Merge tag 'for-6.6-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[platform/kernel/linux-rpi.git] / drivers / md / dm-raid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010-2011 Neil Brown
4  * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8
9 #include <linux/slab.h>
10 #include <linux/module.h>
11
12 #include "md.h"
13 #include "raid1.h"
14 #include "raid5.h"
15 #include "raid10.h"
16 #include "md-bitmap.h"
17
18 #include <linux/device-mapper.h>
19
20 #define DM_MSG_PREFIX "raid"
21 #define MAX_RAID_DEVICES        253 /* md-raid kernel limit */
22
23 /*
24  * Minimum sectors of free reshape space per raid device
25  */
26 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
27
28 /*
29  * Minimum journal space 4 MiB in sectors.
30  */
31 #define MIN_RAID456_JOURNAL_SPACE (4*2048)
32
33 static bool devices_handle_discard_safely;
34
35 /*
36  * The following flags are used by dm-raid to set up the array state.
37  * They must be cleared before md_run is called.
38  */
39 #define FirstUse 10             /* rdev flag */
40
41 struct raid_dev {
42         /*
43          * Two DM devices, one to hold metadata and one to hold the
44          * actual data/parity.  The reason for this is to not confuse
45          * ti->len and give more flexibility in altering size and
46          * characteristics.
47          *
48          * While it is possible for this device to be associated
49          * with a different physical device than the data_dev, it
50          * is intended for it to be the same.
51          *    |--------- Physical Device ---------|
52          *    |- meta_dev -|------ data_dev ------|
53          */
54         struct dm_dev *meta_dev;
55         struct dm_dev *data_dev;
56         struct md_rdev rdev;
57 };
58
59 /*
60  * Bits for establishing rs->ctr_flags
61  *
62  * 1 = no flag value
63  * 2 = flag with value
64  */
65 #define __CTR_FLAG_SYNC                 0  /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_NOSYNC               1  /* 1 */ /* Not with raid0! */
67 #define __CTR_FLAG_REBUILD              2  /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_DAEMON_SLEEP         3  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MIN_RECOVERY_RATE    4  /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_RECOVERY_RATE    5  /* 2 */ /* Not with raid0! */
71 #define __CTR_FLAG_MAX_WRITE_BEHIND     6  /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_WRITE_MOSTLY         7  /* 2 */ /* Only with raid1! */
73 #define __CTR_FLAG_STRIPE_CACHE         8  /* 2 */ /* Only with raid4/5/6! */
74 #define __CTR_FLAG_REGION_SIZE          9  /* 2 */ /* Not with raid0! */
75 #define __CTR_FLAG_RAID10_COPIES        10 /* 2 */ /* Only with raid10 */
76 #define __CTR_FLAG_RAID10_FORMAT        11 /* 2 */ /* Only with raid10 */
77 /* New for v1.9.0 */
78 #define __CTR_FLAG_DELTA_DISKS          12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
79 #define __CTR_FLAG_DATA_OFFSET          13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
80 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
81
82 /* New for v1.10.0 */
83 #define __CTR_FLAG_JOURNAL_DEV          15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
84
85 /* New for v1.11.1 */
86 #define __CTR_FLAG_JOURNAL_MODE         16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
87
88 /*
89  * Flags for rs->ctr_flags field.
90  */
91 #define CTR_FLAG_SYNC                   (1 << __CTR_FLAG_SYNC)
92 #define CTR_FLAG_NOSYNC                 (1 << __CTR_FLAG_NOSYNC)
93 #define CTR_FLAG_REBUILD                (1 << __CTR_FLAG_REBUILD)
94 #define CTR_FLAG_DAEMON_SLEEP           (1 << __CTR_FLAG_DAEMON_SLEEP)
95 #define CTR_FLAG_MIN_RECOVERY_RATE      (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
96 #define CTR_FLAG_MAX_RECOVERY_RATE      (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
97 #define CTR_FLAG_MAX_WRITE_BEHIND       (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
98 #define CTR_FLAG_WRITE_MOSTLY           (1 << __CTR_FLAG_WRITE_MOSTLY)
99 #define CTR_FLAG_STRIPE_CACHE           (1 << __CTR_FLAG_STRIPE_CACHE)
100 #define CTR_FLAG_REGION_SIZE            (1 << __CTR_FLAG_REGION_SIZE)
101 #define CTR_FLAG_RAID10_COPIES          (1 << __CTR_FLAG_RAID10_COPIES)
102 #define CTR_FLAG_RAID10_FORMAT          (1 << __CTR_FLAG_RAID10_FORMAT)
103 #define CTR_FLAG_DELTA_DISKS            (1 << __CTR_FLAG_DELTA_DISKS)
104 #define CTR_FLAG_DATA_OFFSET            (1 << __CTR_FLAG_DATA_OFFSET)
105 #define CTR_FLAG_RAID10_USE_NEAR_SETS   (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
106 #define CTR_FLAG_JOURNAL_DEV            (1 << __CTR_FLAG_JOURNAL_DEV)
107 #define CTR_FLAG_JOURNAL_MODE           (1 << __CTR_FLAG_JOURNAL_MODE)
108
109 /*
110  * Definitions of various constructor flags to
111  * be used in checks of valid / invalid flags
112  * per raid level.
113  */
114 /* Define all any sync flags */
115 #define CTR_FLAGS_ANY_SYNC              (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
116
117 /* Define flags for options without argument (e.g. 'nosync') */
118 #define CTR_FLAG_OPTIONS_NO_ARGS        (CTR_FLAGS_ANY_SYNC | \
119                                          CTR_FLAG_RAID10_USE_NEAR_SETS)
120
121 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
122 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
123                                   CTR_FLAG_WRITE_MOSTLY | \
124                                   CTR_FLAG_DAEMON_SLEEP | \
125                                   CTR_FLAG_MIN_RECOVERY_RATE | \
126                                   CTR_FLAG_MAX_RECOVERY_RATE | \
127                                   CTR_FLAG_MAX_WRITE_BEHIND | \
128                                   CTR_FLAG_STRIPE_CACHE | \
129                                   CTR_FLAG_REGION_SIZE | \
130                                   CTR_FLAG_RAID10_COPIES | \
131                                   CTR_FLAG_RAID10_FORMAT | \
132                                   CTR_FLAG_DELTA_DISKS | \
133                                   CTR_FLAG_DATA_OFFSET | \
134                                   CTR_FLAG_JOURNAL_DEV | \
135                                   CTR_FLAG_JOURNAL_MODE)
136
137 /* Valid options definitions per raid level... */
138
139 /* "raid0" does only accept data offset */
140 #define RAID0_VALID_FLAGS       (CTR_FLAG_DATA_OFFSET)
141
142 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
143 #define RAID1_VALID_FLAGS       (CTR_FLAGS_ANY_SYNC | \
144                                  CTR_FLAG_REBUILD | \
145                                  CTR_FLAG_WRITE_MOSTLY | \
146                                  CTR_FLAG_DAEMON_SLEEP | \
147                                  CTR_FLAG_MIN_RECOVERY_RATE | \
148                                  CTR_FLAG_MAX_RECOVERY_RATE | \
149                                  CTR_FLAG_MAX_WRITE_BEHIND | \
150                                  CTR_FLAG_REGION_SIZE | \
151                                  CTR_FLAG_DELTA_DISKS | \
152                                  CTR_FLAG_DATA_OFFSET)
153
154 /* "raid10" does not accept any raid1 or stripe cache options */
155 #define RAID10_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
156                                  CTR_FLAG_REBUILD | \
157                                  CTR_FLAG_DAEMON_SLEEP | \
158                                  CTR_FLAG_MIN_RECOVERY_RATE | \
159                                  CTR_FLAG_MAX_RECOVERY_RATE | \
160                                  CTR_FLAG_REGION_SIZE | \
161                                  CTR_FLAG_RAID10_COPIES | \
162                                  CTR_FLAG_RAID10_FORMAT | \
163                                  CTR_FLAG_DELTA_DISKS | \
164                                  CTR_FLAG_DATA_OFFSET | \
165                                  CTR_FLAG_RAID10_USE_NEAR_SETS)
166
167 /*
168  * "raid4/5/6" do not accept any raid1 or raid10 specific options
169  *
170  * "raid6" does not accept "nosync", because it is not guaranteed
171  * that both parity and q-syndrome are being written properly with
172  * any writes
173  */
174 #define RAID45_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
175                                  CTR_FLAG_REBUILD | \
176                                  CTR_FLAG_DAEMON_SLEEP | \
177                                  CTR_FLAG_MIN_RECOVERY_RATE | \
178                                  CTR_FLAG_MAX_RECOVERY_RATE | \
179                                  CTR_FLAG_STRIPE_CACHE | \
180                                  CTR_FLAG_REGION_SIZE | \
181                                  CTR_FLAG_DELTA_DISKS | \
182                                  CTR_FLAG_DATA_OFFSET | \
183                                  CTR_FLAG_JOURNAL_DEV | \
184                                  CTR_FLAG_JOURNAL_MODE)
185
186 #define RAID6_VALID_FLAGS       (CTR_FLAG_SYNC | \
187                                  CTR_FLAG_REBUILD | \
188                                  CTR_FLAG_DAEMON_SLEEP | \
189                                  CTR_FLAG_MIN_RECOVERY_RATE | \
190                                  CTR_FLAG_MAX_RECOVERY_RATE | \
191                                  CTR_FLAG_STRIPE_CACHE | \
192                                  CTR_FLAG_REGION_SIZE | \
193                                  CTR_FLAG_DELTA_DISKS | \
194                                  CTR_FLAG_DATA_OFFSET | \
195                                  CTR_FLAG_JOURNAL_DEV | \
196                                  CTR_FLAG_JOURNAL_MODE)
197 /* ...valid options definitions per raid level */
198
199 /*
200  * Flags for rs->runtime_flags field
201  * (RT_FLAG prefix meaning "runtime flag")
202  *
203  * These are all internal and used to define runtime state,
204  * e.g. to prevent another resume from preresume processing
205  * the raid set all over again.
206  */
207 #define RT_FLAG_RS_PRERESUMED           0
208 #define RT_FLAG_RS_RESUMED              1
209 #define RT_FLAG_RS_BITMAP_LOADED        2
210 #define RT_FLAG_UPDATE_SBS              3
211 #define RT_FLAG_RESHAPE_RS              4
212 #define RT_FLAG_RS_SUSPENDED            5
213 #define RT_FLAG_RS_IN_SYNC              6
214 #define RT_FLAG_RS_RESYNCING            7
215 #define RT_FLAG_RS_GROW                 8
216
217 /* Array elements of 64 bit needed for rebuild/failed disk bits */
218 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
219
220 /*
221  * raid set level, layout and chunk sectors backup/restore
222  */
223 struct rs_layout {
224         int new_level;
225         int new_layout;
226         int new_chunk_sectors;
227 };
228
229 struct raid_set {
230         struct dm_target *ti;
231
232         uint32_t stripe_cache_entries;
233         unsigned long ctr_flags;
234         unsigned long runtime_flags;
235
236         uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
237
238         int raid_disks;
239         int delta_disks;
240         int data_offset;
241         int raid10_copies;
242         int requested_bitmap_chunk_sectors;
243
244         struct mddev md;
245         struct raid_type *raid_type;
246
247         sector_t array_sectors;
248         sector_t dev_sectors;
249
250         /* Optional raid4/5/6 journal device */
251         struct journal_dev {
252                 struct dm_dev *dev;
253                 struct md_rdev rdev;
254                 int mode;
255         } journal_dev;
256
257         struct raid_dev dev[];
258 };
259
260 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
261 {
262         struct mddev *mddev = &rs->md;
263
264         l->new_level = mddev->new_level;
265         l->new_layout = mddev->new_layout;
266         l->new_chunk_sectors = mddev->new_chunk_sectors;
267 }
268
269 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
270 {
271         struct mddev *mddev = &rs->md;
272
273         mddev->new_level = l->new_level;
274         mddev->new_layout = l->new_layout;
275         mddev->new_chunk_sectors = l->new_chunk_sectors;
276 }
277
278 /* raid10 algorithms (i.e. formats) */
279 #define ALGORITHM_RAID10_DEFAULT        0
280 #define ALGORITHM_RAID10_NEAR           1
281 #define ALGORITHM_RAID10_OFFSET         2
282 #define ALGORITHM_RAID10_FAR            3
283
284 /* Supported raid types and properties. */
285 static struct raid_type {
286         const char *name;               /* RAID algorithm. */
287         const char *descr;              /* Descriptor text for logging. */
288         const unsigned int parity_devs; /* # of parity devices. */
289         const unsigned int minimal_devs;/* minimal # of devices in set. */
290         const unsigned int level;       /* RAID level. */
291         const unsigned int algorithm;   /* RAID algorithm. */
292 } raid_types[] = {
293         {"raid0",         "raid0 (striping)",                       0, 2, 0,  0 /* NONE */},
294         {"raid1",         "raid1 (mirroring)",                      0, 2, 1,  0 /* NONE */},
295         {"raid10_far",    "raid10 far (striped mirrors)",           0, 2, 10, ALGORITHM_RAID10_FAR},
296         {"raid10_offset", "raid10 offset (striped mirrors)",        0, 2, 10, ALGORITHM_RAID10_OFFSET},
297         {"raid10_near",   "raid10 near (striped mirrors)",          0, 2, 10, ALGORITHM_RAID10_NEAR},
298         {"raid10",        "raid10 (striped mirrors)",               0, 2, 10, ALGORITHM_RAID10_DEFAULT},
299         {"raid4",         "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
300         {"raid5_n",       "raid5 (dedicated last parity disk)",     1, 2, 5,  ALGORITHM_PARITY_N},
301         {"raid5_ls",      "raid5 (left symmetric)",                 1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
302         {"raid5_rs",      "raid5 (right symmetric)",                1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
303         {"raid5_la",      "raid5 (left asymmetric)",                1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
304         {"raid5_ra",      "raid5 (right asymmetric)",               1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
305         {"raid6_zr",      "raid6 (zero restart)",                   2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
306         {"raid6_nr",      "raid6 (N restart)",                      2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
307         {"raid6_nc",      "raid6 (N continue)",                     2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
308         {"raid6_n_6",     "raid6 (dedicated parity/Q n/6)",         2, 4, 6,  ALGORITHM_PARITY_N_6},
309         {"raid6_ls_6",    "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
310         {"raid6_rs_6",    "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
311         {"raid6_la_6",    "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
312         {"raid6_ra_6",    "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
313 };
314
315 /* True, if @v is in inclusive range [@min, @max] */
316 static bool __within_range(long v, long min, long max)
317 {
318         return v >= min && v <= max;
319 }
320
321 /* All table line arguments are defined here */
322 static struct arg_name_flag {
323         const unsigned long flag;
324         const char *name;
325 } __arg_name_flags[] = {
326         { CTR_FLAG_SYNC, "sync"},
327         { CTR_FLAG_NOSYNC, "nosync"},
328         { CTR_FLAG_REBUILD, "rebuild"},
329         { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
330         { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
331         { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
332         { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
333         { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
334         { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
335         { CTR_FLAG_REGION_SIZE, "region_size"},
336         { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
337         { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
338         { CTR_FLAG_DATA_OFFSET, "data_offset"},
339         { CTR_FLAG_DELTA_DISKS, "delta_disks"},
340         { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
341         { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
342         { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
343 };
344
345 /* Return argument name string for given @flag */
346 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
347 {
348         if (hweight32(flag) == 1) {
349                 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
350
351                 while (anf-- > __arg_name_flags)
352                         if (flag & anf->flag)
353                                 return anf->name;
354
355         } else
356                 DMERR("%s called with more than one flag!", __func__);
357
358         return NULL;
359 }
360
361 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
362 static struct {
363         const int mode;
364         const char *param;
365 } _raid456_journal_mode[] = {
366         { R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" },
367         { R5C_JOURNAL_MODE_WRITE_BACK,    "writeback" }
368 };
369
370 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */
371 static int dm_raid_journal_mode_to_md(const char *mode)
372 {
373         int m = ARRAY_SIZE(_raid456_journal_mode);
374
375         while (m--)
376                 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
377                         return _raid456_journal_mode[m].mode;
378
379         return -EINVAL;
380 }
381
382 /* Return dm-raid raid4/5/6 journal mode string for @mode */
383 static const char *md_journal_mode_to_dm_raid(const int mode)
384 {
385         int m = ARRAY_SIZE(_raid456_journal_mode);
386
387         while (m--)
388                 if (mode == _raid456_journal_mode[m].mode)
389                         return _raid456_journal_mode[m].param;
390
391         return "unknown";
392 }
393
394 /*
395  * Bool helpers to test for various raid levels of a raid set.
