RISCV: config: tizen_visionfive2: Disable JH7110 crypto driver
[platform/kernel/linux-starfive.git] / drivers / md / dm-table.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27
28 #define DM_MSG_PREFIX "table"
29
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34 /*
35  * Similar to ceiling(log_size(n))
36  */
37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39         int result = 0;
40
41         while (n > 1) {
42                 n = dm_div_up(n, base);
43                 result++;
44         }
45
46         return result;
47 }
48
49 /*
50  * Calculate the index of the child node of the n'th node k'th key.
51  */
52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54         return (n * CHILDREN_PER_NODE) + k;
55 }
56
57 /*
58  * Return the n'th node of level l from table t.
59  */
60 static inline sector_t *get_node(struct dm_table *t,
61                                  unsigned int l, unsigned int n)
62 {
63         return t->index[l] + (n * KEYS_PER_NODE);
64 }
65
66 /*
67  * Return the highest key that you could lookup from the n'th
68  * node on level l of the btree.
69  */
70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72         for (; l < t->depth - 1; l++)
73                 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75         if (n >= t->counts[l])
76                 return (sector_t) -1;
77
78         return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80
81 /*
82  * Fills in a level of the btree based on the highs of the level
83  * below it.
84  */
85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87         unsigned int n, k;
88         sector_t *node;
89
90         for (n = 0U; n < t->counts[l]; n++) {
91                 node = get_node(t, l, n);
92
93                 for (k = 0U; k < KEYS_PER_NODE; k++)
94                         node[k] = high(t, l + 1, get_child(n, k));
95         }
96
97         return 0;
98 }
99
100 /*
101  * highs, and targets are managed as dynamic arrays during a
102  * table load.
103  */
104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106         sector_t *n_highs;
107         struct dm_target *n_targets;
108
109         /*
110          * Allocate both the target array and offset array at once.
111          */
112         n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113                            GFP_KERNEL);
114         if (!n_highs)
115                 return -ENOMEM;
116
117         n_targets = (struct dm_target *) (n_highs + num);
118
119         memset(n_highs, -1, sizeof(*n_highs) * num);
120         kvfree(t->highs);
121
122         t->num_allocated = num;
123         t->highs = n_highs;
124         t->targets = n_targets;
125
126         return 0;
127 }
128
129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130                     unsigned int num_targets, struct mapped_device *md)
131 {
132         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
133
134         if (!t)
135                 return -ENOMEM;
136
137         INIT_LIST_HEAD(&t->devices);
138         init_rwsem(&t->devices_lock);
139
140         if (!num_targets)
141                 num_targets = KEYS_PER_NODE;
142
143         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
144
145         if (!num_targets) {
146                 kfree(t);
147                 return -ENOMEM;
148         }
149
150         if (alloc_targets(t, num_targets)) {
151                 kfree(t);
152                 return -ENOMEM;
153         }
154
155         t->type = DM_TYPE_NONE;
156         t->mode = mode;
157         t->md = md;
158         *result = t;
159         return 0;
160 }
161
162 static void free_devices(struct list_head *devices, struct mapped_device *md)
163 {
164         struct list_head *tmp, *next;
165
166         list_for_each_safe(tmp, next, devices) {
167                 struct dm_dev_internal *dd =
168                     list_entry(tmp, struct dm_dev_internal, list);
169                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
170                        dm_device_name(md), dd->dm_dev->name);
171                 dm_put_table_device(md, dd->dm_dev);
172                 kfree(dd);
173         }
174 }
175
176 static void dm_table_destroy_crypto_profile(struct dm_table *t);
177
178 void dm_table_destroy(struct dm_table *t)
179 {
180         if (!t)
181                 return;
182
183         /* free the indexes */
184         if (t->depth >= 2)
185                 kvfree(t->index[t->depth - 2]);
186
187         /* free the targets */
188         for (unsigned int i = 0; i < t->num_targets; i++) {
189                 struct dm_target *ti = dm_table_get_target(t, i);
190
191                 if (ti->type->dtr)
192                         ti->type->dtr(ti);
193
194                 dm_put_target_type(ti->type);
195         }
196
197         kvfree(t->highs);
198
199         /* free the device list */
200         free_devices(&t->devices, t->md);
201
202         dm_free_md_mempools(t->mempools);
203
204         dm_table_destroy_crypto_profile(t);
205
206         kfree(t);
207 }
208
209 /*
210  * See if we've already got a device in the list.
211  */
212 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
213 {
214         struct dm_dev_internal *dd;
215
216         list_for_each_entry(dd, l, list)
217                 if (dd->dm_dev->bdev->bd_dev == dev)
218                         return dd;
219
220         return NULL;
221 }
222
223 /*
224  * If possible, this checks an area of a destination device is invalid.
225  */
226 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
227                                   sector_t start, sector_t len, void *data)
228 {
229         struct queue_limits *limits = data;
230         struct block_device *bdev = dev->bdev;
231         sector_t dev_size = bdev_nr_sectors(bdev);
232         unsigned short logical_block_size_sectors =
233                 limits->logical_block_size >> SECTOR_SHIFT;
234
235         if (!dev_size)
236                 return 0;
237
238         if ((start >= dev_size) || (start + len > dev_size)) {
239                 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
240                       dm_device_name(ti->table->md), bdev,
241                       (unsigned long long)start,
242                       (unsigned long long)len,
243                       (unsigned long long)dev_size);
244                 return 1;
245         }
246
247         /*
248          * If the target is mapped to zoned block device(s), check
249          * that the zones are not partially mapped.
250          */
251         if (bdev_is_zoned(bdev)) {
252                 unsigned int zone_sectors = bdev_zone_sectors(bdev);
253
254                 if (start & (zone_sectors - 1)) {
255                         DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
256                               dm_device_name(ti->table->md),
257                               (unsigned long long)start,
258                               zone_sectors, bdev);
259                         return 1;
260                 }
261
262                 /*
263                  * Note: The last zone of a zoned block device may be smaller
264                  * than other zones. So for a target mapping the end of a
265                  * zoned block device with such a zone, len would not be zone
266                  * aligned. We do not allow such last smaller zone to be part
267                  * of the mapping here to ensure that mappings with multiple
268                  * devices do not end up with a smaller zone in the middle of
269                  * the sector range.
270                  */
271                 if (len & (zone_sectors - 1)) {
272                         DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
273                               dm_device_name(ti->table->md),
274                               (unsigned long long)len,
275                               zone_sectors, bdev);
276                         return 1;
277                 }
278         }
279
280         if (logical_block_size_sectors <= 1)
281                 return 0;
282
283         if (start & (logical_block_size_sectors - 1)) {
284                 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
285                       dm_device_name(ti->table->md),
286                       (unsigned long long)start,
287                       limits->logical_block_size, bdev);
288                 return 1;
289         }
290
291         if (len & (logical_block_size_sectors - 1)) {
292                 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
293                       dm_device_name(ti->table->md),
294                       (unsigned long long)len,
295                       limits->logical_block_size, bdev);
296                 return 1;
297         }
298
299         return 0;
300 }
301
302 /*
303  * This upgrades the mode on an already open dm_dev, being
304  * careful to leave things as they were if we fail to reopen the
305  * device and not to touch the existing bdev field in case
306  * it is accessed concurrently.
307  */
308 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
309                         struct mapped_device *md)
310 {
311         int r;
312         struct dm_dev *old_dev, *new_dev;
313
314         old_dev = dd->dm_dev;
315
316         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
317                                 dd->dm_dev->mode | new_mode, &new_dev);
318         if (r)
319                 return r;
320
321         dd->dm_dev = new_dev;
322         dm_put_table_device(md, old_dev);
323
324         return 0;
325 }
326
327 /*
328  * Add a device to the list, or just increment the usage count if
329  * it's already present.
