Merge tag 'backport/v3.14.24-ltsi-rc1/phy-rcar-gen2-usb-to-v3.15' into backport/v3...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20
21 /*
22  * The following flags are used by dm-raid.c to set up the array state.
23  * They must be cleared before md_run is called.
24  */
25 #define FirstUse 10             /* rdev flag */
26
27 struct raid_dev {
28         /*
29          * Two DM devices, one to hold metadata and one to hold the
30          * actual data/parity.  The reason for this is to not confuse
31          * ti->len and give more flexibility in altering size and
32          * characteristics.
33          *
34          * While it is possible for this device to be associated
35          * with a different physical device than the data_dev, it
36          * is intended for it to be the same.
37          *    |--------- Physical Device ---------|
38          *    |- meta_dev -|------ data_dev ------|
39          */
40         struct dm_dev *meta_dev;
41         struct dm_dev *data_dev;
42         struct md_rdev rdev;
43 };
44
45 /*
46  * Flags for rs->print_flags field.
47  */
48 #define DMPF_SYNC              0x1
49 #define DMPF_NOSYNC            0x2
50 #define DMPF_REBUILD           0x4
51 #define DMPF_DAEMON_SLEEP      0x8
52 #define DMPF_MIN_RECOVERY_RATE 0x10
53 #define DMPF_MAX_RECOVERY_RATE 0x20
54 #define DMPF_MAX_WRITE_BEHIND  0x40
55 #define DMPF_STRIPE_CACHE      0x80
56 #define DMPF_REGION_SIZE       0x100
57 #define DMPF_RAID10_COPIES     0x200
58 #define DMPF_RAID10_FORMAT     0x400
59
60 struct raid_set {
61         struct dm_target *ti;
62
63         uint32_t bitmap_loaded;
64         uint32_t print_flags;
65
66         struct mddev md;
67         struct raid_type *raid_type;
68         struct dm_target_callbacks callbacks;
69
70         struct raid_dev dev[0];
71 };
72
73 /* Supported raid types and properties. */
74 static struct raid_type {
75         const char *name;               /* RAID algorithm. */
76         const char *descr;              /* Descriptor text for logging. */
77         const unsigned parity_devs;     /* # of parity devices. */
78         const unsigned minimal_devs;    /* minimal # of devices in set. */
79         const unsigned level;           /* RAID level. */
80         const unsigned algorithm;       /* RAID algorithm. */
81 } raid_types[] = {
82         {"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
83         {"raid10",   "RAID10 (striped mirrors)",        0, 2, 10, UINT_MAX /* Varies */},
84         {"raid4",    "RAID4 (dedicated parity disk)",   1, 2, 5, ALGORITHM_PARITY_0},
85         {"raid5_la", "RAID5 (left asymmetric)",         1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
86         {"raid5_ra", "RAID5 (right asymmetric)",        1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
87         {"raid5_ls", "RAID5 (left symmetric)",          1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
88         {"raid5_rs", "RAID5 (right symmetric)",         1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
89         {"raid6_zr", "RAID6 (zero restart)",            2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
90         {"raid6_nr", "RAID6 (N restart)",               2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
91         {"raid6_nc", "RAID6 (N continue)",              2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
92 };
93
94 static char *raid10_md_layout_to_format(int layout)
95 {
96         /*
97          * Bit 16 and 17 stand for "offset" and "use_far_sets"
98          * Refer to MD's raid10.c for details
99          */
100         if ((layout & 0x10000) && (layout & 0x20000))
101                 return "offset";
102
103         if ((layout & 0xFF) > 1)
104                 return "near";
105
106         return "far";
107 }
108
109 static unsigned raid10_md_layout_to_copies(int layout)
110 {
111         if ((layout & 0xFF) > 1)
112                 return layout & 0xFF;
113         return (layout >> 8) & 0xFF;
114 }
115
116 static int raid10_format_to_md_layout(char *format, unsigned copies)
117 {
118         unsigned n = 1, f = 1;
119
120         if (!strcmp("near", format))
121                 n = copies;
122         else
123                 f = copies;
124
125         if (!strcmp("offset", format))
126                 return 0x30000 | (f << 8) | n;
127
128         if (!strcmp("far", format))
129                 return 0x20000 | (f << 8) | n;
130
131         return (f << 8) | n;
132 }
133
134 static struct raid_type *get_raid_type(char *name)
135 {
136         int i;
137
138         for (i = 0; i < ARRAY_SIZE(raid_types); i++)
139                 if (!strcmp(raid_types[i].name, name))
140                         return &raid_types[i];
141
142         return NULL;
143 }
144
145 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
146 {
147         unsigned i;
148         struct raid_set *rs;
149
150         if (raid_devs <= raid_type->parity_devs) {
151                 ti->error = "Insufficient number of devices";
152                 return ERR_PTR(-EINVAL);
153         }
154
155         rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
156         if (!rs) {
157                 ti->error = "Cannot allocate raid context";
158                 return ERR_PTR(-ENOMEM);
159         }
160
161         mddev_init(&rs->md);
162
163         rs->ti = ti;
164         rs->raid_type = raid_type;
165         rs->md.raid_disks = raid_devs;
166         rs->md.level = raid_type->level;
167         rs->md.new_level = rs->md.level;
168         rs->md.layout = raid_type->algorithm;
169         rs->md.new_layout = rs->md.layout;
170         rs->md.delta_disks = 0;
171         rs->md.recovery_cp = 0;
172
173         for (i = 0; i < raid_devs; i++)
174                 md_rdev_init(&rs->dev[i].rdev);
175
176         /*
177          * Remaining items to be initialized by further RAID params:
178          *  rs->md.persistent
179          *  rs->md.external
180          *  rs->md.chunk_sectors
181          *  rs->md.new_chunk_sectors
182          *  rs->md.dev_sectors
183          */
184
185         return rs;
186 }
187
188 static void context_free(struct raid_set *rs)
189 {
190         int i;
191
192         for (i = 0; i < rs->md.raid_disks; i++) {
193                 if (rs->dev[i].meta_dev)
194                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
195                 md_rdev_clear(&rs->dev[i].rdev);
196                 if (rs->dev[i].data_dev)
197                         dm_put_device(rs->ti, rs->dev[i].data_dev);
198         }
199
200         kfree(rs);
201 }
202
203 /*
204  * For every device we have two words
205  *  <meta_dev>: meta device name or '-' if missing
206  *  <data_dev>: data device name or '-' if missing
207  *
208  * The following are permitted:
209  *    - -
210  *    - <data_dev>
211  *    <meta_dev> <data_dev>
212  *
213  * The following is not allowed:
214  *    <meta_dev> -
215  *
216  * This code parses those words.  If there is a failure,
217  * the caller must use context_free to unwind the operations.