396  * It's level as reported by the superblock rather than
397  * the requested raid_type passed to the constructor.
398  */
399 /* Return true, if raid set in @rs is raid0 */
400 static bool rs_is_raid0(struct raid_set *rs)
401 {
402         return !rs->md.level;
403 }
404
405 /* Return true, if raid set in @rs is raid1 */
406 static bool rs_is_raid1(struct raid_set *rs)
407 {
408         return rs->md.level == 1;
409 }
410
411 /* Return true, if raid set in @rs is raid10 */
412 static bool rs_is_raid10(struct raid_set *rs)
413 {
414         return rs->md.level == 10;
415 }
416
417 /* Return true, if raid set in @rs is level 6 */
418 static bool rs_is_raid6(struct raid_set *rs)
419 {
420         return rs->md.level == 6;
421 }
422
423 /* Return true, if raid set in @rs is level 4, 5 or 6 */
424 static bool rs_is_raid456(struct raid_set *rs)
425 {
426         return __within_range(rs->md.level, 4, 6);
427 }
428
429 /* Return true, if raid set in @rs is reshapable */
430 static bool __is_raid10_far(int layout);
431 static bool rs_is_reshapable(struct raid_set *rs)
432 {
433         return rs_is_raid456(rs) ||
434                (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
435 }
436
437 /* Return true, if raid set in @rs is recovering */
438 static bool rs_is_recovering(struct raid_set *rs)
439 {
440         return rs->md.recovery_cp < rs->md.dev_sectors;
441 }
442
443 /* Return true, if raid set in @rs is reshaping */
444 static bool rs_is_reshaping(struct raid_set *rs)
445 {
446         return rs->md.reshape_position != MaxSector;
447 }
448
449 /*
450  * bool helpers to test for various raid levels of a raid type @rt
451  */
452
453 /* Return true, if raid type in @rt is raid0 */
454 static bool rt_is_raid0(struct raid_type *rt)
455 {
456         return !rt->level;
457 }
458
459 /* Return true, if raid type in @rt is raid1 */
460 static bool rt_is_raid1(struct raid_type *rt)
461 {
462         return rt->level == 1;
463 }
464
465 /* Return true, if raid type in @rt is raid10 */
466 static bool rt_is_raid10(struct raid_type *rt)
467 {
468         return rt->level == 10;
469 }
470
471 /* Return true, if raid type in @rt is raid4/5 */
472 static bool rt_is_raid45(struct raid_type *rt)
473 {
474         return __within_range(rt->level, 4, 5);
475 }
476
477 /* Return true, if raid type in @rt is raid6 */
478 static bool rt_is_raid6(struct raid_type *rt)
479 {
480         return rt->level == 6;
481 }
482
483 /* Return true, if raid type in @rt is raid4/5/6 */
484 static bool rt_is_raid456(struct raid_type *rt)
485 {
486         return __within_range(rt->level, 4, 6);
487 }
488 /* END: raid level bools */
489
490 /* Return valid ctr flags for the raid level of @rs */
491 static unsigned long __valid_flags(struct raid_set *rs)
492 {
493         if (rt_is_raid0(rs->raid_type))
494                 return RAID0_VALID_FLAGS;
495         else if (rt_is_raid1(rs->raid_type))
496                 return RAID1_VALID_FLAGS;
497         else if (rt_is_raid10(rs->raid_type))
498                 return RAID10_VALID_FLAGS;
499         else if (rt_is_raid45(rs->raid_type))
500                 return RAID45_VALID_FLAGS;
501         else if (rt_is_raid6(rs->raid_type))
502                 return RAID6_VALID_FLAGS;
503
504         return 0;
505 }
506
507 /*
508  * Check for valid flags set on @rs
509  *
510  * Has to be called after parsing of the ctr flags!
511  */
512 static int rs_check_for_valid_flags(struct raid_set *rs)
513 {
514         if (rs->ctr_flags & ~__valid_flags(rs)) {
515                 rs->ti->error = "Invalid flags combination";
516                 return -EINVAL;
517         }
518
519         return 0;
520 }
521
522 /* MD raid10 bit definitions and helpers */
523 #define RAID10_OFFSET                   (1 << 16) /* stripes with data copies area adjacent on devices */
524 #define RAID10_BROCKEN_USE_FAR_SETS     (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
525 #define RAID10_USE_FAR_SETS             (1 << 18) /* Use sets instead of whole stripe rotation */
526 #define RAID10_FAR_COPIES_SHIFT         8         /* raid10 # far copies shift (2nd byte of layout) */
527
528 /* Return md raid10 near copies for @layout */
529 static unsigned int __raid10_near_copies(int layout)
530 {
531         return layout & 0xFF;
532 }
533
534 /* Return md raid10 far copies for @layout */
535 static unsigned int __raid10_far_copies(int layout)
536 {
537         return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
538 }
539
540 /* Return true if md raid10 offset for @layout */
541 static bool __is_raid10_offset(int layout)
542 {
543         return !!(layout & RAID10_OFFSET);
544 }
545
546 /* Return true if md raid10 near for @layout */
547 static bool __is_raid10_near(int layout)
548 {
549         return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
550 }
551
552 /* Return true if md raid10 far for @layout */
553 static bool __is_raid10_far(int layout)
554 {
555         return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
556 }
557
558 /* Return md raid10 layout string for @layout */
559 static const char *raid10_md_layout_to_format(int layout)
560 {
561         /*
562          * Bit 16 stands for "offset"
563          * (i.e. adjacent stripes hold copies)
564          *
565          * Refer to MD's raid10.c for details
566          */
567         if (__is_raid10_offset(layout))
568                 return "offset";
569
570         if (__raid10_near_copies(layout) > 1)
571                 return "near";
572
573         if (__raid10_far_copies(layout) > 1)
574                 return "far";
575
576         return "unknown";
577 }
578
579 /* Return md raid10 algorithm for @name */
580 static int raid10_name_to_format(const char *name)
581 {
582         if (!strcasecmp(name, "near"))
583                 return ALGORITHM_RAID10_NEAR;
584         else if (!strcasecmp(name, "offset"))
585                 return ALGORITHM_RAID10_OFFSET;
586         else if (!strcasecmp(name, "far"))
587                 return ALGORITHM_RAID10_FAR;
588
589         return -EINVAL;
590 }
591
592 /* Return md raid10 copies for @layout */
593 static unsigned int raid10_md_layout_to_copies(int layout)
594 {
595         return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
596 }
597
598 /* Return md raid10 format id for @format string */
599 static int raid10_format_to_md_layout(struct raid_set *rs,
600                                       unsigned int algorithm,
601                                       unsigned int copies)
602 {
603         unsigned int n = 1, f = 1, r = 0;
604
605         /*
606          * MD resilienece flaw:
607          *
608          * enabling use_far_sets for far/offset formats causes copies
609          * to be colocated on the same devs together with their origins!
610          *
611          * -> disable it for now in the definition above
612          */
613         if (algorithm == ALGORITHM_RAID10_DEFAULT ||
614             algorithm == ALGORITHM_RAID10_NEAR)
615                 n = copies;
616
617         else if (algorithm == ALGORITHM_RAID10_OFFSET) {
618                 f = copies;
619                 r = RAID10_OFFSET;
620                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
621                         r |= RAID10_USE_FAR_SETS;
622
623         } else if (algorithm == ALGORITHM_RAID10_FAR) {
624                 f = copies;
625                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
626                         r |= RAID10_USE_FAR_SETS;
627
628         } else
629                 return -EINVAL;
630
631         return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
632 }
633 /* END: MD raid10 bit definitions and helpers */
634
635 /* Check for any of the raid10 algorithms */
636 static bool __got_raid10(struct raid_type *rtp, const int layout)
637 {
638         if (rtp->level == 10) {
639                 switch (rtp->algorithm) {
640                 case ALGORITHM_RAID10_DEFAULT:
641                 case ALGORITHM_RAID10_NEAR:
642                         return __is_raid10_near(layout);
643                 case ALGORITHM_RAID10_OFFSET:
644                         return __is_raid10_offset(layout);
645                 case ALGORITHM_RAID10_FAR:
646                         return __is_raid10_far(layout);
647                 default:
648                         break;
649                 }
650         }
651
652         return false;
653 }
654
655 /* Return raid_type for @name */
656 static struct raid_type *get_raid_type(const char *name)
657 {
658         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
659
660         while (rtp-- > raid_types)
661                 if (!strcasecmp(rtp->name, name))
662                         return rtp;
663
664         return NULL;
665 }
666
667 /* Return raid_type for @name based derived from @level and @layout */
668 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
669 {
670         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
671
672         while (rtp-- > raid_types) {
673                 /* RAID10 special checks based on @layout flags/properties */
674                 if (rtp->level == level &&
675                     (__got_raid10(rtp, layout) || rtp->algorithm == layout))
676                         return rtp;
677         }
678
679         return NULL;
680 }
681
682 /* Adjust rdev sectors */
683 static void rs_set_rdev_sectors(struct raid_set *rs)
684 {
685         struct mddev *mddev = &rs->md;
686         struct md_rdev *rdev;
687
688         /*
689          * raid10 sets rdev->sector to the device size, which
690          * is unintended in case of out-of-place reshaping
691          */
692         rdev_for_each(rdev, mddev)
693                 if (!test_bit(Journal, &rdev->flags))
694                         rdev->sectors = mddev->dev_sectors;
695 }
696
697 /*
698  * Change bdev capacity of @rs in case of a disk add/remove reshape
699  */
700 static void rs_set_capacity(struct raid_set *rs)
701 {
702         struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
703
704         set_capacity_and_notify(gendisk, rs->md.array_sectors);
705 }
706
707 /*
708  * Set the mddev properties in @rs to the current
709  * ones retrieved from the freshest superblock
710  */
711 static void rs_set_cur(struct raid_set *rs)
712 {
713         struct mddev *mddev = &rs->md;
714
715         mddev->new_level = mddev->level;
716         mddev->new_layout = mddev->layout;
717         mddev->new_chunk_sectors = mddev->chunk_sectors;
718 }
719
720 /*
721  * Set the mddev properties in @rs to the new
722  * ones requested by the ctr
723  */
724 static void rs_set_new(struct raid_set *rs)
725 {
726         struct mddev *mddev = &rs->md;
727
728         mddev->level = mddev->new_level;
729         mddev->layout = mddev->new_layout;
730         mddev->chunk_sectors = mddev->new_chunk_sectors;
731         mddev->raid_disks = rs->raid_disks;
732         mddev->delta_disks = 0;
733 }
734
735 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
736                                        unsigned int raid_devs)
737 {
738         unsigned int i;
739         struct raid_set *rs;
740
741         if (raid_devs <= raid_type->parity_devs) {
742                 ti->error = "Insufficient number of devices";
743                 return ERR_PTR(-EINVAL);
744         }
745
746         rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
747         if (!rs) {
748                 ti->error = "Cannot allocate raid context";
749                 return ERR_PTR(-ENOMEM);
750         }
751
752         mddev_init(&rs->md);
753
754         rs->raid_disks = raid_devs;
755         rs->delta_disks = 0;
756
757         rs->ti = ti;
758         rs->raid_type = raid_type;
759         rs->stripe_cache_entries = 256;
760         rs->md.raid_disks = raid_devs;
761         rs->md.level = raid_type->level;
762         rs->md.new_level = rs->md.level;
763         rs->md.layout = raid_type->algorithm;
764         rs->md.new_layout = rs->md.layout;
765         rs->md.delta_disks = 0;
766         rs->md.recovery_cp = MaxSector;
767
768         for (i = 0; i < raid_devs; i++)
769                 md_rdev_init(&rs->dev[i].rdev);
770
771         /*
772          * Remaining items to be initialized by further RAID params:
773          *  rs->md.persistent
774          *  rs->md.external
775          *  rs->md.chunk_sectors
776          *  rs->md.new_chunk_sectors
777          *  rs->md.dev_sectors
778          */
779
780         return rs;
781 }
782
783 /* Free all @rs allocations */
784 static void raid_set_free(struct raid_set *rs)
785 {
786         int i;
787
788         if (rs->journal_dev.dev) {
789                 md_rdev_clear(&rs->journal_dev.rdev);
790                 dm_put_device(rs->ti, rs->journal_dev.dev);
791         }
792
793         for (i = 0; i < rs->raid_disks; i++) {
794                 if (rs->dev[i].meta_dev)
795                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
796                 md_rdev_clear(&rs->dev[i].rdev);
797                 if (rs->dev[i].data_dev)
798                         dm_put_device(rs->ti, rs->dev[i].data_dev);
799         }
800
801         kfree(rs);
802 }
803
804 /*
805  * For every device we have two words
806  *  <meta_dev>: meta device name or '-' if missing
807  *  <data_dev>: data device name or '-' if missing
808  *
809  * The following are permitted:
810  *    - -
811  *    - <data_dev>
812  *    <meta_dev> <data_dev>
813  *
814  * The following is not allowed:
815  *    <meta_dev> -
816  *
817  * This code parses those words.  If there is a failure,
818  * the caller must use raid_set_free() to unwind the operations.
819  */
820 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
821 {
822         int i;
823         int rebuild = 0;
824         int metadata_available = 0;
825         int r = 0;
826         const char *arg;
827
828         /* Put off the number of raid devices argument to get to dev pairs */
829         arg = dm_shift_arg(as);
830         if (!arg)
831                 return -EINVAL;
832
833         for (i = 0; i < rs->raid_disks; i++) {
834                 rs->dev[i].rdev.raid_disk = i;
835
836                 rs->dev[i].meta_dev = NULL;
837                 rs->dev[i].data_dev = NULL;
838
839                 /*
840                  * There are no offsets initially.
841                  * Out of place reshape will set them accordingly.
842                  */
843                 rs->dev[i].rdev.data_offset = 0;
844                 rs->dev[i].rdev.new_data_offset = 0;
845                 rs->dev[i].rdev.mddev = &rs->md;
846
847                 arg = dm_shift_arg(as);
848                 if (!arg)
849                         return -EINVAL;
850
851                 if (strcmp(arg, "-")) {
852                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
853                                           &rs->dev[i].meta_dev);
854                         if (r) {
855                                 rs->ti->error = "RAID metadata device lookup failure";
856                                 return r;
857                         }
858
859                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
860                         if (!rs->dev[i].rdev.sb_page) {
861                                 rs->ti->error = "Failed to allocate superblock page";
862                                 return -ENOMEM;
863                         }
864                 }
865
866                 arg = dm_shift_arg(as);
867                 if (!arg)
868                         return -EINVAL;
869
870                 if (!strcmp(arg, "-")) {
871                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
872                             (!rs->dev[i].rdev.recovery_offset)) {
873                                 rs->ti->error = "Drive designated for rebuild not specified";
874                                 return -EINVAL;
875                         }
876
877                         if (rs->dev[i].meta_dev) {
878                                 rs->ti->error = "No data device supplied with metadata device";
879                                 return -EINVAL;
880                         }
881
882                         continue;
883                 }
884
885                 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
886                                   &rs->dev[i].data_dev);
887                 if (r) {
888                         rs->ti->error = "RAID device lookup failure";
889                         return r;
890                 }
891
892                 if (rs->dev[i].meta_dev) {
893                         metadata_available = 1;
894                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
895                 }
896                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
897                 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
898                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
899                         rebuild++;
900         }
901
902         if (rs->journal_dev.dev)
903                 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
904
905         if (metadata_available) {
906                 rs->md.external = 0;
907                 rs->md.persistent = 1;
908                 rs->md.major_version = 2;
909         } else if (rebuild && !rs->md.recovery_cp) {
910                 /*
911                  * Without metadata, we will not be able to tell if the array
912                  * is in-sync or not - we must assume it is not.  Therefore,
913                  * it is impossible to rebuild a drive.
914                  *
915                  * Even if there is metadata, the on-disk information may
916                  * indicate that the array is not in-sync and it will then
917                  * fail at that time.
