Merge tag 'v6.4' into next
[platform/kernel/linux-starfive.git] / drivers / md / dm-kcopyd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2006 Red Hat GmbH
5  *
6  * This file is released under the GPL.
7  *
8  * Kcopyd provides a simple interface for copying an area of one
9  * block-device to one or more other block-devices, with an asynchronous
10  * completion notification.
11  */
12
13 #include <linux/types.h>
14 #include <linux/atomic.h>
15 #include <linux/blkdev.h>
16 #include <linux/fs.h>
17 #include <linux/init.h>
18 #include <linux/list.h>
19 #include <linux/mempool.h>
20 #include <linux/module.h>
21 #include <linux/pagemap.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/workqueue.h>
25 #include <linux/mutex.h>
26 #include <linux/delay.h>
27 #include <linux/device-mapper.h>
28 #include <linux/dm-kcopyd.h>
29
30 #include "dm-core.h"
31
32 #define SPLIT_COUNT     8
33 #define MIN_JOBS        8
34
35 #define DEFAULT_SUB_JOB_SIZE_KB 512
36 #define MAX_SUB_JOB_SIZE_KB     1024
37
38 static unsigned int kcopyd_subjob_size_kb = DEFAULT_SUB_JOB_SIZE_KB;
39
40 module_param(kcopyd_subjob_size_kb, uint, 0644);
41 MODULE_PARM_DESC(kcopyd_subjob_size_kb, "Sub-job size for dm-kcopyd clients");
42
43 static unsigned int dm_get_kcopyd_subjob_size(void)
44 {
45         unsigned int sub_job_size_kb;
46
47         sub_job_size_kb = __dm_get_module_param(&kcopyd_subjob_size_kb,
48                                                 DEFAULT_SUB_JOB_SIZE_KB,
49                                                 MAX_SUB_JOB_SIZE_KB);
50
51         return sub_job_size_kb << 1;
52 }
53
54 /*
55  *----------------------------------------------------------------
56  * Each kcopyd client has its own little pool of preallocated
57  * pages for kcopyd io.
58  *---------------------------------------------------------------
59  */
60 struct dm_kcopyd_client {
61         struct page_list *pages;
62         unsigned int nr_reserved_pages;
63         unsigned int nr_free_pages;
64         unsigned int sub_job_size;
65
66         struct dm_io_client *io_client;
67
68         wait_queue_head_t destroyq;
69
70         mempool_t job_pool;
71
72         struct workqueue_struct *kcopyd_wq;
73         struct work_struct kcopyd_work;
74
75         struct dm_kcopyd_throttle *throttle;
76
77         atomic_t nr_jobs;
78
79 /*
80  * We maintain four lists of jobs:
81  *
82  * i)   jobs waiting for pages
83  * ii)  jobs that have pages, and are waiting for the io to be issued.
84  * iii) jobs that don't need to do any IO and just run a callback
85  * iv) jobs that have completed.
86  *
87  * All four of these are protected by job_lock.
88  */
89         spinlock_t job_lock;
90         struct list_head callback_jobs;
91         struct list_head complete_jobs;
92         struct list_head io_jobs;
93         struct list_head pages_jobs;
94 };
95
96 static struct page_list zero_page_list;
97
98 static DEFINE_SPINLOCK(throttle_spinlock);
99
100 /*
101  * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
102  * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
103  * by 2.
104  */
105 #define ACCOUNT_INTERVAL_SHIFT          SHIFT_HZ
106
107 /*
108  * Sleep this number of milliseconds.
109  *
110  * The value was decided experimentally.
111  * Smaller values seem to cause an increased copy rate above the limit.
112  * The reason for this is unknown but possibly due to jiffies rounding errors
113  * or read/write cache inside the disk.
114  */
115 #define SLEEP_USEC                      100000
116
117 /*
118  * Maximum number of sleep events. There is a theoretical livelock if more
119  * kcopyd clients do work simultaneously which this limit avoids.