330  *
331  * Note: the __ref annotation is because this function can call the __init
332  * marked early_lookup_bdev when called during early boot code from dm-init.c.
333  */
334 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
335                   struct dm_dev **result)
336 {
337         int r;
338         dev_t dev;
339         unsigned int major, minor;
340         char dummy;
341         struct dm_dev_internal *dd;
342         struct dm_table *t = ti->table;
343
344         BUG_ON(!t);
345
346         if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
347                 /* Extract the major/minor numbers */
348                 dev = MKDEV(major, minor);
349                 if (MAJOR(dev) != major || MINOR(dev) != minor)
350                         return -EOVERFLOW;
351         } else {
352                 r = lookup_bdev(path, &dev);
353 #ifndef MODULE
354                 if (r && system_state < SYSTEM_RUNNING)
355                         r = early_lookup_bdev(path, &dev);
356 #endif
357                 if (r)
358                         return r;
359         }
360         if (dev == disk_devt(t->md->disk))
361                 return -EINVAL;
362
363         down_write(&t->devices_lock);
364
365         dd = find_device(&t->devices, dev);
366         if (!dd) {
367                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
368                 if (!dd) {
369                         r = -ENOMEM;
370                         goto unlock_ret_r;
371                 }
372
373                 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
374                 if (r) {
375                         kfree(dd);
376                         goto unlock_ret_r;
377                 }
378
379                 refcount_set(&dd->count, 1);
380                 list_add(&dd->list, &t->devices);
381                 goto out;
382
383         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
384                 r = upgrade_mode(dd, mode, t->md);
385                 if (r)
386                         goto unlock_ret_r;
387         }
388         refcount_inc(&dd->count);
389 out:
390         up_write(&t->devices_lock);
391         *result = dd->dm_dev;
392         return 0;
393
394 unlock_ret_r:
395         up_write(&t->devices_lock);
396         return r;
397 }
398 EXPORT_SYMBOL(dm_get_device);
399
400 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
401                                 sector_t start, sector_t len, void *data)
402 {
403         struct queue_limits *limits = data;
404         struct block_device *bdev = dev->bdev;
405         struct request_queue *q = bdev_get_queue(bdev);
406
407         if (unlikely(!q)) {
408                 DMWARN("%s: Cannot set limits for nonexistent device %pg",
409                        dm_device_name(ti->table->md), bdev);
410                 return 0;
411         }
412
413         if (blk_stack_limits(limits, &q->limits,
414                         get_start_sect(bdev) + start) < 0)
415                 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
416                        "physical_block_size=%u, logical_block_size=%u, "
417                        "alignment_offset=%u, start=%llu",
418                        dm_device_name(ti->table->md), bdev,
419                        q->limits.physical_block_size,
420                        q->limits.logical_block_size,
421                        q->limits.alignment_offset,
422                        (unsigned long long) start << SECTOR_SHIFT);
423         return 0;
424 }
425
426 /*
427  * Decrement a device's use count and remove it if necessary.
428  */
429 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
430 {
431         int found = 0;
432         struct dm_table *t = ti->table;
433         struct list_head *devices = &t->devices;
434         struct dm_dev_internal *dd;
435
436         down_write(&t->devices_lock);
437
438         list_for_each_entry(dd, devices, list) {
439                 if (dd->dm_dev == d) {
440                         found = 1;
441                         break;
442                 }
443         }
444         if (!found) {
445                 DMERR("%s: device %s not in table devices list",
446                       dm_device_name(t->md), d->name);
447                 goto unlock_ret;
448         }
449         if (refcount_dec_and_test(&dd->count)) {
450                 dm_put_table_device(t->md, d);
451                 list_del(&dd->list);
452                 kfree(dd);
453         }
454
455 unlock_ret:
456         up_write(&t->devices_lock);
457 }
458 EXPORT_SYMBOL(dm_put_device);
459
460 /*
461  * Checks to see if the target joins onto the end of the table.
462  */
463 static int adjoin(struct dm_table *t, struct dm_target *ti)
464 {
465         struct dm_target *prev;
466
467         if (!t->num_targets)
468                 return !ti->begin;
469
470         prev = &t->targets[t->num_targets - 1];
471         return (ti->begin == (prev->begin + prev->len));
472 }
473
474 /*
475  * Used to dynamically allocate the arg array.
476  *
477  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
478  * process messages even if some device is suspended. These messages have a
479  * small fixed number of arguments.
480  *
481  * On the other hand, dm-switch needs to process bulk data using messages and
482  * excessive use of GFP_NOIO could cause trouble.
483  */
484 static char **realloc_argv(unsigned int *size, char **old_argv)
485 {
486         char **argv;
487         unsigned int new_size;
488         gfp_t gfp;
489
490         if (*size) {
491                 new_size = *size * 2;
492                 gfp = GFP_KERNEL;
493         } else {
494                 new_size = 8;
495                 gfp = GFP_NOIO;
496         }
497         argv = kmalloc_array(new_size, sizeof(*argv), gfp);
498         if (argv && old_argv) {
499                 memcpy(argv, old_argv, *size * sizeof(*argv));
500                 *size = new_size;
501         }
502
503         kfree(old_argv);
504         return argv;
505 }
506
507 /*
508  * Destructively splits up the argument list to pass to ctr.
509  */
510 int dm_split_args(int *argc, char ***argvp, char *input)
511 {
512         char *start, *end = input, *out, **argv = NULL;
513         unsigned int array_size = 0;
514
515         *argc = 0;
516
517         if (!input) {
518                 *argvp = NULL;
519                 return 0;
520         }
521
522         argv = realloc_argv(&array_size, argv);
523         if (!argv)
524                 return -ENOMEM;
525
526         while (1) {
527                 /* Skip whitespace */
528                 start = skip_spaces(end);
529
530                 if (!*start)
531                         break;  /* success, we hit the end */
532
533                 /* 'out' is used to remove any back-quotes */
534                 end = out = start;
535                 while (*end) {
536                         /* Everything apart from '\0' can be quoted */
537                         if (*end == '\\' && *(end + 1)) {
538                                 *out++ = *(end + 1);
539                                 end += 2;
540                                 continue;
541                         }
542
543                         if (isspace(*end))
544                                 break;  /* end of token */
545
546                         *out++ = *end++;
547                 }
548
549                 /* have we already filled the array ? */
550                 if ((*argc + 1) > array_size) {
551                         argv = realloc_argv(&array_size, argv);
552                         if (!argv)
553                                 return -ENOMEM;
554                 }
555
556                 /* we know this is whitespace */
557                 if (*end)
558                         end++;
559
560                 /* terminate the string and put it in the array */
561                 *out = '\0';
562                 argv[*argc] = start;
563                 (*argc)++;
564         }
565
566         *argvp = argv;
567         return 0;
568 }
569
570 /*
571  * Impose necessary and sufficient conditions on a devices's table such
572  * that any incoming bio which respects its logical_block_size can be
573  * processed successfully.  If it falls across the boundary between
574  * two or more targets, the size of each piece it gets split into must
575  * be compatible with the logical_block_size of the target processing it.
576  */
577 static int validate_hardware_logical_block_alignment(struct dm_table *t,
578                                                      struct queue_limits *limits)
579 {
580         /*
581          * This function uses arithmetic modulo the logical_block_size
582          * (in units of 512-byte sectors).
583          */
584         unsigned short device_logical_block_size_sects =
585                 limits->logical_block_size >> SECTOR_SHIFT;
586
587         /*
588          * Offset of the start of the next table entry, mod logical_block_size.
589          */
590         unsigned short next_target_start = 0;
591
592         /*
593          * Given an aligned bio that extends beyond the end of a
594          * target, how many sectors must the next target handle?
595          */
596         unsigned short remaining = 0;
597
598         struct dm_target *ti;
599         struct queue_limits ti_limits;
600         unsigned int i;
601
602         /*
603          * Check each entry in the table in turn.