218  */
219 static int dev_parms(struct raid_set *rs, char **argv)
220 {
221         int i;
222         int rebuild = 0;
223         int metadata_available = 0;
224         int ret = 0;
225
226         for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
227                 rs->dev[i].rdev.raid_disk = i;
228
229                 rs->dev[i].meta_dev = NULL;
230                 rs->dev[i].data_dev = NULL;
231
232                 /*
233                  * There are no offsets, since there is a separate device
234                  * for data and metadata.
235                  */
236                 rs->dev[i].rdev.data_offset = 0;
237                 rs->dev[i].rdev.mddev = &rs->md;
238
239                 if (strcmp(argv[0], "-")) {
240                         ret = dm_get_device(rs->ti, argv[0],
241                                             dm_table_get_mode(rs->ti->table),
242                                             &rs->dev[i].meta_dev);
243                         rs->ti->error = "RAID metadata device lookup failure";
244                         if (ret)
245                                 return ret;
246
247                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
248                         if (!rs->dev[i].rdev.sb_page)
249                                 return -ENOMEM;
250                 }
251
252                 if (!strcmp(argv[1], "-")) {
253                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
254                             (!rs->dev[i].rdev.recovery_offset)) {
255                                 rs->ti->error = "Drive designated for rebuild not specified";
256                                 return -EINVAL;
257                         }
258
259                         rs->ti->error = "No data device supplied with metadata device";
260                         if (rs->dev[i].meta_dev)
261                                 return -EINVAL;
262
263                         continue;
264                 }
265
266                 ret = dm_get_device(rs->ti, argv[1],
267                                     dm_table_get_mode(rs->ti->table),
268                                     &rs->dev[i].data_dev);
269                 if (ret) {
270                         rs->ti->error = "RAID device lookup failure";
271                         return ret;
272                 }
273
274                 if (rs->dev[i].meta_dev) {
275                         metadata_available = 1;
276                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
277                 }
278                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
279                 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
280                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
281                         rebuild++;
282         }
283
284         if (metadata_available) {
285                 rs->md.external = 0;
286                 rs->md.persistent = 1;
287                 rs->md.major_version = 2;
288         } else if (rebuild && !rs->md.recovery_cp) {
289                 /*
290                  * Without metadata, we will not be able to tell if the array
291                  * is in-sync or not - we must assume it is not.  Therefore,
292                  * it is impossible to rebuild a drive.
293                  *
294                  * Even if there is metadata, the on-disk information may
295                  * indicate that the array is not in-sync and it will then
296                  * fail at that time.
297                  *
298                  * User could specify 'nosync' option if desperate.
299                  */
300                 DMERR("Unable to rebuild drive while array is not in-sync");
301                 rs->ti->error = "RAID device lookup failure";
302                 return -EINVAL;
303         }
304
305         return 0;
306 }
307
308 /*
309  * validate_region_size
310  * @rs
311  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
312  *
313  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
314  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
315  *
316  * Returns: 0 on success, -EINVAL on failure.
317  */
318 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
319 {
320         unsigned long min_region_size = rs->ti->len / (1 << 21);
321
322         if (!region_size) {
323                 /*
324                  * Choose a reasonable default.  All figures in sectors.
325                  */
326                 if (min_region_size > (1 << 13)) {
327                         /* If not a power of 2, make it the next power of 2 */
328                         if (min_region_size & (min_region_size - 1))
329                                 region_size = 1 << fls(region_size);
330                         DMINFO("Choosing default region size of %lu sectors",
331                                region_size);
332                 } else {
333                         DMINFO("Choosing default region size of 4MiB");
334                         region_size = 1 << 13; /* sectors */
335                 }
336         } else {
337                 /*
338                  * Validate user-supplied value.
339                  */
340                 if (region_size > rs->ti->len) {
341                         rs->ti->error = "Supplied region size is too large";
342                         return -EINVAL;
343                 }
344
345                 if (region_size < min_region_size) {
346                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
347                               region_size, min_region_size);
348                         rs->ti->error = "Supplied region size is too small";
349                         return -EINVAL;
350                 }
351
352                 if (!is_power_of_2(region_size)) {
353                         rs->ti->error = "Region size is not a power of 2";
354                         return -EINVAL;
355                 }
356
357                 if (region_size < rs->md.chunk_sectors) {
358                         rs->ti->error = "Region size is smaller than the chunk size";
359                         return -EINVAL;
360                 }
361         }
362
363         /*
364          * Convert sectors to bytes.
365          */
366         rs->md.bitmap_info.chunksize = (region_size << 9);
367
368         return 0;
369 }
370
371 /*
372  * validate_raid_redundancy
373  * @rs
374  *
375  * Determine if there are enough devices in the array that haven't
376  * failed (or are being rebuilt) to form a usable array.
377  *
378  * Returns: 0 on success, -EINVAL on failure.
379  */
380 static int validate_raid_redundancy(struct raid_set *rs)
381 {
382         unsigned i, rebuild_cnt = 0;
383         unsigned rebuilds_per_group = 0, copies, d;
384         unsigned group_size, last_group_start;
385
386         for (i = 0; i < rs->md.raid_disks; i++)
387                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
388                     !rs->dev[i].rdev.sb_page)
389                         rebuild_cnt++;
390
391         switch (rs->raid_type->level) {
392         case 1:
393                 if (rebuild_cnt >= rs->md.raid_disks)
394                         goto too_many;
395                 break;
396         case 4:
397         case 5:
398         case 6:
399                 if (rebuild_cnt > rs->raid_type->parity_devs)
400                         goto too_many;
401                 break;
402         case 10:
403                 copies = raid10_md_layout_to_copies(rs->md.layout);
404                 if (rebuild_cnt < copies)
405                         break;
406
407                 /*
408                  * It is possible to have a higher rebuild count for RAID10,
409                  * as long as the failed devices occur in different mirror
410                  * groups (i.e. different stripes).
411                  *
412                  * When checking "near" format, make sure no adjacent devices
413                  * have failed beyond what can be handled.  In addition to the
414                  * simple case where the number of devices is a multiple of the
415                  * number of copies, we must also handle cases where the number
416                  * of devices is not a multiple of the number of copies.
417                  * E.g.    dev1 dev2 dev3 dev4 dev5
418                  *          A    A    B    B    C
419                  *          C    D    D    E    E
420                  */
421                 if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) {
422                         for (i = 0; i < rs->md.raid_disks * copies; i++) {
423                                 if (!(i % copies))
424                                         rebuilds_per_group = 0;
425                                 d = i % rs->md.raid_disks;
426                                 if ((!rs->dev[d].rdev.sb_page ||
427                                      !test_bit(In_sync, &rs->dev[d].rdev.flags)) &&
428                                     (++rebuilds_per_group >= copies))
429                                         goto too_many;
430                         }
431                         break;
432                 }
433
434                 /*
435                  * When checking "far" and "offset" formats, we need to ensure
436                  * that the device that holds its copy is not also dead or
437                  * being rebuilt.  (Note that "far" and "offset" formats only
438                  * support two copies right now.  These formats also only ever
439                  * use the 'use_far_sets' variant.)
