2 * Copyright (C) 2003 Sistina Software Limited.
3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
8 #include <linux/device-mapper.h>
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
35 struct list_head list;
37 struct priority_group *pg; /* Owning PG */
38 unsigned fail_count; /* Cumulative failure count */
41 struct delayed_work activate_path;
43 bool is_active:1; /* Path status */
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
49 * Paths are grouped into Priority Groups and numbered from 1 upwards.
50 * Each has a path selector which controls which path gets used.
52 struct priority_group {
53 struct list_head list;
55 struct multipath *m; /* Owning multipath instance */
56 struct path_selector ps;
58 unsigned pg_num; /* Reference number */
59 unsigned nr_pgpaths; /* Number of paths in PG */
60 struct list_head pgpaths;
62 bool bypassed:1; /* Temporarily bypass this PG? */
65 /* Multipath context */
67 unsigned long flags; /* Multipath state flags */
70 enum dm_queue_mode queue_mode;
72 struct pgpath *current_pgpath;
73 struct priority_group *current_pg;
74 struct priority_group *next_pg; /* Switch to this PG if set */
76 atomic_t nr_valid_paths; /* Total number of usable paths */
77 unsigned nr_priority_groups;
78 struct list_head priority_groups;
80 const char *hw_handler_name;
81 char *hw_handler_params;
82 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */
83 unsigned pg_init_retries; /* Number of times to retry pg_init */
84 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */
85 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */
86 atomic_t pg_init_count; /* Number of times pg_init called */
88 struct mutex work_mutex;
89 struct work_struct trigger_event;
92 struct work_struct process_queued_bios;
93 struct bio_list queued_bios;
97 * Context information attached to each io we process.
100 struct pgpath *pgpath;
104 typedef int (*action_fn) (struct pgpath *pgpath);
106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
107 static void trigger_event(struct work_struct *work);
108 static void activate_or_offline_path(struct pgpath *pgpath);
109 static void activate_path_work(struct work_struct *work);
110 static void process_queued_bios(struct work_struct *work);
112 /*-----------------------------------------------
113 * Multipath state flags.
114 *-----------------------------------------------*/
116 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */
117 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */
118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */
119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */
120 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */
121 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */
122 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */
124 /*-----------------------------------------------
125 * Allocation routines
126 *-----------------------------------------------*/
128 static struct pgpath *alloc_pgpath(void)
130 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
135 pgpath->is_active = true;
140 static void free_pgpath(struct pgpath *pgpath)
145 static struct priority_group *alloc_priority_group(void)
147 struct priority_group *pg;
149 pg = kzalloc(sizeof(*pg), GFP_KERNEL);
152 INIT_LIST_HEAD(&pg->pgpaths);
157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
159 struct pgpath *pgpath, *tmp;
161 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
162 list_del(&pgpath->list);
163 dm_put_device(ti, pgpath->path.dev);
168 static void free_priority_group(struct priority_group *pg,
169 struct dm_target *ti)
171 struct path_selector *ps = &pg->ps;
174 ps->type->destroy(ps);
175 dm_put_path_selector(ps->type);
178 free_pgpaths(&pg->pgpaths, ti);
182 static struct multipath *alloc_multipath(struct dm_target *ti)
186 m = kzalloc(sizeof(*m), GFP_KERNEL);
188 INIT_LIST_HEAD(&m->priority_groups);
189 spin_lock_init(&m->lock);
190 atomic_set(&m->nr_valid_paths, 0);
191 INIT_WORK(&m->trigger_event, trigger_event);
192 mutex_init(&m->work_mutex);
194 m->queue_mode = DM_TYPE_NONE;
203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
205 if (m->queue_mode == DM_TYPE_NONE) {
206 m->queue_mode = DM_TYPE_REQUEST_BASED;
207 } else if (m->queue_mode == DM_TYPE_BIO_BASED) {
208 INIT_WORK(&m->process_queued_bios, process_queued_bios);
210 * bio-based doesn't support any direct scsi_dh management;
211 * it just discovers if a scsi_dh is attached.