604          */
605         for (i = 0; i < t->num_targets; i++) {
606                 ti = dm_table_get_target(t, i);
607
608                 blk_set_stacking_limits(&ti_limits);
609
610                 /* combine all target devices' limits */
611                 if (ti->type->iterate_devices)
612                         ti->type->iterate_devices(ti, dm_set_device_limits,
613                                                   &ti_limits);
614
615                 /*
616                  * If the remaining sectors fall entirely within this
617                  * table entry are they compatible with its logical_block_size?
618                  */
619                 if (remaining < ti->len &&
620                     remaining & ((ti_limits.logical_block_size >>
621                                   SECTOR_SHIFT) - 1))
622                         break;  /* Error */
623
624                 next_target_start =
625                     (unsigned short) ((next_target_start + ti->len) &
626                                       (device_logical_block_size_sects - 1));
627                 remaining = next_target_start ?
628                     device_logical_block_size_sects - next_target_start : 0;
629         }
630
631         if (remaining) {
632                 DMERR("%s: table line %u (start sect %llu len %llu) "
633                       "not aligned to h/w logical block size %u",
634                       dm_device_name(t->md), i,
635                       (unsigned long long) ti->begin,
636                       (unsigned long long) ti->len,
637                       limits->logical_block_size);
638                 return -EINVAL;
639         }
640
641         return 0;
642 }
643
644 int dm_table_add_target(struct dm_table *t, const char *type,
645                         sector_t start, sector_t len, char *params)
646 {
647         int r = -EINVAL, argc;
648         char **argv;
649         struct dm_target *ti;
650
651         if (t->singleton) {
652                 DMERR("%s: target type %s must appear alone in table",
653                       dm_device_name(t->md), t->targets->type->name);
654                 return -EINVAL;
655         }
656
657         BUG_ON(t->num_targets >= t->num_allocated);
658
659         ti = t->targets + t->num_targets;
660         memset(ti, 0, sizeof(*ti));
661
662         if (!len) {
663                 DMERR("%s: zero-length target", dm_device_name(t->md));
664                 return -EINVAL;
665         }
666
667         ti->type = dm_get_target_type(type);
668         if (!ti->type) {
669                 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
670                 return -EINVAL;
671         }
672
673         if (dm_target_needs_singleton(ti->type)) {
674                 if (t->num_targets) {
675                         ti->error = "singleton target type must appear alone in table";
676                         goto bad;
677                 }
678                 t->singleton = true;
679         }
680
681         if (dm_target_always_writeable(ti->type) &&
682             !(t->mode & BLK_OPEN_WRITE)) {
683                 ti->error = "target type may not be included in a read-only table";
684                 goto bad;
685         }
686
687         if (t->immutable_target_type) {
688                 if (t->immutable_target_type != ti->type) {
689                         ti->error = "immutable target type cannot be mixed with other target types";
690                         goto bad;
691                 }
692         } else if (dm_target_is_immutable(ti->type)) {
693                 if (t->num_targets) {
694                         ti->error = "immutable target type cannot be mixed with other target types";
695                         goto bad;
696                 }
697                 t->immutable_target_type = ti->type;
698         }
699
700         if (dm_target_has_integrity(ti->type))
701                 t->integrity_added = 1;
702
703         ti->table = t;
704         ti->begin = start;
705         ti->len = len;
706         ti->error = "Unknown error";
707
708         /*
709          * Does this target adjoin the previous one ?
710          */
711         if (!adjoin(t, ti)) {
712                 ti->error = "Gap in table";
713                 goto bad;
714         }
715
716         r = dm_split_args(&argc, &argv, params);
717         if (r) {
718                 ti->error = "couldn't split parameters";
719                 goto bad;
720         }
721
722         r = ti->type->ctr(ti, argc, argv);
723         kfree(argv);
724         if (r)
725                 goto bad;
726
727         t->highs[t->num_targets++] = ti->begin + ti->len - 1;
728
729         if (!ti->num_discard_bios && ti->discards_supported)
730                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
731                        dm_device_name(t->md), type);
732
733         if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
734                 static_branch_enable(&swap_bios_enabled);
735
736         return 0;
737
738  bad:
739         DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
740         dm_put_target_type(ti->type);
741         return r;
742 }
743
744 /*
745  * Target argument parsing helpers.
746  */
747 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
748                              unsigned int *value, char **error, unsigned int grouped)
749 {
750         const char *arg_str = dm_shift_arg(arg_set);
751         char dummy;
752
753         if (!arg_str ||
754             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
755             (*value < arg->min) ||
756             (*value > arg->max) ||
757             (grouped && arg_set->argc < *value)) {
758                 *error = arg->error;
759                 return -EINVAL;
760         }
761
762         return 0;
763 }
764
765 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
766                 unsigned int *value, char **error)
767 {
768         return validate_next_arg(arg, arg_set, value, error, 0);
769 }
770 EXPORT_SYMBOL(dm_read_arg);
771
772 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
773                       unsigned int *value, char **error)
774 {
775         return validate_next_arg(arg, arg_set, value, error, 1);
776 }
777 EXPORT_SYMBOL(dm_read_arg_group);
778
779 const char *dm_shift_arg(struct dm_arg_set *as)
780 {
781         char *r;
782
783         if (as->argc) {
784                 as->argc--;
785                 r = *as->argv;
786                 as->argv++;
787                 return r;
788         }
789
790         return NULL;
791 }
792 EXPORT_SYMBOL(dm_shift_arg);
793
794 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
795 {
796         BUG_ON(as->argc < num_args);
797         as->argc -= num_args;
798         as->argv += num_args;
799 }
800 EXPORT_SYMBOL(dm_consume_args);
801
802 static bool __table_type_bio_based(enum dm_queue_mode table_type)
803 {
804         return (table_type == DM_TYPE_BIO_BASED ||
805                 table_type == DM_TYPE_DAX_BIO_BASED);
806 }
807
808 static bool __table_type_request_based(enum dm_queue_mode table_type)
809 {
810         return table_type == DM_TYPE_REQUEST_BASED;
811 }
812
813 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
814 {
815         t->type = type;
816 }
817 EXPORT_SYMBOL_GPL(dm_table_set_type);
818
819 /* validate the dax capability of the target device span */
820 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
821                         sector_t start, sector_t len, void *data)
822 {
823         if (dev->dax_dev)
824                 return false;
825
826         DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
827         return true;
828 }
829
830 /* Check devices support synchronous DAX */
831 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
832                                               sector_t start, sector_t len, void *data)
833 {
834         return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
835 }
836
837 static bool dm_table_supports_dax(struct dm_table *t,
838                                   iterate_devices_callout_fn iterate_fn)
839 {
840         /* Ensure that all targets support DAX. */
841         for (unsigned int i = 0; i < t->num_targets; i++) {
842                 struct dm_target *ti = dm_table_get_target(t, i);
843
844                 if (!ti->type->direct_access)
845                         return false;
846
847                 if (!ti->type->iterate_devices ||
848                     ti->type->iterate_devices(ti, iterate_fn, NULL))
849                         return false;
850         }
851
852         return true;
853 }
854
855 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
856                                   sector_t start, sector_t len, void *data)
857 {
858         struct block_device *bdev = dev->bdev;
859         struct request_queue *q = bdev_get_queue(bdev);
860
861         /* request-based cannot stack on partitions! */
862         if (bdev_is_partition(bdev))
863                 return false;
864
865         return queue_is_mq(q);
866 }
867
868 static int dm_table_determine_type(struct dm_table *t)
869 {
870         unsigned int bio_based = 0, request_based = 0, hybrid = 0;
871         struct dm_target *ti;
872         struct list_head *devices = dm_table_get_devices(t);
873         enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
874
875         if (t->type != DM_TYPE_NONE) {
876                 /* target already set the table's type */
877                 if (t->type == DM_TYPE_BIO_BASED) {
878                         /* possibly upgrade to a variant of bio-based */
879                         goto verify_bio_based;
880                 }
881                 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
882                 goto verify_rq_based;
883         }
884
885         for (unsigned int i = 0; i < t->num_targets; i++) {
886                 ti = dm_table_get_target(t, i);
887                 if (dm_target_hybrid(ti))
888                         hybrid = 1;
889                 else if (dm_target_request_based(ti))
890                         request_based = 1;
891                 else
892                         bio_based = 1;
893
894                 if (bio_based && request_based) {
895                         DMERR("Inconsistent table: different target types can't be mixed up");
896                         return -EINVAL;
897                 }
898         }
899
900         if (hybrid && !bio_based && !request_based) {
901                 /*
902                  * The targets can work either way.