918                  *
919                  * User could specify 'nosync' option if desperate.
920                  */
921                 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
922                 return -EINVAL;
923         }
924
925         return 0;
926 }
927
928 /*
929  * validate_region_size
930  * @rs
931  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
932  *
933  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
934  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
935  *
936  * Returns: 0 on success, -EINVAL on failure.
937  */
938 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
939 {
940         unsigned long min_region_size = rs->ti->len / (1 << 21);
941
942         if (rs_is_raid0(rs))
943                 return 0;
944
945         if (!region_size) {
946                 /*
947                  * Choose a reasonable default.  All figures in sectors.
948                  */
949                 if (min_region_size > (1 << 13)) {
950                         /* If not a power of 2, make it the next power of 2 */
951                         region_size = roundup_pow_of_two(min_region_size);
952                         DMINFO("Choosing default region size of %lu sectors",
953                                region_size);
954                 } else {
955                         DMINFO("Choosing default region size of 4MiB");
956                         region_size = 1 << 13; /* sectors */
957                 }
958         } else {
959                 /*
960                  * Validate user-supplied value.
961                  */
962                 if (region_size > rs->ti->len) {
963                         rs->ti->error = "Supplied region size is too large";
964                         return -EINVAL;
965                 }
966
967                 if (region_size < min_region_size) {
968                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
969                               region_size, min_region_size);
970                         rs->ti->error = "Supplied region size is too small";
971                         return -EINVAL;
972                 }
973
974                 if (!is_power_of_2(region_size)) {
975                         rs->ti->error = "Region size is not a power of 2";
976                         return -EINVAL;
977                 }
978
979                 if (region_size < rs->md.chunk_sectors) {
980                         rs->ti->error = "Region size is smaller than the chunk size";
981                         return -EINVAL;
982                 }
983         }
984
985         /*
986          * Convert sectors to bytes.
987          */
988         rs->md.bitmap_info.chunksize = to_bytes(region_size);
989
990         return 0;
991 }
992
993 /*
994  * validate_raid_redundancy
995  * @rs
996  *
997  * Determine if there are enough devices in the array that haven't
998  * failed (or are being rebuilt) to form a usable array.
999  *
1000  * Returns: 0 on success, -EINVAL on failure.
1001  */
1002 static int validate_raid_redundancy(struct raid_set *rs)
1003 {
1004         unsigned int i, rebuild_cnt = 0;
1005         unsigned int rebuilds_per_group = 0, copies, raid_disks;
1006         unsigned int group_size, last_group_start;
1007
1008         for (i = 0; i < rs->raid_disks; i++)
1009                 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
1010                     ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1011                       !rs->dev[i].rdev.sb_page)))
1012                         rebuild_cnt++;
1013
1014         switch (rs->md.level) {
1015         case 0:
1016                 break;
1017         case 1:
1018                 if (rebuild_cnt >= rs->md.raid_disks)
1019                         goto too_many;
1020                 break;
1021         case 4:
1022         case 5:
1023         case 6:
1024                 if (rebuild_cnt > rs->raid_type->parity_devs)
1025                         goto too_many;
1026                 break;
1027         case 10:
1028                 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1029                 if (copies < 2) {
1030                         DMERR("Bogus raid10 data copies < 2!");
1031                         return -EINVAL;
1032                 }
1033
1034                 if (rebuild_cnt < copies)
1035                         break;
1036
1037                 /*
1038                  * It is possible to have a higher rebuild count for RAID10,
1039                  * as long as the failed devices occur in different mirror
1040                  * groups (i.e. different stripes).
1041                  *
1042                  * When checking "near" format, make sure no adjacent devices
1043                  * have failed beyond what can be handled.  In addition to the
1044                  * simple case where the number of devices is a multiple of the
1045                  * number of copies, we must also handle cases where the number
1046                  * of devices is not a multiple of the number of copies.
1047                  * E.g.    dev1 dev2 dev3 dev4 dev5
1048                  *          A    A    B    B    C
1049                  *          C    D    D    E    E
1050                  */
1051                 raid_disks = min(rs->raid_disks, rs->md.raid_disks);
1052                 if (__is_raid10_near(rs->md.new_layout)) {
1053                         for (i = 0; i < raid_disks; i++) {
1054                                 if (!(i % copies))
1055                                         rebuilds_per_group = 0;
1056                                 if ((!rs->dev[i].rdev.sb_page ||
1057                                     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1058                                     (++rebuilds_per_group >= copies))
1059                                         goto too_many;
1060                         }
1061                         break;
1062                 }
1063
1064                 /*
1065                  * When checking "far" and "offset" formats, we need to ensure
1066                  * that the device that holds its copy is not also dead or
1067                  * being rebuilt.  (Note that "far" and "offset" formats only
1068                  * support two copies right now.  These formats also only ever
1069                  * use the 'use_far_sets' variant.)
1070                  *
1071                  * This check is somewhat complicated by the need to account
1072                  * for arrays that are not a multiple of (far) copies.  This
1073                  * results in the need to treat the last (potentially larger)
1074                  * set differently.
1075                  */
1076                 group_size = (raid_disks / copies);
1077                 last_group_start = (raid_disks / group_size) - 1;
1078                 last_group_start *= group_size;
1079                 for (i = 0; i < raid_disks; i++) {
1080                         if (!(i % copies) && !(i > last_group_start))
1081                                 rebuilds_per_group = 0;
1082                         if ((!rs->dev[i].rdev.sb_page ||
1083                              !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1084                             (++rebuilds_per_group >= copies))
1085                                 goto too_many;
1086                 }
1087                 break;
1088         default:
1089                 if (rebuild_cnt)
1090                         return -EINVAL;
1091         }
1092
1093         return 0;
1094
1095 too_many:
1096         return -EINVAL;
1097 }
1098
1099 /*
1100  * Possible arguments are...
1101  *      <chunk_size> [optional_args]
1102  *
1103  * Argument definitions
1104  *    <chunk_size>                      The number of sectors per disk that
1105  *                                      will form the "stripe"
1106  *    [[no]sync]                        Force or prevent recovery of the
1107  *                                      entire array
1108  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
1109  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
1110  *                                      clear bits
1111  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1112  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1113  *    [write_mostly <idx>]              Indicate a write mostly drive via index
1114  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
1115  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
1116  *    [region_size <sectors>]           Defines granularity of bitmap
1117  *    [journal_dev <dev>]               raid4/5/6 journaling deviice
1118  *                                      (i.e. write hole closing log)
1119  *
1120  * RAID10-only options:
1121  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
1122  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1123  */
1124 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1125                              unsigned int num_raid_params)
1126 {
1127         int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1128         unsigned int raid10_copies = 2;
1129         unsigned int i, write_mostly = 0;
1130         unsigned int region_size = 0;
1131         sector_t max_io_len;
1132         const char *arg, *key;
1133         struct raid_dev *rd;
1134         struct raid_type *rt = rs->raid_type;
1135
1136         arg = dm_shift_arg(as);
1137         num_raid_params--; /* Account for chunk_size argument */
1138
1139         if (kstrtoint(arg, 10, &value) < 0) {
1140                 rs->ti->error = "Bad numerical argument given for chunk_size";
1141                 return -EINVAL;
1142         }
1143
1144         /*
1145          * First, parse the in-order required arguments
1146          * "chunk_size" is the only argument of this type.
1147          */
1148         if (rt_is_raid1(rt)) {
1149                 if (value)
1150                         DMERR("Ignoring chunk size parameter for RAID 1");
1151                 value = 0;
1152         } else if (!is_power_of_2(value)) {
1153                 rs->ti->error = "Chunk size must be a power of 2";
1154                 return -EINVAL;
1155         } else if (value < 8) {
1156                 rs->ti->error = "Chunk size value is too small";
1157                 return -EINVAL;
1158         }
1159
1160         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1161
1162         /*
1163          * We set each individual device as In_sync with a completed
1164          * 'recovery_offset'.  If there has been a device failure or
1165          * replacement then one of the following cases applies:
1166          *
1167          *   1) User specifies 'rebuild'.
1168          *      - Device is reset when param is read.
1169          *   2) A new device is supplied.
1170          *      - No matching superblock found, resets device.
1171          *   3) Device failure was transient and returns on reload.
1172          *      - Failure noticed, resets device for bitmap replay.
1173          *   4) Device hadn't completed recovery after previous failure.
1174          *      - Superblock is read and overrides recovery_offset.
1175          *
1176          * What is found in the superblocks of the devices is always
1177          * authoritative, unless 'rebuild' or '[no]sync' was specified.
1178          */
1179         for (i = 0; i < rs->raid_disks; i++) {
1180                 set_bit(In_sync, &rs->dev[i].rdev.flags);
1181                 rs->dev[i].rdev.recovery_offset = MaxSector;
1182         }
1183
1184         /*
1185          * Second, parse the unordered optional arguments
1186          */
1187         for (i = 0; i < num_raid_params; i++) {
1188                 key = dm_shift_arg(as);
1189                 if (!key) {
1190                         rs->ti->error = "Not enough raid parameters given";
1191                         return -EINVAL;
1192                 }
1193
1194                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1195                         if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1196                                 rs->ti->error = "Only one 'nosync' argument allowed";
1197                                 return -EINVAL;
1198                         }
1199                         continue;
1200                 }
1201                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1202                         if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1203                                 rs->ti->error = "Only one 'sync' argument allowed";
1204                                 return -EINVAL;
1205                         }
1206                         continue;
1207                 }
1208                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1209                         if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1210                                 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1211                                 return -EINVAL;
1212                         }
1213                         continue;
1214                 }
1215
1216                 arg = dm_shift_arg(as);
1217                 i++; /* Account for the argument pairs */
1218                 if (!arg) {
1219                         rs->ti->error = "Wrong number of raid parameters given";
1220                         return -EINVAL;
1221                 }
1222
1223                 /*
1224                  * Parameters that take a string value are checked here.
1225                  */
1226                 /* "raid10_format {near|offset|far} */
1227                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1228                         if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1229                                 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1230                                 return -EINVAL;
1231                         }
1232                         if (!rt_is_raid10(rt)) {
1233                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1234                                 return -EINVAL;
1235                         }
1236                         raid10_format = raid10_name_to_format(arg);
1237                         if (raid10_format < 0) {
1238                                 rs->ti->error = "Invalid 'raid10_format' value given";
1239                                 return raid10_format;
1240                         }
1241                         continue;
1242                 }
1243
1244                 /* "journal_dev <dev>" */
1245                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1246                         int r;
1247                         struct md_rdev *jdev;
1248
1249                         if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1250                                 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1251                                 return -EINVAL;
1252                         }
1253                         if (!rt_is_raid456(rt)) {
1254                                 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1255                                 return -EINVAL;
1256                         }
1257                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1258                                           &rs->journal_dev.dev);
1259                         if (r) {
1260                                 rs->ti->error = "raid4/5/6 journal device lookup failure";
1261                                 return r;
1262                         }
1263                         jdev = &rs->journal_dev.rdev;
1264                         md_rdev_init(jdev);
1265                         jdev->mddev = &rs->md;
1266                         jdev->bdev = rs->journal_dev.dev->bdev;
1267                         jdev->sectors = bdev_nr_sectors(jdev->bdev);
1268                         if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1269                                 rs->ti->error = "No space for raid4/5/6 journal";
1270                                 return -ENOSPC;
1271                         }
1272                         rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1273                         set_bit(Journal, &jdev->flags);
1274                         continue;
1275                 }
1276
1277                 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1278                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1279                         int r;
1280
1281                         if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1282                                 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1283                                 return -EINVAL;
1284                         }
1285                         if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1286                                 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1287                                 return -EINVAL;
1288                         }
1289                         r = dm_raid_journal_mode_to_md(arg);
1290                         if (r < 0) {
1291                                 rs->ti->error = "Invalid 'journal_mode' argument";
1292                                 return r;
1293                         }
1294                         rs->journal_dev.mode = r;
1295                         continue;
1296                 }
1297
1298                 /*
1299                  * Parameters with number values from here on.
1300                  */
1301                 if (kstrtoint(arg, 10, &value) < 0) {
1302                         rs->ti->error = "Bad numerical argument given in raid params";
1303                         return -EINVAL;
1304                 }
1305
1306                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1307                         /*
1308                          * "rebuild" is being passed in by userspace to provide
1309                          * indexes of replaced devices and to set up additional
1310                          * devices on raid level takeover.
