1000         for (i = t->depth - 2; i >= 0; i--) {
1001                 t->index[i] = indexes;
1002                 indexes += (KEYS_PER_NODE * t->counts[i]);
1003                 setup_btree_index(i, t);
1004         }
1005
1006         return 0;
1007 }
1008
1009 /*
1010  * Builds the btree to index the map.
1011  */
1012 static int dm_table_build_index(struct dm_table *t)
1013 {
1014         int r = 0;
1015         unsigned int leaf_nodes;
1016
1017         /* how many indexes will the btree have ? */
1018         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1019         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1020
1021         /* leaf layer has already been set up */
1022         t->counts[t->depth - 1] = leaf_nodes;
1023         t->index[t->depth - 1] = t->highs;
1024
1025         if (t->depth >= 2)
1026                 r = setup_indexes(t);
1027
1028         return r;
1029 }
1030
1031 /*
1032  * Get a disk whose integrity profile reflects the table's profile.
1033  * If %match_all is true, all devices' profiles must match.
1034  * If %match_all is false, all devices must at least have an
1035  * allocated integrity profile; but uninitialized is ok.
1036  * Returns NULL if integrity support was inconsistent or unavailable.
1037  */
1038 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1039                                                     bool match_all)
1040 {
1041         struct list_head *devices = dm_table_get_devices(t);
1042         struct dm_dev_internal *dd = NULL;
1043         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1044
1045         list_for_each_entry(dd, devices, list) {
1046                 template_disk = dd->dm_dev.bdev->bd_disk;
1047                 if (!blk_get_integrity(template_disk))
1048                         goto no_integrity;
1049                 if (!match_all && !blk_integrity_is_initialized(template_disk))
1050                         continue; /* skip uninitialized profiles */
1051                 else if (prev_disk &&
1052                          blk_integrity_compare(prev_disk, template_disk) < 0)
1053                         goto no_integrity;
1054                 prev_disk = template_disk;
1055         }
1056
1057         return template_disk;
1058
1059 no_integrity:
1060         if (prev_disk)
1061                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1062                        dm_device_name(t->md),
1063                        prev_disk->disk_name,
1064                        template_disk->disk_name);
1065         return NULL;
1066 }
1067
1068 /*
1069  * Register the mapped device for blk_integrity support if
1070  * the underlying devices have an integrity profile.  But all devices
1071  * may not have matching profiles (checking all devices isn't reliable
1072  * during table load because this table may use other DM device(s) which
1073  * must be resumed before they will have an initialized integity profile).
1074  * Stacked DM devices force a 2 stage integrity profile validation:
1075  * 1 - during load, validate all initialized integrity profiles match
1076  * 2 - during resume, validate all integrity profiles match
1077  */
1078 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1079 {
1080         struct gendisk *template_disk = NULL;
1081
1082         template_disk = dm_table_get_integrity_disk(t, false);
1083         if (!template_disk)
1084                 return 0;
1085
1086         if (!blk_integrity_is_initialized(dm_disk(md))) {
1087                 t->integrity_supported = 1;
1088                 return blk_integrity_register(dm_disk(md), NULL);
1089         }
1090
1091         /*
1092          * If DM device already has an initalized integrity
1093          * profile the new profile should not conflict.
1094          */
1095         if (blk_integrity_is_initialized(template_disk) &&
1096             blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1097                 DMWARN("%s: conflict with existing integrity profile: "
1098                        "%s profile mismatch",
1099                        dm_device_name(t->md),
1100                        template_disk->disk_name);
1101                 return 1;
1102         }
1103
1104         /* Preserve existing initialized integrity profile */
1105         t->integrity_supported = 1;
1106         return 0;
1107 }
1108
1109 /*
1110  * Prepares the table for use by building the indices,
1111  * setting the type, and allocating mempools.