120  */
121 #define MAX_SLEEPS                      10
122
123 static void io_job_start(struct dm_kcopyd_throttle *t)
124 {
125         unsigned int throttle, now, difference;
126         int slept = 0, skew;
127
128         if (unlikely(!t))
129                 return;
130
131 try_again:
132         spin_lock_irq(&throttle_spinlock);
133
134         throttle = READ_ONCE(t->throttle);
135
136         if (likely(throttle >= 100))
137                 goto skip_limit;
138
139         now = jiffies;
140         difference = now - t->last_jiffies;
141         t->last_jiffies = now;
142         if (t->num_io_jobs)
143                 t->io_period += difference;
144         t->total_period += difference;
145
146         /*
147          * Maintain sane values if we got a temporary overflow.
148          */
149         if (unlikely(t->io_period > t->total_period))
150                 t->io_period = t->total_period;
151
152         if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
153                 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
154
155                 t->total_period >>= shift;
156                 t->io_period >>= shift;
157         }
158
159         skew = t->io_period - throttle * t->total_period / 100;
160
161         if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
162                 slept++;
163                 spin_unlock_irq(&throttle_spinlock);
164                 fsleep(SLEEP_USEC);
165                 goto try_again;
166         }
167
168 skip_limit:
169         t->num_io_jobs++;
170
171         spin_unlock_irq(&throttle_spinlock);
172 }
173
174 static void io_job_finish(struct dm_kcopyd_throttle *t)
175 {
176         unsigned long flags;
177
178         if (unlikely(!t))
179                 return;
180
181         spin_lock_irqsave(&throttle_spinlock, flags);
182
183         t->num_io_jobs--;
184
185         if (likely(READ_ONCE(t->throttle) >= 100))
186                 goto skip_limit;
187
188         if (!t->num_io_jobs) {
189                 unsigned int now, difference;
190
191                 now = jiffies;
192                 difference = now - t->last_jiffies;
193                 t->last_jiffies = now;
194
195                 t->io_period += difference;
196                 t->total_period += difference;
197
198                 /*
199                  * Maintain sane values if we got a temporary overflow.
200                  */
201                 if (unlikely(t->io_period > t->total_period))
202                         t->io_period = t->total_period;
203         }
204
205 skip_limit:
206         spin_unlock_irqrestore(&throttle_spinlock, flags);
207 }
208
209
210 static void wake(struct dm_kcopyd_client *kc)
211 {
212         queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
213 }
214
215 /*
216  * Obtain one page for the use of kcopyd.
217  */
218 static struct page_list *alloc_pl(gfp_t gfp)
219 {
220         struct page_list *pl;
221
222         pl = kmalloc(sizeof(*pl), gfp);
223         if (!pl)
224                 return NULL;
225
226         pl->page = alloc_page(gfp | __GFP_HIGHMEM);
227         if (!pl->page) {
228                 kfree(pl);
229                 return NULL;
230         }
231
232         return pl;
233 }
234
235 static void free_pl(struct page_list *pl)
236 {
237         __free_page(pl->page);
238         kfree(pl);
239 }
240
241 /*
242  * Add the provided pages to a client's free page list, releasing
243  * back to the system any beyond the reserved_pages limit.
244  */
245 static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
246 {
247         struct page_list *next;
248
249         do {
250                 next = pl->next;
251
252                 if (kc->nr_free_pages >= kc->nr_reserved_pages)
253                         free_pl(pl);
254                 else {
255                         pl->next = kc->pages;
256                         kc->pages = pl;
257                         kc->nr_free_pages++;
258                 }
259
260                 pl = next;
261         } while (pl);
262 }
263
264 static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
265                             unsigned int nr, struct page_list **pages)
266 {
267         struct page_list *pl;
268
269         *pages = NULL;
270
271         do {
272                 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
273                 if (unlikely(!pl)) {
274                         /* Use reserved pages */
275                         pl = kc->pages;
276                         if (unlikely(!pl))
277                                 goto out_of_memory;
278                         kc->pages = pl->next;
279                         kc->nr_free_pages--;
280                 }
281                 pl->next = *pages;
282                 *pages = pl;
283         } while (--nr);
284
285         return 0;
286
287 out_of_memory:
288         if (*pages)
289                 kcopyd_put_pages(kc, *pages);
290         return -ENOMEM;
291 }
292
293 /*
294  * These three functions resize the page pool.