1311                          */
1312                         if (!__within_range(value, 0, rs->raid_disks - 1)) {
1313                                 rs->ti->error = "Invalid rebuild index given";
1314                                 return -EINVAL;
1315                         }
1316
1317                         if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1318                                 rs->ti->error = "rebuild for this index already given";
1319                                 return -EINVAL;
1320                         }
1321
1322                         rd = rs->dev + value;
1323                         clear_bit(In_sync, &rd->rdev.flags);
1324                         clear_bit(Faulty, &rd->rdev.flags);
1325                         rd->rdev.recovery_offset = 0;
1326                         set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1327                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1328                         if (!rt_is_raid1(rt)) {
1329                                 rs->ti->error = "write_mostly option is only valid for RAID1";
1330                                 return -EINVAL;
1331                         }
1332
1333                         if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1334                                 rs->ti->error = "Invalid write_mostly index given";
1335                                 return -EINVAL;
1336                         }
1337
1338                         write_mostly++;
1339                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1340                         set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1341                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1342                         if (!rt_is_raid1(rt)) {
1343                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
1344                                 return -EINVAL;
1345                         }
1346
1347                         if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1348                                 rs->ti->error = "Only one max_write_behind argument pair allowed";
1349                                 return -EINVAL;
1350                         }
1351
1352                         /*
1353                          * In device-mapper, we specify things in sectors, but
1354                          * MD records this value in kB
1355                          */
1356                         if (value < 0 || value / 2 > COUNTER_MAX) {
1357                                 rs->ti->error = "Max write-behind limit out of range";
1358                                 return -EINVAL;
1359                         }
1360
1361                         rs->md.bitmap_info.max_write_behind = value / 2;
1362                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1363                         if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1364                                 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1365                                 return -EINVAL;
1366                         }
1367                         if (value < 0) {
1368                                 rs->ti->error = "daemon sleep period out of range";
1369                                 return -EINVAL;
1370                         }
1371                         rs->md.bitmap_info.daemon_sleep = value;
1372                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1373                         /* Userspace passes new data_offset after having extended the data image LV */
1374                         if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1375                                 rs->ti->error = "Only one data_offset argument pair allowed";
1376                                 return -EINVAL;
1377                         }
1378                         /* Ensure sensible data offset */
1379                         if (value < 0 ||
1380                             (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1381                                 rs->ti->error = "Bogus data_offset value";
1382                                 return -EINVAL;
1383                         }
1384                         rs->data_offset = value;
1385                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1386                         /* Define the +/-# of disks to add to/remove from the given raid set */
1387                         if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1388                                 rs->ti->error = "Only one delta_disks argument pair allowed";
1389                                 return -EINVAL;
1390                         }
1391                         /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1392                         if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1393                                 rs->ti->error = "Too many delta_disk requested";
1394                                 return -EINVAL;
1395                         }
1396
1397                         rs->delta_disks = value;
1398                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1399                         if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1400                                 rs->ti->error = "Only one stripe_cache argument pair allowed";
1401                                 return -EINVAL;
1402                         }
1403
1404                         if (!rt_is_raid456(rt)) {
1405                                 rs->ti->error = "Inappropriate argument: stripe_cache";
1406                                 return -EINVAL;
1407                         }
1408
1409                         if (value < 0) {
1410                                 rs->ti->error = "Bogus stripe cache entries value";
1411                                 return -EINVAL;
1412                         }
1413                         rs->stripe_cache_entries = value;
1414                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1415                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1416                                 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1417                                 return -EINVAL;
1418                         }
1419
1420                         if (value < 0) {
1421                                 rs->ti->error = "min_recovery_rate out of range";
1422                                 return -EINVAL;
1423                         }
1424                         rs->md.sync_speed_min = value;
1425                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1426                         if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1427                                 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1428                                 return -EINVAL;
1429                         }
1430
1431                         if (value < 0) {
1432                                 rs->ti->error = "max_recovery_rate out of range";
1433                                 return -EINVAL;
1434                         }
1435                         rs->md.sync_speed_max = value;
1436                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1437                         if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1438                                 rs->ti->error = "Only one region_size argument pair allowed";
1439                                 return -EINVAL;
1440                         }
1441
1442                         region_size = value;
1443                         rs->requested_bitmap_chunk_sectors = value;
1444                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1445                         if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1446                                 rs->ti->error = "Only one raid10_copies argument pair allowed";
1447                                 return -EINVAL;
1448                         }
1449
1450                         if (!__within_range(value, 2, rs->md.raid_disks)) {
1451                                 rs->ti->error = "Bad value for 'raid10_copies'";
1452                                 return -EINVAL;
1453                         }
1454
1455                         raid10_copies = value;
1456                 } else {
1457                         DMERR("Unable to parse RAID parameter: %s", key);
1458                         rs->ti->error = "Unable to parse RAID parameter";
1459                         return -EINVAL;
1460                 }
1461         }
1462
1463         if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1464             test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1465                 rs->ti->error = "sync and nosync are mutually exclusive";
1466                 return -EINVAL;
1467         }
1468
1469         if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1470             (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1471              test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1472                 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1473                 return -EINVAL;
1474         }
1475
1476         if (write_mostly >= rs->md.raid_disks) {
1477                 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1478                 return -EINVAL;
1479         }
1480
1481         if (rs->md.sync_speed_max &&
1482             rs->md.sync_speed_min > rs->md.sync_speed_max) {
1483                 rs->ti->error = "Bogus recovery rates";
1484                 return -EINVAL;
1485         }
1486
1487         if (validate_region_size(rs, region_size))
1488                 return -EINVAL;
1489
1490         if (rs->md.chunk_sectors)
1491                 max_io_len = rs->md.chunk_sectors;
1492         else
1493                 max_io_len = region_size;
1494
1495         if (dm_set_target_max_io_len(rs->ti, max_io_len))
1496                 return -EINVAL;
1497
1498         if (rt_is_raid10(rt)) {
1499                 if (raid10_copies > rs->md.raid_disks) {
1500                         rs->ti->error = "Not enough devices to satisfy specification";
1501                         return -EINVAL;
1502                 }
1503
1504                 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1505                 if (rs->md.new_layout < 0) {
1506                         rs->ti->error = "Error getting raid10 format";
1507                         return rs->md.new_layout;
1508                 }
1509
1510                 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1511                 if (!rt) {
1512                         rs->ti->error = "Failed to recognize new raid10 layout";
1513                         return -EINVAL;
1514                 }
1515
1516                 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1517                      rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1518                     test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1519                         rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1520                         return -EINVAL;
1521                 }
1522         }
1523
1524         rs->raid10_copies = raid10_copies;
1525
1526         /* Assume there are no metadata devices until the drives are parsed */
1527         rs->md.persistent = 0;
1528         rs->md.external = 1;
1529
1530         /* Check, if any invalid ctr arguments have been passed in for the raid level */
1531         return rs_check_for_valid_flags(rs);
1532 }
1533
1534 /* Set raid4/5/6 cache size */
1535 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1536 {
1537         int r;
1538         struct r5conf *conf;
1539         struct mddev *mddev = &rs->md;
1540         uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1541         uint32_t nr_stripes = rs->stripe_cache_entries;
1542
1543         if (!rt_is_raid456(rs->raid_type)) {
1544                 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1545                 return -EINVAL;
1546         }
1547
1548         if (nr_stripes < min_stripes) {
1549                 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1550                        nr_stripes, min_stripes);
1551                 nr_stripes = min_stripes;
1552         }
1553
1554         conf = mddev->private;
1555         if (!conf) {
1556                 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1557                 return -EINVAL;
1558         }
1559
1560         /* Try setting number of stripes in raid456 stripe cache */
1561         if (conf->min_nr_stripes != nr_stripes) {
1562                 r = raid5_set_cache_size(mddev, nr_stripes);
1563                 if (r) {
1564                         rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1565                         return r;
1566                 }
1567
1568                 DMINFO("%u stripe cache entries", nr_stripes);
1569         }
1570
1571         return 0;
1572 }
1573
1574 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1575 static unsigned int mddev_data_stripes(struct raid_set *rs)
1576 {
1577         return rs->md.raid_disks - rs->raid_type->parity_devs;
1578 }
1579
1580 /* Return # of data stripes of @rs (i.e. as of ctr) */
1581 static unsigned int rs_data_stripes(struct raid_set *rs)
1582 {
1583         return rs->raid_disks - rs->raid_type->parity_devs;
1584 }
1585
1586 /*
1587  * Retrieve rdev->sectors from any valid raid device of @rs
1588  * to allow userpace to pass in arbitray "- -" device tupples.
1589  */
1590 static sector_t __rdev_sectors(struct raid_set *rs)
1591 {
1592         int i;
1593
1594         for (i = 0; i < rs->raid_disks; i++) {
1595                 struct md_rdev *rdev = &rs->dev[i].rdev;
1596
1597                 if (!test_bit(Journal, &rdev->flags) &&
1598                     rdev->bdev && rdev->sectors)
1599                         return rdev->sectors;
1600         }
1601
1602         return 0;
1603 }
1604
1605 /* Check that calculated dev_sectors fits all component devices. */
1606 static int _check_data_dev_sectors(struct raid_set *rs)
1607 {
1608         sector_t ds = ~0;
1609         struct md_rdev *rdev;
1610
1611         rdev_for_each(rdev, &rs->md)
1612                 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1613                         ds = min(ds, bdev_nr_sectors(rdev->bdev));
1614                         if (ds < rs->md.dev_sectors) {
1615                                 rs->ti->error = "Component device(s) too small";
1616                                 return -EINVAL;
1617                         }
1618                 }
1619
1620         return 0;
1621 }
1622
1623 /* Calculate the sectors per device and per array used for @rs */
1624 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1625 {
1626         int delta_disks;
1627         unsigned int data_stripes;
1628         sector_t array_sectors = sectors, dev_sectors = sectors;
1629         struct mddev *mddev = &rs->md;
1630
1631         if (use_mddev) {
1632                 delta_disks = mddev->delta_disks;
1633                 data_stripes = mddev_data_stripes(rs);
1634         } else {
1635                 delta_disks = rs->delta_disks;
1636                 data_stripes = rs_data_stripes(rs);
1637         }
1638
1639         /* Special raid1 case w/o delta_disks support (yet) */
1640         if (rt_is_raid1(rs->raid_type))
1641                 ;
1642         else if (rt_is_raid10(rs->raid_type)) {
1643                 if (rs->raid10_copies < 2 ||
1644                     delta_disks < 0) {
1645                         rs->ti->error = "Bogus raid10 data copies or delta disks";
1646                         return -EINVAL;
1647                 }
1648
1649                 dev_sectors *= rs->raid10_copies;
1650                 if (sector_div(dev_sectors, data_stripes))
1651                         goto bad;
1652
1653                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1654                 if (sector_div(array_sectors, rs->raid10_copies))
1655                         goto bad;
1656
1657         } else if (sector_div(dev_sectors, data_stripes))
1658                 goto bad;
1659
1660         else
1661                 /* Striped layouts */
1662                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1663
1664         mddev->array_sectors = array_sectors;
1665         mddev->dev_sectors = dev_sectors;
1666         rs_set_rdev_sectors(rs);
1667
1668         return _check_data_dev_sectors(rs);
1669 bad:
1670         rs->ti->error = "Target length not divisible by number of data devices";
1671         return -EINVAL;
1672 }
1673
1674 /* Setup recovery on @rs */
1675 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1676 {
1677         /* raid0 does not recover */
1678         if (rs_is_raid0(rs))
1679                 rs->md.recovery_cp = MaxSector;
1680         /*
1681          * A raid6 set has to be recovered either
1682          * completely or for the grown part to
1683          * ensure proper parity and Q-Syndrome
1684          */
1685         else if (rs_is_raid6(rs))
1686                 rs->md.recovery_cp = dev_sectors;
1687         /*
1688          * Other raid set types may skip recovery
1689          * depending on the 'nosync' flag.
1690          */
1691         else
1692                 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1693                                      ? MaxSector : dev_sectors;
1694 }
1695
1696 static void do_table_event(struct work_struct *ws)
1697 {
1698         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1699
1700         smp_rmb(); /* Make sure we access most actual mddev properties */
1701         if (!rs_is_reshaping(rs)) {
1702                 if (rs_is_raid10(rs))
1703                         rs_set_rdev_sectors(rs);
1704                 rs_set_capacity(rs);
1705         }
1706         dm_table_event(rs->ti->table);
1707 }
1708
1709 /*
1710  * Make sure a valid takover (level switch) is being requested on @rs
1711  *
1712  * Conversions of raid sets from one MD personality to another
1713  * have to conform to restrictions which are enforced here.
1714  */
1715 static int rs_check_takeover(struct raid_set *rs)
1716 {
1717         struct mddev *mddev = &rs->md;
1718         unsigned int near_copies;
1719
1720         if (rs->md.degraded) {
1721                 rs->ti->error = "Can't takeover degraded raid set";
1722                 return -EPERM;
1723         }
1724
1725         if (rs_is_reshaping(rs)) {
1726                 rs->ti->error = "Can't takeover reshaping raid set";
1727                 return -EPERM;
1728         }
1729
1730         switch (mddev->level) {
1731         case 0:
1732                 /* raid0 -> raid1/5 with one disk */
1733                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1734                     mddev->raid_disks == 1)
1735                         return 0;
1736
1737                 /* raid0 -> raid10 */
1738                 if (mddev->new_level == 10 &&
1739                     !(rs->raid_disks % mddev->raid_disks))
1740                         return 0;
1741
1742                 /* raid0 with multiple disks -> raid4/5/6 */
1743                 if (__within_range(mddev->new_level, 4, 6) &&
1744                     mddev->new_layout == ALGORITHM_PARITY_N &&
1745                     mddev->raid_disks > 1)
1746                         return 0;
1747
1748                 break;
1749
1750         case 10:
1751                 /* Can't takeover raid10_offset! */
1752                 if (__is_raid10_offset(mddev->layout))
1753                         break;
1754
1755                 near_copies = __raid10_near_copies(mddev->layout);
1756
1757                 /* raid10* -> raid0 */
1758                 if (mddev->new_level == 0) {
1759                         /* Can takeover raid10_near with raid disks divisable by data copies! */
1760                         if (near_copies > 1 &&
1761                             !(mddev->raid_disks % near_copies)) {
1762                                 mddev->raid_disks /= near_copies;
1763                                 mddev->delta_disks = mddev->raid_disks;
1764                                 return 0;
1765                         }
1766
1767                         /* Can takeover raid10_far */
1768                         if (near_copies == 1 &&
1769                             __raid10_far_copies(mddev->layout) > 1)
1770                                 return 0;
1771
1772                         break;
1773                 }
1774
1775                 /* raid10_{near,far} -> raid1 */
1776                 if (mddev->new_level == 1 &&
1777                     max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1778                         return 0;
1779
1780                 /* raid10_{near,far} with 2 disks -> raid4/5 */
1781                 if (__within_range(mddev->new_level, 4, 5) &&
1782                     mddev->raid_disks == 2)
1783                         return 0;
1784                 break;
1785
1786         case 1:
1787                 /* raid1 with 2 disks -> raid4/5 */
1788                 if (__within_range(mddev->new_level, 4, 5) &&
1789                     mddev->raid_disks == 2) {
1790                         mddev->degraded = 1;
1791                         return 0;
1792                 }
1793
1794                 /* raid1 -> raid0 */
1795                 if (mddev->new_level == 0 &&
1796                     mddev->raid_disks == 1)
1797                         return 0;
1798
1799                 /* raid1 -> raid10 */
1800                 if (mddev->new_level == 10)
1801                         return 0;
1802                 break;
1803
1804         case 4:
1805                 /* raid4 -> raid0 */
1806                 if (mddev->new_level == 0)
1807                         return 0;
1808
1809                 /* raid4 -> raid1/5 with 2 disks */
1810                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1811                     mddev->raid_disks == 2)
1812                         return 0;
1813
1814                 /* raid4 -> raid5/6 with parity N */
1815                 if (__within_range(mddev->new_level, 5, 6) &&
1816                     mddev->layout == ALGORITHM_PARITY_N)
1817                         return 0;
1818                 break;
1819
1820         case 5:
1821                 /* raid5 with parity N -> raid0 */
1822                 if (mddev->new_level == 0 &&
1823                     mddev->layout == ALGORITHM_PARITY_N)
1824                         return 0;
1825
1826                 /* raid5 with parity N -> raid4 */
1827                 if (mddev->new_level == 4 &&
1828                     mddev->layout == ALGORITHM_PARITY_N)
1829                         return 0;
1830
1831                 /* raid5 with 2 disks -> raid1/4/10 */
1832                 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1833                     mddev->raid_disks == 2)
1834                         return 0;
1835
1836                 /* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1837                 if (mddev->new_level == 6 &&
1838                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1839                       __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1840                         return 0;
1841                 break;
1842
1843         case 6:
1844                 /* raid6 with parity N -> raid0 */
1845                 if (mddev->new_level == 0 &&
1846                     mddev->layout == ALGORITHM_PARITY_N)
1847                         return 0;
1848
1849                 /* raid6 with parity N -> raid4 */
1850                 if (mddev->new_level == 4 &&
1851                     mddev->layout == ALGORITHM_PARITY_N)
1852                         return 0;
1853
1854                 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1855                 if (mddev->new_level == 5 &&
1856                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1857                      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1858                         return 0;
1859                 break;
1860
1861         default:
1862                 break;
1863         }
1864
1865         rs->ti->error = "takeover not possible";
1866         return -EINVAL;
1867 }
1868
1869 /* True if @rs requested to be taken over */
1870 static bool rs_takeover_requested(struct raid_set *rs)
1871 {
1872         return rs->md.new_level != rs->md.level;
1873 }
1874
1875 /* True if layout is set to reshape. */
1876 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1877 {
1878         return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1879                rs->md.new_layout != rs->md.layout ||
1880                rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1881 }
1882
1883 /* True if @rs is requested to reshape by ctr */
1884 static bool rs_reshape_requested(struct raid_set *rs)
1885 {
1886         bool change;
1887         struct mddev *mddev = &rs->md;
1888
1889         if (rs_takeover_requested(rs))
1890                 return false;
1891
1892         if (rs_is_raid0(rs))
1893                 return false;
1894
1895         change = rs_is_layout_change(rs, false);
1896
1897         /* Historical case to support raid1 reshape without delta disks */
1898         if (rs_is_raid1(rs)) {
1899                 if (rs->delta_disks)
1900                         return !!rs->delta_disks;
1901
1902                 return !change &&
1903                        mddev->raid_disks != rs->raid_disks;
1904         }
1905
1906         if (rs_is_raid10(rs))
1907                 return change &&
1908                        !__is_raid10_far(mddev->new_layout) &&
1909                        rs->delta_disks >= 0;
1910
1911         return change;
1912 }
1913
1914 /*  Features */
1915 #define FEATURE_FLAG_SUPPORTS_V190      0x1 /* Supports extended superblock */
1916
1917 /* State flags for sb->flags */
1918 #define SB_FLAG_RESHAPE_ACTIVE          0x1
1919 #define SB_FLAG_RESHAPE_BACKWARDS       0x2
1920
1921 /*
1922  * This structure is never routinely used by userspace, unlike md superblocks.
1923  * Devices with this superblock should only ever be accessed via device-mapper.
1924  */
1925 #define DM_RAID_MAGIC 0x64526D44
1926 struct dm_raid_superblock {
1927         __le32 magic;           /* "DmRd" */
1928         __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1929
1930         __le32 num_devices;     /* Number of devices in this raid set. (Max 64) */
1931         __le32 array_position;  /* The position of this drive in the raid set */
1932
1933         __le64 events;          /* Incremented by md when superblock updated */
1934         __le64 failed_devices;  /* Pre 1.9.0 part of bit field of devices to */
1935                                 /* indicate failures (see extension below) */
1936
1937         /*
1938          * This offset tracks the progress of the repair or replacement of
1939          * an individual drive.
1940          */
1941         __le64 disk_recovery_offset;
1942
1943         /*
1944          * This offset tracks the progress of the initial raid set
1945          * synchronisation/parity calculation.