903                  * Determine the type from the live device.
904                  * Default to bio-based if device is new.
905                  */
906                 if (__table_type_request_based(live_md_type))
907                         request_based = 1;
908                 else
909                         bio_based = 1;
910         }
911
912         if (bio_based) {
913 verify_bio_based:
914                 /* We must use this table as bio-based */
915                 t->type = DM_TYPE_BIO_BASED;
916                 if (dm_table_supports_dax(t, device_not_dax_capable) ||
917                     (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
918                         t->type = DM_TYPE_DAX_BIO_BASED;
919                 }
920                 return 0;
921         }
922
923         BUG_ON(!request_based); /* No targets in this table */
924
925         t->type = DM_TYPE_REQUEST_BASED;
926
927 verify_rq_based:
928         /*
929          * Request-based dm supports only tables that have a single target now.
930          * To support multiple targets, request splitting support is needed,
931          * and that needs lots of changes in the block-layer.
932          * (e.g. request completion process for partial completion.)
933          */
934         if (t->num_targets > 1) {
935                 DMERR("request-based DM doesn't support multiple targets");
936                 return -EINVAL;
937         }
938
939         if (list_empty(devices)) {
940                 int srcu_idx;
941                 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
942
943                 /* inherit live table's type */
944                 if (live_table)
945                         t->type = live_table->type;
946                 dm_put_live_table(t->md, srcu_idx);
947                 return 0;
948         }
949
950         ti = dm_table_get_immutable_target(t);
951         if (!ti) {
952                 DMERR("table load rejected: immutable target is required");
953                 return -EINVAL;
954         } else if (ti->max_io_len) {
955                 DMERR("table load rejected: immutable target that splits IO is not supported");
956                 return -EINVAL;
957         }
958
959         /* Non-request-stackable devices can't be used for request-based dm */
960         if (!ti->type->iterate_devices ||
961             !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
962                 DMERR("table load rejected: including non-request-stackable devices");
963                 return -EINVAL;
964         }
965
966         return 0;
967 }
968
969 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
970 {
971         return t->type;
972 }
973
974 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
975 {
976         return t->immutable_target_type;
977 }
978
979 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
980 {
981         /* Immutable target is implicitly a singleton */
982         if (t->num_targets > 1 ||
983             !dm_target_is_immutable(t->targets[0].type))
984                 return NULL;
985
986         return t->targets;
987 }
988
989 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
990 {
991         for (unsigned int i = 0; i < t->num_targets; i++) {
992                 struct dm_target *ti = dm_table_get_target(t, i);
993
994                 if (dm_target_is_wildcard(ti->type))
995                         return ti;
996         }
997
998         return NULL;
999 }
1000
1001 bool dm_table_bio_based(struct dm_table *t)
1002 {
1003         return __table_type_bio_based(dm_table_get_type(t));
1004 }
1005
1006 bool dm_table_request_based(struct dm_table *t)
1007 {
1008         return __table_type_request_based(dm_table_get_type(t));
1009 }
1010
1011 static bool dm_table_supports_poll(struct dm_table *t);
1012
1013 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1014 {
1015         enum dm_queue_mode type = dm_table_get_type(t);
1016         unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1017         unsigned int min_pool_size = 0, pool_size;
1018         struct dm_md_mempools *pools;
1019
1020         if (unlikely(type == DM_TYPE_NONE)) {
1021                 DMERR("no table type is set, can't allocate mempools");
1022                 return -EINVAL;
1023         }
1024
1025         pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1026         if (!pools)
1027                 return -ENOMEM;
1028
1029         if (type == DM_TYPE_REQUEST_BASED) {
1030                 pool_size = dm_get_reserved_rq_based_ios();
1031                 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1032                 goto init_bs;
1033         }
1034
1035         for (unsigned int i = 0; i < t->num_targets; i++) {
1036                 struct dm_target *ti = dm_table_get_target(t, i);
1037
1038                 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1039                 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1040         }
1041         pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1042         front_pad = roundup(per_io_data_size,
1043                 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1044
1045         io_front_pad = roundup(per_io_data_size,
1046                 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1047         if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1048                         dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1049                 goto out_free_pools;
1050         if (t->integrity_supported &&
1051             bioset_integrity_create(&pools->io_bs, pool_size))
1052                 goto out_free_pools;
1053 init_bs:
1054         if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1055                 goto out_free_pools;
1056         if (t->integrity_supported &&
1057             bioset_integrity_create(&pools->bs, pool_size))
1058                 goto out_free_pools;
1059
1060         t->mempools = pools;
1061         return 0;
1062
1063 out_free_pools:
1064         dm_free_md_mempools(pools);
1065         return -ENOMEM;
1066 }
1067
1068 static int setup_indexes(struct dm_table *t)
1069 {
1070         int i;
1071         unsigned int total = 0;
1072         sector_t *indexes;
1073
1074         /* allocate the space for *all* the indexes */
1075         for (i = t->depth - 2; i >= 0; i--) {
1076                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1077                 total += t->counts[i];
1078         }
1079
1080         indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1081         if (!indexes)
1082                 return -ENOMEM;
1083
1084         /* set up internal nodes, bottom-up */
1085         for (i = t->depth - 2; i >= 0; i--) {
1086                 t->index[i] = indexes;
1087                 indexes += (KEYS_PER_NODE * t->counts[i]);
1088                 setup_btree_index(i, t);
1089         }
1090
1091         return 0;
1092 }
1093
1094 /*
1095  * Builds the btree to index the map.
1096  */
1097 static int dm_table_build_index(struct dm_table *t)
1098 {
1099         int r = 0;
1100         unsigned int leaf_nodes;
1101
1102         /* how many indexes will the btree have ? */
1103         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1104         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1105
1106         /* leaf layer has already been set up */
1107         t->counts[t->depth - 1] = leaf_nodes;
1108         t->index[t->depth - 1] = t->highs;
1109
1110         if (t->depth >= 2)
1111                 r = setup_indexes(t);
1112
1113         return r;
1114 }
1115
1116 static bool integrity_profile_exists(struct gendisk *disk)
1117 {
1118         return !!blk_get_integrity(disk);
1119 }
1120
1121 /*
1122  * Get a disk whose integrity profile reflects the table's profile.
1123  * Returns NULL if integrity support was inconsistent or unavailable.