295  */
296 static void drop_pages(struct page_list *pl)
297 {
298         struct page_list *next;
299
300         while (pl) {
301                 next = pl->next;
302                 free_pl(pl);
303                 pl = next;
304         }
305 }
306
307 /*
308  * Allocate and reserve nr_pages for the use of a specific client.
309  */
310 static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned int nr_pages)
311 {
312         unsigned int i;
313         struct page_list *pl = NULL, *next;
314
315         for (i = 0; i < nr_pages; i++) {
316                 next = alloc_pl(GFP_KERNEL);
317                 if (!next) {
318                         if (pl)
319                                 drop_pages(pl);
320                         return -ENOMEM;
321                 }
322                 next->next = pl;
323                 pl = next;
324         }
325
326         kc->nr_reserved_pages += nr_pages;
327         kcopyd_put_pages(kc, pl);
328
329         return 0;
330 }
331
332 static void client_free_pages(struct dm_kcopyd_client *kc)
333 {
334         BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
335         drop_pages(kc->pages);
336         kc->pages = NULL;
337         kc->nr_free_pages = kc->nr_reserved_pages = 0;
338 }
339
340 /*
341  *---------------------------------------------------------------
342  * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
343  * for this reason we use a mempool to prevent the client from
344  * ever having to do io (which could cause a deadlock).
345  *---------------------------------------------------------------
346  */
347 struct kcopyd_job {
348         struct dm_kcopyd_client *kc;
349         struct list_head list;
350         unsigned int flags;
351
352         /*
353          * Error state of the job.
354          */
355         int read_err;
356         unsigned long write_err;
357
358         /*
359          * REQ_OP_READ, REQ_OP_WRITE or REQ_OP_WRITE_ZEROES.
360          */
361         enum req_op op;
362         struct dm_io_region source;
363
364         /*
365          * The destinations for the transfer.
366          */
367         unsigned int num_dests;
368         struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
369
370         struct page_list *pages;
371
372         /*
373          * Set this to ensure you are notified when the job has
374          * completed.  'context' is for callback to use.
375          */
376         dm_kcopyd_notify_fn fn;
377         void *context;
378
379         /*
380          * These fields are only used if the job has been split
381          * into more manageable parts.
382          */
383         struct mutex lock;
384         atomic_t sub_jobs;
385         sector_t progress;
386         sector_t write_offset;
387
388         struct kcopyd_job *master_job;
389 };
390
391 static struct kmem_cache *_job_cache;
392
393 int __init dm_kcopyd_init(void)
394 {
395         _job_cache = kmem_cache_create("kcopyd_job",
396                                 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
397                                 __alignof__(struct kcopyd_job), 0, NULL);
398         if (!_job_cache)
399                 return -ENOMEM;
400
401         zero_page_list.next = &zero_page_list;
402         zero_page_list.page = ZERO_PAGE(0);
403
404         return 0;
405 }
406
407 void dm_kcopyd_exit(void)
408 {
409         kmem_cache_destroy(_job_cache);
410         _job_cache = NULL;
411 }
412
413 /*
414  * Functions to push and pop a job onto the head of a given job
415  * list.
416  */
417 static struct kcopyd_job *pop_io_job(struct list_head *jobs,
418                                      struct dm_kcopyd_client *kc)
419 {
420         struct kcopyd_job *job;
421
422         /*
423          * For I/O jobs, pop any read, any write without sequential write
424          * constraint and sequential writes that are at the right position.