1946          */
1947         __le64 array_resync_offset;
1948
1949         /*
1950          * raid characteristics
1951          */
1952         __le32 level;
1953         __le32 layout;
1954         __le32 stripe_sectors;
1955
1956         /********************************************************************
1957          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1958          *
1959          * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1960          */
1961
1962         __le32 flags; /* Flags defining array states for reshaping */
1963
1964         /*
1965          * This offset tracks the progress of a raid
1966          * set reshape in order to be able to restart it
1967          */
1968         __le64 reshape_position;
1969
1970         /*
1971          * These define the properties of the array in case of an interrupted reshape
1972          */
1973         __le32 new_level;
1974         __le32 new_layout;
1975         __le32 new_stripe_sectors;
1976         __le32 delta_disks;
1977
1978         __le64 array_sectors; /* Array size in sectors */
1979
1980         /*
1981          * Sector offsets to data on devices (reshaping).
1982          * Needed to support out of place reshaping, thus
1983          * not writing over any stripes whilst converting
1984          * them from old to new layout
1985          */
1986         __le64 data_offset;
1987         __le64 new_data_offset;
1988
1989         __le64 sectors; /* Used device size in sectors */
1990
1991         /*
1992          * Additional Bit field of devices indicating failures to support
1993          * up to 256 devices with the 1.9.0 on-disk metadata format
1994          */
1995         __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1996
1997         __le32 incompat_features;       /* Used to indicate any incompatible features */
1998
1999         /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
2000 } __packed;
2001
2002 /*
2003  * Check for reshape constraints on raid set @rs:
2004  *
2005  * - reshape function non-existent
2006  * - degraded set
2007  * - ongoing recovery
2008  * - ongoing reshape
2009  *
2010  * Returns 0 if none or -EPERM if given constraint
2011  * and error message reference in @errmsg
2012  */
2013 static int rs_check_reshape(struct raid_set *rs)
2014 {
2015         struct mddev *mddev = &rs->md;
2016
2017         if (!mddev->pers || !mddev->pers->check_reshape)
2018                 rs->ti->error = "Reshape not supported";
2019         else if (mddev->degraded)
2020                 rs->ti->error = "Can't reshape degraded raid set";
2021         else if (rs_is_recovering(rs))
2022                 rs->ti->error = "Convert request on recovering raid set prohibited";
2023         else if (rs_is_reshaping(rs))
2024                 rs->ti->error = "raid set already reshaping!";
2025         else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2026                 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2027         else
2028                 return 0;
2029
2030         return -EPERM;
2031 }
2032
2033 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2034 {
2035         BUG_ON(!rdev->sb_page);
2036
2037         if (rdev->sb_loaded && !force_reload)
2038                 return 0;
2039
2040         rdev->sb_loaded = 0;
2041
2042         if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) {
2043                 DMERR("Failed to read superblock of device at position %d",
2044                       rdev->raid_disk);
2045                 md_error(rdev->mddev, rdev);
2046                 set_bit(Faulty, &rdev->flags);
2047                 return -EIO;
2048         }
2049
2050         rdev->sb_loaded = 1;
2051
2052         return 0;
2053 }
2054
2055 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2056 {
2057         failed_devices[0] = le64_to_cpu(sb->failed_devices);
2058         memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2059
2060         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2061                 int i = ARRAY_SIZE(sb->extended_failed_devices);
2062
2063                 while (i--)
2064                         failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2065         }
2066 }
2067
2068 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2069 {
2070         int i = ARRAY_SIZE(sb->extended_failed_devices);
2071
2072         sb->failed_devices = cpu_to_le64(failed_devices[0]);
2073         while (i--)
2074                 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2075 }
2076
2077 /*
2078  * Synchronize the superblock members with the raid set properties
2079  *
2080  * All superblock data is little endian.
2081  */
2082 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2083 {
2084         bool update_failed_devices = false;
2085         unsigned int i;
2086         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2087         struct dm_raid_superblock *sb;
2088         struct raid_set *rs = container_of(mddev, struct raid_set, md);
2089
2090         /* No metadata device, no superblock */
2091         if (!rdev->meta_bdev)
2092                 return;
2093
2094         BUG_ON(!rdev->sb_page);
2095
2096         sb = page_address(rdev->sb_page);
2097
2098         sb_retrieve_failed_devices(sb, failed_devices);
2099
2100         for (i = 0; i < rs->raid_disks; i++)
2101                 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2102                         update_failed_devices = true;
2103                         set_bit(i, (void *) failed_devices);
2104                 }
2105
2106         if (update_failed_devices)
2107                 sb_update_failed_devices(sb, failed_devices);
2108
2109         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2110         sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2111
2112         sb->num_devices = cpu_to_le32(mddev->raid_disks);
2113         sb->array_position = cpu_to_le32(rdev->raid_disk);
2114
2115         sb->events = cpu_to_le64(mddev->events);
2116
2117         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2118         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2119
2120         sb->level = cpu_to_le32(mddev->level);
2121         sb->layout = cpu_to_le32(mddev->layout);
2122         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2123
2124         /********************************************************************
2125          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2126          *
2127          * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2128          */
2129         sb->new_level = cpu_to_le32(mddev->new_level);
2130         sb->new_layout = cpu_to_le32(mddev->new_layout);
2131         sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2132
2133         sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2134
2135         smp_rmb(); /* Make sure we access most recent reshape position */
2136         sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2137         if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2138                 /* Flag ongoing reshape */
2139                 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2140
2141                 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2142                         sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2143         } else {
2144                 /* Clear reshape flags */
2145                 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2146         }
2147
2148         sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2149         sb->data_offset = cpu_to_le64(rdev->data_offset);
2150         sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2151         sb->sectors = cpu_to_le64(rdev->sectors);
2152         sb->incompat_features = cpu_to_le32(0);
2153
2154         /* Zero out the rest of the payload after the size of the superblock */
2155         memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2156 }
2157
2158 /*
2159  * super_load
2160  *
2161  * This function creates a superblock if one is not found on the device
2162  * and will decide which superblock to use if there's a choice.
2163  *
2164  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2165  */
2166 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2167 {
2168         int r;
2169         struct dm_raid_superblock *sb;
2170         struct dm_raid_superblock *refsb;
2171         uint64_t events_sb, events_refsb;
2172
2173         r = read_disk_sb(rdev, rdev->sb_size, false);
2174         if (r)
2175                 return r;
2176
2177         sb = page_address(rdev->sb_page);
2178
2179         /*
2180          * Two cases that we want to write new superblocks and rebuild:
2181          * 1) New device (no matching magic number)
2182          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2183          */
2184         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2185             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2186                 super_sync(rdev->mddev, rdev);
2187
2188                 set_bit(FirstUse, &rdev->flags);
2189                 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2190
2191                 /* Force writing of superblocks to disk */
2192                 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2193
2194                 /* Any superblock is better than none, choose that if given */
2195                 return refdev ? 0 : 1;
2196         }
2197
2198         if (!refdev)
2199                 return 1;
2200
2201         events_sb = le64_to_cpu(sb->events);
2202
2203         refsb = page_address(refdev->sb_page);
2204         events_refsb = le64_to_cpu(refsb->events);
2205
2206         return (events_sb > events_refsb) ? 1 : 0;
2207 }
2208
2209 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2210 {
2211         int role;
2212         struct mddev *mddev = &rs->md;
2213         uint64_t events_sb;
2214         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2215         struct dm_raid_superblock *sb;
2216         uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2217         struct md_rdev *r;
2218         struct dm_raid_superblock *sb2;
2219
2220         sb = page_address(rdev->sb_page);
2221         events_sb = le64_to_cpu(sb->events);
2222
2223         /*
2224          * Initialise to 1 if this is a new superblock.
2225          */
2226         mddev->events = events_sb ? : 1;
2227
2228         mddev->reshape_position = MaxSector;
2229
2230         mddev->raid_disks = le32_to_cpu(sb->num_devices);
2231         mddev->level = le32_to_cpu(sb->level);
2232         mddev->layout = le32_to_cpu(sb->layout);
2233         mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2234
2235         /*
2236          * Reshaping is supported, e.g. reshape_position is valid
2237          * in superblock and superblock content is authoritative.
2238          */
2239         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2240                 /* Superblock is authoritative wrt given raid set layout! */
2241                 mddev->new_level = le32_to_cpu(sb->new_level);
2242                 mddev->new_layout = le32_to_cpu(sb->new_layout);
2243                 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2244                 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2245                 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2246
2247                 /* raid was reshaping and got interrupted */
2248                 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2249                         if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2250                                 DMERR("Reshape requested but raid set is still reshaping");
2251                                 return -EINVAL;
2252                         }
2253
2254                         if (mddev->delta_disks < 0 ||
2255                             (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2256                                 mddev->reshape_backwards = 1;
2257                         else
2258                                 mddev->reshape_backwards = 0;
2259
2260                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2261                         rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2262                 }
2263
2264         } else {
2265                 /*
2266                  * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2267                  */
2268                 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2269                 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2270
2271                 if (rs_takeover_requested(rs)) {
2272                         if (rt_cur && rt_new)
2273                                 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2274                                       rt_cur->name, rt_new->name);
2275                         else
2276                                 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2277                         return -EINVAL;
2278                 } else if (rs_reshape_requested(rs)) {
2279                         DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2280                         if (mddev->layout != mddev->new_layout) {
2281                                 if (rt_cur && rt_new)
2282                                         DMERR("  current layout %s vs new layout %s",
2283                                               rt_cur->name, rt_new->name);
2284                                 else
2285                                         DMERR("  current layout 0x%X vs new layout 0x%X",
2286                                               le32_to_cpu(sb->layout), mddev->new_layout);
2287                         }
2288                         if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2289                                 DMERR("  current stripe sectors %u vs new stripe sectors %u",
2290                                       mddev->chunk_sectors, mddev->new_chunk_sectors);
2291                         if (rs->delta_disks)
2292                                 DMERR("  current %u disks vs new %u disks",
2293                                       mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2294                         if (rs_is_raid10(rs)) {
2295                                 DMERR("  Old layout: %s w/ %u copies",
2296                                       raid10_md_layout_to_format(mddev->layout),
2297                                       raid10_md_layout_to_copies(mddev->layout));
2298                                 DMERR("  New layout: %s w/ %u copies",
2299                                       raid10_md_layout_to_format(mddev->new_layout),
2300                                       raid10_md_layout_to_copies(mddev->new_layout));
2301                         }
2302                         return -EINVAL;
2303                 }
2304
2305                 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2306         }
2307
2308         if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2309                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2310
2311         /*
2312          * During load, we set FirstUse if a new superblock was written.
2313          * There are two reasons we might not have a superblock:
2314          * 1) The raid set is brand new - in which case, all of the
2315          *    devices must have their In_sync bit set.  Also,
2316          *    recovery_cp must be 0, unless forced.
2317          * 2) This is a new device being added to an old raid set
2318          *    and the new device needs to be rebuilt - in which
2319          *    case the In_sync bit will /not/ be set and
2320          *    recovery_cp must be MaxSector.
2321          * 3) This is/are a new device(s) being added to an old
2322          *    raid set during takeover to a higher raid level
2323          *    to provide capacity for redundancy or during reshape
2324          *    to add capacity to grow the raid set.
2325          */
2326         rdev_for_each(r, mddev) {
2327                 if (test_bit(Journal, &rdev->flags))
2328                         continue;
2329
2330                 if (test_bit(FirstUse, &r->flags))
2331                         new_devs++;
2332
2333                 if (!test_bit(In_sync, &r->flags)) {
2334                         DMINFO("Device %d specified for rebuild; clearing superblock",
2335                                 r->raid_disk);
2336                         rebuilds++;
2337
2338                         if (test_bit(FirstUse, &r->flags))
2339                                 rebuild_and_new++;
2340                 }
2341         }
2342
2343         if (new_devs == rs->raid_disks || !rebuilds) {
2344                 /* Replace a broken device */
2345                 if (new_devs == rs->raid_disks) {
2346                         DMINFO("Superblocks created for new raid set");
2347                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2348                 } else if (new_devs != rebuilds &&
2349                            new_devs != rs->delta_disks) {
2350                         DMERR("New device injected into existing raid set without "
2351                               "'delta_disks' or 'rebuild' parameter specified");
2352                         return -EINVAL;
2353                 }
2354         } else if (new_devs && new_devs != rebuilds) {
2355                 DMERR("%u 'rebuild' devices cannot be injected into"
2356                       " a raid set with %u other first-time devices",
2357                       rebuilds, new_devs);
2358                 return -EINVAL;
2359         } else if (rebuilds) {
2360                 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2361                         DMERR("new device%s provided without 'rebuild'",
2362                               new_devs > 1 ? "s" : "");
2363                         return -EINVAL;
2364                 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2365                         DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2366                               (unsigned long long) mddev->recovery_cp);
2367                         return -EINVAL;
2368                 } else if (rs_is_reshaping(rs)) {
2369                         DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2370                               (unsigned long long) mddev->reshape_position);
2371                         return -EINVAL;
2372                 }
2373         }
2374
2375         /*
2376          * Now we set the Faulty bit for those devices that are
2377          * recorded in the superblock as failed.
2378          */
2379         sb_retrieve_failed_devices(sb, failed_devices);
2380         rdev_for_each(r, mddev) {
2381                 if (test_bit(Journal, &rdev->flags) ||
2382                     !r->sb_page)
2383                         continue;
2384                 sb2 = page_address(r->sb_page);
2385                 sb2->failed_devices = 0;
2386                 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2387
2388                 /*
2389                  * Check for any device re-ordering.
2390                  */
2391                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2392                         role = le32_to_cpu(sb2->array_position);
2393                         if (role < 0)
2394                                 continue;
2395
2396                         if (role != r->raid_disk) {
2397                                 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2398                                         if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2399                                             rs->raid_disks % rs->raid10_copies) {
2400                                                 rs->ti->error =
2401                                                         "Cannot change raid10 near set to odd # of devices!";
2402                                                 return -EINVAL;
2403                                         }
2404
2405                                         sb2->array_position = cpu_to_le32(r->raid_disk);
2406
2407                                 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2408                                            !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2409                                            !rt_is_raid1(rs->raid_type)) {
2410                                         rs->ti->error = "Cannot change device positions in raid set";
2411                                         return -EINVAL;
2412                                 }
2413
2414                                 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2415                         }
2416
2417                         /*
2418                          * Partial recovery is performed on
2419                          * returning failed devices.
2420                          */
2421                         if (test_bit(role, (void *) failed_devices))
2422                                 set_bit(Faulty, &r->flags);
2423                 }
2424         }
2425
2426         return 0;
2427 }
2428
2429 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2430 {
2431         struct mddev *mddev = &rs->md;
2432         struct dm_raid_superblock *sb;
2433
2434         if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2435                 return 0;
2436
2437         sb = page_address(rdev->sb_page);
2438
2439         /*
2440          * If mddev->events is not set, we know we have not yet initialized
2441          * the array.
2442          */
2443         if (!mddev->events && super_init_validation(rs, rdev))
2444                 return -EINVAL;
2445
2446         if (le32_to_cpu(sb->compat_features) &&
2447             le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2448                 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2449                 return -EINVAL;
2450         }
2451
2452         if (sb->incompat_features) {
2453                 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2454                 return -EINVAL;
2455         }
2456
2457         /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2458         mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2459         mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2460
2461         if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2462                 /*
2463                  * Retrieve rdev size stored in superblock to be prepared for shrink.
2464                  * Check extended superblock members are present otherwise the size
2465                  * will not be set!
2466                  */
2467                 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2468                         rdev->sectors = le64_to_cpu(sb->sectors);
2469
2470                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2471                 if (rdev->recovery_offset == MaxSector)
2472                         set_bit(In_sync, &rdev->flags);
2473                 /*
2474                  * If no reshape in progress -> we're recovering single
2475                  * disk(s) and have to set the device(s) to out-of-sync
2476                  */
2477                 else if (!rs_is_reshaping(rs))
2478                         clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2479         }
2480
2481         /*
2482          * If a device comes back, set it as not In_sync and no longer faulty.
2483          */
2484         if (test_and_clear_bit(Faulty, &rdev->flags)) {
2485                 rdev->recovery_offset = 0;
2486                 clear_bit(In_sync, &rdev->flags);
2487                 rdev->saved_raid_disk = rdev->raid_disk;
2488         }
2489
2490         /* Reshape support -> restore repective data offsets */
2491         rdev->data_offset = le64_to_cpu(sb->data_offset);
2492         rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2493
2494         return 0;
2495 }
2496
2497 /*
2498  * Analyse superblocks and select the freshest.