1124  */
1125 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1126 {
1127         struct list_head *devices = dm_table_get_devices(t);
1128         struct dm_dev_internal *dd = NULL;
1129         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1130
1131         for (unsigned int i = 0; i < t->num_targets; i++) {
1132                 struct dm_target *ti = dm_table_get_target(t, i);
1133
1134                 if (!dm_target_passes_integrity(ti->type))
1135                         goto no_integrity;
1136         }
1137
1138         list_for_each_entry(dd, devices, list) {
1139                 template_disk = dd->dm_dev->bdev->bd_disk;
1140                 if (!integrity_profile_exists(template_disk))
1141                         goto no_integrity;
1142                 else if (prev_disk &&
1143                          blk_integrity_compare(prev_disk, template_disk) < 0)
1144                         goto no_integrity;
1145                 prev_disk = template_disk;
1146         }
1147
1148         return template_disk;
1149
1150 no_integrity:
1151         if (prev_disk)
1152                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1153                        dm_device_name(t->md),
1154                        prev_disk->disk_name,
1155                        template_disk->disk_name);
1156         return NULL;
1157 }
1158
1159 /*
1160  * Register the mapped device for blk_integrity support if the
1161  * underlying devices have an integrity profile.  But all devices may
1162  * not have matching profiles (checking all devices isn't reliable
1163  * during table load because this table may use other DM device(s) which
1164  * must be resumed before they will have an initialized integity
1165  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1166  * profile validation: First pass during table load, final pass during
1167  * resume.
1168  */
1169 static int dm_table_register_integrity(struct dm_table *t)
1170 {
1171         struct mapped_device *md = t->md;
1172         struct gendisk *template_disk = NULL;
1173
1174         /* If target handles integrity itself do not register it here. */
1175         if (t->integrity_added)
1176                 return 0;
1177
1178         template_disk = dm_table_get_integrity_disk(t);
1179         if (!template_disk)
1180                 return 0;
1181
1182         if (!integrity_profile_exists(dm_disk(md))) {
1183                 t->integrity_supported = true;
1184                 /*
1185                  * Register integrity profile during table load; we can do
1186                  * this because the final profile must match during resume.
1187                  */
1188                 blk_integrity_register(dm_disk(md),
1189                                        blk_get_integrity(template_disk));
1190                 return 0;
1191         }
1192
1193         /*
1194          * If DM device already has an initialized integrity
1195          * profile the new profile should not conflict.
1196          */
1197         if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1198                 DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1199                       dm_device_name(t->md),
1200                       template_disk->disk_name);
1201                 return 1;
1202         }
1203
1204         /* Preserve existing integrity profile */
1205         t->integrity_supported = true;
1206         return 0;
1207 }
1208
1209 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1210
1211 struct dm_crypto_profile {
1212         struct blk_crypto_profile profile;
1213         struct mapped_device *md;
1214 };
1215
1216 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1217                                      sector_t start, sector_t len, void *data)
1218 {
1219         const struct blk_crypto_key *key = data;
1220
1221         blk_crypto_evict_key(dev->bdev, key);
1222         return 0;
1223 }
1224
1225 /*
1226  * When an inline encryption key is evicted from a device-mapper device, evict
1227  * it from all the underlying devices.
1228  */
1229 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1230                             const struct blk_crypto_key *key, unsigned int slot)
1231 {
1232         struct mapped_device *md =
1233                 container_of(profile, struct dm_crypto_profile, profile)->md;
1234         struct dm_table *t;
1235         int srcu_idx;
1236
1237         t = dm_get_live_table(md, &srcu_idx);
1238         if (!t)
1239                 return 0;
1240
1241         for (unsigned int i = 0; i < t->num_targets; i++) {
1242                 struct dm_target *ti = dm_table_get_target(t, i);
1243
1244                 if (!ti->type->iterate_devices)
1245                         continue;
1246                 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1247                                           (void *)key);
1248         }
1249
1250         dm_put_live_table(md, srcu_idx);
1251         return 0;
1252 }
1253
1254 static int
1255 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1256                                      sector_t start, sector_t len, void *data)
1257 {
1258         struct blk_crypto_profile *parent = data;
1259         struct blk_crypto_profile *child =
1260                 bdev_get_queue(dev->bdev)->crypto_profile;
1261
1262         blk_crypto_intersect_capabilities(parent, child);
1263         return 0;
1264 }
1265
1266 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1267 {
1268         struct dm_crypto_profile *dmcp = container_of(profile,
1269                                                       struct dm_crypto_profile,
1270                                                       profile);
1271
1272         if (!profile)
1273                 return;
1274
1275         blk_crypto_profile_destroy(profile);
1276         kfree(dmcp);
1277 }
1278
1279 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1280 {
1281         dm_destroy_crypto_profile(t->crypto_profile);
1282         t->crypto_profile = NULL;
1283 }
1284
1285 /*
1286  * Constructs and initializes t->crypto_profile with a crypto profile that
1287  * represents the common set of crypto capabilities of the devices described by
1288  * the dm_table.  However, if the constructed crypto profile doesn't support all
1289  * crypto capabilities that are supported by the current mapped_device, it
1290  * returns an error instead, since we don't support removing crypto capabilities
1291  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1292  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1293  */
1294 static int dm_table_construct_crypto_profile(struct dm_table *t)
1295 {
1296         struct dm_crypto_profile *dmcp;
1297         struct blk_crypto_profile *profile;
1298         unsigned int i;
1299         bool empty_profile = true;
1300
1301         dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1302         if (!dmcp)
1303                 return -ENOMEM;
1304         dmcp->md = t->md;
1305
1306         profile = &dmcp->profile;
1307         blk_crypto_profile_init(profile, 0);
1308         profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1309         profile->max_dun_bytes_supported = UINT_MAX;
1310         memset(profile->modes_supported, 0xFF,
1311                sizeof(profile->modes_supported));
1312
1313         for (i = 0; i < t->num_targets; i++) {
1314                 struct dm_target *ti = dm_table_get_target(t, i);
1315
1316                 if (!dm_target_passes_crypto(ti->type)) {
1317                         blk_crypto_intersect_capabilities(profile, NULL);
1318                         break;
1319                 }
1320                 if (!ti->type->iterate_devices)
1321                         continue;
1322                 ti->type->iterate_devices(ti,
1323                                           device_intersect_crypto_capabilities,
1324                                           profile);
1325         }
1326
1327         if (t->md->queue &&
1328             !blk_crypto_has_capabilities(profile,
1329                                          t->md->queue->crypto_profile)) {
1330                 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1331                 dm_destroy_crypto_profile(profile);
1332                 return -EINVAL;
1333         }
1334
1335         /*
1336          * If the new profile doesn't actually support any crypto capabilities,
1337          * we may as well represent it with a NULL profile.
1338          */
1339         for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1340                 if (profile->modes_supported[i]) {
1341                         empty_profile = false;
1342                         break;
1343                 }
1344         }
1345
1346         if (empty_profile) {
1347                 dm_destroy_crypto_profile(profile);
1348                 profile = NULL;
1349         }
1350
1351         /*
1352          * t->crypto_profile is only set temporarily while the table is being
1353          * set up, and it gets set to NULL after the profile has been
1354          * transferred to the request_queue.
1355          */
1356         t->crypto_profile = profile;
1357
1358         return 0;
1359 }
1360
1361 static void dm_update_crypto_profile(struct request_queue *q,
1362                                      struct dm_table *t)
1363 {
1364         if (!t->crypto_profile)
1365                 return;
1366
1367         /* Make the crypto profile less restrictive. */
1368         if (!q->crypto_profile) {
1369                 blk_crypto_register(t->crypto_profile, q);
1370         } else {
1371                 blk_crypto_update_capabilities(q->crypto_profile,
1372                                                t->crypto_profile);
1373                 dm_destroy_crypto_profile(t->crypto_profile);
1374         }
1375         t->crypto_profile = NULL;
1376 }
1377
1378 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1379
1380 static int dm_table_construct_crypto_profile(struct dm_table *t)
1381 {
1382         return 0;
1383 }
1384
1385 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1386 {
1387 }
1388
1389 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1390 {
1391 }
1392
1393 static void dm_update_crypto_profile(struct request_queue *q,
1394                                      struct dm_table *t)
1395 {
1396 }
1397
1398 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1399
1400 /*
1401  * Prepares the table for use by building the indices,
1402  * setting the type, and allocating mempools.