425          */
426         list_for_each_entry(job, jobs, list) {
427                 if (job->op == REQ_OP_READ ||
428                     !(job->flags & BIT(DM_KCOPYD_WRITE_SEQ))) {
429                         list_del(&job->list);
430                         return job;
431                 }
432
433                 if (job->write_offset == job->master_job->write_offset) {
434                         job->master_job->write_offset += job->source.count;
435                         list_del(&job->list);
436                         return job;
437                 }
438         }
439
440         return NULL;
441 }
442
443 static struct kcopyd_job *pop(struct list_head *jobs,
444                               struct dm_kcopyd_client *kc)
445 {
446         struct kcopyd_job *job = NULL;
447
448         spin_lock_irq(&kc->job_lock);
449
450         if (!list_empty(jobs)) {
451                 if (jobs == &kc->io_jobs)
452                         job = pop_io_job(jobs, kc);
453                 else {
454                         job = list_entry(jobs->next, struct kcopyd_job, list);
455                         list_del(&job->list);
456                 }
457         }
458         spin_unlock_irq(&kc->job_lock);
459
460         return job;
461 }
462
463 static void push(struct list_head *jobs, struct kcopyd_job *job)
464 {
465         unsigned long flags;
466         struct dm_kcopyd_client *kc = job->kc;
467
468         spin_lock_irqsave(&kc->job_lock, flags);
469         list_add_tail(&job->list, jobs);
470         spin_unlock_irqrestore(&kc->job_lock, flags);
471 }
472
473
474 static void push_head(struct list_head *jobs, struct kcopyd_job *job)
475 {
476         struct dm_kcopyd_client *kc = job->kc;
477
478         spin_lock_irq(&kc->job_lock);
479         list_add(&job->list, jobs);
480         spin_unlock_irq(&kc->job_lock);
481 }
482
483 /*
484  * These three functions process 1 item from the corresponding
485  * job list.
486  *
487  * They return:
488  * < 0: error
489  *   0: success
490  * > 0: can't process yet.
491  */
492 static int run_complete_job(struct kcopyd_job *job)
493 {
494         void *context = job->context;
495         int read_err = job->read_err;
496         unsigned long write_err = job->write_err;
497         dm_kcopyd_notify_fn fn = job->fn;
498         struct dm_kcopyd_client *kc = job->kc;
499
500         if (job->pages && job->pages != &zero_page_list)
501                 kcopyd_put_pages(kc, job->pages);
502         /*
503          * If this is the master job, the sub jobs have already
504          * completed so we can free everything.
505          */
506         if (job->master_job == job) {
507                 mutex_destroy(&job->lock);
508                 mempool_free(job, &kc->job_pool);
509         }
510         fn(read_err, write_err, context);
511
512         if (atomic_dec_and_test(&kc->nr_jobs))
513                 wake_up(&kc->destroyq);
514
515         cond_resched();
516
517         return 0;
518 }
519
520 static void complete_io(unsigned long error, void *context)
521 {
522         struct kcopyd_job *job = context;
523         struct dm_kcopyd_client *kc = job->kc;
524
525         io_job_finish(kc->throttle);
526
527         if (error) {
528                 if (op_is_write(job->op))
529                         job->write_err |= error;
530                 else
531                         job->read_err = 1;
532
533                 if (!(job->flags & BIT(DM_KCOPYD_IGNORE_ERROR))) {
534                         push(&kc->complete_jobs, job);
535                         wake(kc);
536                         return;
537                 }
538         }
539
540         if (op_is_write(job->op))
541                 push(&kc->complete_jobs, job);
542
543         else {
544                 job->op = REQ_OP_WRITE;
545                 push(&kc->io_jobs, job);
546         }
547
548         wake(kc);
549 }
550
551 /*
552  * Request io on as many buffer heads as we can currently get for
553  * a particular job.
554  */
555 static int run_io_job(struct kcopyd_job *job)
556 {
557         int r;
558         struct dm_io_request io_req = {
559                 .bi_opf = job->op,
560                 .mem.type = DM_IO_PAGE_LIST,
561                 .mem.ptr.pl = job->pages,
562                 .mem.offset = 0,
563                 .notify.fn = complete_io,
564                 .notify.context = job,
565                 .client = job->kc->io_client,
566         };
567
568         /*
569          * If we need to write sequentially and some reads or writes failed,
570          * no point in continuing.