2499  */
2500 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2501 {
2502         int r;
2503         struct md_rdev *rdev, *freshest;
2504         struct mddev *mddev = &rs->md;
2505
2506         freshest = NULL;
2507         rdev_for_each(rdev, mddev) {
2508                 if (test_bit(Journal, &rdev->flags))
2509                         continue;
2510
2511                 if (!rdev->meta_bdev)
2512                         continue;
2513
2514                 /* Set superblock offset/size for metadata device. */
2515                 rdev->sb_start = 0;
2516                 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2517                 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2518                         DMERR("superblock size of a logical block is no longer valid");
2519                         return -EINVAL;
2520                 }
2521
2522                 /*
2523                  * Skipping super_load due to CTR_FLAG_SYNC will cause
2524                  * the array to undergo initialization again as
2525                  * though it were new.  This is the intended effect
2526                  * of the "sync" directive.
2527                  *
2528                  * With reshaping capability added, we must ensure that
2529                  * the "sync" directive is disallowed during the reshape.
2530                  */
2531                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2532                         continue;
2533
2534                 r = super_load(rdev, freshest);
2535
2536                 switch (r) {
2537                 case 1:
2538                         freshest = rdev;
2539                         break;
2540                 case 0:
2541                         break;
2542                 default:
2543                         /* This is a failure to read the superblock from the metadata device. */
2544                         /*
2545                          * We have to keep any raid0 data/metadata device pairs or
2546                          * the MD raid0 personality will fail to start the array.
2547                          */
2548                         if (rs_is_raid0(rs))
2549                                 continue;
2550
2551                         /*
2552                          * We keep the dm_devs to be able to emit the device tuple
2553                          * properly on the table line in raid_status() (rather than
2554                          * mistakenly acting as if '- -' got passed into the constructor).
2555                          *
2556                          * The rdev has to stay on the same_set list to allow for
2557                          * the attempt to restore faulty devices on second resume.
2558                          */
2559                         rdev->raid_disk = rdev->saved_raid_disk = -1;
2560                         break;
2561                 }
2562         }
2563
2564         if (!freshest)
2565                 return 0;
2566
2567         /*
2568          * Validation of the freshest device provides the source of
2569          * validation for the remaining devices.
2570          */
2571         rs->ti->error = "Unable to assemble array: Invalid superblocks";
2572         if (super_validate(rs, freshest))
2573                 return -EINVAL;
2574
2575         if (validate_raid_redundancy(rs)) {
2576                 rs->ti->error = "Insufficient redundancy to activate array";
2577                 return -EINVAL;
2578         }
2579
2580         rdev_for_each(rdev, mddev)
2581                 if (!test_bit(Journal, &rdev->flags) &&
2582                     rdev != freshest &&
2583                     super_validate(rs, rdev))
2584                         return -EINVAL;
2585         return 0;
2586 }
2587
2588 /*
2589  * Adjust data_offset and new_data_offset on all disk members of @rs
2590  * for out of place reshaping if requested by constructor
2591  *
2592  * We need free space at the beginning of each raid disk for forward
2593  * and at the end for backward reshapes which userspace has to provide
2594  * via remapping/reordering of space.
2595  */
2596 static int rs_adjust_data_offsets(struct raid_set *rs)
2597 {
2598         sector_t data_offset = 0, new_data_offset = 0;
2599         struct md_rdev *rdev;
2600
2601         /* Constructor did not request data offset change */
2602         if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2603                 if (!rs_is_reshapable(rs))
2604                         goto out;
2605
2606                 return 0;
2607         }
2608
2609         /* HM FIXME: get In_Sync raid_dev? */
2610         rdev = &rs->dev[0].rdev;
2611
2612         if (rs->delta_disks < 0) {
2613                 /*
2614                  * Removing disks (reshaping backwards):
2615                  *
2616                  * - before reshape: data is at offset 0 and free space
2617                  *                   is at end of each component LV
2618                  *
2619                  * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2620                  */
2621                 data_offset = 0;
2622                 new_data_offset = rs->data_offset;
2623
2624         } else if (rs->delta_disks > 0) {
2625                 /*
2626                  * Adding disks (reshaping forwards):
2627                  *
2628                  * - before reshape: data is at offset rs->data_offset != 0 and
2629                  *                   free space is at begin of each component LV
2630                  *
2631                  * - after reshape: data is at offset 0 on each component LV
2632                  */
2633                 data_offset = rs->data_offset;
2634                 new_data_offset = 0;
2635
2636         } else {
2637                 /*
2638                  * User space passes in 0 for data offset after having removed reshape space
2639                  *
2640                  * - or - (data offset != 0)
2641                  *
2642                  * Changing RAID layout or chunk size -> toggle offsets
2643                  *
2644                  * - before reshape: data is at offset rs->data_offset 0 and
2645                  *                   free space is at end of each component LV
2646                  *                   -or-
2647                  *                   data is at offset rs->data_offset != 0 and
2648                  *                   free space is at begin of each component LV
2649                  *
2650                  * - after reshape: data is at offset 0 if it was at offset != 0
2651                  *                  or at offset != 0 if it was at offset 0
2652                  *                  on each component LV
2653                  *
2654                  */
2655                 data_offset = rs->data_offset ? rdev->data_offset : 0;
2656                 new_data_offset = data_offset ? 0 : rs->data_offset;
2657                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2658         }
2659
2660         /*
2661          * Make sure we got a minimum amount of free sectors per device
2662          */
2663         if (rs->data_offset &&
2664             bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2665                 rs->ti->error = data_offset ? "No space for forward reshape" :
2666                                               "No space for backward reshape";
2667                 return -ENOSPC;
2668         }
2669 out:
2670         /*
2671          * Raise recovery_cp in case data_offset != 0 to
2672          * avoid false recovery positives in the constructor.
2673          */
2674         if (rs->md.recovery_cp < rs->md.dev_sectors)
2675                 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2676
2677         /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2678         rdev_for_each(rdev, &rs->md) {
2679                 if (!test_bit(Journal, &rdev->flags)) {
2680                         rdev->data_offset = data_offset;
2681                         rdev->new_data_offset = new_data_offset;
2682                 }
2683         }
2684
2685         return 0;
2686 }
2687
2688 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2689 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2690 {
2691         int i = 0;
2692         struct md_rdev *rdev;
2693
2694         rdev_for_each(rdev, &rs->md) {
2695                 if (!test_bit(Journal, &rdev->flags)) {
2696                         rdev->raid_disk = i++;
2697                         rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2698                 }
2699         }
2700 }
2701
2702 /*
2703  * Setup @rs for takeover by a different raid level
2704  */
2705 static int rs_setup_takeover(struct raid_set *rs)
2706 {
2707         struct mddev *mddev = &rs->md;
2708         struct md_rdev *rdev;
2709         unsigned int d = mddev->raid_disks = rs->raid_disks;
2710         sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2711
2712         if (rt_is_raid10(rs->raid_type)) {
2713                 if (rs_is_raid0(rs)) {
2714                         /* Userpace reordered disks -> adjust raid_disk indexes */
2715                         __reorder_raid_disk_indexes(rs);
2716
2717                         /* raid0 -> raid10_far layout */
2718                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2719                                                                    rs->raid10_copies);
2720                 } else if (rs_is_raid1(rs))
2721                         /* raid1 -> raid10_near layout */
2722                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2723                                                                    rs->raid_disks);
2724                 else
2725                         return -EINVAL;
2726
2727         }
2728
2729         clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2730         mddev->recovery_cp = MaxSector;
2731
2732         while (d--) {
2733                 rdev = &rs->dev[d].rdev;
2734
2735                 if (test_bit(d, (void *) rs->rebuild_disks)) {
2736                         clear_bit(In_sync, &rdev->flags);
2737                         clear_bit(Faulty, &rdev->flags);
2738                         mddev->recovery_cp = rdev->recovery_offset = 0;
2739                         /* Bitmap has to be created when we do an "up" takeover */
2740                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2741                 }
2742
2743                 rdev->new_data_offset = new_data_offset;
2744         }
2745
2746         return 0;
2747 }
2748
2749 /* Prepare @rs for reshape */
2750 static int rs_prepare_reshape(struct raid_set *rs)
2751 {
2752         bool reshape;
2753         struct mddev *mddev = &rs->md;
2754
2755         if (rs_is_raid10(rs)) {
2756                 if (rs->raid_disks != mddev->raid_disks &&
2757                     __is_raid10_near(mddev->layout) &&
2758                     rs->raid10_copies &&
2759                     rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2760                         /*
2761                          * raid disk have to be multiple of data copies to allow this conversion,
2762                          *
2763                          * This is actually not a reshape it is a
2764                          * rebuild of any additional mirrors per group
2765                          */
2766                         if (rs->raid_disks % rs->raid10_copies) {
2767                                 rs->ti->error = "Can't reshape raid10 mirror groups";
2768                                 return -EINVAL;
2769                         }
2770
2771                         /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2772                         __reorder_raid_disk_indexes(rs);
2773                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2774                                                                    rs->raid10_copies);
2775                         mddev->new_layout = mddev->layout;
2776                         reshape = false;
2777                 } else
2778                         reshape = true;
2779
2780         } else if (rs_is_raid456(rs))
2781                 reshape = true;
2782
2783         else if (rs_is_raid1(rs)) {
2784                 if (rs->delta_disks) {
2785                         /* Process raid1 via delta_disks */
2786                         mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2787                         reshape = true;
2788                 } else {
2789                         /* Process raid1 without delta_disks */
2790                         mddev->raid_disks = rs->raid_disks;
2791                         reshape = false;
2792                 }
2793         } else {
2794                 rs->ti->error = "Called with bogus raid type";
2795                 return -EINVAL;
2796         }
2797
2798         if (reshape) {
2799                 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2800                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2801         } else if (mddev->raid_disks < rs->raid_disks)
2802                 /* Create new superblocks and bitmaps, if any new disks */
2803                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2804
2805         return 0;
2806 }
2807
2808 /* Get reshape sectors from data_offsets or raid set */
2809 static sector_t _get_reshape_sectors(struct raid_set *rs)
2810 {
2811         struct md_rdev *rdev;
2812         sector_t reshape_sectors = 0;
2813
2814         rdev_for_each(rdev, &rs->md)
2815                 if (!test_bit(Journal, &rdev->flags)) {
2816                         reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2817                                         rdev->data_offset - rdev->new_data_offset :
2818                                         rdev->new_data_offset - rdev->data_offset;
2819                         break;
2820                 }
2821
2822         return max(reshape_sectors, (sector_t) rs->data_offset);
2823 }
2824
2825 /*
2826  * Reshape:
2827  * - change raid layout
2828  * - change chunk size
2829  * - add disks
2830  * - remove disks
2831  */
2832 static int rs_setup_reshape(struct raid_set *rs)
2833 {
2834         int r = 0;
2835         unsigned int cur_raid_devs, d;
2836         sector_t reshape_sectors = _get_reshape_sectors(rs);
2837         struct mddev *mddev = &rs->md;
2838         struct md_rdev *rdev;
2839
2840         mddev->delta_disks = rs->delta_disks;
2841         cur_raid_devs = mddev->raid_disks;
2842
2843         /* Ignore impossible layout change whilst adding/removing disks */
2844         if (mddev->delta_disks &&
2845             mddev->layout != mddev->new_layout) {
2846                 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2847                 mddev->new_layout = mddev->layout;
2848         }
2849
2850         /*
2851          * Adjust array size:
2852          *
2853          * - in case of adding disk(s), array size has
2854          *   to grow after the disk adding reshape,
2855          *   which'll happen in the event handler;
2856          *   reshape will happen forward, so space has to
2857          *   be available at the beginning of each disk
2858          *
2859          * - in case of removing disk(s), array size
2860          *   has to shrink before starting the reshape,
2861          *   which'll happen here;
2862          *   reshape will happen backward, so space has to
2863          *   be available at the end of each disk
2864          *
2865          * - data_offset and new_data_offset are
2866          *   adjusted for aforementioned out of place
2867          *   reshaping based on userspace passing in
2868          *   the "data_offset <sectors>" key/value
2869          *   pair via the constructor
2870          */
2871
2872         /* Add disk(s) */
2873         if (rs->delta_disks > 0) {
2874                 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2875                 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2876                         rdev = &rs->dev[d].rdev;
2877                         clear_bit(In_sync, &rdev->flags);
2878
2879                         /*
2880                          * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2881                          * by md, which'll store that erroneously in the superblock on reshape
2882                          */
2883                         rdev->saved_raid_disk = -1;
2884                         rdev->raid_disk = d;
2885
2886                         rdev->sectors = mddev->dev_sectors;
2887                         rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2888                 }
2889
2890                 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2891
2892         /* Remove disk(s) */
2893         } else if (rs->delta_disks < 0) {
2894                 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2895                 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2896
2897         /* Change layout and/or chunk size */
2898         } else {
2899                 /*
2900                  * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2901                  *
2902                  * keeping number of disks and do layout change ->
2903                  *
2904                  * toggle reshape_backward depending on data_offset:
2905                  *
2906                  * - free space upfront -> reshape forward
2907                  *
2908                  * - free space at the end -> reshape backward
2909                  *
2910                  *
2911                  * This utilizes free reshape space avoiding the need
2912                  * for userspace to move (parts of) LV segments in
2913                  * case of layout/chunksize change  (for disk
2914                  * adding/removing reshape space has to be at
2915                  * the proper address (see above with delta_disks):
2916                  *
2917                  * add disk(s)   -> begin
2918                  * remove disk(s)-> end
2919                  */
2920                 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2921         }
2922
2923         /*
2924          * Adjust device size for forward reshape
2925          * because md_finish_reshape() reduces it.
2926          */
2927         if (!mddev->reshape_backwards)
2928                 rdev_for_each(rdev, &rs->md)
2929                         if (!test_bit(Journal, &rdev->flags))
2930                                 rdev->sectors += reshape_sectors;
2931
2932         return r;
2933 }
2934
2935 /*
2936  * If the md resync thread has updated superblock with max reshape position
2937  * at the end of a reshape but not (yet) reset the layout configuration
2938  * changes -> reset the latter.
2939  */
2940 static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2941 {
2942         if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2943                 rs_set_cur(rs);
2944                 rs->md.delta_disks = 0;
2945                 rs->md.reshape_backwards = 0;
2946         }
2947 }
2948
2949 /*
2950  * Enable/disable discard support on RAID set depending on
2951  * RAID level and discard properties of underlying RAID members.
2952  */
2953 static void configure_discard_support(struct raid_set *rs)
2954 {
2955         int i;
2956         bool raid456;
2957         struct dm_target *ti = rs->ti;
2958
2959         /*
2960          * XXX: RAID level 4,5,6 require zeroing for safety.
2961          */
2962         raid456 = rs_is_raid456(rs);
2963
2964         for (i = 0; i < rs->raid_disks; i++) {
2965                 if (!rs->dev[i].rdev.bdev ||
2966                     !bdev_max_discard_sectors(rs->dev[i].rdev.bdev))
2967                         return;
2968
2969                 if (raid456) {
2970                         if (!devices_handle_discard_safely) {
2971                                 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2972                                 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2973                                 return;
2974                         }
2975                 }
2976         }
2977
2978         ti->num_discard_bios = 1;
2979 }
2980
2981 /*
2982  * Construct a RAID0/1/10/4/5/6 mapping:
2983  * Args:
2984  *      <raid_type> <#raid_params> <raid_params>{0,}    \
2985  *      <#raid_devs> [<meta_dev1> <dev1>]{1,}
2986  *
2987  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
2988  * details on possible <raid_params>.
2989  *
2990  * Userspace is free to initialize the metadata devices, hence the superblocks to
2991  * enforce recreation based on the passed in table parameters.