213 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
216 dm_table_set_type(ti->table, m->queue_mode);
219 * Init fields that are only used when a scsi_dh is attached
220 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
222 set_bit(MPATHF_QUEUE_IO, &m->flags);
223 atomic_set(&m->pg_init_in_progress, 0);
224 atomic_set(&m->pg_init_count, 0);
225 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
226 init_waitqueue_head(&m->pg_init_wait);
231 static void free_multipath(struct multipath *m)
233 struct priority_group *pg, *tmp;
235 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
237 free_priority_group(pg, m->ti);
240 kfree(m->hw_handler_name);
241 kfree(m->hw_handler_params);
242 mutex_destroy(&m->work_mutex);
246 static struct dm_mpath_io *get_mpio(union map_info *info)
251 static size_t multipath_per_bio_data_size(void)
253 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
256 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
258 return dm_per_bio_data(bio, multipath_per_bio_data_size());
261 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
263 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
264 void *bio_details = mpio + 1;
268 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
270 struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
273 mpio->nr_bytes = bio->bi_iter.bi_size;
277 dm_bio_record(bio_details, bio);
280 /*-----------------------------------------------
282 *-----------------------------------------------*/
284 static int __pg_init_all_paths(struct multipath *m)
286 struct pgpath *pgpath;
287 unsigned long pg_init_delay = 0;
289 lockdep_assert_held(&m->lock);
291 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
294 atomic_inc(&m->pg_init_count);
295 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
297 /* Check here to reset pg_init_required */
301 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
302 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
303 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
304 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
305 /* Skip failed paths */
306 if (!pgpath->is_active)
308 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
310 atomic_inc(&m->pg_init_in_progress);
312 return atomic_read(&m->pg_init_in_progress);
315 static int pg_init_all_paths(struct multipath *m)
320 spin_lock_irqsave(&m->lock, flags);
321 ret = __pg_init_all_paths(m);
322 spin_unlock_irqrestore(&m->lock, flags);
327 static void __switch_pg(struct multipath *m, struct priority_group *pg)
331 /* Must we initialise the PG first, and queue I/O till it's ready? */
332 if (m->hw_handler_name) {
333 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
334 set_bit(MPATHF_QUEUE_IO, &m->flags);
336 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
337 clear_bit(MPATHF_QUEUE_IO, &m->flags);
340 atomic_set(&m->pg_init_count, 0);
343 static struct pgpath *choose_path_in_pg(struct multipath *m,
344 struct priority_group *pg,
348 struct dm_path *path;
349 struct pgpath *pgpath;
351 path = pg->ps.type->select_path(&pg->ps, nr_bytes);
353 return ERR_PTR(-ENXIO);
355 pgpath = path_to_pgpath(path);
357 if (unlikely(READ_ONCE(m->current_pg) != pg)) {
358 /* Only update current_pgpath if pg changed */
359 spin_lock_irqsave(&m->lock, flags);
360 m->current_pgpath = pgpath;
362 spin_unlock_irqrestore(&m->lock, flags);
368 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
371 struct priority_group *pg;
372 struct pgpath *pgpath;
373 unsigned bypassed = 1;
375 if (!atomic_read(&m->nr_valid_paths)) {
376 clear_bit(MPATHF_QUEUE_IO, &m->flags);
380 /* Were we instructed to switch PG? */
381 if (READ_ONCE(m->next_pg)) {
382 spin_lock_irqsave(&m->lock, flags);
385 spin_unlock_irqrestore(&m->lock, flags);
386 goto check_current_pg;
389 spin_unlock_irqrestore(&m->lock, flags);
390 pgpath = choose_path_in_pg(m, pg, nr_bytes);
391 if (!IS_ERR_OR_NULL(pgpath))
395 /* Don't change PG until it has no remaining paths */
397 pg = READ_ONCE(m->current_pg);
399 pgpath = choose_path_in_pg(m, pg, nr_bytes);
400 if (!IS_ERR_OR_NULL(pgpath))
405 * Loop through priority groups until we find a valid path.
406 * First time we skip PGs marked 'bypassed'.
407 * Second time we only try the ones we skipped, but set
408 * pg_init_delay_retry so we do not hammer controllers.
411 list_for_each_entry(pg, &m->priority_groups, list) {
412 if (pg->bypassed == !!bypassed)
414 pgpath = choose_path_in_pg(m, pg, nr_bytes);
415 if (!IS_ERR_OR_NULL(pgpath)) {
417 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
421 } while (bypassed--);
424 spin_lock_irqsave(&m->lock, flags);
425 m->current_pgpath = NULL;
426 m->current_pg = NULL;
427 spin_unlock_irqrestore(&m->lock, flags);
433 * dm_report_EIO() is a macro instead of a function to make pr_debug()
434 * report the function name and line number of the function from which
435 * it has been invoked.
437 #define dm_report_EIO(m) \
439 struct mapped_device *md = dm_table_get_md((m)->ti->table); \
441 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
442 dm_device_name(md), \
443 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \
444 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \
445 dm_noflush_suspending((m)->ti)); \
449 * Check whether bios must be queued in the device-mapper core rather
450 * than here in the target.
452 * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
453 * the same value then we are not between multipath_presuspend()
454 * and multipath_resume() calls and we have no need to check
455 * for the DMF_NOFLUSH_SUSPENDING flag.
457 static bool __must_push_back(struct multipath *m, unsigned long flags)
459 return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
460 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
461 dm_noflush_suspending(m->ti));
465 * Following functions use READ_ONCE to get atomic access to
466 * all m->flags to avoid taking spinlock
468 static bool must_push_back_rq(struct multipath *m)
470 unsigned long flags = READ_ONCE(m->flags);
471 return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
474 static bool must_push_back_bio(struct multipath *m)
476 unsigned long flags = READ_ONCE(m->flags);
477 return __must_push_back(m, flags);
481 * Map cloned requests (request-based multipath)
483 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
484 union map_info *map_context,
485 struct request **__clone)
487 struct multipath *m = ti->private;
488 size_t nr_bytes = blk_rq_bytes(rq);
489 struct pgpath *pgpath;
490 struct block_device *bdev;
491 struct dm_mpath_io *mpio = get_mpio(map_context);
492 struct request_queue *q;
493 struct request *clone;
495 /* Do we need to select a new pgpath? */
496 pgpath = READ_ONCE(m->current_pgpath);
497 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
498 pgpath = choose_pgpath(m, nr_bytes);
501 if (must_push_back_rq(m))
502 return DM_MAPIO_DELAY_REQUEUE;
503 dm_report_EIO(m); /* Failed */
504 return DM_MAPIO_KILL;
505 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
506 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
507 pg_init_all_paths(m);
508 return DM_MAPIO_DELAY_REQUEUE;
511 mpio->pgpath = pgpath;
512 mpio->nr_bytes = nr_bytes;
514 bdev = pgpath->path.dev->bdev;
515 q = bdev_get_queue(bdev);
516 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE,
519 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */
520 if (blk_queue_dying(q)) {
521 atomic_inc(&m->pg_init_in_progress);
522 activate_or_offline_path(pgpath);
523 return DM_MAPIO_DELAY_REQUEUE;
527 * blk-mq's SCHED_RESTART can cover this requeue, so we
528 * needn't deal with it by DELAY_REQUEUE. More importantly,
529 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
530 * get the queue busy feedback (via BLK_STS_RESOURCE),
531 * otherwise I/O merging can suffer.