1112  */
1113 int dm_table_complete(struct dm_table *t)
1114 {
1115         int r;
1116
1117         r = dm_table_set_type(t);
1118         if (r) {
1119                 DMERR("unable to set table type");
1120                 return r;
1121         }
1122
1123         r = dm_table_build_index(t);
1124         if (r) {
1125                 DMERR("unable to build btrees");
1126                 return r;
1127         }
1128
1129         r = dm_table_prealloc_integrity(t, t->md);
1130         if (r) {
1131                 DMERR("could not register integrity profile.");
1132                 return r;
1133         }
1134
1135         r = dm_table_alloc_md_mempools(t);
1136         if (r)
1137                 DMERR("unable to allocate mempools");
1138
1139         return r;
1140 }
1141
1142 static DEFINE_MUTEX(_event_lock);
1143 void dm_table_event_callback(struct dm_table *t,
1144                              void (*fn)(void *), void *context)
1145 {
1146         mutex_lock(&_event_lock);
1147         t->event_fn = fn;
1148         t->event_context = context;
1149         mutex_unlock(&_event_lock);
1150 }
1151
1152 void dm_table_event(struct dm_table *t)
1153 {
1154         /*
1155          * You can no longer call dm_table_event() from interrupt
1156          * context, use a bottom half instead.
1157          */
1158         BUG_ON(in_interrupt());
1159
1160         mutex_lock(&_event_lock);
1161         if (t->event_fn)
1162                 t->event_fn(t->event_context);
1163         mutex_unlock(&_event_lock);
1164 }
1165 EXPORT_SYMBOL(dm_table_event);
1166
1167 sector_t dm_table_get_size(struct dm_table *t)
1168 {
1169         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1170 }
1171 EXPORT_SYMBOL(dm_table_get_size);
1172
1173 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1174 {
1175         if (index >= t->num_targets)
1176                 return NULL;
1177
1178         return t->targets + index;
1179 }
1180
1181 /*
1182  * Search the btree for the correct target.
1183  *
1184  * Caller should check returned pointer with dm_target_is_valid()
1185  * to trap I/O beyond end of device.
1186  */
1187 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1188 {
1189         unsigned int l, n = 0, k = 0;
1190         sector_t *node;
1191
1192         for (l = 0; l < t->depth; l++) {
1193                 n = get_child(n, k);
1194                 node = get_node(t, l, n);
1195
1196                 for (k = 0; k < KEYS_PER_NODE; k++)
1197                         if (node[k] >= sector)
1198                                 break;
1199         }
1200
1201         return &t->targets[(KEYS_PER_NODE * n) + k];
1202 }
1203
1204 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1205                         sector_t start, sector_t len, void *data)
1206 {
1207         unsigned *num_devices = data;
1208
1209         (*num_devices)++;
1210
1211         return 0;
1212 }
1213
1214 /*
1215  * Check whether a table has no data devices attached using each
1216  * target's iterate_devices method.
1217  * Returns false if the result is unknown because a target doesn't
1218  * support iterate_devices.
1219  */
1220 bool dm_table_has_no_data_devices(struct dm_table *table)
1221 {
1222         struct dm_target *uninitialized_var(ti);
1223         unsigned i = 0, num_devices = 0;
1224
1225         while (i < dm_table_get_num_targets(table)) {
1226                 ti = dm_table_get_target(table, i++);
1227
1228                 if (!ti->type->iterate_devices)
1229                         return false;
1230
1231                 ti->type->iterate_devices(ti, count_device, &num_devices);
1232                 if (num_devices)
1233                         return false;
1234         }
1235
1236         return true;
1237 }
1238
1239 /*
1240  * Establish the new table's queue_limits and validate them.
1241  */
1242 int dm_calculate_queue_limits(struct dm_table *table,
1243                               struct queue_limits *limits)
1244 {
1245         struct dm_target *uninitialized_var(ti);
1246         struct queue_limits ti_limits;
1247         unsigned i = 0;
1248
1249         blk_set_stacking_limits(limits);
1250
1251         while (i < dm_table_get_num_targets(table)) {
1252                 blk_set_stacking_limits(&ti_limits);
1253
1254                 ti = dm_table_get_target(table, i++);
1255
1256                 if (!ti->type->iterate_devices)
1257                         goto combine_limits;
1258
1259                 /*
1260                  * Combine queue limits of all the devices this target uses.