2992  *
2993  */
2994 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2995 {
2996         int r;
2997         bool resize = false;
2998         struct raid_type *rt;
2999         unsigned int num_raid_params, num_raid_devs;
3000         sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
3001         struct raid_set *rs = NULL;
3002         const char *arg;
3003         struct rs_layout rs_layout;
3004         struct dm_arg_set as = { argc, argv }, as_nrd;
3005         struct dm_arg _args[] = {
3006                 { 0, as.argc, "Cannot understand number of raid parameters" },
3007                 { 1, 254, "Cannot understand number of raid devices parameters" }
3008         };
3009
3010         arg = dm_shift_arg(&as);
3011         if (!arg) {
3012                 ti->error = "No arguments";
3013                 return -EINVAL;
3014         }
3015
3016         rt = get_raid_type(arg);
3017         if (!rt) {
3018                 ti->error = "Unrecognised raid_type";
3019                 return -EINVAL;
3020         }
3021
3022         /* Must have <#raid_params> */
3023         if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3024                 return -EINVAL;
3025
3026         /* number of raid device tupples <meta_dev data_dev> */
3027         as_nrd = as;
3028         dm_consume_args(&as_nrd, num_raid_params);
3029         _args[1].max = (as_nrd.argc - 1) / 2;
3030         if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3031                 return -EINVAL;
3032
3033         if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3034                 ti->error = "Invalid number of supplied raid devices";
3035                 return -EINVAL;
3036         }
3037
3038         rs = raid_set_alloc(ti, rt, num_raid_devs);
3039         if (IS_ERR(rs))
3040                 return PTR_ERR(rs);
3041
3042         r = parse_raid_params(rs, &as, num_raid_params);
3043         if (r)
3044                 goto bad;
3045
3046         r = parse_dev_params(rs, &as);
3047         if (r)
3048                 goto bad;
3049
3050         rs->md.sync_super = super_sync;
3051
3052         /*
3053          * Calculate ctr requested array and device sizes to allow
3054          * for superblock analysis needing device sizes defined.
3055          *
3056          * Any existing superblock will overwrite the array and device sizes
3057          */
3058         r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3059         if (r)
3060                 goto bad;
3061
3062         /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3063         rs->array_sectors = rs->md.array_sectors;
3064         rs->dev_sectors = rs->md.dev_sectors;
3065
3066         /*
3067          * Backup any new raid set level, layout, ...
3068          * requested to be able to compare to superblock
3069          * members for conversion decisions.
3070          */
3071         rs_config_backup(rs, &rs_layout);
3072
3073         r = analyse_superblocks(ti, rs);
3074         if (r)
3075                 goto bad;
3076
3077         /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3078         sb_array_sectors = rs->md.array_sectors;
3079         rdev_sectors = __rdev_sectors(rs);
3080         if (!rdev_sectors) {
3081                 ti->error = "Invalid rdev size";
3082                 r = -EINVAL;
3083                 goto bad;
3084         }
3085
3086
3087         reshape_sectors = _get_reshape_sectors(rs);
3088         if (rs->dev_sectors != rdev_sectors) {
3089                 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3090                 if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3091                         set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3092         }
3093
3094         INIT_WORK(&rs->md.event_work, do_table_event);
3095         ti->private = rs;
3096         ti->num_flush_bios = 1;
3097         ti->needs_bio_set_dev = true;
3098
3099         /* Restore any requested new layout for conversion decision */
3100         rs_config_restore(rs, &rs_layout);
3101
3102         /*
3103          * Now that we have any superblock metadata available,
3104          * check for new, recovering, reshaping, to be taken over,
3105          * to be reshaped or an existing, unchanged raid set to
3106          * run in sequence.
3107          */
3108         if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3109                 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3110                 if (rs_is_raid6(rs) &&
3111                     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3112                         ti->error = "'nosync' not allowed for new raid6 set";
3113                         r = -EINVAL;
3114                         goto bad;
3115                 }
3116                 rs_setup_recovery(rs, 0);
3117                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3118                 rs_set_new(rs);
3119         } else if (rs_is_recovering(rs)) {
3120                 /* A recovering raid set may be resized */
3121                 goto size_check;
3122         } else if (rs_is_reshaping(rs)) {
3123                 /* Have to reject size change request during reshape */
3124                 if (resize) {
3125                         ti->error = "Can't resize a reshaping raid set";
3126                         r = -EPERM;
3127                         goto bad;
3128                 }
3129                 /* skip setup rs */
3130         } else if (rs_takeover_requested(rs)) {
3131                 if (rs_is_reshaping(rs)) {
3132                         ti->error = "Can't takeover a reshaping raid set";
3133                         r = -EPERM;
3134                         goto bad;
3135                 }
3136
3137                 /* We can't takeover a journaled raid4/5/6 */
3138                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3139                         ti->error = "Can't takeover a journaled raid4/5/6 set";
3140                         r = -EPERM;
3141                         goto bad;
3142                 }
3143
3144                 /*
3145                  * If a takeover is needed, userspace sets any additional
3146                  * devices to rebuild and we can check for a valid request here.
3147                  *
3148                  * If acceptable, set the level to the new requested
3149                  * one, prohibit requesting recovery, allow the raid
3150                  * set to run and store superblocks during resume.
3151                  */
3152                 r = rs_check_takeover(rs);
3153                 if (r)
3154                         goto bad;
3155
3156                 r = rs_setup_takeover(rs);
3157                 if (r)
3158                         goto bad;
3159
3160                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3161                 /* Takeover ain't recovery, so disable recovery */
3162                 rs_setup_recovery(rs, MaxSector);
3163                 rs_set_new(rs);
3164         } else if (rs_reshape_requested(rs)) {
3165                 /* Only request grow on raid set size extensions, not on reshapes. */
3166                 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3167
3168                 /*
3169                  * No need to check for 'ongoing' takeover here, because takeover
3170                  * is an instant operation as oposed to an ongoing reshape.
3171                  */
3172
3173                 /* We can't reshape a journaled raid4/5/6 */
3174                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3175                         ti->error = "Can't reshape a journaled raid4/5/6 set";
3176                         r = -EPERM;
3177                         goto bad;
3178                 }
3179
3180                 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3181                 if (reshape_sectors || rs_is_raid1(rs)) {
3182                         /*
3183                          * We can only prepare for a reshape here, because the
3184                          * raid set needs to run to provide the repective reshape
3185                          * check functions via its MD personality instance.
3186                          *
3187                          * So do the reshape check after md_run() succeeded.
3188                          */
3189                         r = rs_prepare_reshape(rs);
3190                         if (r)
3191                                 goto bad;
3192
3193                         /* Reshaping ain't recovery, so disable recovery */
3194                         rs_setup_recovery(rs, MaxSector);
3195                 }
3196                 rs_set_cur(rs);
3197         } else {
3198 size_check:
3199                 /* May not set recovery when a device rebuild is requested */
3200                 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3201                         clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3202                         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3203                         rs_setup_recovery(rs, MaxSector);
3204                 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3205                         /*
3206                          * Set raid set to current size, i.e. size as of
3207                          * superblocks to grow to larger size in preresume.
3208                          */
3209                         r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3210                         if (r)
3211                                 goto bad;
3212
3213                         rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3214                 } else {
3215                         /* This is no size change or it is shrinking, update size and record in superblocks */
3216                         r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3217                         if (r)
3218                                 goto bad;
3219
3220                         if (sb_array_sectors > rs->array_sectors)
3221                                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3222                 }
3223                 rs_set_cur(rs);
3224         }
3225
3226         /* If constructor requested it, change data and new_data offsets */
3227         r = rs_adjust_data_offsets(rs);
3228         if (r)
3229                 goto bad;
3230
3231         /* Catch any inconclusive reshape superblock content. */
3232         rs_reset_inconclusive_reshape(rs);
3233
3234         /* Start raid set read-only and assumed clean to change in raid_resume() */
3235         rs->md.ro = 1;
3236         rs->md.in_sync = 1;
3237
3238         /* Keep array frozen until resume. */
3239         set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3240
3241         /* Has to be held on running the array */
3242         mddev_lock_nointr(&rs->md);
3243         r = md_run(&rs->md);
3244         rs->md.in_sync = 0; /* Assume already marked dirty */
3245         if (r) {
3246                 ti->error = "Failed to run raid array";
3247                 mddev_unlock(&rs->md);
3248                 goto bad;
3249         }
3250
3251         r = md_start(&rs->md);
3252         if (r) {
3253                 ti->error = "Failed to start raid array";
3254                 goto bad_unlock;
3255         }
3256
3257         /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3258         if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3259                 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3260                 if (r) {
3261                         ti->error = "Failed to set raid4/5/6 journal mode";
3262                         goto bad_unlock;
3263                 }
3264         }
3265
3266         mddev_suspend(&rs->md);
3267         set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3268
3269         /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3270         if (rs_is_raid456(rs)) {
3271                 r = rs_set_raid456_stripe_cache(rs);
3272                 if (r)
3273                         goto bad_unlock;
3274         }
3275
3276         /* Now do an early reshape check */
3277         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3278                 r = rs_check_reshape(rs);
3279                 if (r)
3280                         goto bad_unlock;
3281
3282                 /* Restore new, ctr requested layout to perform check */
3283                 rs_config_restore(rs, &rs_layout);
3284
3285                 if (rs->md.pers->start_reshape) {
3286                         r = rs->md.pers->check_reshape(&rs->md);
3287                         if (r) {
3288                                 ti->error = "Reshape check failed";
3289                                 goto bad_unlock;
3290                         }
3291                 }
3292         }
3293
3294         /* Disable/enable discard support on raid set. */
3295         configure_discard_support(rs);
3296
3297         mddev_unlock(&rs->md);
3298         return 0;
3299
3300 bad_unlock:
3301         md_stop(&rs->md);
3302         mddev_unlock(&rs->md);
3303 bad:
3304         raid_set_free(rs);
3305
3306         return r;
3307 }
3308
3309 static void raid_dtr(struct dm_target *ti)
3310 {
3311         struct raid_set *rs = ti->private;
3312
3313         mddev_lock_nointr(&rs->md);
3314         md_stop(&rs->md);
3315         mddev_unlock(&rs->md);
3316         raid_set_free(rs);
3317 }
3318
3319 static int raid_map(struct dm_target *ti, struct bio *bio)
3320 {
3321         struct raid_set *rs = ti->private;
3322         struct mddev *mddev = &rs->md;
3323
3324         /*
3325          * If we're reshaping to add disk(s)), ti->len and
3326          * mddev->array_sectors will differ during the process
3327          * (ti->len > mddev->array_sectors), so we have to requeue
3328          * bios with addresses > mddev->array_sectors here or
3329          * there will occur accesses past EOD of the component
3330          * data images thus erroring the raid set.
3331          */
3332         if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3333                 return DM_MAPIO_REQUEUE;
3334
3335         md_handle_request(mddev, bio);
3336
3337         return DM_MAPIO_SUBMITTED;
3338 }
3339
3340 /* Return sync state string for @state */
3341 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3342 static const char *sync_str(enum sync_state state)
3343 {
3344         /* Has to be in above sync_state order! */
3345         static const char *sync_strs[] = {
3346                 "frozen",
3347                 "reshape",
3348                 "resync",
3349                 "check",
3350                 "repair",
3351                 "recover",
3352                 "idle"
3353         };
3354
3355         return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3356 };
3357
3358 /* Return enum sync_state for @mddev derived from @recovery flags */
3359 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3360 {
3361         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3362                 return st_frozen;
3363
3364         /* The MD sync thread can be done with io or be interrupted but still be running */
3365         if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3366             (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3367              (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3368                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3369                         return st_reshape;
3370
3371                 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3372                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3373                                 return st_resync;
3374                         if (test_bit(MD_RECOVERY_CHECK, &recovery))
3375                                 return st_check;
3376                         return st_repair;
3377                 }
3378
3379                 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3380                         return st_recover;
3381
3382                 if (mddev->reshape_position != MaxSector)
3383                         return st_reshape;
3384         }
3385
3386         return st_idle;
3387 }
3388
3389 /*
3390  * Return status string for @rdev
3391  *
3392  * Status characters:
3393  *
3394  *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3395  *  'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3396  *  'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3397  *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3398  */
3399 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3400 {
3401         if (!rdev->bdev)
3402                 return "-";
3403         else if (test_bit(Faulty, &rdev->flags))
3404                 return "D";
3405         else if (test_bit(Journal, &rdev->flags))
3406                 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3407         else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3408                  (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3409                   !test_bit(In_sync, &rdev->flags)))
3410                 return "a";
3411         else
3412                 return "A";
3413 }
3414
3415 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3416 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3417                                 enum sync_state state, sector_t resync_max_sectors)
3418 {
3419         sector_t r;
3420         struct mddev *mddev = &rs->md;
3421
3422         clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3423         clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3424
3425         if (rs_is_raid0(rs)) {
3426                 r = resync_max_sectors;
3427                 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3428
3429         } else {
3430                 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3431                         r = mddev->recovery_cp;
3432                 else
3433                         r = mddev->curr_resync_completed;
3434
3435                 if (state == st_idle && r >= resync_max_sectors) {
3436                         /*
3437                          * Sync complete.
3438                          */
3439                         /* In case we have finished recovering, the array is in sync. */
3440                         if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3441                                 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3442
3443                 } else if (state == st_recover)
3444                         /*
3445                          * In case we are recovering, the array is not in sync
3446                          * and health chars should show the recovering legs.
3447                          *
3448                          * Already retrieved recovery offset from curr_resync_completed above.
3449                          */
3450                         ;
3451
3452                 else if (state == st_resync || state == st_reshape)
3453                         /*
3454                          * If "resync/reshape" is occurring, the raid set
3455                          * is or may be out of sync hence the health
3456                          * characters shall be 'a'.
3457                          */
3458                         set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3459
3460                 else if (state == st_check || state == st_repair)
3461                         /*
3462                          * If "check" or "repair" is occurring, the raid set has
3463                          * undergone an initial sync and the health characters
3464                          * should not be 'a' anymore.
3465                          */
3466                         set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3467
3468                 else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3469                         /*
3470                          * We are idle and recovery is needed, prevent 'A' chars race
3471                          * caused by components still set to in-sync by constructor.
3472                          */
3473                         set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3474
3475                 else {
3476                         /*
3477                          * We are idle and the raid set may be doing an initial
3478                          * sync, or it may be rebuilding individual components.
3479                          * If all the devices are In_sync, then it is the raid set
3480                          * that is being initialized.
3481                          */
3482                         struct md_rdev *rdev;
3483
3484                         set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3485                         rdev_for_each(rdev, mddev)
3486                                 if (!test_bit(Journal, &rdev->flags) &&
3487                                     !test_bit(In_sync, &rdev->flags)) {
3488                                         clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3489                                         break;
3490                                 }
3491                 }
3492         }
3493
3494         return min(r, resync_max_sectors);
3495 }
3496
3497 /* Helper to return @dev name or "-" if !@dev */
3498 static const char *__get_dev_name(struct dm_dev *dev)
3499 {
3500         return dev ? dev->name : "-";
3501 }
3502
3503 static void raid_status(struct dm_target *ti, status_type_t type,
3504                         unsigned int status_flags, char *result, unsigned int maxlen)
3505 {
3506         struct raid_set *rs = ti->private;
3507         struct mddev *mddev = &rs->md;
3508         struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
3509         int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3510         unsigned long recovery;
3511         unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3512         unsigned int sz = 0;
3513         unsigned int rebuild_writemostly_count = 0;
3514         sector_t progress, resync_max_sectors, resync_mismatches;
3515         enum sync_state state;
3516         struct raid_type *rt;
3517
3518         switch (type) {
3519         case STATUSTYPE_INFO:
3520                 /* *Should* always succeed */
3521                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3522                 if (!rt)
3523                         return;
3524
3525                 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3526
3527                 /* Access most recent mddev properties for status output */
3528                 smp_rmb();
3529                 /* Get sensible max sectors even if raid set not yet started */
3530                 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3531                                       mddev->resync_max_sectors : mddev->dev_sectors;
3532                 recovery = rs->md.recovery;
3533                 state = decipher_sync_action(mddev, recovery);
3534                 progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3535                 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3536                                     atomic64_read(&mddev->resync_mismatches) : 0;
3537
3538                 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3539                 for (i = 0; i < rs->raid_disks; i++)
3540                         DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3541
3542                 /*
3543                  * In-sync/Reshape ratio:
3544                  *  The in-sync ratio shows the progress of:
3545                  *   - Initializing the raid set
3546                  *   - Rebuilding a subset of devices of the raid set
3547                  *  The user can distinguish between the two by referring
3548                  *  to the status characters.