571          */
572         if (job->flags & BIT(DM_KCOPYD_WRITE_SEQ) &&
573             job->master_job->write_err) {
574                 job->write_err = job->master_job->write_err;
575                 return -EIO;
576         }
577
578         io_job_start(job->kc->throttle);
579
580         if (job->op == REQ_OP_READ)
581                 r = dm_io(&io_req, 1, &job->source, NULL);
582         else
583                 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
584
585         return r;
586 }
587
588 static int run_pages_job(struct kcopyd_job *job)
589 {
590         int r;
591         unsigned int nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
592
593         r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
594         if (!r) {
595                 /* this job is ready for io */
596                 push(&job->kc->io_jobs, job);
597                 return 0;
598         }
599
600         if (r == -ENOMEM)
601                 /* can't complete now */
602                 return 1;
603
604         return r;
605 }
606
607 /*
608  * Run through a list for as long as possible.  Returns the count
609  * of successful jobs.
610  */
611 static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
612                         int (*fn)(struct kcopyd_job *))
613 {
614         struct kcopyd_job *job;
615         int r, count = 0;
616
617         while ((job = pop(jobs, kc))) {
618
619                 r = fn(job);
620
621                 if (r < 0) {
622                         /* error this rogue job */
623                         if (op_is_write(job->op))
624                                 job->write_err = (unsigned long) -1L;
625                         else
626                                 job->read_err = 1;
627                         push(&kc->complete_jobs, job);
628                         wake(kc);
629                         break;
630                 }
631
632                 if (r > 0) {
633                         /*
634                          * We couldn't service this job ATM, so
635                          * push this job back onto the list.
636                          */
637                         push_head(jobs, job);
638                         break;
639                 }
640
641                 count++;
642         }
643
644         return count;
645 }
646
647 /*
648  * kcopyd does this every time it's woken up.
649  */
650 static void do_work(struct work_struct *work)
651 {
652         struct dm_kcopyd_client *kc = container_of(work,
653                                         struct dm_kcopyd_client, kcopyd_work);
654         struct blk_plug plug;
655
656         /*
657          * The order that these are called is *very* important.
658          * complete jobs can free some pages for pages jobs.
659          * Pages jobs when successful will jump onto the io jobs
660          * list.  io jobs call wake when they complete and it all
661          * starts again.
662          */
663         spin_lock_irq(&kc->job_lock);
664         list_splice_tail_init(&kc->callback_jobs, &kc->complete_jobs);
665         spin_unlock_irq(&kc->job_lock);
666
667         blk_start_plug(&plug);
668         process_jobs(&kc->complete_jobs, kc, run_complete_job);
669         process_jobs(&kc->pages_jobs, kc, run_pages_job);
670         process_jobs(&kc->io_jobs, kc, run_io_job);
671         blk_finish_plug(&plug);
672 }
673
674 /*
675  * If we are copying a small region we just dispatch a single job
676  * to do the copy, otherwise the io has to be split up into many
677  * jobs.
678  */
679 static void dispatch_job(struct kcopyd_job *job)
680 {
681         struct dm_kcopyd_client *kc = job->kc;
682
683         atomic_inc(&kc->nr_jobs);
684         if (unlikely(!job->source.count))
685                 push(&kc->callback_jobs, job);
686         else if (job->pages == &zero_page_list)
687                 push(&kc->io_jobs, job);
688         else
689                 push(&kc->pages_jobs, job);
690         wake(kc);
691 }
692
693 static void segment_complete(int read_err, unsigned long write_err,
694                              void *context)
695 {
696         /* FIXME: tidy this function */
697         sector_t progress = 0;
698         sector_t count = 0;
699         struct kcopyd_job *sub_job = context;
700         struct kcopyd_job *job = sub_job->master_job;
701         struct dm_kcopyd_client *kc = job->kc;
702
703         mutex_lock(&job->lock);
704
705         /* update the error */
706         if (read_err)
707                 job->read_err = 1;
708
709         if (write_err)
710                 job->write_err |= write_err;
711
712         /*
713          * Only dispatch more work if there hasn't been an error.
