md/raid1: consider WRITE as successful only if at least one non-Faulty and non-rebuil...
[platform/kernel/linux-rpi.git] / drivers / md / dm-service-time.c
1 /*
2  * Copyright (C) 2007-2009 NEC Corporation.  All Rights Reserved.
3  *
4  * Module Author: Kiyoshi Ueda
5  *
6  * This file is released under the GPL.
7  *
8  * Throughput oriented path selector.
9  */
10
11 #include "dm.h"
12 #include "dm-path-selector.h"
13
14 #include <linux/slab.h>
15 #include <linux/module.h>
16
17 #define DM_MSG_PREFIX   "multipath service-time"
18 #define ST_MIN_IO       1
19 #define ST_MAX_RELATIVE_THROUGHPUT      100
20 #define ST_MAX_RELATIVE_THROUGHPUT_SHIFT        7
21 #define ST_MAX_INFLIGHT_SIZE    ((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT)
22 #define ST_VERSION      "0.2.0"
23
24 struct selector {
25         struct list_head valid_paths;
26         struct list_head failed_paths;
27 };
28
29 struct path_info {
30         struct list_head list;
31         struct dm_path *path;
32         unsigned repeat_count;
33         unsigned relative_throughput;
34         atomic_t in_flight_size;        /* Total size of in-flight I/Os */
35 };
36
37 static struct selector *alloc_selector(void)
38 {
39         struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
40
41         if (s) {
42                 INIT_LIST_HEAD(&s->valid_paths);
43                 INIT_LIST_HEAD(&s->failed_paths);
44         }
45
46         return s;
47 }
48
49 static int st_create(struct path_selector *ps, unsigned argc, char **argv)
50 {
51         struct selector *s = alloc_selector();
52
53         if (!s)
54                 return -ENOMEM;
55
56         ps->context = s;
57         return 0;
58 }
59
60 static void free_paths(struct list_head *paths)
61 {
62         struct path_info *pi, *next;
63
64         list_for_each_entry_safe(pi, next, paths, list) {
65                 list_del(&pi->list);
66                 kfree(pi);
67         }
68 }
69
70 static void st_destroy(struct path_selector *ps)
71 {
72         struct selector *s = ps->context;
73
74         free_paths(&s->valid_paths);
75         free_paths(&s->failed_paths);
76         kfree(s);
77         ps->context = NULL;
78 }
79
80 static int st_status(struct path_selector *ps, struct dm_path *path,
81                      status_type_t type, char *result, unsigned maxlen)
82 {
83         unsigned sz = 0;
84         struct path_info *pi;
85
86         if (!path)
87                 DMEMIT("0 ");
88         else {
89                 pi = path->pscontext;
90
91                 switch (type) {
92                 case STATUSTYPE_INFO:
93                         DMEMIT("%d %u ", atomic_read(&pi->in_flight_size),
94                                pi->relative_throughput);
95                         break;
96                 case STATUSTYPE_TABLE:
97                         DMEMIT("%u %u ", pi->repeat_count,
98                                pi->relative_throughput);
99                         break;
100                 }
101         }
102
103         return sz;
104 }
105
106 static int st_add_path(struct path_selector *ps, struct dm_path *path,
107                        int argc, char **argv, char **error)
108 {
109         struct selector *s = ps->context;
110         struct path_info *pi;
111         unsigned repeat_count = ST_MIN_IO;
112         unsigned relative_throughput = 1;
113         char dummy;
114
115         /*
116          * Arguments: [<repeat_count> [<relative_throughput>]]
117          *      <repeat_count>: The number of I/Os before switching path.
118          *                      If not given, default (ST_MIN_IO) is used.
119          *      <relative_throughput>: The relative throughput value of
120          *                      the path among all paths in the path-group.
121          *                      The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT>
122          *                      If not given, minimum value '1' is used.
123          *                      If '0' is given, the path isn't selected while
124          *                      other paths having a positive value are
125          *                      available.
126          */
127         if (argc > 2) {
128                 *error = "service-time ps: incorrect number of arguments";
129                 return -EINVAL;
130         }
131
132         if (argc && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
133                 *error = "service-time ps: invalid repeat count";
134                 return -EINVAL;
135         }
136
137         if ((argc == 2) &&
138             (sscanf(argv[1], "%u%c", &relative_throughput, &dummy) != 1 ||
139              relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) {
140                 *error = "service-time ps: invalid relative_throughput value";
141                 return -EINVAL;
142         }
143
144         /* allocate the path */
145         pi = kmalloc(sizeof(*pi), GFP_KERNEL);
146         if (!pi) {
147                 *error = "service-time ps: Error allocating path context";
148                 return -ENOMEM;
149         }
150
151         pi->path = path;
152         pi->repeat_count = repeat_count;
153         pi->relative_throughput = relative_throughput;
154         atomic_set(&pi->in_flight_size, 0);
155
156         path->pscontext = pi;
157
158         list_add_tail(&pi->list, &s->valid_paths);
159
160         return 0;
161 }
162
163 static void st_fail_path(struct path_selector *ps, struct dm_path *path)
164 {
165         struct selector *s = ps->context;
166         struct path_info *pi = path->pscontext;
167
168         list_move(&pi->list, &s->failed_paths);
169 }
170
171 static int st_reinstate_path(struct path_selector *ps, struct dm_path *path)
172 {
173         struct selector *s = ps->context;
174         struct path_info *pi = path->pscontext;
175
176         list_move_tail(&pi->list, &s->valid_paths);
177
178         return 0;
179 }
180
181 /*
182  * Compare the estimated service time of 2 paths, pi1 and pi2,
183  * for the incoming I/O.