1261                  */
1262                 ti->type->iterate_devices(ti, dm_set_device_limits,
1263                                           &ti_limits);
1264
1265                 /* Set I/O hints portion of queue limits */
1266                 if (ti->type->io_hints)
1267                         ti->type->io_hints(ti, &ti_limits);
1268
1269                 /*
1270                  * Check each device area is consistent with the target's
1271                  * overall queue limits.
1272                  */
1273                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1274                                               &ti_limits))
1275                         return -EINVAL;
1276
1277 combine_limits:
1278                 /*
1279                  * Merge this target's queue limits into the overall limits
1280                  * for the table.
1281                  */
1282                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1283                         DMWARN("%s: adding target device "
1284                                "(start sect %llu len %llu) "
1285                                "caused an alignment inconsistency",
1286                                dm_device_name(table->md),
1287                                (unsigned long long) ti->begin,
1288                                (unsigned long long) ti->len);
1289         }
1290
1291         return validate_hardware_logical_block_alignment(table, limits);
1292 }
1293
1294 /*
1295  * Set the integrity profile for this device if all devices used have
1296  * matching profiles.  We're quite deep in the resume path but still
1297  * don't know if all devices (particularly DM devices this device
1298  * may be stacked on) have matching profiles.  Even if the profiles
1299  * don't match we have no way to fail (to resume) at this point.
1300  */
1301 static void dm_table_set_integrity(struct dm_table *t)
1302 {
1303         struct gendisk *template_disk = NULL;
1304
1305         if (!blk_get_integrity(dm_disk(t->md)))
1306                 return;
1307
1308         template_disk = dm_table_get_integrity_disk(t, true);
1309         if (template_disk)
1310                 blk_integrity_register(dm_disk(t->md),
1311                                        blk_get_integrity(template_disk));
1312         else if (blk_integrity_is_initialized(dm_disk(t->md)))
1313                 DMWARN("%s: device no longer has a valid integrity profile",
1314                        dm_device_name(t->md));
1315         else
1316                 DMWARN("%s: unable to establish an integrity profile",
1317                        dm_device_name(t->md));
1318 }
1319
1320 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1321                                 sector_t start, sector_t len, void *data)
1322 {
1323         unsigned flush = (*(unsigned *)data);
1324         struct request_queue *q = bdev_get_queue(dev->bdev);
1325
1326         return q && (q->flush_flags & flush);
1327 }
1328
1329 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1330 {
1331         struct dm_target *ti;
1332         unsigned i = 0;
1333
1334         /*
1335          * Require at least one underlying device to support flushes.
1336          * t->devices includes internal dm devices such as mirror logs
1337          * so we need to use iterate_devices here, which targets
1338          * supporting flushes must provide.