714          */
715         if ((!job->read_err && !job->write_err) ||
716             job->flags & BIT(DM_KCOPYD_IGNORE_ERROR)) {
717                 /* get the next chunk of work */
718                 progress = job->progress;
719                 count = job->source.count - progress;
720                 if (count) {
721                         if (count > kc->sub_job_size)
722                                 count = kc->sub_job_size;
723
724                         job->progress += count;
725                 }
726         }
727         mutex_unlock(&job->lock);
728
729         if (count) {
730                 int i;
731
732                 *sub_job = *job;
733                 sub_job->write_offset = progress;
734                 sub_job->source.sector += progress;
735                 sub_job->source.count = count;
736
737                 for (i = 0; i < job->num_dests; i++) {
738                         sub_job->dests[i].sector += progress;
739                         sub_job->dests[i].count = count;
740                 }
741
742                 sub_job->fn = segment_complete;
743                 sub_job->context = sub_job;
744                 dispatch_job(sub_job);
745
746         } else if (atomic_dec_and_test(&job->sub_jobs)) {
747
748                 /*
749                  * Queue the completion callback to the kcopyd thread.
750                  *
751                  * Some callers assume that all the completions are called
752                  * from a single thread and don't race with each other.
753                  *
754                  * We must not call the callback directly here because this
755                  * code may not be executing in the thread.
756                  */
757                 push(&kc->complete_jobs, job);
758                 wake(kc);
759         }
760 }
761
762 /*
763  * Create some sub jobs to share the work between them.
764  */
765 static void split_job(struct kcopyd_job *master_job)
766 {
767         int i;
768
769         atomic_inc(&master_job->kc->nr_jobs);
770
771         atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
772         for (i = 0; i < SPLIT_COUNT; i++) {
773                 master_job[i + 1].master_job = master_job;
774                 segment_complete(0, 0u, &master_job[i + 1]);
775         }
776 }
777
778 void dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
779                     unsigned int num_dests, struct dm_io_region *dests,
780                     unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
781 {
782         struct kcopyd_job *job;
783         int i;
784
785         /*
786          * Allocate an array of jobs consisting of one master job
787          * followed by SPLIT_COUNT sub jobs.
788          */
789         job = mempool_alloc(&kc->job_pool, GFP_NOIO);
790         mutex_init(&job->lock);
791
792         /*
793          * set up for the read.
794          */
795         job->kc = kc;
796         job->flags = flags;
797         job->read_err = 0;
798         job->write_err = 0;
799
800         job->num_dests = num_dests;
801         memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
802
803         /*
804          * If one of the destination is a host-managed zoned block device,
805          * we need to write sequentially. If one of the destination is a
806          * host-aware device, then leave it to the caller to choose what to do.
807          */
808         if (!(job->flags & BIT(DM_KCOPYD_WRITE_SEQ))) {
809                 for (i = 0; i < job->num_dests; i++) {
810                         if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
811                                 job->flags |= BIT(DM_KCOPYD_WRITE_SEQ);
812                                 break;
813                         }
814                 }
815         }
816
817         /*
818          * If we need to write sequentially, errors cannot be ignored.
819          */
820         if (job->flags & BIT(DM_KCOPYD_WRITE_SEQ) &&
821             job->flags & BIT(DM_KCOPYD_IGNORE_ERROR))
822                 job->flags &= ~BIT(DM_KCOPYD_IGNORE_ERROR);
823
824         if (from) {
825                 job->source = *from;
826                 job->pages = NULL;
827                 job->op = REQ_OP_READ;
828         } else {
829                 memset(&job->source, 0, sizeof(job->source));
830                 job->source.count = job->dests[0].count;
831                 job->pages = &zero_page_list;
832
833                 /*
834                  * Use WRITE ZEROES to optimize zeroing if all dests support it.