1403  */
1404 int dm_table_complete(struct dm_table *t)
1405 {
1406         int r;
1407
1408         r = dm_table_determine_type(t);
1409         if (r) {
1410                 DMERR("unable to determine table type");
1411                 return r;
1412         }
1413
1414         r = dm_table_build_index(t);
1415         if (r) {
1416                 DMERR("unable to build btrees");
1417                 return r;
1418         }
1419
1420         r = dm_table_register_integrity(t);
1421         if (r) {
1422                 DMERR("could not register integrity profile.");
1423                 return r;
1424         }
1425
1426         r = dm_table_construct_crypto_profile(t);
1427         if (r) {
1428                 DMERR("could not construct crypto profile.");
1429                 return r;
1430         }
1431
1432         r = dm_table_alloc_md_mempools(t, t->md);
1433         if (r)
1434                 DMERR("unable to allocate mempools");
1435
1436         return r;
1437 }
1438
1439 static DEFINE_MUTEX(_event_lock);
1440 void dm_table_event_callback(struct dm_table *t,
1441                              void (*fn)(void *), void *context)
1442 {
1443         mutex_lock(&_event_lock);
1444         t->event_fn = fn;
1445         t->event_context = context;
1446         mutex_unlock(&_event_lock);
1447 }
1448
1449 void dm_table_event(struct dm_table *t)
1450 {
1451         mutex_lock(&_event_lock);
1452         if (t->event_fn)
1453                 t->event_fn(t->event_context);
1454         mutex_unlock(&_event_lock);
1455 }
1456 EXPORT_SYMBOL(dm_table_event);
1457
1458 inline sector_t dm_table_get_size(struct dm_table *t)
1459 {
1460         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1461 }
1462 EXPORT_SYMBOL(dm_table_get_size);
1463
1464 /*
1465  * Search the btree for the correct target.
1466  *
1467  * Caller should check returned pointer for NULL
1468  * to trap I/O beyond end of device.
1469  */
1470 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1471 {
1472         unsigned int l, n = 0, k = 0;
1473         sector_t *node;
1474
1475         if (unlikely(sector >= dm_table_get_size(t)))
1476                 return NULL;
1477
1478         for (l = 0; l < t->depth; l++) {
1479                 n = get_child(n, k);
1480                 node = get_node(t, l, n);
1481
1482                 for (k = 0; k < KEYS_PER_NODE; k++)
1483                         if (node[k] >= sector)
1484                                 break;
1485         }
1486
1487         return &t->targets[(KEYS_PER_NODE * n) + k];
1488 }
1489
1490 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1491                                    sector_t start, sector_t len, void *data)
1492 {
1493         struct request_queue *q = bdev_get_queue(dev->bdev);
1494
1495         return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1496 }
1497
1498 /*
1499  * type->iterate_devices() should be called when the sanity check needs to
1500  * iterate and check all underlying data devices. iterate_devices() will
1501  * iterate all underlying data devices until it encounters a non-zero return
1502  * code, returned by whether the input iterate_devices_callout_fn, or
1503  * iterate_devices() itself internally.
1504  *
1505  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1506  * iterate multiple underlying devices internally, in which case a non-zero
1507  * return code returned by iterate_devices_callout_fn will stop the iteration
1508  * in advance.
1509  *
1510  * Cases requiring _any_ underlying device supporting some kind of attribute,
1511  * should use the iteration structure like dm_table_any_dev_attr(), or call
1512  * it directly. @func should handle semantics of positive examples, e.g.
1513  * capable of something.
1514  *
1515  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1516  * should use the iteration structure like dm_table_supports_nowait() or
1517  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1518  * uses an @anti_func that handle semantics of counter examples, e.g. not
1519  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1520  */
1521 static bool dm_table_any_dev_attr(struct dm_table *t,
1522                                   iterate_devices_callout_fn func, void *data)
1523 {
1524         for (unsigned int i = 0; i < t->num_targets; i++) {
1525                 struct dm_target *ti = dm_table_get_target(t, i);
1526
1527                 if (ti->type->iterate_devices &&
1528                     ti->type->iterate_devices(ti, func, data))
1529                         return true;
1530         }
1531
1532         return false;
1533 }
1534
1535 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1536                         sector_t start, sector_t len, void *data)
1537 {
1538         unsigned int *num_devices = data;
1539
1540         (*num_devices)++;
1541
1542         return 0;
1543 }
1544
1545 static bool dm_table_supports_poll(struct dm_table *t)
1546 {
1547         for (unsigned int i = 0; i < t->num_targets; i++) {
1548                 struct dm_target *ti = dm_table_get_target(t, i);
1549
1550                 if (!ti->type->iterate_devices ||
1551                     ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1552                         return false;
1553         }
1554
1555         return true;
1556 }
1557
1558 /*
1559  * Check whether a table has no data devices attached using each
1560  * target's iterate_devices method.
1561  * Returns false if the result is unknown because a target doesn't
1562  * support iterate_devices.
1563  */
1564 bool dm_table_has_no_data_devices(struct dm_table *t)
1565 {
1566         for (unsigned int i = 0; i < t->num_targets; i++) {
1567                 struct dm_target *ti = dm_table_get_target(t, i);
1568                 unsigned int num_devices = 0;
1569
1570                 if (!ti->type->iterate_devices)
1571                         return false;
1572
1573                 ti->type->iterate_devices(ti, count_device, &num_devices);
1574                 if (num_devices)
1575                         return false;
1576         }
1577
1578         return true;
1579 }
1580
1581 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1582                                   sector_t start, sector_t len, void *data)
1583 {
1584         struct request_queue *q = bdev_get_queue(dev->bdev);
1585         enum blk_zoned_model *zoned_model = data;
1586
1587         return blk_queue_zoned_model(q) != *zoned_model;
1588 }
1589
1590 /*
1591  * Check the device zoned model based on the target feature flag. If the target
1592  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1593  * also accepted but all devices must have the same zoned model. If the target
1594  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1595  * zoned model with all zoned devices having the same zone size.
1596  */
1597 static bool dm_table_supports_zoned_model(struct dm_table *t,
1598                                           enum blk_zoned_model zoned_model)
1599 {
1600         for (unsigned int i = 0; i < t->num_targets; i++) {
1601                 struct dm_target *ti = dm_table_get_target(t, i);
1602
1603                 if (dm_target_supports_zoned_hm(ti->type)) {
1604                         if (!ti->type->iterate_devices ||
1605                             ti->type->iterate_devices(ti, device_not_zoned_model,
1606                                                       &zoned_model))
1607                                 return false;
1608                 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1609                         if (zoned_model == BLK_ZONED_HM)
1610                                 return false;
1611                 }
1612         }
1613
1614         return true;
1615 }
1616
1617 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1618                                            sector_t start, sector_t len, void *data)
1619 {
1620         unsigned int *zone_sectors = data;
1621
1622         if (!bdev_is_zoned(dev->bdev))
1623                 return 0;
1624         return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1625 }
1626
1627 /*
1628  * Check consistency of zoned model and zone sectors across all targets. For
1629  * zone sectors, if the destination device is a zoned block device, it shall
1630  * have the specified zone_sectors.
1631  */
1632 static int validate_hardware_zoned_model(struct dm_table *t,
1633                                          enum blk_zoned_model zoned_model,
1634                                          unsigned int zone_sectors)
1635 {
1636         if (zoned_model == BLK_ZONED_NONE)
1637                 return 0;
1638
1639         if (!dm_table_supports_zoned_model(t, zoned_model)) {
1640                 DMERR("%s: zoned model is not consistent across all devices",
1641                       dm_device_name(t->md));
1642                 return -EINVAL;
1643         }
1644
1645         /* Check zone size validity and compatibility */
1646         if (!zone_sectors || !is_power_of_2(zone_sectors))
1647                 return -EINVAL;
1648
1649         if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1650                 DMERR("%s: zone sectors is not consistent across all zoned devices",
1651                       dm_device_name(t->md));
1652                 return -EINVAL;
1653         }
1654
1655         return 0;
1656 }
1657
1658 /*
1659  * Establish the new table's queue_limits and validate them.