533 return DM_MAPIO_REQUEUE;
535 clone->bio = clone->biotail = NULL;
536 clone->rq_disk = bdev->bd_disk;
537 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
540 if (pgpath->pg->ps.type->start_io)
541 pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
544 return DM_MAPIO_REMAPPED;
547 static void multipath_release_clone(struct request *clone,
548 union map_info *map_context)
550 if (unlikely(map_context)) {
552 * non-NULL map_context means caller is still map
553 * method; must undo multipath_clone_and_map()
555 struct dm_mpath_io *mpio = get_mpio(map_context);
556 struct pgpath *pgpath = mpio->pgpath;
558 if (pgpath && pgpath->pg->ps.type->end_io)
559 pgpath->pg->ps.type->end_io(&pgpath->pg->ps,
564 blk_put_request(clone);
568 * Map cloned bios (bio-based multipath)
571 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
573 struct pgpath *pgpath;
577 /* Do we need to select a new pgpath? */
578 pgpath = READ_ONCE(m->current_pgpath);
579 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
580 if (!pgpath || !queue_io)
581 pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
583 if ((pgpath && queue_io) ||
584 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
585 /* Queue for the daemon to resubmit */
586 spin_lock_irqsave(&m->lock, flags);
587 bio_list_add(&m->queued_bios, bio);
588 spin_unlock_irqrestore(&m->lock, flags);
590 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
591 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
592 pg_init_all_paths(m);
594 queue_work(kmultipathd, &m->process_queued_bios);
596 return ERR_PTR(-EAGAIN);
602 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
603 struct dm_mpath_io *mpio)
605 struct pgpath *pgpath = __map_bio(m, bio);
608 return DM_MAPIO_SUBMITTED;
611 if (must_push_back_bio(m))
612 return DM_MAPIO_REQUEUE;
614 return DM_MAPIO_KILL;
617 mpio->pgpath = pgpath;
620 bio_set_dev(bio, pgpath->path.dev->bdev);
621 bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
623 if (pgpath->pg->ps.type->start_io)
624 pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
627 return DM_MAPIO_REMAPPED;
630 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
632 struct multipath *m = ti->private;
633 struct dm_mpath_io *mpio = NULL;
635 multipath_init_per_bio_data(bio, &mpio);
636 return __multipath_map_bio(m, bio, mpio);
639 static void process_queued_io_list(struct multipath *m)
641 if (m->queue_mode == DM_TYPE_REQUEST_BASED)
642 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
643 else if (m->queue_mode == DM_TYPE_BIO_BASED)
644 queue_work(kmultipathd, &m->process_queued_bios);
647 static void process_queued_bios(struct work_struct *work)
652 struct bio_list bios;
653 struct blk_plug plug;
654 struct multipath *m =
655 container_of(work, struct multipath, process_queued_bios);
657 bio_list_init(&bios);
659 spin_lock_irqsave(&m->lock, flags);
661 if (bio_list_empty(&m->queued_bios)) {
662 spin_unlock_irqrestore(&m->lock, flags);
666 bio_list_merge(&bios, &m->queued_bios);
667 bio_list_init(&m->queued_bios);
669 spin_unlock_irqrestore(&m->lock, flags);
671 blk_start_plug(&plug);
672 while ((bio = bio_list_pop(&bios))) {
673 struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
674 dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
675 r = __multipath_map_bio(m, bio, mpio);
678 bio->bi_status = BLK_STS_IOERR;
681 case DM_MAPIO_REQUEUE:
682 bio->bi_status = BLK_STS_DM_REQUEUE;
685 case DM_MAPIO_REMAPPED:
686 generic_make_request(bio);
688 case DM_MAPIO_SUBMITTED:
691 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
694 blk_finish_plug(&plug);
698 * If we run out of usable paths, should we queue I/O or error it?
700 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
705 spin_lock_irqsave(&m->lock, flags);
706 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
707 (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
708 (!save_old_value && queue_if_no_path));
709 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
710 spin_unlock_irqrestore(&m->lock, flags);
712 if (!queue_if_no_path) {
713 dm_table_run_md_queue_async(m->ti->table);
714 process_queued_io_list(m);
721 * An event is triggered whenever a path is taken out of use.
722 * Includes path failure and PG bypass.
724 static void trigger_event(struct work_struct *work)
726 struct multipath *m =
727 container_of(work, struct multipath, trigger_event);
729 dm_table_event(m->ti->table);
732 /*-----------------------------------------------------------------
733 * Constructor/argument parsing:
734 * <#multipath feature args> [<arg>]*
735 * <#hw_handler args> [hw_handler [<arg>]*]
737 * <initial priority group>
738 * [<selector> <#selector args> [<arg>]*
739 * <#paths> <#per-path selector args>
740 * [<path> [<arg>]* ]+ ]+
741 *---------------------------------------------------------------*/
742 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
743 struct dm_target *ti)
746 struct path_selector_type *pst;
749 static const struct dm_arg _args[] = {
750 {0, 1024, "invalid number of path selector args"},
753 pst = dm_get_path_selector(dm_shift_arg(as));
755 ti->error = "unknown path selector type";
759 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
761 dm_put_path_selector(pst);
765 r = pst->create(&pg->ps, ps_argc, as->argv);
767 dm_put_path_selector(pst);
768 ti->error = "path selector constructor failed";
773 dm_consume_args(as, ps_argc);
778 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
779 const char **attached_handler_name, char **error)
781 struct request_queue *q = bdev_get_queue(bdev);
784 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
786 if (*attached_handler_name) {
788 * Clear any hw_handler_params associated with a
789 * handler that isn't already attached.