440                  *
441                  * This check is somewhat complicated by the need to account
442                  * for arrays that are not a multiple of (far) copies.  This
443                  * results in the need to treat the last (potentially larger)
444                  * set differently.
445                  */
446                 group_size = (rs->md.raid_disks / copies);
447                 last_group_start = (rs->md.raid_disks / group_size) - 1;
448                 last_group_start *= group_size;
449                 for (i = 0; i < rs->md.raid_disks; i++) {
450                         if (!(i % copies) && !(i > last_group_start))
451                                 rebuilds_per_group = 0;
452                         if ((!rs->dev[i].rdev.sb_page ||
453                              !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
454                             (++rebuilds_per_group >= copies))
455                                         goto too_many;
456                 }
457                 break;
458         default:
459                 if (rebuild_cnt)
460                         return -EINVAL;
461         }
462
463         return 0;
464
465 too_many:
466         return -EINVAL;
467 }
468
469 /*
470  * Possible arguments are...
471  *      <chunk_size> [optional_args]
472  *
473  * Argument definitions
474  *    <chunk_size>                      The number of sectors per disk that
475  *                                      will form the "stripe"
476  *    [[no]sync]                        Force or prevent recovery of the
477  *                                      entire array
478  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
479  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
480  *                                      clear bits
481  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
482  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
483  *    [write_mostly <idx>]              Indicate a write mostly drive via index
484  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
485  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
486  *    [region_size <sectors>]           Defines granularity of bitmap
487  *
488  * RAID10-only options:
489  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
490  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
491  */
492 static int parse_raid_params(struct raid_set *rs, char **argv,
493                              unsigned num_raid_params)
494 {
495         char *raid10_format = "near";
496         unsigned raid10_copies = 2;
497         unsigned i;
498         unsigned long value, region_size = 0;
499         sector_t sectors_per_dev = rs->ti->len;
500         sector_t max_io_len;
501         char *key;
502
503         /*
504          * First, parse the in-order required arguments
505          * "chunk_size" is the only argument of this type.
506          */
507         if ((kstrtoul(argv[0], 10, &value) < 0)) {
508                 rs->ti->error = "Bad chunk size";
509                 return -EINVAL;
510         } else if (rs->raid_type->level == 1) {
511                 if (value)
512                         DMERR("Ignoring chunk size parameter for RAID 1");
513                 value = 0;
514         } else if (!is_power_of_2(value)) {
515                 rs->ti->error = "Chunk size must be a power of 2";
516                 return -EINVAL;
517         } else if (value < 8) {
518                 rs->ti->error = "Chunk size value is too small";
519                 return -EINVAL;
520         }
521
522         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
523         argv++;
524         num_raid_params--;
525
526         /*
527          * We set each individual device as In_sync with a completed
528          * 'recovery_offset'.  If there has been a device failure or
529          * replacement then one of the following cases applies:
530          *
531          *   1) User specifies 'rebuild'.
532          *      - Device is reset when param is read.
533          *   2) A new device is supplied.
534          *      - No matching superblock found, resets device.
535          *   3) Device failure was transient and returns on reload.
536          *      - Failure noticed, resets device for bitmap replay.
537          *   4) Device hadn't completed recovery after previous failure.
538          *      - Superblock is read and overrides recovery_offset.
539          *
540          * What is found in the superblocks of the devices is always
541          * authoritative, unless 'rebuild' or '[no]sync' was specified.
542          */
543         for (i = 0; i < rs->md.raid_disks; i++) {
544                 set_bit(In_sync, &rs->dev[i].rdev.flags);
545                 rs->dev[i].rdev.recovery_offset = MaxSector;
546         }
547
548         /*
549          * Second, parse the unordered optional arguments
550          */
551         for (i = 0; i < num_raid_params; i++) {
552                 if (!strcasecmp(argv[i], "nosync")) {
553                         rs->md.recovery_cp = MaxSector;
554                         rs->print_flags |= DMPF_NOSYNC;
555                         continue;
556                 }
557                 if (!strcasecmp(argv[i], "sync")) {
558                         rs->md.recovery_cp = 0;
559                         rs->print_flags |= DMPF_SYNC;
560                         continue;
561                 }
562
563                 /* The rest of the optional arguments come in key/value pairs */
564                 if ((i + 1) >= num_raid_params) {
565                         rs->ti->error = "Wrong number of raid parameters given";
566                         return -EINVAL;
567                 }
568
569                 key = argv[i++];
570
571                 /* Parameters that take a string value are checked here. */
572                 if (!strcasecmp(key, "raid10_format")) {
573                         if (rs->raid_type->level != 10) {
574                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
575                                 return -EINVAL;
576                         }
577                         if (strcmp("near", argv[i]) &&
578                             strcmp("far", argv[i]) &&
579                             strcmp("offset", argv[i])) {
580                                 rs->ti->error = "Invalid 'raid10_format' value given";
581                                 return -EINVAL;
582                         }
583                         raid10_format = argv[i];
584                         rs->print_flags |= DMPF_RAID10_FORMAT;
585                         continue;
586                 }
587
588                 if (kstrtoul(argv[i], 10, &value) < 0) {
589                         rs->ti->error = "Bad numerical argument given in raid params";
590                         return -EINVAL;
591                 }
592
593                 /* Parameters that take a numeric value are checked here */
594                 if (!strcasecmp(key, "rebuild")) {
595                         if (value >= rs->md.raid_disks) {
596                                 rs->ti->error = "Invalid rebuild index given";
597                                 return -EINVAL;
598                         }
599                         clear_bit(In_sync, &rs->dev[value].rdev.flags);
600                         rs->dev[value].rdev.recovery_offset = 0;
601                         rs->print_flags |= DMPF_REBUILD;
602                 } else if (!strcasecmp(key, "write_mostly")) {
603                         if (rs->raid_type->level != 1) {
604                                 rs->ti->error = "write_mostly option is only valid for RAID1";
605                                 return -EINVAL;
606                         }
607                         if (value >= rs->md.raid_disks) {
608                                 rs->ti->error = "Invalid write_mostly drive index given";
609                                 return -EINVAL;
610                         }
611                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
612                 } else if (!strcasecmp(key, "max_write_behind")) {
613                         if (rs->raid_type->level != 1) {
614                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
615                                 return -EINVAL;
616                         }
617                         rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
618
619                         /*
620                          * In device-mapper, we specify things in sectors, but
621                          * MD records this value in kB
622                          */
623                         value /= 2;
624                         if (value > COUNTER_MAX) {
625                                 rs->ti->error = "Max write-behind limit out of range";
626                                 return -EINVAL;
627                         }
628                         rs->md.bitmap_info.max_write_behind = value;
629                 } else if (!strcasecmp(key, "daemon_sleep")) {
630                         rs->print_flags |= DMPF_DAEMON_SLEEP;