1660  */
1661 int dm_calculate_queue_limits(struct dm_table *t,
1662                               struct queue_limits *limits)
1663 {
1664         struct queue_limits ti_limits;
1665         enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1666         unsigned int zone_sectors = 0;
1667
1668         blk_set_stacking_limits(limits);
1669
1670         for (unsigned int i = 0; i < t->num_targets; i++) {
1671                 struct dm_target *ti = dm_table_get_target(t, i);
1672
1673                 blk_set_stacking_limits(&ti_limits);
1674
1675                 if (!ti->type->iterate_devices) {
1676                         /* Set I/O hints portion of queue limits */
1677                         if (ti->type->io_hints)
1678                                 ti->type->io_hints(ti, &ti_limits);
1679                         goto combine_limits;
1680                 }
1681
1682                 /*
1683                  * Combine queue limits of all the devices this target uses.
1684                  */
1685                 ti->type->iterate_devices(ti, dm_set_device_limits,
1686                                           &ti_limits);
1687
1688                 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1689                         /*
1690                          * After stacking all limits, validate all devices
1691                          * in table support this zoned model and zone sectors.
1692                          */
1693                         zoned_model = ti_limits.zoned;
1694                         zone_sectors = ti_limits.chunk_sectors;
1695                 }
1696
1697                 /* Set I/O hints portion of queue limits */
1698                 if (ti->type->io_hints)
1699                         ti->type->io_hints(ti, &ti_limits);
1700
1701                 /*
1702                  * Check each device area is consistent with the target's
1703                  * overall queue limits.
1704                  */
1705                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1706                                               &ti_limits))
1707                         return -EINVAL;
1708
1709 combine_limits:
1710                 /*
1711                  * Merge this target's queue limits into the overall limits
1712                  * for the table.
1713                  */
1714                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1715                         DMWARN("%s: adding target device (start sect %llu len %llu) "
1716                                "caused an alignment inconsistency",
1717                                dm_device_name(t->md),
1718                                (unsigned long long) ti->begin,
1719                                (unsigned long long) ti->len);
1720         }
1721
1722         /*
1723          * Verify that the zoned model and zone sectors, as determined before
1724          * any .io_hints override, are the same across all devices in the table.
1725          * - this is especially relevant if .io_hints is emulating a disk-managed
1726          *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1727          * BUT...
1728          */
1729         if (limits->zoned != BLK_ZONED_NONE) {
1730                 /*
1731                  * ...IF the above limits stacking determined a zoned model
1732                  * validate that all of the table's devices conform to it.
1733                  */
1734                 zoned_model = limits->zoned;
1735                 zone_sectors = limits->chunk_sectors;
1736         }
1737         if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
1738                 return -EINVAL;
1739
1740         return validate_hardware_logical_block_alignment(t, limits);
1741 }
1742
1743 /*
1744  * Verify that all devices have an integrity profile that matches the
1745  * DM device's registered integrity profile.  If the profiles don't
1746  * match then unregister the DM device's integrity profile.
1747  */
1748 static void dm_table_verify_integrity(struct dm_table *t)
1749 {
1750         struct gendisk *template_disk = NULL;
1751
1752         if (t->integrity_added)
1753                 return;
1754
1755         if (t->integrity_supported) {
1756                 /*
1757                  * Verify that the original integrity profile
1758                  * matches all the devices in this table.
1759                  */
1760                 template_disk = dm_table_get_integrity_disk(t);
1761                 if (template_disk &&
1762                     blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1763                         return;
1764         }
1765
1766         if (integrity_profile_exists(dm_disk(t->md))) {
1767                 DMWARN("%s: unable to establish an integrity profile",
1768                        dm_device_name(t->md));
1769                 blk_integrity_unregister(dm_disk(t->md));
1770         }
1771 }
1772
1773 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1774                                 sector_t start, sector_t len, void *data)
1775 {
1776         unsigned long flush = (unsigned long) data;
1777         struct request_queue *q = bdev_get_queue(dev->bdev);
1778
1779         return (q->queue_flags & flush);
1780 }
1781
1782 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1783 {
1784         /*
1785          * Require at least one underlying device to support flushes.
1786          * t->devices includes internal dm devices such as mirror logs
1787          * so we need to use iterate_devices here, which targets
1788          * supporting flushes must provide.
1789          */
1790         for (unsigned int i = 0; i < t->num_targets; i++) {
1791                 struct dm_target *ti = dm_table_get_target(t, i);
1792
1793                 if (!ti->num_flush_bios)
1794                         continue;
1795
1796                 if (ti->flush_supported)
1797                         return true;
1798
1799                 if (ti->type->iterate_devices &&
1800                     ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1801                         return true;
1802         }
1803
1804         return false;
1805 }
1806
1807 static int device_dax_write_cache_enabled(struct dm_target *ti,
1808                                           struct dm_dev *dev, sector_t start,
1809                                           sector_t len, void *data)
1810 {
1811         struct dax_device *dax_dev = dev->dax_dev;
1812
1813         if (!dax_dev)
1814                 return false;
1815
1816         if (dax_write_cache_enabled(dax_dev))
1817                 return true;
1818         return false;
1819 }
1820
1821 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1822                                 sector_t start, sector_t len, void *data)
1823 {
1824         return !bdev_nonrot(dev->bdev);
1825 }
1826
1827 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1828                              sector_t start, sector_t len, void *data)
1829 {
1830         struct request_queue *q = bdev_get_queue(dev->bdev);
1831
1832         return !blk_queue_add_random(q);
1833 }
1834
1835 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1836                                            sector_t start, sector_t len, void *data)
1837 {
1838         struct request_queue *q = bdev_get_queue(dev->bdev);
1839
1840         return !q->limits.max_write_zeroes_sectors;
1841 }
1842
1843 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1844 {
1845         for (unsigned int i = 0; i < t->num_targets; i++) {
1846                 struct dm_target *ti = dm_table_get_target(t, i);
1847
1848                 if (!ti->num_write_zeroes_bios)
1849                         return false;
1850
1851                 if (!ti->type->iterate_devices ||
1852                     ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1853                         return false;
1854         }
1855
1856         return true;
1857 }
1858
1859 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1860                                      sector_t start, sector_t len, void *data)
1861 {
1862         return !bdev_nowait(dev->bdev);
1863 }
1864
1865 static bool dm_table_supports_nowait(struct dm_table *t)
1866 {
1867         for (unsigned int i = 0; i < t->num_targets; i++) {
1868                 struct dm_target *ti = dm_table_get_target(t, i);
1869
1870                 if (!dm_target_supports_nowait(ti->type))
1871                         return false;
1872
1873                 if (!ti->type->iterate_devices ||
1874                     ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1875                         return false;
1876         }
1877
1878         return true;
1879 }
1880
1881 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1882                                       sector_t start, sector_t len, void *data)
1883 {
1884         return !bdev_max_discard_sectors(dev->bdev);
1885 }
1886
1887 static bool dm_table_supports_discards(struct dm_table *t)
1888 {
1889         for (unsigned int i = 0; i < t->num_targets; i++) {
1890                 struct dm_target *ti = dm_table_get_target(t, i);
1891
1892                 if (!ti->num_discard_bios)
1893                         return false;
1894
1895                 /*
1896                  * Either the target provides discard support (as implied by setting
1897                  * 'discards_supported') or it relies on _all_ data devices having
1898                  * discard support.