791 if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) {
792 kfree(m->hw_handler_params);
793 m->hw_handler_params = NULL;
797 * Reset hw_handler_name to match the attached handler
799 * NB. This modifies the table line to show the actual
800 * handler instead of the original table passed in.
802 kfree(m->hw_handler_name);
803 m->hw_handler_name = *attached_handler_name;
804 *attached_handler_name = NULL;
808 if (m->hw_handler_name) {
809 r = scsi_dh_attach(q, m->hw_handler_name);
811 char b[BDEVNAME_SIZE];
813 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
818 *error = "error attaching hardware handler";
822 if (m->hw_handler_params) {
823 r = scsi_dh_set_params(q, m->hw_handler_params);
825 *error = "unable to set hardware handler parameters";
834 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
835 struct dm_target *ti)
839 struct multipath *m = ti->private;
840 struct request_queue *q;
841 const char *attached_handler_name = NULL;
843 /* we need at least a path arg */
845 ti->error = "no device given";
846 return ERR_PTR(-EINVAL);
851 return ERR_PTR(-ENOMEM);
853 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
856 ti->error = "error getting device";
860 q = bdev_get_queue(p->path.dev->bdev);
861 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
862 if (attached_handler_name || m->hw_handler_name) {
863 INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
864 r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
865 kfree(attached_handler_name);
867 dm_put_device(ti, p->path.dev);
872 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
874 dm_put_device(ti, p->path.dev);
884 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
887 static const struct dm_arg _args[] = {
888 {1, 1024, "invalid number of paths"},
889 {0, 1024, "invalid number of selector args"}
893 unsigned i, nr_selector_args, nr_args;
894 struct priority_group *pg;
895 struct dm_target *ti = m->ti;
899 ti->error = "not enough priority group arguments";
900 return ERR_PTR(-EINVAL);
903 pg = alloc_priority_group();
905 ti->error = "couldn't allocate priority group";
906 return ERR_PTR(-ENOMEM);
910 r = parse_path_selector(as, pg, ti);
917 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
921 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
925 nr_args = 1 + nr_selector_args;
926 for (i = 0; i < pg->nr_pgpaths; i++) {
927 struct pgpath *pgpath;
928 struct dm_arg_set path_args;
930 if (as->argc < nr_args) {
931 ti->error = "not enough path parameters";
936 path_args.argc = nr_args;
937 path_args.argv = as->argv;
939 pgpath = parse_path(&path_args, &pg->ps, ti);
940 if (IS_ERR(pgpath)) {
946 list_add_tail(&pgpath->list, &pg->pgpaths);
947 dm_consume_args(as, nr_args);
953 free_priority_group(pg, ti);
957 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
961 struct dm_target *ti = m->ti;
963 static const struct dm_arg _args[] = {
964 {0, 1024, "invalid number of hardware handler args"},
967 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
973 if (m->queue_mode == DM_TYPE_BIO_BASED) {
974 dm_consume_args(as, hw_argc);
975 DMERR("bio-based multipath doesn't allow hardware handler args");
979 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
980 if (!m->hw_handler_name)
987 for (i = 0; i <= hw_argc - 2; i++)
988 len += strlen(as->argv[i]) + 1;
989 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
991 ti->error = "memory allocation failed";
995 j = sprintf(p, "%d", hw_argc - 1);
996 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
997 j = sprintf(p, "%s", as->argv[i]);
999 dm_consume_args(as, hw_argc - 1);
1003 kfree(m->hw_handler_name);
1004 m->hw_handler_name = NULL;
1008 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1012 struct dm_target *ti = m->ti;
1013 const char *arg_name;
1015 static const struct dm_arg _args[] = {
1016 {0, 8, "invalid number of feature args"},
1017 {1, 50, "pg_init_retries must be between 1 and 50"},
1018 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1021 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1029 arg_name = dm_shift_arg(as);
1032 if (!strcasecmp(arg_name, "queue_if_no_path")) {
1033 r = queue_if_no_path(m, true, false);
1037 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1038 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1042 if (!strcasecmp(arg_name, "pg_init_retries") &&
1044 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1049 if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1051 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1056 if (!strcasecmp(arg_name, "queue_mode") &&
1058 const char *queue_mode_name = dm_shift_arg(as);
1060 if (!strcasecmp(queue_mode_name, "bio"))
1061 m->queue_mode = DM_TYPE_BIO_BASED;
1062 else if (!strcasecmp(queue_mode_name, "rq") ||
1063 !strcasecmp(queue_mode_name, "mq"))
1064 m->queue_mode = DM_TYPE_REQUEST_BASED;
1066 ti->error = "Unknown 'queue_mode' requested";
1073 ti->error = "Unrecognised multipath feature request";
1075 } while (argc && !r);
1080 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1082 /* target arguments */
1083 static const struct dm_arg _args[] = {
1084 {0, 1024, "invalid number of priority groups"},
1085 {0, 1024, "invalid initial priority group number"},