1339          */
1340         while (i < dm_table_get_num_targets(t)) {
1341                 ti = dm_table_get_target(t, i++);
1342
1343                 if (!ti->num_flush_bios)
1344                         continue;
1345
1346                 if (ti->flush_supported)
1347                         return 1;
1348
1349                 if (ti->type->iterate_devices &&
1350                     ti->type->iterate_devices(ti, device_flush_capable, &flush))
1351                         return 1;
1352         }
1353
1354         return 0;
1355 }
1356
1357 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1358 {
1359         struct dm_target *ti;
1360         unsigned i = 0;
1361
1362         /* Ensure that all targets supports discard_zeroes_data. */
1363         while (i < dm_table_get_num_targets(t)) {
1364                 ti = dm_table_get_target(t, i++);
1365
1366                 if (ti->discard_zeroes_data_unsupported)
1367                         return 0;
1368         }
1369
1370         return 1;
1371 }
1372
1373 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1374                             sector_t start, sector_t len, void *data)
1375 {
1376         struct request_queue *q = bdev_get_queue(dev->bdev);
1377
1378         return q && blk_queue_nonrot(q);
1379 }
1380
1381 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1382                              sector_t start, sector_t len, void *data)
1383 {
1384         struct request_queue *q = bdev_get_queue(dev->bdev);
1385
1386         return q && !blk_queue_add_random(q);
1387 }
1388
1389 static bool dm_table_all_devices_attribute(struct dm_table *t,
1390                                            iterate_devices_callout_fn func)
1391 {
1392         struct dm_target *ti;
1393         unsigned i = 0;
1394
1395         while (i < dm_table_get_num_targets(t)) {
1396                 ti = dm_table_get_target(t, i++);
1397
1398                 if (!ti->type->iterate_devices ||
1399                     !ti->type->iterate_devices(ti, func, NULL))
1400                         return 0;
1401         }
1402
1403         return 1;
1404 }
1405
1406 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1407                                          sector_t start, sector_t len, void *data)
1408 {
1409         struct request_queue *q = bdev_get_queue(dev->bdev);
1410
1411         return q && !q->limits.max_write_same_sectors;
1412 }
1413
1414 static bool dm_table_supports_write_same(struct dm_table *t)
1415 {
1416         struct dm_target *ti;
1417         unsigned i = 0;
1418
1419         while (i < dm_table_get_num_targets(t)) {
1420                 ti = dm_table_get_target(t, i++);
1421
1422                 if (!ti->num_write_same_bios)
1423                         return false;
1424
1425                 if (!ti->type->iterate_devices ||
1426                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1427                         return false;
1428         }
1429
1430         return true;
1431 }
1432
1433 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1434                                struct queue_limits *limits)
1435 {
1436         unsigned flush = 0;
1437
1438         /*
1439          * Copy table's limits to the DM device's request_queue
1440          */
1441         q->limits = *limits;
1442
1443         if (!dm_table_supports_discards(t))
1444                 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1445         else
1446                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1447
1448         if (dm_table_supports_flush(t, REQ_FLUSH)) {
1449                 flush |= REQ_FLUSH;
1450                 if (dm_table_supports_flush(t, REQ_FUA))
1451                         flush |= REQ_FUA;
1452         }
1453         blk_queue_flush(q, flush);
1454
1455         if (!dm_table_discard_zeroes_data(t))
1456                 q->limits.discard_zeroes_data = 0;
1457
1458         /* Ensure that all underlying devices are non-rotational. */
1459         if (dm_table_all_devices_attribute(t, device_is_nonrot))
1460                 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1461         else
1462                 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1463
1464         if (!dm_table_supports_write_same(t))
1465                 q->limits.max_write_same_sectors = 0;
1466
1467         dm_table_set_integrity(t);
1468
1469         /*
1470          * Determine whether or not this queue's I/O timings contribute
1471          * to the entropy pool, Only request-based targets use this.
1472          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1473          * have it set.
1474          */
1475         if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1476                 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1477
1478         /*
1479          * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1480          * visible to other CPUs because, once the flag is set, incoming bios
1481          * are processed by request-based dm, which refers to the queue
1482          * settings.
1483          * Until the flag set, bios are passed to bio-based dm and queued to
1484          * md->deferred where queue settings are not needed yet.
1485          * Those bios are passed to request-based dm at the resume time.