631                         if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
632                                 rs->ti->error = "daemon sleep period out of range";
633                                 return -EINVAL;
634                         }
635                         rs->md.bitmap_info.daemon_sleep = value;
636                 } else if (!strcasecmp(key, "stripe_cache")) {
637                         rs->print_flags |= DMPF_STRIPE_CACHE;
638
639                         /*
640                          * In device-mapper, we specify things in sectors, but
641                          * MD records this value in kB
642                          */
643                         value /= 2;
644
645                         if ((rs->raid_type->level != 5) &&
646                             (rs->raid_type->level != 6)) {
647                                 rs->ti->error = "Inappropriate argument: stripe_cache";
648                                 return -EINVAL;
649                         }
650                         if (raid5_set_cache_size(&rs->md, (int)value)) {
651                                 rs->ti->error = "Bad stripe_cache size";
652                                 return -EINVAL;
653                         }
654                 } else if (!strcasecmp(key, "min_recovery_rate")) {
655                         rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
656                         if (value > INT_MAX) {
657                                 rs->ti->error = "min_recovery_rate out of range";
658                                 return -EINVAL;
659                         }
660                         rs->md.sync_speed_min = (int)value;
661                 } else if (!strcasecmp(key, "max_recovery_rate")) {
662                         rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
663                         if (value > INT_MAX) {
664                                 rs->ti->error = "max_recovery_rate out of range";
665                                 return -EINVAL;
666                         }
667                         rs->md.sync_speed_max = (int)value;
668                 } else if (!strcasecmp(key, "region_size")) {
669                         rs->print_flags |= DMPF_REGION_SIZE;
670                         region_size = value;
671                 } else if (!strcasecmp(key, "raid10_copies") &&
672                            (rs->raid_type->level == 10)) {
673                         if ((value < 2) || (value > 0xFF)) {
674                                 rs->ti->error = "Bad value for 'raid10_copies'";
675                                 return -EINVAL;
676                         }
677                         rs->print_flags |= DMPF_RAID10_COPIES;
678                         raid10_copies = value;
679                 } else {
680                         DMERR("Unable to parse RAID parameter: %s", key);
681                         rs->ti->error = "Unable to parse RAID parameters";
682                         return -EINVAL;
683                 }
684         }
685
686         if (validate_region_size(rs, region_size))
687                 return -EINVAL;
688
689         if (rs->md.chunk_sectors)
690                 max_io_len = rs->md.chunk_sectors;
691         else
692                 max_io_len = region_size;
693
694         if (dm_set_target_max_io_len(rs->ti, max_io_len))
695                 return -EINVAL;
696
697         if (rs->raid_type->level == 10) {
698                 if (raid10_copies > rs->md.raid_disks) {
699                         rs->ti->error = "Not enough devices to satisfy specification";
700                         return -EINVAL;
701                 }
702
703                 /*
704                  * If the format is not "near", we only support
705                  * two copies at the moment.
706                  */
707                 if (strcmp("near", raid10_format) && (raid10_copies > 2)) {
708                         rs->ti->error = "Too many copies for given RAID10 format.";
709                         return -EINVAL;
710                 }
711
712                 /* (Len * #mirrors) / #devices */
713                 sectors_per_dev = rs->ti->len * raid10_copies;
714                 sector_div(sectors_per_dev, rs->md.raid_disks);
715
716                 rs->md.layout = raid10_format_to_md_layout(raid10_format,
717                                                            raid10_copies);
718                 rs->md.new_layout = rs->md.layout;
719         } else if ((rs->raid_type->level > 1) &&
720                    sector_div(sectors_per_dev,
721                               (rs->md.raid_disks - rs->raid_type->parity_devs))) {
722                 rs->ti->error = "Target length not divisible by number of data devices";
723                 return -EINVAL;
724         }
725         rs->md.dev_sectors = sectors_per_dev;
726
727         /* Assume there are no metadata devices until the drives are parsed */
728         rs->md.persistent = 0;
729         rs->md.external = 1;
730
731         return 0;
732 }
733
734 static void do_table_event(struct work_struct *ws)
735 {
736         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
737
738         dm_table_event(rs->ti->table);
739 }
740
741 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
742 {
743         struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
744
745         if (rs->raid_type->level == 1)
746                 return md_raid1_congested(&rs->md, bits);
747
748         if (rs->raid_type->level == 10)
749                 return md_raid10_congested(&rs->md, bits);
750
751         return md_raid5_congested(&rs->md, bits);
752 }
753
754 /*
755  * This structure is never routinely used by userspace, unlike md superblocks.
756  * Devices with this superblock should only ever be accessed via device-mapper.
757  */
758 #define DM_RAID_MAGIC 0x64526D44
759 struct dm_raid_superblock {
760         __le32 magic;           /* "DmRd" */
761         __le32 features;        /* Used to indicate possible future changes */
762
763         __le32 num_devices;     /* Number of devices in this array. (Max 64) */
764         __le32 array_position;  /* The position of this drive in the array */
765
766         __le64 events;          /* Incremented by md when superblock updated */
767         __le64 failed_devices;  /* Bit field of devices to indicate failures */
768
769         /*
770          * This offset tracks the progress of the repair or replacement of
771          * an individual drive.
772          */
773         __le64 disk_recovery_offset;
774
775         /*
776          * This offset tracks the progress of the initial array
777          * synchronisation/parity calculation.
778          */
779         __le64 array_resync_offset;
780
781         /*
782          * RAID characteristics
783          */
784         __le32 level;
785         __le32 layout;
786         __le32 stripe_sectors;
787
788         /* Remainder of a logical block is zero-filled when writing (see super_sync()). */
789 } __packed;
790
791 static int read_disk_sb(struct md_rdev *rdev, int size)
792 {
793         BUG_ON(!rdev->sb_page);
794
795         if (rdev->sb_loaded)
796                 return 0;
797
798         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
799                 DMERR("Failed to read superblock of device at position %d",
800                       rdev->raid_disk);
801                 md_error(rdev->mddev, rdev);
802                 return -EINVAL;
803         }
804
805         rdev->sb_loaded = 1;
806
807         return 0;
808 }
809
810 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
811 {
812         int i;
813         uint64_t failed_devices;
814         struct dm_raid_superblock *sb;
815         struct raid_set *rs = container_of(mddev, struct raid_set, md);
816
817         sb = page_address(rdev->sb_page);
818         failed_devices = le64_to_cpu(sb->failed_devices);
819
820         for (i = 0; i < mddev->raid_disks; i++)
821                 if (!rs->dev[i].data_dev ||
822                     test_bit(Faulty, &(rs->dev[i].rdev.flags)))
823                         failed_devices |= (1ULL << i);
824
825         memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
826
827         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
828         sb->features = cpu_to_le32(0);  /* No features yet */
829
830         sb->num_devices = cpu_to_le32(mddev->raid_disks);
831         sb->array_position = cpu_to_le32(rdev->raid_disk);
832
833         sb->events = cpu_to_le64(mddev->events);
834         sb->failed_devices = cpu_to_le64(failed_devices);
835
836         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
837         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
838
839         sb->level = cpu_to_le32(mddev->level);
840         sb->layout = cpu_to_le32(mddev->layout);
841         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
842 }
843
844 /*
845  * super_load
846  *
847  * This function creates a superblock if one is not found on the device
848  * and will decide which superblock to use if there's a choice.