1089 struct multipath *m;
1090 struct dm_arg_set as;
1091 unsigned pg_count = 0;
1092 unsigned next_pg_num;
1097 m = alloc_multipath(ti);
1099 ti->error = "can't allocate multipath";
1103 r = parse_features(&as, m);
1107 r = alloc_multipath_stage2(ti, m);
1111 r = parse_hw_handler(&as, m);
1115 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1119 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1123 if ((!m->nr_priority_groups && next_pg_num) ||
1124 (m->nr_priority_groups && !next_pg_num)) {
1125 ti->error = "invalid initial priority group";
1130 /* parse the priority groups */
1132 struct priority_group *pg;
1133 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1135 pg = parse_priority_group(&as, m);
1141 nr_valid_paths += pg->nr_pgpaths;
1142 atomic_set(&m->nr_valid_paths, nr_valid_paths);
1144 list_add_tail(&pg->list, &m->priority_groups);
1146 pg->pg_num = pg_count;
1151 if (pg_count != m->nr_priority_groups) {
1152 ti->error = "priority group count mismatch";
1157 ti->num_flush_bios = 1;
1158 ti->num_discard_bios = 1;
1159 ti->num_write_same_bios = 1;
1160 ti->num_write_zeroes_bios = 1;
1161 if (m->queue_mode == DM_TYPE_BIO_BASED)
1162 ti->per_io_data_size = multipath_per_bio_data_size();
1164 ti->per_io_data_size = sizeof(struct dm_mpath_io);
1173 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1178 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1180 if (!atomic_read(&m->pg_init_in_progress))
1185 finish_wait(&m->pg_init_wait, &wait);
1188 static void flush_multipath_work(struct multipath *m)
1190 if (m->hw_handler_name) {
1191 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1192 smp_mb__after_atomic();
1194 if (atomic_read(&m->pg_init_in_progress))
1195 flush_workqueue(kmpath_handlerd);
1196 multipath_wait_for_pg_init_completion(m);
1198 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1199 smp_mb__after_atomic();
1202 if (m->queue_mode == DM_TYPE_BIO_BASED)
1203 flush_work(&m->process_queued_bios);
1204 flush_work(&m->trigger_event);
1207 static void multipath_dtr(struct dm_target *ti)
1209 struct multipath *m = ti->private;
1211 flush_multipath_work(m);
1216 * Take a path out of use.
1218 static int fail_path(struct pgpath *pgpath)
1220 unsigned long flags;
1221 struct multipath *m = pgpath->pg->m;
1223 spin_lock_irqsave(&m->lock, flags);
1225 if (!pgpath->is_active)
1228 DMWARN("Failing path %s.", pgpath->path.dev->name);
1230 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1231 pgpath->is_active = false;
1232 pgpath->fail_count++;
1234 atomic_dec(&m->nr_valid_paths);
1236 if (pgpath == m->current_pgpath)
1237 m->current_pgpath = NULL;
1239 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1240 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1242 schedule_work(&m->trigger_event);
1245 spin_unlock_irqrestore(&m->lock, flags);
1251 * Reinstate a previously-failed path
1253 static int reinstate_path(struct pgpath *pgpath)
1255 int r = 0, run_queue = 0;
1256 unsigned long flags;
1257 struct multipath *m = pgpath->pg->m;
1258 unsigned nr_valid_paths;
1260 spin_lock_irqsave(&m->lock, flags);
1262 if (pgpath->is_active)
1265 DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1267 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1271 pgpath->is_active = true;
1273 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1274 if (nr_valid_paths == 1) {
1275 m->current_pgpath = NULL;
1277 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1278 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1279 atomic_inc(&m->pg_init_in_progress);
1282 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1283 pgpath->path.dev->name, nr_valid_paths);
1285 schedule_work(&m->trigger_event);
1288 spin_unlock_irqrestore(&m->lock, flags);
1290 dm_table_run_md_queue_async(m->ti->table);
1291 process_queued_io_list(m);
1298 * Fail or reinstate all paths that match the provided struct dm_dev.
1300 static int action_dev(struct multipath *m, struct dm_dev *dev,
1304 struct pgpath *pgpath;
1305 struct priority_group *pg;
1307 list_for_each_entry(pg, &m->priority_groups, list) {
1308 list_for_each_entry(pgpath, &pg->pgpaths, list) {
1309 if (pgpath->path.dev == dev)
1318 * Temporarily try to avoid having to use the specified PG
1320 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1323 unsigned long flags;
1325 spin_lock_irqsave(&m->lock, flags);
1327 pg->bypassed = bypassed;
1328 m->current_pgpath = NULL;
1329 m->current_pg = NULL;
1331 spin_unlock_irqrestore(&m->lock, flags);
1333 schedule_work(&m->trigger_event);
1337 * Switch to using the specified PG from the next I/O that gets mapped
1339 static int switch_pg_num(struct multipath *m, const char *pgstr)
1341 struct priority_group *pg;
1343 unsigned long flags;
1346 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1347 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1348 DMWARN("invalid PG number supplied to switch_pg_num");
1352 spin_lock_irqsave(&m->lock, flags);
1353 list_for_each_entry(pg, &m->priority_groups, list) {
1354 pg->bypassed = false;
1358 m->current_pgpath = NULL;
1359 m->current_pg = NULL;
1362 spin_unlock_irqrestore(&m->lock, flags);
1364 schedule_work(&m->trigger_event);
1369 * Set/clear bypassed status of a PG.