1486          */
1487         smp_mb();
1488         if (dm_table_request_based(t))
1489                 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1490 }
1491
1492 unsigned int dm_table_get_num_targets(struct dm_table *t)
1493 {
1494         return t->num_targets;
1495 }
1496
1497 struct list_head *dm_table_get_devices(struct dm_table *t)
1498 {
1499         return &t->devices;
1500 }
1501
1502 fmode_t dm_table_get_mode(struct dm_table *t)
1503 {
1504         return t->mode;
1505 }
1506 EXPORT_SYMBOL(dm_table_get_mode);
1507
1508 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1509 {
1510         int i = t->num_targets;
1511         struct dm_target *ti = t->targets;
1512
1513         while (i--) {
1514                 if (postsuspend) {
1515                         if (ti->type->postsuspend)
1516                                 ti->type->postsuspend(ti);
1517                 } else if (ti->type->presuspend)
1518                         ti->type->presuspend(ti);
1519
1520                 ti++;
1521         }
1522 }
1523
1524 void dm_table_presuspend_targets(struct dm_table *t)
1525 {
1526         if (!t)
1527                 return;
1528
1529         suspend_targets(t, 0);
1530 }
1531
1532 void dm_table_postsuspend_targets(struct dm_table *t)
1533 {
1534         if (!t)
1535                 return;
1536
1537         suspend_targets(t, 1);
1538 }
1539
1540 int dm_table_resume_targets(struct dm_table *t)
1541 {
1542         int i, r = 0;
1543
1544         for (i = 0; i < t->num_targets; i++) {
1545                 struct dm_target *ti = t->targets + i;
1546
1547                 if (!ti->type->preresume)
1548                         continue;
1549
1550                 r = ti->type->preresume(ti);
1551                 if (r)
1552                         return r;
1553         }
1554
1555         for (i = 0; i < t->num_targets; i++) {
1556                 struct dm_target *ti = t->targets + i;
1557
1558                 if (ti->type->resume)
1559                         ti->type->resume(ti);
1560         }
1561
1562         return 0;
1563 }
1564
1565 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1566 {
1567         list_add(&cb->list, &t->target_callbacks);
1568 }
1569 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1570
1571 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1572 {
1573         struct dm_dev_internal *dd;
1574         struct list_head *devices = dm_table_get_devices(t);
1575         struct dm_target_callbacks *cb;
1576         int r = 0;
1577
1578         list_for_each_entry(dd, devices, list) {
1579                 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1580                 char b[BDEVNAME_SIZE];
1581
1582                 if (likely(q))
1583                         r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1584                 else
1585                         DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1586                                      dm_device_name(t->md),
1587                                      bdevname(dd->dm_dev.bdev, b));
1588         }
1589
1590         list_for_each_entry(cb, &t->target_callbacks, list)
1591                 if (cb->congested_fn)
1592                         r |= cb->congested_fn(cb, bdi_bits);
1593
1594         return r;
1595 }
1596
1597 int dm_table_any_busy_target(struct dm_table *t)
1598 {
1599         unsigned i;
1600         struct dm_target *ti;
1601
1602         for (i = 0; i < t->num_targets; i++) {
1603                 ti = t->targets + i;
1604                 if (ti->type->busy && ti->type->busy(ti))
1605                         return 1;
1606         }
1607
1608         return 0;
1609 }
1610
1611 struct mapped_device *dm_table_get_md(struct dm_table *t)
1612 {
1613         return t->md;
1614 }
1615 EXPORT_SYMBOL(dm_table_get_md);
1616
1617 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1618                                   sector_t start, sector_t len, void *data)
1619 {
1620         struct request_queue *q = bdev_get_queue(dev->bdev);
1621
1622         return q && blk_queue_discard(q);
1623 }
1624
1625 bool dm_table_supports_discards(struct dm_table *t)
1626 {
1627         struct dm_target *ti;
1628         unsigned i = 0;
1629
1630         /*
1631          * Unless any target used by the table set discards_supported,
1632          * require at least one underlying device to support discards.
1633          * t->devices includes internal dm devices such as mirror logs
1634          * so we need to use iterate_devices here, which targets
1635          * supporting discard selectively must provide.
1636          */
1637         while (i < dm_table_get_num_targets(t)) {
1638                 ti = dm_table_get_target(t, i++);
1639
1640                 if (!ti->num_discard_bios)
1641                         continue;
1642
1643                 if (ti->discards_supported)
1644                         return 1;
1645
1646                 if (ti->type->iterate_devices &&
1647                     ti->type->iterate_devices(ti, device_discard_capable, NULL))
1648                         return 1;
1649         }
1650
1651         return 0;
1652 }