849  *
850  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
851  */
852 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
853 {
854         int ret;
855         struct dm_raid_superblock *sb;
856         struct dm_raid_superblock *refsb;
857         uint64_t events_sb, events_refsb;
858
859         rdev->sb_start = 0;
860         rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
861         if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
862                 DMERR("superblock size of a logical block is no longer valid");
863                 return -EINVAL;
864         }
865
866         ret = read_disk_sb(rdev, rdev->sb_size);
867         if (ret)
868                 return ret;
869
870         sb = page_address(rdev->sb_page);
871
872         /*
873          * Two cases that we want to write new superblocks and rebuild:
874          * 1) New device (no matching magic number)
875          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
876          */
877         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
878             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
879                 super_sync(rdev->mddev, rdev);
880
881                 set_bit(FirstUse, &rdev->flags);
882
883                 /* Force writing of superblocks to disk */
884                 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
885
886                 /* Any superblock is better than none, choose that if given */
887                 return refdev ? 0 : 1;
888         }
889
890         if (!refdev)
891                 return 1;
892
893         events_sb = le64_to_cpu(sb->events);
894
895         refsb = page_address(refdev->sb_page);
896         events_refsb = le64_to_cpu(refsb->events);
897
898         return (events_sb > events_refsb) ? 1 : 0;
899 }
900
901 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
902 {
903         int role;
904         struct raid_set *rs = container_of(mddev, struct raid_set, md);
905         uint64_t events_sb;
906         uint64_t failed_devices;
907         struct dm_raid_superblock *sb;
908         uint32_t new_devs = 0;
909         uint32_t rebuilds = 0;
910         struct md_rdev *r;
911         struct dm_raid_superblock *sb2;
912
913         sb = page_address(rdev->sb_page);
914         events_sb = le64_to_cpu(sb->events);
915         failed_devices = le64_to_cpu(sb->failed_devices);
916
917         /*
918          * Initialise to 1 if this is a new superblock.
919          */
920         mddev->events = events_sb ? : 1;
921
922         /*
923          * Reshaping is not currently allowed
924          */
925         if (le32_to_cpu(sb->level) != mddev->level) {
926                 DMERR("Reshaping arrays not yet supported. (RAID level change)");
927                 return -EINVAL;
928         }
929         if (le32_to_cpu(sb->layout) != mddev->layout) {
930                 DMERR("Reshaping arrays not yet supported. (RAID layout change)");
931                 DMERR("  0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
932                 DMERR("  Old layout: %s w/ %d copies",
933                       raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
934                       raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
935                 DMERR("  New layout: %s w/ %d copies",
936                       raid10_md_layout_to_format(mddev->layout),
937                       raid10_md_layout_to_copies(mddev->layout));
938                 return -EINVAL;
939         }
940         if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
941                 DMERR("Reshaping arrays not yet supported. (stripe sectors change)");
942                 return -EINVAL;
943         }
944
945         /* We can only change the number of devices in RAID1 right now */
946         if ((rs->raid_type->level != 1) &&
947             (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
948                 DMERR("Reshaping arrays not yet supported. (device count change)");
949                 return -EINVAL;
950         }
951
952         if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
953                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
954
955         /*
956          * During load, we set FirstUse if a new superblock was written.
957          * There are two reasons we might not have a superblock:
958          * 1) The array is brand new - in which case, all of the
959          *    devices must have their In_sync bit set.  Also,
960          *    recovery_cp must be 0, unless forced.
961          * 2) This is a new device being added to an old array
962          *    and the new device needs to be rebuilt - in which
963          *    case the In_sync bit will /not/ be set and
964          *    recovery_cp must be MaxSector.
965          */
966         rdev_for_each(r, mddev) {
967                 if (!test_bit(In_sync, &r->flags)) {
968                         DMINFO("Device %d specified for rebuild: "
969                                "Clearing superblock", r->raid_disk);
970                         rebuilds++;
971                 } else if (test_bit(FirstUse, &r->flags))
972                         new_devs++;
973         }
974
975         if (!rebuilds) {
976                 if (new_devs == mddev->raid_disks) {
977                         DMINFO("Superblocks created for new array");
978                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
979                 } else if (new_devs) {
980                         DMERR("New device injected "
981                               "into existing array without 'rebuild' "
982                               "parameter specified");
983                         return -EINVAL;
984                 }
985         } else if (new_devs) {
986                 DMERR("'rebuild' devices cannot be "
987                       "injected into an array with other first-time devices");
988                 return -EINVAL;
989         } else if (mddev->recovery_cp != MaxSector) {
990                 DMERR("'rebuild' specified while array is not in-sync");
991                 return -EINVAL;
992         }
993
994         /*
995          * Now we set the Faulty bit for those devices that are
996          * recorded in the superblock as failed.
997          */
998         rdev_for_each(r, mddev) {
999                 if (!r->sb_page)
1000                         continue;
1001                 sb2 = page_address(r->sb_page);
1002                 sb2->failed_devices = 0;
1003
1004                 /*
1005                  * Check for any device re-ordering.
1006                  */
1007                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
1008                         role = le32_to_cpu(sb2->array_position);
1009                         if (role != r->raid_disk) {
1010                                 if (rs->raid_type->level != 1) {
1011                                         rs->ti->error = "Cannot change device "
1012                                                 "positions in RAID array";
1013                                         return -EINVAL;
1014                                 }
1015                                 DMINFO("RAID1 device #%d now at position #%d",
1016                                        role, r->raid_disk);
1017                         }
1018
1019                         /*
1020                          * Partial recovery is performed on
1021                          * returning failed devices.
1022                          */
1023                         if (failed_devices & (1 << role))
1024                                 set_bit(Faulty, &r->flags);
1025                 }
1026         }
1027
1028         return 0;
1029 }
1030
1031 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
1032 {
1033         struct dm_raid_superblock *sb = page_address(rdev->sb_page);
1034
1035         /*
1036          * If mddev->events is not set, we know we have not yet initialized
1037          * the array.
1038          */
1039         if (!mddev->events && super_init_validation(mddev, rdev))
1040                 return -EINVAL;
1041
1042         mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
1043         rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
1044         if (!test_bit(FirstUse, &rdev->flags)) {
1045                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
1046                 if (rdev->recovery_offset != MaxSector)
1047                         clear_bit(In_sync, &rdev->flags);
1048         }
1049
1050         /*
1051          * If a device comes back, set it as not In_sync and no longer faulty.
1052          */
1053         if (test_bit(Faulty, &rdev->flags)) {
1054                 clear_bit(Faulty, &rdev->flags);
1055                 clear_bit(In_sync, &rdev->flags);
1056                 rdev->saved_raid_disk = rdev->raid_disk;
1057                 rdev->recovery_offset = 0;
1058         }
1059
1060         clear_bit(FirstUse, &rdev->flags);
1061
1062         return 0;
1063 }
1064
1065 /*
1066  * Analyse superblocks and select the freshest.