1370 * PGs are numbered upwards from 1 in the order they were declared.
1372 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1374 struct priority_group *pg;
1378 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1379 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1380 DMWARN("invalid PG number supplied to bypass_pg");
1384 list_for_each_entry(pg, &m->priority_groups, list) {
1389 bypass_pg(m, pg, bypassed);
1394 * Should we retry pg_init immediately?
1396 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1398 unsigned long flags;
1399 bool limit_reached = false;
1401 spin_lock_irqsave(&m->lock, flags);
1403 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1404 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1405 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1407 limit_reached = true;
1409 spin_unlock_irqrestore(&m->lock, flags);
1411 return limit_reached;
1414 static void pg_init_done(void *data, int errors)
1416 struct pgpath *pgpath = data;
1417 struct priority_group *pg = pgpath->pg;
1418 struct multipath *m = pg->m;
1419 unsigned long flags;
1420 bool delay_retry = false;
1422 /* device or driver problems */
1427 if (!m->hw_handler_name) {
1431 DMERR("Could not failover the device: Handler scsi_dh_%s "
1432 "Error %d.", m->hw_handler_name, errors);
1434 * Fail path for now, so we do not ping pong
1438 case SCSI_DH_DEV_TEMP_BUSY:
1440 * Probably doing something like FW upgrade on the
1441 * controller so try the other pg.
1443 bypass_pg(m, pg, true);
1446 /* Wait before retrying. */
1449 case SCSI_DH_IMM_RETRY:
1450 case SCSI_DH_RES_TEMP_UNAVAIL:
1451 if (pg_init_limit_reached(m, pgpath))
1455 case SCSI_DH_DEV_OFFLINED:
1458 * We probably do not want to fail the path for a device
1459 * error, but this is what the old dm did. In future
1460 * patches we can do more advanced handling.
1465 spin_lock_irqsave(&m->lock, flags);
1467 if (pgpath == m->current_pgpath) {
1468 DMERR("Could not failover device. Error %d.", errors);
1469 m->current_pgpath = NULL;
1470 m->current_pg = NULL;
1472 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1473 pg->bypassed = false;
1475 if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1476 /* Activations of other paths are still on going */
1479 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1481 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1483 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1485 if (__pg_init_all_paths(m))
1488 clear_bit(MPATHF_QUEUE_IO, &m->flags);
1490 process_queued_io_list(m);
1493 * Wake up any thread waiting to suspend.
1495 wake_up(&m->pg_init_wait);
1498 spin_unlock_irqrestore(&m->lock, flags);
1501 static void activate_or_offline_path(struct pgpath *pgpath)
1503 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1505 if (pgpath->is_active && !blk_queue_dying(q))
1506 scsi_dh_activate(q, pg_init_done, pgpath);
1508 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1511 static void activate_path_work(struct work_struct *work)
1513 struct pgpath *pgpath =
1514 container_of(work, struct pgpath, activate_path.work);
1516 activate_or_offline_path(pgpath);
1519 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1520 blk_status_t error, union map_info *map_context)
1522 struct dm_mpath_io *mpio = get_mpio(map_context);
1523 struct pgpath *pgpath = mpio->pgpath;
1524 int r = DM_ENDIO_DONE;
1527 * We don't queue any clone request inside the multipath target
1528 * during end I/O handling, since those clone requests don't have
1529 * bio clones. If we queue them inside the multipath target,
1530 * we need to make bio clones, that requires memory allocation.
1531 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1532 * don't have bio clones.)
1533 * Instead of queueing the clone request here, we queue the original
1534 * request into dm core, which will remake a clone request and
1535 * clone bios for it and resubmit it later.
1537 if (error && blk_path_error(error)) {
1538 struct multipath *m = ti->private;
1540 if (error == BLK_STS_RESOURCE)
1541 r = DM_ENDIO_DELAY_REQUEUE;
1543 r = DM_ENDIO_REQUEUE;
1548 if (atomic_read(&m->nr_valid_paths) == 0 &&
1549 !must_push_back_rq(m)) {
1550 if (error == BLK_STS_IOERR)
1552 /* complete with the original error */
1558 struct path_selector *ps = &pgpath->pg->ps;
1560 if (ps->type->end_io)
1561 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1567 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1568 blk_status_t *error)
1570 struct multipath *m = ti->private;
1571 struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1572 struct pgpath *pgpath = mpio->pgpath;
1573 unsigned long flags;
1574 int r = DM_ENDIO_DONE;
1576 if (!*error || !blk_path_error(*error))
1582 if (atomic_read(&m->nr_valid_paths) == 0 &&
1583 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1584 if (must_push_back_bio(m)) {
1585 r = DM_ENDIO_REQUEUE;
1588 *error = BLK_STS_IOERR;
1593 spin_lock_irqsave(&m->lock, flags);
1594 bio_list_add(&m->queued_bios, clone);
1595 spin_unlock_irqrestore(&m->lock, flags);
1596 if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1597 queue_work(kmultipathd, &m->process_queued_bios);
1599 r = DM_ENDIO_INCOMPLETE;
1602 struct path_selector *ps = &pgpath->pg->ps;
1604 if (ps->type->end_io)
1605 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1612 * Suspend can't complete until all the I/O is processed so if
1613 * the last path fails we must error any remaining I/O.
1614 * Note that if the freeze_bdev fails while suspending, the
1615 * queue_if_no_path state is lost - userspace should reset it.