3549                  *
3550                  *  The reshape ratio shows the progress of
3551                  *  changing the raid layout or the number of
3552                  *  disks of a raid set
3553                  */
3554                 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3555                                      (unsigned long long) resync_max_sectors);
3556
3557                 /*
3558                  * v1.5.0+:
3559                  *
3560                  * Sync action:
3561                  *   See Documentation/admin-guide/device-mapper/dm-raid.rst for
3562                  *   information on each of these states.
3563                  */
3564                 DMEMIT(" %s", sync_str(state));
3565
3566                 /*
3567                  * v1.5.0+:
3568                  *
3569                  * resync_mismatches/mismatch_cnt
3570                  *   This field shows the number of discrepancies found when
3571                  *   performing a "check" of the raid set.
3572                  */
3573                 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3574
3575                 /*
3576                  * v1.9.0+:
3577                  *
3578                  * data_offset (needed for out of space reshaping)
3579                  *   This field shows the data offset into the data
3580                  *   image LV where the first stripes data starts.
3581                  *
3582                  * We keep data_offset equal on all raid disks of the set,
3583                  * so retrieving it from the first raid disk is sufficient.
3584                  */
3585                 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3586
3587                 /*
3588                  * v1.10.0+:
3589                  */
3590                 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3591                               __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3592                 break;
3593
3594         case STATUSTYPE_TABLE:
3595                 /* Report the table line string you would use to construct this raid set */
3596
3597                 /*
3598                  * Count any rebuild or writemostly argument pairs and subtract the
3599                  * hweight count being added below of any rebuild and writemostly ctr flags.
3600                  */
3601                 for (i = 0; i < rs->raid_disks; i++) {
3602                         rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3603                                                      (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3604                 }
3605                 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3606                                              (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3607                 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3608                 raid_param_cnt += rebuild_writemostly_count +
3609                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3610                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3611                 /* Emit table line */
3612                 /* This has to be in the documented order for userspace! */
3613                 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3614                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3615                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3616                 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3617                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3618                 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3619                         for (i = 0; i < rs->raid_disks; i++)
3620                                 if (test_bit(i, (void *) rs->rebuild_disks))
3621                                         DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3622                 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3623                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3624                                           mddev->bitmap_info.daemon_sleep);
3625                 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3626                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3627                                          mddev->sync_speed_min);
3628                 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3629                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3630                                          mddev->sync_speed_max);
3631                 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3632                         for (i = 0; i < rs->raid_disks; i++)
3633                                 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3634                                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3635                                                rs->dev[i].rdev.raid_disk);
3636                 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3637                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3638                                           mddev->bitmap_info.max_write_behind);
3639                 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3640                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3641                                          max_nr_stripes);
3642                 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3643                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3644                                            (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3645                 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3646                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3647                                          raid10_md_layout_to_copies(mddev->layout));
3648                 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3649                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3650                                          raid10_md_layout_to_format(mddev->layout));
3651                 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3652                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3653                                          max(rs->delta_disks, mddev->delta_disks));
3654                 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3655                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3656                                            (unsigned long long) rs->data_offset);
3657                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3658                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3659                                         __get_dev_name(rs->journal_dev.dev));
3660                 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3661                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3662                                          md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3663                 DMEMIT(" %d", rs->raid_disks);
3664                 for (i = 0; i < rs->raid_disks; i++)
3665                         DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3666                                          __get_dev_name(rs->dev[i].data_dev));
3667                 break;
3668
3669         case STATUSTYPE_IMA:
3670                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3671                 if (!rt)
3672                         return;
3673
3674                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3675                 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks);
3676
3677                 /* Access most recent mddev properties for status output */
3678                 smp_rmb();
3679                 recovery = rs->md.recovery;
3680                 state = decipher_sync_action(mddev, recovery);
3681                 DMEMIT(",raid_state=%s", sync_str(state));
3682
3683                 for (i = 0; i < rs->raid_disks; i++) {
3684                         DMEMIT(",raid_device_%d_status=", i);
3685                         DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3686                 }
3687
3688                 if (rt_is_raid456(rt)) {
3689                         DMEMIT(",journal_dev_mode=");
3690                         switch (rs->journal_dev.mode) {
3691                         case R5C_JOURNAL_MODE_WRITE_THROUGH:
3692                                 DMEMIT("%s",
3693                                        _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param);
3694                                 break;
3695                         case R5C_JOURNAL_MODE_WRITE_BACK:
3696                                 DMEMIT("%s",
3697                                        _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param);
3698                                 break;
3699                         default:
3700                                 DMEMIT("invalid");
3701                                 break;
3702                         }
3703                 }
3704                 DMEMIT(";");
3705                 break;
3706         }
3707 }
3708
3709 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3710                         char *result, unsigned int maxlen)
3711 {
3712         struct raid_set *rs = ti->private;
3713         struct mddev *mddev = &rs->md;
3714
3715         if (!mddev->pers || !mddev->pers->sync_request)
3716                 return -EINVAL;
3717
3718         if (!strcasecmp(argv[0], "frozen"))
3719                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3720         else
3721                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3722
3723         if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3724                 if (mddev->sync_thread) {
3725                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3726                         md_reap_sync_thread(mddev);
3727                 }
3728         } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3729                 return -EBUSY;
3730         else if (!strcasecmp(argv[0], "resync"))
3731                 ; /* MD_RECOVERY_NEEDED set below */
3732         else if (!strcasecmp(argv[0], "recover"))
3733                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3734         else {
3735                 if (!strcasecmp(argv[0], "check")) {
3736                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3737                         set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3738                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3739                 } else if (!strcasecmp(argv[0], "repair")) {
3740                         set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3741                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3742                 } else
3743                         return -EINVAL;
3744         }
3745         if (mddev->ro == 2) {
3746                 /* A write to sync_action is enough to justify
3747                  * canceling read-auto mode
3748                  */
3749                 mddev->ro = 0;
3750                 if (!mddev->suspended)
3751                         md_wakeup_thread(mddev->sync_thread);
3752         }
3753         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3754         if (!mddev->suspended)
3755                 md_wakeup_thread(mddev->thread);
3756
3757         return 0;
3758 }
3759
3760 static int raid_iterate_devices(struct dm_target *ti,
3761                                 iterate_devices_callout_fn fn, void *data)
3762 {
3763         struct raid_set *rs = ti->private;
3764         unsigned int i;
3765         int r = 0;
3766
3767         for (i = 0; !r && i < rs->raid_disks; i++) {
3768                 if (rs->dev[i].data_dev) {
3769                         r = fn(ti, rs->dev[i].data_dev,
3770                                0, /* No offset on data devs */
3771                                rs->md.dev_sectors, data);
3772                 }
3773         }
3774
3775         return r;
3776 }
3777
3778 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3779 {
3780         struct raid_set *rs = ti->private;
3781         unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3782
3783         blk_limits_io_min(limits, chunk_size_bytes);
3784         blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3785 }
3786
3787 static void raid_postsuspend(struct dm_target *ti)
3788 {
3789         struct raid_set *rs = ti->private;
3790
3791         if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3792                 /* Writes have to be stopped before suspending to avoid deadlocks. */
3793                 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3794                         md_stop_writes(&rs->md);
3795
3796                 mddev_lock_nointr(&rs->md);
3797                 mddev_suspend(&rs->md);
3798                 mddev_unlock(&rs->md);
3799         }
3800 }
3801
3802 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3803 {
3804         int i;
3805         uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3806         unsigned long flags;
3807         bool cleared = false;
3808         struct dm_raid_superblock *sb;
3809         struct mddev *mddev = &rs->md;
3810         struct md_rdev *r;
3811
3812         /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3813         if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3814                 return;
3815
3816         memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3817
3818         for (i = 0; i < rs->raid_disks; i++) {
3819                 r = &rs->dev[i].rdev;
3820                 /* HM FIXME: enhance journal device recovery processing */
3821                 if (test_bit(Journal, &r->flags))
3822                         continue;
3823
3824                 if (test_bit(Faulty, &r->flags) &&
3825                     r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3826                         DMINFO("Faulty %s device #%d has readable super block."
3827                                "  Attempting to revive it.",
3828                                rs->raid_type->name, i);
3829
3830                         /*
3831                          * Faulty bit may be set, but sometimes the array can
3832                          * be suspended before the personalities can respond
3833                          * by removing the device from the array (i.e. calling
3834                          * 'hot_remove_disk').  If they haven't yet removed
3835                          * the failed device, its 'raid_disk' number will be
3836                          * '>= 0' - meaning we must call this function
3837                          * ourselves.
3838                          */
3839                         flags = r->flags;
3840                         clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3841                         if (r->raid_disk >= 0) {
3842                                 if (mddev->pers->hot_remove_disk(mddev, r)) {
3843                                         /* Failed to revive this device, try next */
3844                                         r->flags = flags;
3845                                         continue;
3846                                 }
3847                         } else
3848                                 r->raid_disk = r->saved_raid_disk = i;
3849
3850                         clear_bit(Faulty, &r->flags);
3851                         clear_bit(WriteErrorSeen, &r->flags);
3852
3853                         if (mddev->pers->hot_add_disk(mddev, r)) {
3854                                 /* Failed to revive this device, try next */
3855                                 r->raid_disk = r->saved_raid_disk = -1;
3856                                 r->flags = flags;
3857                         } else {
3858                                 clear_bit(In_sync, &r->flags);
3859                                 r->recovery_offset = 0;
3860                                 set_bit(i, (void *) cleared_failed_devices);
3861                                 cleared = true;
3862                         }
3863                 }
3864         }
3865
3866         /* If any failed devices could be cleared, update all sbs failed_devices bits */
3867         if (cleared) {
3868                 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3869
3870                 rdev_for_each(r, &rs->md) {
3871                         if (test_bit(Journal, &r->flags))
3872                                 continue;
3873
3874                         sb = page_address(r->sb_page);
3875                         sb_retrieve_failed_devices(sb, failed_devices);
3876
3877                         for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3878                                 failed_devices[i] &= ~cleared_failed_devices[i];
3879
3880                         sb_update_failed_devices(sb, failed_devices);
3881                 }
3882         }
3883 }
3884
3885 static int __load_dirty_region_bitmap(struct raid_set *rs)
3886 {
3887         int r = 0;
3888
3889         /* Try loading the bitmap unless "raid0", which does not have one */
3890         if (!rs_is_raid0(rs) &&
3891             !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3892                 r = md_bitmap_load(&rs->md);
3893                 if (r)
3894                         DMERR("Failed to load bitmap");
3895         }
3896
3897         return r;
3898 }
3899
3900 /* Enforce updating all superblocks */
3901 static void rs_update_sbs(struct raid_set *rs)
3902 {
3903         struct mddev *mddev = &rs->md;
3904         int ro = mddev->ro;
3905
3906         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3907         mddev->ro = 0;
3908         md_update_sb(mddev, 1);
3909         mddev->ro = ro;
3910 }
3911
3912 /*
3913  * Reshape changes raid algorithm of @rs to new one within personality
3914  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3915  * disks from a raid set thus growing/shrinking it or resizes the set
3916  *
3917  * Call mddev_lock_nointr() before!
3918  */
3919 static int rs_start_reshape(struct raid_set *rs)
3920 {
3921         int r;
3922         struct mddev *mddev = &rs->md;
3923         struct md_personality *pers = mddev->pers;
3924
3925         /* Don't allow the sync thread to work until the table gets reloaded. */
3926         set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3927
3928         r = rs_setup_reshape(rs);
3929         if (r)
3930                 return r;
3931
3932         /*
3933          * Check any reshape constraints enforced by the personalility
3934          *
3935          * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3936          */
3937         r = pers->check_reshape(mddev);
3938         if (r) {
3939                 rs->ti->error = "pers->check_reshape() failed";
3940                 return r;
3941         }
3942
3943         /*
3944          * Personality may not provide start reshape method in which
3945          * case check_reshape above has already covered everything
3946          */
3947         if (pers->start_reshape) {
3948                 r = pers->start_reshape(mddev);
3949                 if (r) {
3950                         rs->ti->error = "pers->start_reshape() failed";
3951                         return r;
3952                 }
3953         }
3954
3955         /*
3956          * Now reshape got set up, update superblocks to
3957          * reflect the fact so that a table reload will
3958          * access proper superblock content in the ctr.
3959          */
3960         rs_update_sbs(rs);
3961
3962         return 0;
3963 }
3964
3965 static int raid_preresume(struct dm_target *ti)
3966 {
3967         int r;
3968         struct raid_set *rs = ti->private;
3969         struct mddev *mddev = &rs->md;
3970
3971         /* This is a resume after a suspend of the set -> it's already started. */
3972         if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3973                 return 0;
3974
3975         /*
3976          * The superblocks need to be updated on disk if the
3977          * array is new or new devices got added (thus zeroed
3978          * out by userspace) or __load_dirty_region_bitmap
3979          * will overwrite them in core with old data or fail.
3980          */
3981         if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3982                 rs_update_sbs(rs);
3983
3984         /* Load the bitmap from disk unless raid0 */
3985         r = __load_dirty_region_bitmap(rs);
3986         if (r)
3987                 return r;
3988
3989         /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
3990         if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3991                 mddev->array_sectors = rs->array_sectors;
3992                 mddev->dev_sectors = rs->dev_sectors;
3993                 rs_set_rdev_sectors(rs);
3994                 rs_set_capacity(rs);
3995         }
3996
3997         /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
3998         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3999             (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
4000              (rs->requested_bitmap_chunk_sectors &&
4001                mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
4002                 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
4003
4004                 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
4005                 if (r)
4006                         DMERR("Failed to resize bitmap");
4007         }
4008
4009         /* Check for any resize/reshape on @rs and adjust/initiate */
4010         /* Be prepared for mddev_resume() in raid_resume() */
4011         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4012         if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
4013                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4014                 mddev->resync_min = mddev->recovery_cp;
4015                 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
4016                         mddev->resync_max_sectors = mddev->dev_sectors;
4017         }
4018
4019         /* Check for any reshape request unless new raid set */
4020         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
4021                 /* Initiate a reshape. */
4022                 rs_set_rdev_sectors(rs);
4023                 mddev_lock_nointr(mddev);
4024                 r = rs_start_reshape(rs);
4025                 mddev_unlock(mddev);
4026                 if (r)
4027                         DMWARN("Failed to check/start reshape, continuing without change");
4028                 r = 0;
4029         }
4030
4031         return r;
4032 }
4033
4034 static void raid_resume(struct dm_target *ti)
4035 {
4036         struct raid_set *rs = ti->private;
4037         struct mddev *mddev = &rs->md;
4038
4039         if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4040                 /*
4041                  * A secondary resume while the device is active.
4042                  * Take this opportunity to check whether any failed
4043                  * devices are reachable again.
4044                  */
4045                 attempt_restore_of_faulty_devices(rs);
4046         }
4047
4048         if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4049                 /* Only reduce raid set size before running a disk removing reshape. */
4050                 if (mddev->delta_disks < 0)
4051                         rs_set_capacity(rs);
4052
4053                 mddev_lock_nointr(mddev);
4054                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4055                 mddev->ro = 0;
4056                 mddev->in_sync = 0;
4057                 mddev_resume(mddev);
4058                 mddev_unlock(mddev);
4059         }
4060 }
4061
4062 static struct target_type raid_target = {
4063         .name = "raid",
4064         .version = {1, 15, 1},
4065         .module = THIS_MODULE,
4066         .ctr = raid_ctr,
4067         .dtr = raid_dtr,
4068         .map = raid_map,
4069         .status = raid_status,
4070         .message = raid_message,
4071         .iterate_devices = raid_iterate_devices,
4072         .io_hints = raid_io_hints,
4073         .postsuspend = raid_postsuspend,
4074         .preresume = raid_preresume,
4075         .resume = raid_resume,
4076 };
4077 module_dm(raid);
4078
4079 module_param(devices_handle_discard_safely, bool, 0644);
4080 MODULE_PARM_DESC(devices_handle_discard_safely,
4081                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4082
4083 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4084 MODULE_ALIAS("dm-raid0");
4085 MODULE_ALIAS("dm-raid1");
4086 MODULE_ALIAS("dm-raid10");
4087 MODULE_ALIAS("dm-raid4");
4088 MODULE_ALIAS("dm-raid5");
4089 MODULE_ALIAS("dm-raid6");
4090 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4091 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4092 MODULE_LICENSE("GPL");