1067  */
1068 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
1069 {
1070         int ret;
1071         struct raid_dev *dev;
1072         struct md_rdev *rdev, *tmp, *freshest;
1073         struct mddev *mddev = &rs->md;
1074
1075         freshest = NULL;
1076         rdev_for_each_safe(rdev, tmp, mddev) {
1077                 /*
1078                  * Skipping super_load due to DMPF_SYNC will cause
1079                  * the array to undergo initialization again as
1080                  * though it were new.  This is the intended effect
1081                  * of the "sync" directive.
1082                  *
1083                  * When reshaping capability is added, we must ensure
1084                  * that the "sync" directive is disallowed during the
1085                  * reshape.
1086                  */
1087                 if (rs->print_flags & DMPF_SYNC)
1088                         continue;
1089
1090                 if (!rdev->meta_bdev)
1091                         continue;
1092
1093                 ret = super_load(rdev, freshest);
1094
1095                 switch (ret) {
1096                 case 1:
1097                         freshest = rdev;
1098                         break;
1099                 case 0:
1100                         break;
1101                 default:
1102                         dev = container_of(rdev, struct raid_dev, rdev);
1103                         if (dev->meta_dev)
1104                                 dm_put_device(ti, dev->meta_dev);
1105
1106                         dev->meta_dev = NULL;
1107                         rdev->meta_bdev = NULL;
1108
1109                         if (rdev->sb_page)
1110                                 put_page(rdev->sb_page);
1111
1112                         rdev->sb_page = NULL;
1113
1114                         rdev->sb_loaded = 0;
1115
1116                         /*
1117                          * We might be able to salvage the data device
1118                          * even though the meta device has failed.  For
1119                          * now, we behave as though '- -' had been
1120                          * set for this device in the table.
1121                          */
1122                         if (dev->data_dev)
1123                                 dm_put_device(ti, dev->data_dev);
1124
1125                         dev->data_dev = NULL;
1126                         rdev->bdev = NULL;
1127
1128                         list_del(&rdev->same_set);
1129                 }
1130         }
1131
1132         if (!freshest)
1133                 return 0;
1134
1135         if (validate_raid_redundancy(rs)) {
1136                 rs->ti->error = "Insufficient redundancy to activate array";
1137                 return -EINVAL;
1138         }
1139
1140         /*
1141          * Validation of the freshest device provides the source of
1142          * validation for the remaining devices.
1143          */
1144         ti->error = "Unable to assemble array: Invalid superblocks";
1145         if (super_validate(mddev, freshest))
1146                 return -EINVAL;
1147
1148         rdev_for_each(rdev, mddev)
1149                 if ((rdev != freshest) && super_validate(mddev, rdev))
1150                         return -EINVAL;
1151
1152         return 0;
1153 }
1154
1155 /*
1156  * Construct a RAID4/5/6 mapping:
1157  * Args:
1158  *      <raid_type> <#raid_params> <raid_params>                \
1159  *      <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1160  *
1161  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
1162  * details on possible <raid_params>.
1163  */
1164 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1165 {
1166         int ret;
1167         struct raid_type *rt;
1168         unsigned long num_raid_params, num_raid_devs;
1169         struct raid_set *rs = NULL;
1170
1171         /* Must have at least <raid_type> <#raid_params> */
1172         if (argc < 2) {
1173                 ti->error = "Too few arguments";
1174                 return -EINVAL;
1175         }
1176
1177         /* raid type */
1178         rt = get_raid_type(argv[0]);
1179         if (!rt) {
1180                 ti->error = "Unrecognised raid_type";
1181                 return -EINVAL;
1182         }
1183         argc--;
1184         argv++;
1185
1186         /* number of RAID parameters */
1187         if (kstrtoul(argv[0], 10, &num_raid_params) < 0) {
1188                 ti->error = "Cannot understand number of RAID parameters";
1189                 return -EINVAL;
1190         }
1191         argc--;
1192         argv++;
1193
1194         /* Skip over RAID params for now and find out # of devices */
1195         if (num_raid_params + 1 > argc) {
1196                 ti->error = "Arguments do not agree with counts given";
1197                 return -EINVAL;
1198         }
1199
1200         if ((kstrtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1201             (num_raid_devs >= INT_MAX)) {
1202                 ti->error = "Cannot understand number of raid devices";
1203                 return -EINVAL;
1204         }
1205
1206         rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1207         if (IS_ERR(rs))
1208                 return PTR_ERR(rs);
1209
1210         ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1211         if (ret)
1212                 goto bad;
1213
1214         ret = -EINVAL;
1215
1216         argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1217         argv += num_raid_params + 1;
1218
1219         if (argc != (num_raid_devs * 2)) {
1220                 ti->error = "Supplied RAID devices does not match the count given";
1221                 goto bad;
1222         }
1223
1224         ret = dev_parms(rs, argv);
1225         if (ret)
1226                 goto bad;
1227
1228         rs->md.sync_super = super_sync;
1229         ret = analyse_superblocks(ti, rs);
1230         if (ret)
1231                 goto bad;
1232
1233         INIT_WORK(&rs->md.event_work, do_table_event);
1234         ti->private = rs;
1235         ti->num_flush_bios = 1;
1236
1237         mutex_lock(&rs->md.reconfig_mutex);
1238         ret = md_run(&rs->md);
1239         rs->md.in_sync = 0; /* Assume already marked dirty */
1240         mutex_unlock(&rs->md.reconfig_mutex);
1241
1242         if (ret) {
1243                 ti->error = "Fail to run raid array";
1244                 goto bad;
1245         }
1246
1247         if (ti->len != rs->md.array_sectors) {
1248                 ti->error = "Array size does not match requested target length";
1249                 ret = -EINVAL;
1250                 goto size_mismatch;
1251         }
1252         rs->callbacks.congested_fn = raid_is_congested;
1253         dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1254
1255         mddev_suspend(&rs->md);
1256         return 0;
1257
1258 size_mismatch:
1259         md_stop(&rs->md);
1260 bad:
1261         context_free(rs);
1262
1263         return ret;
1264 }
1265
1266 static void raid_dtr(struct dm_target *ti)
1267 {
1268         struct raid_set *rs = ti->private;
1269
1270         list_del_init(&rs->callbacks.list);
1271         md_stop(&rs->md);
1272         context_free(rs);
1273 }
1274
1275 static int raid_map(struct dm_target *ti, struct bio *bio)
1276 {
1277         struct raid_set *rs = ti->private;
1278         struct mddev *mddev = &rs->md;
1279
1280         mddev->pers->make_request(mddev, bio);
1281
1282         return DM_MAPIO_SUBMITTED;
1283 }
1284
1285 static const char *decipher_sync_action(struct mddev *mddev)
1286 {
1287         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
1288                 return "frozen";
1289
1290         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1291             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
1292                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1293                         return "reshape";
1294
1295                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1296                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1297                                 return "resync";
1298                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1299                                 return "check";
1300                         return "repair";
1301                 }
1302
1303                 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
1304                         return "recover";
1305         }
1306
1307         return "idle";
1308 }
1309
1310 static void raid_status(struct dm_target *ti, status_type_t type,
1311                         unsigned status_flags, char *result, unsigned maxlen)
1312 {
1313         struct raid_set *rs = ti->private;
1314         unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1315         unsigned sz = 0;
1316         int i, array_in_sync = 0;
1317         sector_t sync;
1318
1319         switch (type) {
1320         case STATUSTYPE_INFO:
1321                 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1322
1323                 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1324                         sync = rs->md.curr_resync_completed;
1325                 else
1326                         sync = rs->md.recovery_cp;
1327
1328                 if (sync >= rs->md.resync_max_sectors) {
1329                         /*
1330                          * Sync complete.