1617 static void multipath_presuspend(struct dm_target *ti)
1619 struct multipath *m = ti->private;
1621 queue_if_no_path(m, false, true);
1624 static void multipath_postsuspend(struct dm_target *ti)
1626 struct multipath *m = ti->private;
1628 mutex_lock(&m->work_mutex);
1629 flush_multipath_work(m);
1630 mutex_unlock(&m->work_mutex);
1634 * Restore the queue_if_no_path setting.
1636 static void multipath_resume(struct dm_target *ti)
1638 struct multipath *m = ti->private;
1639 unsigned long flags;
1641 spin_lock_irqsave(&m->lock, flags);
1642 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1643 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1644 spin_unlock_irqrestore(&m->lock, flags);
1648 * Info output has the following format:
1649 * num_multipath_feature_args [multipath_feature_args]*
1650 * num_handler_status_args [handler_status_args]*
1651 * num_groups init_group_number
1652 * [A|D|E num_ps_status_args [ps_status_args]*
1653 * num_paths num_selector_args
1654 * [path_dev A|F fail_count [selector_args]* ]+ ]+
1656 * Table output has the following format (identical to the constructor string):
1657 * num_feature_args [features_args]*
1658 * num_handler_args hw_handler [hw_handler_args]*
1659 * num_groups init_group_number
1660 * [priority selector-name num_ps_args [ps_args]*
1661 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1663 static void multipath_status(struct dm_target *ti, status_type_t type,
1664 unsigned status_flags, char *result, unsigned maxlen)
1667 unsigned long flags;
1668 struct multipath *m = ti->private;
1669 struct priority_group *pg;
1674 spin_lock_irqsave(&m->lock, flags);
1677 if (type == STATUSTYPE_INFO)
1678 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1679 atomic_read(&m->pg_init_count));
1681 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1682 (m->pg_init_retries > 0) * 2 +
1683 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1684 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1685 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1687 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1688 DMEMIT("queue_if_no_path ");
1689 if (m->pg_init_retries)
1690 DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1691 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1692 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1693 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1694 DMEMIT("retain_attached_hw_handler ");
1695 if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1696 switch(m->queue_mode) {
1697 case DM_TYPE_BIO_BASED:
1698 DMEMIT("queue_mode bio ");
1707 if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1710 DMEMIT("1 %s ", m->hw_handler_name);
1712 DMEMIT("%u ", m->nr_priority_groups);
1715 pg_num = m->next_pg->pg_num;
1716 else if (m->current_pg)
1717 pg_num = m->current_pg->pg_num;
1719 pg_num = (m->nr_priority_groups ? 1 : 0);
1721 DMEMIT("%u ", pg_num);
1724 case STATUSTYPE_INFO:
1725 list_for_each_entry(pg, &m->priority_groups, list) {
1727 state = 'D'; /* Disabled */
1728 else if (pg == m->current_pg)
1729 state = 'A'; /* Currently Active */
1731 state = 'E'; /* Enabled */
1733 DMEMIT("%c ", state);
1735 if (pg->ps.type->status)
1736 sz += pg->ps.type->status(&pg->ps, NULL, type,
1742 DMEMIT("%u %u ", pg->nr_pgpaths,
1743 pg->ps.type->info_args);
1745 list_for_each_entry(p, &pg->pgpaths, list) {
1746 DMEMIT("%s %s %u ", p->path.dev->name,
1747 p->is_active ? "A" : "F",
1749 if (pg->ps.type->status)
1750 sz += pg->ps.type->status(&pg->ps,
1751 &p->path, type, result + sz,
1757 case STATUSTYPE_TABLE:
1758 list_for_each_entry(pg, &m->priority_groups, list) {
1759 DMEMIT("%s ", pg->ps.type->name);
1761 if (pg->ps.type->status)
1762 sz += pg->ps.type->status(&pg->ps, NULL, type,
1768 DMEMIT("%u %u ", pg->nr_pgpaths,
1769 pg->ps.type->table_args);
1771 list_for_each_entry(p, &pg->pgpaths, list) {
1772 DMEMIT("%s ", p->path.dev->name);
1773 if (pg->ps.type->status)
1774 sz += pg->ps.type->status(&pg->ps,
1775 &p->path, type, result + sz,
1782 spin_unlock_irqrestore(&m->lock, flags);
1785 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv,
1786 char *result, unsigned maxlen)
1790 struct multipath *m = ti->private;
1793 mutex_lock(&m->work_mutex);
1795 if (dm_suspended(ti)) {
1801 if (!strcasecmp(argv[0], "queue_if_no_path")) {
1802 r = queue_if_no_path(m, true, false);
1804 } else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1805 r = queue_if_no_path(m, false, false);
1811 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1815 if (!strcasecmp(argv[0], "disable_group")) {
1816 r = bypass_pg_num(m, argv[1], true);
1818 } else if (!strcasecmp(argv[0], "enable_group")) {
1819 r = bypass_pg_num(m, argv[1], false);
1821 } else if (!strcasecmp(argv[0], "switch_group")) {
1822 r = switch_pg_num(m, argv[1]);
1824 } else if (!strcasecmp(argv[0], "reinstate_path"))
1825 action = reinstate_path;
1826 else if (!strcasecmp(argv[0], "fail_path"))
1829 DMWARN("Unrecognised multipath message received: %s", argv[0]);
1833 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1835 DMWARN("message: error getting device %s",
1840 r = action_dev(m, dev, action);
1842 dm_put_device(ti, dev);
1845 mutex_unlock(&m->work_mutex);
1849 static int multipath_prepare_ioctl(struct dm_target *ti,
1850 struct block_device **bdev)
1852 struct multipath *m = ti->private;
1853 struct pgpath *current_pgpath;
1856 current_pgpath = READ_ONCE(m->current_pgpath);
1857 if (!current_pgpath)
1858 current_pgpath = choose_pgpath(m, 0);
1860 if (current_pgpath) {
1861 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1862 *bdev = current_pgpath->path.dev->bdev;
1865 /* pg_init has not started or completed */
1869 /* No path is available */
1870 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1876 if (r == -ENOTCONN) {
1877 if (!READ_ONCE(m->current_pg)) {
1878 /* Path status changed, redo selection */
1879 (void) choose_pgpath(m, 0);
1881 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1882 pg_init_all_paths(m);
1883 dm_table_run_md_queue_async(m->ti->table);
1884 process_queued_io_list(m);
1888 * Only pass ioctls through if the device sizes match exactly.