1899                  */
1900                 if (!ti->discards_supported &&
1901                     (!ti->type->iterate_devices ||
1902                      ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1903                         return false;
1904         }
1905
1906         return true;
1907 }
1908
1909 static int device_not_secure_erase_capable(struct dm_target *ti,
1910                                            struct dm_dev *dev, sector_t start,
1911                                            sector_t len, void *data)
1912 {
1913         return !bdev_max_secure_erase_sectors(dev->bdev);
1914 }
1915
1916 static bool dm_table_supports_secure_erase(struct dm_table *t)
1917 {
1918         for (unsigned int i = 0; i < t->num_targets; i++) {
1919                 struct dm_target *ti = dm_table_get_target(t, i);
1920
1921                 if (!ti->num_secure_erase_bios)
1922                         return false;
1923
1924                 if (!ti->type->iterate_devices ||
1925                     ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1926                         return false;
1927         }
1928
1929         return true;
1930 }
1931
1932 static int device_requires_stable_pages(struct dm_target *ti,
1933                                         struct dm_dev *dev, sector_t start,
1934                                         sector_t len, void *data)
1935 {
1936         return bdev_stable_writes(dev->bdev);
1937 }
1938
1939 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1940                               struct queue_limits *limits)
1941 {
1942         bool wc = false, fua = false;
1943         int r;
1944
1945         /*
1946          * Copy table's limits to the DM device's request_queue
1947          */
1948         q->limits = *limits;
1949
1950         if (dm_table_supports_nowait(t))
1951                 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1952         else
1953                 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1954
1955         if (!dm_table_supports_discards(t)) {
1956                 q->limits.max_discard_sectors = 0;
1957                 q->limits.max_hw_discard_sectors = 0;
1958                 q->limits.discard_granularity = 0;
1959                 q->limits.discard_alignment = 0;
1960                 q->limits.discard_misaligned = 0;
1961         }
1962
1963         if (!dm_table_supports_secure_erase(t))
1964                 q->limits.max_secure_erase_sectors = 0;
1965
1966         if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1967                 wc = true;
1968                 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1969                         fua = true;
1970         }
1971         blk_queue_write_cache(q, wc, fua);
1972
1973         if (dm_table_supports_dax(t, device_not_dax_capable)) {
1974                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1975                 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1976                         set_dax_synchronous(t->md->dax_dev);
1977         } else
1978                 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1979
1980         if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1981                 dax_write_cache(t->md->dax_dev, true);
1982
1983         /* Ensure that all underlying devices are non-rotational. */
1984         if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1985                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1986         else
1987                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1988
1989         if (!dm_table_supports_write_zeroes(t))
1990                 q->limits.max_write_zeroes_sectors = 0;
1991
1992         dm_table_verify_integrity(t);
1993
1994         /*
1995          * Some devices don't use blk_integrity but still want stable pages
1996          * because they do their own checksumming.
1997          * If any underlying device requires stable pages, a table must require
1998          * them as well.  Only targets that support iterate_devices are considered:
1999          * don't want error, zero, etc to require stable pages.
2000          */
2001         if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2002                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2003         else
2004                 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2005
2006         /*
2007          * Determine whether or not this queue's I/O timings contribute
2008          * to the entropy pool, Only request-based targets use this.
2009          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2010          * have it set.
2011          */
2012         if (blk_queue_add_random(q) &&
2013             dm_table_any_dev_attr(t, device_is_not_random, NULL))
2014                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2015
2016         /*
2017          * For a zoned target, setup the zones related queue attributes
2018          * and resources necessary for zone append emulation if necessary.
2019          */
2020         if (blk_queue_is_zoned(q)) {
2021                 r = dm_set_zones_restrictions(t, q);
2022                 if (r)
2023                         return r;
2024                 if (!static_key_enabled(&zoned_enabled.key))
2025                         static_branch_enable(&zoned_enabled);
2026         }
2027
2028         dm_update_crypto_profile(q, t);
2029         disk_update_readahead(t->md->disk);
2030
2031         /*
2032          * Check for request-based device is left to
2033          * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2034          *
2035          * For bio-based device, only set QUEUE_FLAG_POLL when all
2036          * underlying devices supporting polling.
2037          */
2038         if (__table_type_bio_based(t->type)) {
2039                 if (dm_table_supports_poll(t))
2040                         blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2041                 else
2042                         blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2043         }
2044
2045         return 0;
2046 }
2047
2048 struct list_head *dm_table_get_devices(struct dm_table *t)
2049 {
2050         return &t->devices;
2051 }
2052
2053 blk_mode_t dm_table_get_mode(struct dm_table *t)
2054 {
2055         return t->mode;
2056 }
2057 EXPORT_SYMBOL(dm_table_get_mode);
2058
2059 enum suspend_mode {
2060         PRESUSPEND,
2061         PRESUSPEND_UNDO,
2062         POSTSUSPEND,
2063 };
2064
2065 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2066 {
2067         lockdep_assert_held(&t->md->suspend_lock);
2068
2069         for (unsigned int i = 0; i < t->num_targets; i++) {
2070                 struct dm_target *ti = dm_table_get_target(t, i);
2071
2072                 switch (mode) {
2073                 case PRESUSPEND:
2074                         if (ti->type->presuspend)
2075                                 ti->type->presuspend(ti);
2076                         break;
2077                 case PRESUSPEND_UNDO:
2078                         if (ti->type->presuspend_undo)
2079                                 ti->type->presuspend_undo(ti);
2080                         break;
2081                 case POSTSUSPEND:
2082                         if (ti->type->postsuspend)
2083                                 ti->type->postsuspend(ti);
2084                         break;
2085                 }
2086         }
2087 }
2088
2089 void dm_table_presuspend_targets(struct dm_table *t)
2090 {
2091         if (!t)
2092                 return;
2093
2094         suspend_targets(t, PRESUSPEND);
2095 }
2096
2097 void dm_table_presuspend_undo_targets(struct dm_table *t)
2098 {
2099         if (!t)
2100                 return;
2101
2102         suspend_targets(t, PRESUSPEND_UNDO);
2103 }
2104
2105 void dm_table_postsuspend_targets(struct dm_table *t)
2106 {
2107         if (!t)
2108                 return;
2109
2110         suspend_targets(t, POSTSUSPEND);
2111 }
2112
2113 int dm_table_resume_targets(struct dm_table *t)
2114 {
2115         unsigned int i;
2116         int r = 0;
2117
2118         lockdep_assert_held(&t->md->suspend_lock);
2119
2120         for (i = 0; i < t->num_targets; i++) {
2121                 struct dm_target *ti = dm_table_get_target(t, i);
2122
2123                 if (!ti->type->preresume)
2124                         continue;
2125
2126                 r = ti->type->preresume(ti);
2127                 if (r) {
2128                         DMERR("%s: %s: preresume failed, error = %d",
2129                               dm_device_name(t->md), ti->type->name, r);
2130                         return r;
2131                 }
2132         }
2133
2134         for (i = 0; i < t->num_targets; i++) {
2135                 struct dm_target *ti = dm_table_get_target(t, i);
2136
2137                 if (ti->type->resume)
2138                         ti->type->resume(ti);
2139         }
2140
2141         return 0;
2142 }
2143
2144 struct mapped_device *dm_table_get_md(struct dm_table *t)
2145 {
2146         return t->md;
2147 }
2148 EXPORT_SYMBOL(dm_table_get_md);
2149
2150 const char *dm_table_device_name(struct dm_table *t)
2151 {
2152         return dm_device_name(t->md);
2153 }
2154 EXPORT_SYMBOL_GPL(dm_table_device_name);
2155
2156 void dm_table_run_md_queue_async(struct dm_table *t)
2157 {
2158         if (!dm_table_request_based(t))
2159                 return;
2160
2161         if (t->md->queue)
2162                 blk_mq_run_hw_queues(t->md->queue, true);
2163 }
2164 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2165