1331                          */
1332                         array_in_sync = 1;
1333                         sync = rs->md.resync_max_sectors;
1334                 } else if (test_bit(MD_RECOVERY_REQUESTED, &rs->md.recovery)) {
1335                         /*
1336                          * If "check" or "repair" is occurring, the array has
1337                          * undergone and initial sync and the health characters
1338                          * should not be 'a' anymore.
1339                          */
1340                         array_in_sync = 1;
1341                 } else {
1342                         /*
1343                          * The array may be doing an initial sync, or it may
1344                          * be rebuilding individual components.  If all the
1345                          * devices are In_sync, then it is the array that is
1346                          * being initialized.
1347                          */
1348                         for (i = 0; i < rs->md.raid_disks; i++)
1349                                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1350                                         array_in_sync = 1;
1351                 }
1352
1353                 /*
1354                  * Status characters:
1355                  *  'D' = Dead/Failed device
1356                  *  'a' = Alive but not in-sync
1357                  *  'A' = Alive and in-sync
1358                  */
1359                 for (i = 0; i < rs->md.raid_disks; i++) {
1360                         if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1361                                 DMEMIT("D");
1362                         else if (!array_in_sync ||
1363                                  !test_bit(In_sync, &rs->dev[i].rdev.flags))
1364                                 DMEMIT("a");
1365                         else
1366                                 DMEMIT("A");
1367                 }
1368
1369                 /*
1370                  * In-sync ratio:
1371                  *  The in-sync ratio shows the progress of:
1372                  *   - Initializing the array
1373                  *   - Rebuilding a subset of devices of the array
1374                  *  The user can distinguish between the two by referring
1375                  *  to the status characters.
1376                  */
1377                 DMEMIT(" %llu/%llu",
1378                        (unsigned long long) sync,
1379                        (unsigned long long) rs->md.resync_max_sectors);
1380
1381                 /*
1382                  * Sync action:
1383                  *   See Documentation/device-mapper/dm-raid.c for
1384                  *   information on each of these states.
1385                  */
1386                 DMEMIT(" %s", decipher_sync_action(&rs->md));
1387
1388                 /*
1389                  * resync_mismatches/mismatch_cnt
1390                  *   This field shows the number of discrepancies found when
1391                  *   performing a "check" of the array.
1392                  */
1393                 DMEMIT(" %llu",
1394                        (strcmp(rs->md.last_sync_action, "check")) ? 0 :
1395                        (unsigned long long)
1396                        atomic64_read(&rs->md.resync_mismatches));
1397                 break;
1398         case STATUSTYPE_TABLE:
1399                 /* The string you would use to construct this array */
1400                 for (i = 0; i < rs->md.raid_disks; i++) {
1401                         if ((rs->print_flags & DMPF_REBUILD) &&
1402                             rs->dev[i].data_dev &&
1403                             !test_bit(In_sync, &rs->dev[i].rdev.flags))
1404                                 raid_param_cnt += 2; /* for rebuilds */
1405                         if (rs->dev[i].data_dev &&
1406                             test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1407                                 raid_param_cnt += 2;
1408                 }
1409
1410                 raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1411                 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1412                         raid_param_cnt--;
1413
1414                 DMEMIT("%s %u %u", rs->raid_type->name,
1415                        raid_param_cnt, rs->md.chunk_sectors);
1416
1417                 if ((rs->print_flags & DMPF_SYNC) &&
1418                     (rs->md.recovery_cp == MaxSector))
1419                         DMEMIT(" sync");
1420                 if (rs->print_flags & DMPF_NOSYNC)
1421                         DMEMIT(" nosync");
1422
1423                 for (i = 0; i < rs->md.raid_disks; i++)
1424                         if ((rs->print_flags & DMPF_REBUILD) &&
1425                             rs->dev[i].data_dev &&
1426                             !test_bit(In_sync, &rs->dev[i].rdev.flags))
1427                                 DMEMIT(" rebuild %u", i);
1428
1429                 if (rs->print_flags & DMPF_DAEMON_SLEEP)
1430                         DMEMIT(" daemon_sleep %lu",
1431                                rs->md.bitmap_info.daemon_sleep);
1432
1433                 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1434                         DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1435
1436                 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1437                         DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1438
1439                 for (i = 0; i < rs->md.raid_disks; i++)
1440                         if (rs->dev[i].data_dev &&
1441                             test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1442                                 DMEMIT(" write_mostly %u", i);
1443
1444                 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1445                         DMEMIT(" max_write_behind %lu",
1446                                rs->md.bitmap_info.max_write_behind);
1447
1448                 if (rs->print_flags & DMPF_STRIPE_CACHE) {
1449                         struct r5conf *conf = rs->md.private;
1450
1451                         /* convert from kiB to sectors */
1452                         DMEMIT(" stripe_cache %d",
1453                                conf ? conf->max_nr_stripes * 2 : 0);
1454                 }
1455
1456                 if (rs->print_flags & DMPF_REGION_SIZE)
1457                         DMEMIT(" region_size %lu",
1458                                rs->md.bitmap_info.chunksize >> 9);
1459
1460                 if (rs->print_flags & DMPF_RAID10_COPIES)
1461                         DMEMIT(" raid10_copies %u",
1462                                raid10_md_layout_to_copies(rs->md.layout));
1463
1464                 if (rs->print_flags & DMPF_RAID10_FORMAT)
1465                         DMEMIT(" raid10_format %s",
1466                                raid10_md_layout_to_format(rs->md.layout));
1467
1468                 DMEMIT(" %d", rs->md.raid_disks);
1469                 for (i = 0; i < rs->md.raid_disks; i++) {
1470                         if (rs->dev[i].meta_dev)
1471                                 DMEMIT(" %s", rs->dev[i].meta_dev->name);
1472                         else
1473                                 DMEMIT(" -");
1474
1475                         if (rs->dev[i].data_dev)
1476                                 DMEMIT(" %s", rs->dev[i].data_dev->name);
1477                         else
1478                                 DMEMIT(" -");
1479                 }
1480         }
1481 }
1482
1483 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
1484 {
1485         struct raid_set *rs = ti->private;
1486         struct mddev *mddev = &rs->md;
1487
1488         if (!strcasecmp(argv[0], "reshape")) {
1489                 DMERR("Reshape not supported.");
1490                 return -EINVAL;
1491         }
1492
1493         if (!mddev->pers || !mddev->pers->sync_request)
1494                 return -EINVAL;
1495
1496         if (!strcasecmp(argv[0], "frozen"))
1497                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1498         else