1890 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1895 static int multipath_iterate_devices(struct dm_target *ti,
1896 iterate_devices_callout_fn fn, void *data)
1898 struct multipath *m = ti->private;
1899 struct priority_group *pg;
1903 list_for_each_entry(pg, &m->priority_groups, list) {
1904 list_for_each_entry(p, &pg->pgpaths, list) {
1905 ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1915 static int pgpath_busy(struct pgpath *pgpath)
1917 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1919 return blk_lld_busy(q);
1923 * We return "busy", only when we can map I/Os but underlying devices
1924 * are busy (so even if we map I/Os now, the I/Os will wait on
1925 * the underlying queue).
1926 * In other words, if we want to kill I/Os or queue them inside us
1927 * due to map unavailability, we don't return "busy". Otherwise,
1928 * dm core won't give us the I/Os and we can't do what we want.
1930 static int multipath_busy(struct dm_target *ti)
1932 bool busy = false, has_active = false;
1933 struct multipath *m = ti->private;
1934 struct priority_group *pg, *next_pg;
1935 struct pgpath *pgpath;
1937 /* pg_init in progress */
1938 if (atomic_read(&m->pg_init_in_progress))
1941 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1942 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1943 return (m->queue_mode != DM_TYPE_REQUEST_BASED);
1945 /* Guess which priority_group will be used at next mapping time */
1946 pg = READ_ONCE(m->current_pg);
1947 next_pg = READ_ONCE(m->next_pg);
1948 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
1953 * We don't know which pg will be used at next mapping time.
1954 * We don't call choose_pgpath() here to avoid to trigger
1955 * pg_init just by busy checking.
1956 * So we don't know whether underlying devices we will be using
1957 * at next mapping time are busy or not. Just try mapping.
1963 * If there is one non-busy active path at least, the path selector
1964 * will be able to select it. So we consider such a pg as not busy.
1967 list_for_each_entry(pgpath, &pg->pgpaths, list) {
1968 if (pgpath->is_active) {
1970 if (!pgpath_busy(pgpath)) {
1979 * No active path in this pg, so this pg won't be used and
1980 * the current_pg will be changed at next mapping time.
1981 * We need to try mapping to determine it.
1989 /*-----------------------------------------------------------------
1991 *---------------------------------------------------------------*/
1992 static struct target_type multipath_target = {
1993 .name = "multipath",
1994 .version = {1, 13, 0},
1995 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
1996 DM_TARGET_PASSES_INTEGRITY,
1997 .module = THIS_MODULE,
1998 .ctr = multipath_ctr,
1999 .dtr = multipath_dtr,
2000 .clone_and_map_rq = multipath_clone_and_map,
2001 .release_clone_rq = multipath_release_clone,
2002 .rq_end_io = multipath_end_io,
2003 .map = multipath_map_bio,
2004 .end_io = multipath_end_io_bio,
2005 .presuspend = multipath_presuspend,
2006 .postsuspend = multipath_postsuspend,
2007 .resume = multipath_resume,
2008 .status = multipath_status,
2009 .message = multipath_message,
2010 .prepare_ioctl = multipath_prepare_ioctl,
2011 .iterate_devices = multipath_iterate_devices,
2012 .busy = multipath_busy,
2015 static int __init dm_multipath_init(void)
2019 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2021 DMERR("failed to create workqueue kmpathd");
2023 goto bad_alloc_kmultipathd;
2027 * A separate workqueue is used to handle the device handlers
2028 * to avoid overloading existing workqueue. Overloading the
2029 * old workqueue would also create a bottleneck in the
2030 * path of the storage hardware device activation.
2032 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2034 if (!kmpath_handlerd) {
2035 DMERR("failed to create workqueue kmpath_handlerd");
2037 goto bad_alloc_kmpath_handlerd;
2040 r = dm_register_target(&multipath_target);
2042 DMERR("request-based register failed %d", r);
2044 goto bad_register_target;
2049 bad_register_target:
2050 destroy_workqueue(kmpath_handlerd);
2051 bad_alloc_kmpath_handlerd:
2052 destroy_workqueue(kmultipathd);
2053 bad_alloc_kmultipathd:
2057 static void __exit dm_multipath_exit(void)
2059 destroy_workqueue(kmpath_handlerd);
2060 destroy_workqueue(kmultipathd);
2062 dm_unregister_target(&multipath_target);
2065 module_init(dm_multipath_init);
2066 module_exit(dm_multipath_exit);
2068 MODULE_DESCRIPTION(DM_NAME " multipath target");
2069 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2070 MODULE_LICENSE("GPL");