184  *
185  * Returns:
186  * < 0 : pi1 is better
187  * 0   : no difference between pi1 and pi2
188  * > 0 : pi2 is better
189  *
190  * Description:
191  * Basically, the service time is estimated by:
192  *     ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput'
193  * To reduce the calculation, some optimizations are made.
194  * (See comments inline)
195  */
196 static int st_compare_load(struct path_info *pi1, struct path_info *pi2,
197                            size_t incoming)
198 {
199         size_t sz1, sz2, st1, st2;
200
201         sz1 = atomic_read(&pi1->in_flight_size);
202         sz2 = atomic_read(&pi2->in_flight_size);
203
204         /*
205          * Case 1: Both have same throughput value. Choose less loaded path.
206          */
207         if (pi1->relative_throughput == pi2->relative_throughput)
208                 return sz1 - sz2;
209
210         /*
211          * Case 2a: Both have same load. Choose higher throughput path.
212          * Case 2b: One path has no throughput value. Choose the other one.
213          */
214         if (sz1 == sz2 ||
215             !pi1->relative_throughput || !pi2->relative_throughput)
216                 return pi2->relative_throughput - pi1->relative_throughput;
217
218         /*
219          * Case 3: Calculate service time. Choose faster path.
220          *         Service time using pi1:
221          *             st1 = (sz1 + incoming) / pi1->relative_throughput
222          *         Service time using pi2:
223          *             st2 = (sz2 + incoming) / pi2->relative_throughput
224          *
225          *         To avoid the division, transform the expression to use
226          *         multiplication.
227          *         Because ->relative_throughput > 0 here, if st1 < st2,
228          *         the expressions below are the same meaning:
229          *             (sz1 + incoming) / pi1->relative_throughput <
230          *                 (sz2 + incoming) / pi2->relative_throughput
231          *             (sz1 + incoming) * pi2->relative_throughput <
232          *                 (sz2 + incoming) * pi1->relative_throughput
233          *         So use the later one.
234          */
235         sz1 += incoming;
236         sz2 += incoming;
237         if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE ||
238                      sz2 >= ST_MAX_INFLIGHT_SIZE)) {
239                 /*
240                  * Size may be too big for multiplying pi->relative_throughput
241                  * and overflow.
242                  * To avoid the overflow and mis-selection, shift down both.
243                  */
244                 sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
245                 sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
246         }
247         st1 = sz1 * pi2->relative_throughput;
248         st2 = sz2 * pi1->relative_throughput;
249         if (st1 != st2)
250                 return st1 - st2;
251
252         /*
253          * Case 4: Service time is equal. Choose higher throughput path.
254          */
255         return pi2->relative_throughput - pi1->relative_throughput;
256 }
257
258 static struct dm_path *st_select_path(struct path_selector *ps,
259                                       unsigned *repeat_count, size_t nr_bytes)
260 {
261         struct selector *s = ps->context;
262         struct path_info *pi = NULL, *best = NULL;
263
264         if (list_empty(&s->valid_paths))
265                 return NULL;
266
267         /* Change preferred (first in list) path to evenly balance. */
268         list_move_tail(s->valid_paths.next, &s->valid_paths);
269
270         list_for_each_entry(pi, &s->valid_paths, list)
271                 if (!best || (st_compare_load(pi, best, nr_bytes) < 0))
272                         best = pi;
273
274         if (!best)
275                 return NULL;
276
277         *repeat_count = best->repeat_count;
278
279         return best->path;
280 }
281
282 static int st_start_io(struct path_selector *ps, struct dm_path *path,
283                        size_t nr_bytes)
284 {
285         struct path_info *pi = path->pscontext;
286
287         atomic_add(nr_bytes, &pi->in_flight_size);
288
289         return 0;
290 }
291
292 static int st_end_io(struct path_selector *ps, struct dm_path *path,
293                      size_t nr_bytes)
294 {
295         struct path_info *pi = path->pscontext;
296
297         atomic_sub(nr_bytes, &pi->in_flight_size);
298
299         return 0;
300 }
301
302 static struct path_selector_type st_ps = {
303         .name           = "service-time",
304         .module         = THIS_MODULE,
305         .table_args     = 2,
306         .info_args      = 2,
307         .create         = st_create,
308         .destroy        = st_destroy,
309         .status         = st_status,
310         .add_path       = st_add_path,
311         .fail_path      = st_fail_path,
312         .reinstate_path = st_reinstate_path,
313         .select_path    = st_select_path,
314         .start_io       = st_start_io,
315         .end_io         = st_end_io,
316 };
317
318 static int __init dm_st_init(void)
319 {
320         int r = dm_register_path_selector(&st_ps);
321
322         if (r < 0)
323                 DMERR("register failed %d", r);
324
325         DMINFO("version " ST_VERSION " loaded");
326
327         return r;
328 }
329
330 static void __exit dm_st_exit(void)
331 {
332         int r = dm_unregister_path_selector(&st_ps);
333
334         if (r < 0)
335                 DMERR("unregister failed %d", r);
336 }
337
338 module_init(dm_st_init);
339 module_exit(dm_st_exit);
340
341 MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector");
342 MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>");
343 MODULE_LICENSE("GPL");