1499                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1500
1501         if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
1502                 if (mddev->sync_thread) {
1503                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1504                         md_reap_sync_thread(mddev);
1505                 }
1506         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1507                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1508                 return -EBUSY;
1509         else if (!strcasecmp(argv[0], "resync"))
1510                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1511         else if (!strcasecmp(argv[0], "recover")) {
1512                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1513                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1514         } else {
1515                 if (!strcasecmp(argv[0], "check"))
1516                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1517                 else if (!!strcasecmp(argv[0], "repair"))
1518                         return -EINVAL;
1519                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1520                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1521         }
1522         if (mddev->ro == 2) {
1523                 /* A write to sync_action is enough to justify
1524                  * canceling read-auto mode
1525                  */
1526                 mddev->ro = 0;
1527                 if (!mddev->suspended)
1528                         md_wakeup_thread(mddev->sync_thread);
1529         }
1530         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1531         if (!mddev->suspended)
1532                 md_wakeup_thread(mddev->thread);
1533
1534         return 0;
1535 }
1536
1537 static int raid_iterate_devices(struct dm_target *ti,
1538                                 iterate_devices_callout_fn fn, void *data)
1539 {
1540         struct raid_set *rs = ti->private;
1541         unsigned i;
1542         int ret = 0;
1543
1544         for (i = 0; !ret && i < rs->md.raid_disks; i++)
1545                 if (rs->dev[i].data_dev)
1546                         ret = fn(ti,
1547                                  rs->dev[i].data_dev,
1548                                  0, /* No offset on data devs */
1549                                  rs->md.dev_sectors,
1550                                  data);
1551
1552         return ret;
1553 }
1554
1555 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1556 {
1557         struct raid_set *rs = ti->private;
1558         unsigned chunk_size = rs->md.chunk_sectors << 9;
1559         struct r5conf *conf = rs->md.private;
1560
1561         blk_limits_io_min(limits, chunk_size);
1562         blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1563 }
1564
1565 static void raid_presuspend(struct dm_target *ti)
1566 {
1567         struct raid_set *rs = ti->private;
1568
1569         md_stop_writes(&rs->md);
1570 }
1571
1572 static void raid_postsuspend(struct dm_target *ti)
1573 {
1574         struct raid_set *rs = ti->private;
1575
1576         mddev_suspend(&rs->md);
1577 }
1578
1579 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
1580 {
1581         int i;
1582         uint64_t failed_devices, cleared_failed_devices = 0;
1583         unsigned long flags;
1584         struct dm_raid_superblock *sb;
1585         struct md_rdev *r;
1586
1587         for (i = 0; i < rs->md.raid_disks; i++) {
1588                 r = &rs->dev[i].rdev;
1589                 if (test_bit(Faulty, &r->flags) && r->sb_page &&
1590                     sync_page_io(r, 0, r->sb_size, r->sb_page, READ, 1)) {
1591                         DMINFO("Faulty %s device #%d has readable super block."
1592                                "  Attempting to revive it.",
1593                                rs->raid_type->name, i);
1594
1595                         /*
1596                          * Faulty bit may be set, but sometimes the array can
1597                          * be suspended before the personalities can respond
1598                          * by removing the device from the array (i.e. calling
1599                          * 'hot_remove_disk').  If they haven't yet removed
1600                          * the failed device, its 'raid_disk' number will be
1601                          * '>= 0' - meaning we must call this function
1602                          * ourselves.
1603                          */
1604                         if ((r->raid_disk >= 0) &&
1605                             (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
1606                                 /* Failed to revive this device, try next */
1607                                 continue;
1608
1609                         r->raid_disk = i;
1610                         r->saved_raid_disk = i;
1611                         flags = r->flags;
1612                         clear_bit(Faulty, &r->flags);
1613                         clear_bit(WriteErrorSeen, &r->flags);
1614                         clear_bit(In_sync, &r->flags);
1615                         if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
1616                                 r->raid_disk = -1;
1617                                 r->saved_raid_disk = -1;
1618                                 r->flags = flags;
1619                         } else {
1620                                 r->recovery_offset = 0;
1621                                 cleared_failed_devices |= 1 << i;
1622                         }
1623                 }
1624         }
1625         if (cleared_failed_devices) {
1626                 rdev_for_each(r, &rs->md) {
1627                         sb = page_address(r->sb_page);
1628                         failed_devices = le64_to_cpu(sb->failed_devices);
1629                         failed_devices &= ~cleared_failed_devices;
1630                         sb->failed_devices = cpu_to_le64(failed_devices);
1631                 }
1632         }
1633 }
1634
1635 static void raid_resume(struct dm_target *ti)
1636 {
1637         struct raid_set *rs = ti->private;
1638
1639         set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1640         if (!rs->bitmap_loaded) {
1641                 bitmap_load(&rs->md);
1642                 rs->bitmap_loaded = 1;
1643         } else {
1644                 /*
1645                  * A secondary resume while the device is active.
1646                  * Take this opportunity to check whether any failed
1647                  * devices are reachable again.
1648                  */
1649                 attempt_restore_of_faulty_devices(rs);
1650         }
1651
1652         clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1653         mddev_resume(&rs->md);
1654 }
1655
1656 static struct target_type raid_target = {
1657         .name = "raid",
1658         .version = {1, 5, 2},
1659         .module = THIS_MODULE,
1660         .ctr = raid_ctr,
1661         .dtr = raid_dtr,
1662         .map = raid_map,
1663         .status = raid_status,
1664         .message = raid_message,
1665         .iterate_devices = raid_iterate_devices,
1666         .io_hints = raid_io_hints,
1667         .presuspend = raid_presuspend,
1668         .postsuspend = raid_postsuspend,
1669         .resume = raid_resume,
1670 };
1671
1672 static int __init dm_raid_init(void)
1673 {
1674         DMINFO("Loading target version %u.%u.%u",
1675                raid_target.version[0],
1676                raid_target.version[1],
1677                raid_target.version[2]);
1678         return dm_register_target(&raid_target);
1679 }
1680
1681 static void __exit dm_raid_exit(void)
1682 {
1683         dm_unregister_target(&raid_target);
1684 }
1685
1686 module_init(dm_raid_init);
1687 module_exit(dm_raid_exit);
1688
1689 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1690 MODULE_ALIAS("dm-raid1");
1691 MODULE_ALIAS("dm-raid10");
1692 MODULE_ALIAS("dm-raid4");
1693 MODULE_ALIAS("dm-raid5");
1694 MODULE_ALIAS("dm-raid6");
1695 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1696 MODULE_LICENSE("GPL");