835                  */
836                 job->op = REQ_OP_WRITE_ZEROES;
837                 for (i = 0; i < job->num_dests; i++)
838                         if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
839                                 job->op = REQ_OP_WRITE;
840                                 break;
841                         }
842         }
843
844         job->fn = fn;
845         job->context = context;
846         job->master_job = job;
847         job->write_offset = 0;
848
849         if (job->source.count <= kc->sub_job_size)
850                 dispatch_job(job);
851         else {
852                 job->progress = 0;
853                 split_job(job);
854         }
855 }
856 EXPORT_SYMBOL(dm_kcopyd_copy);
857
858 void dm_kcopyd_zero(struct dm_kcopyd_client *kc,
859                     unsigned int num_dests, struct dm_io_region *dests,
860                     unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
861 {
862         dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
863 }
864 EXPORT_SYMBOL(dm_kcopyd_zero);
865
866 void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
867                                  dm_kcopyd_notify_fn fn, void *context)
868 {
869         struct kcopyd_job *job;
870
871         job = mempool_alloc(&kc->job_pool, GFP_NOIO);
872
873         memset(job, 0, sizeof(struct kcopyd_job));
874         job->kc = kc;
875         job->fn = fn;
876         job->context = context;
877         job->master_job = job;
878
879         atomic_inc(&kc->nr_jobs);
880
881         return job;
882 }
883 EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
884
885 void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
886 {
887         struct kcopyd_job *job = j;
888         struct dm_kcopyd_client *kc = job->kc;
889
890         job->read_err = read_err;
891         job->write_err = write_err;
892
893         push(&kc->callback_jobs, job);
894         wake(kc);
895 }
896 EXPORT_SYMBOL(dm_kcopyd_do_callback);
897
898 /*
899  * Cancels a kcopyd job, eg. someone might be deactivating a
900  * mirror.
901  */
902 #if 0
903 int kcopyd_cancel(struct kcopyd_job *job, int block)
904 {
905         /* FIXME: finish */
906         return -1;
907 }
908 #endif  /*  0  */
909
910 /*
911  *---------------------------------------------------------------
912  * Client setup
913  *---------------------------------------------------------------
914  */
915 struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
916 {
917         int r;
918         unsigned int reserve_pages;
919         struct dm_kcopyd_client *kc;
920
921         kc = kzalloc(sizeof(*kc), GFP_KERNEL);
922         if (!kc)
923                 return ERR_PTR(-ENOMEM);
924
925         spin_lock_init(&kc->job_lock);
926         INIT_LIST_HEAD(&kc->callback_jobs);
927         INIT_LIST_HEAD(&kc->complete_jobs);
928         INIT_LIST_HEAD(&kc->io_jobs);
929         INIT_LIST_HEAD(&kc->pages_jobs);
930         kc->throttle = throttle;
931
932         r = mempool_init_slab_pool(&kc->job_pool, MIN_JOBS, _job_cache);
933         if (r)
934                 goto bad_slab;
935
936         INIT_WORK(&kc->kcopyd_work, do_work);
937         kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
938         if (!kc->kcopyd_wq) {
939                 r = -ENOMEM;
940                 goto bad_workqueue;
941         }
942
943         kc->sub_job_size = dm_get_kcopyd_subjob_size();
944         reserve_pages = DIV_ROUND_UP(kc->sub_job_size << SECTOR_SHIFT, PAGE_SIZE);
945
946         kc->pages = NULL;
947         kc->nr_reserved_pages = kc->nr_free_pages = 0;
948         r = client_reserve_pages(kc, reserve_pages);
949         if (r)
950                 goto bad_client_pages;
951
952         kc->io_client = dm_io_client_create();
953         if (IS_ERR(kc->io_client)) {
954                 r = PTR_ERR(kc->io_client);
955                 goto bad_io_client;
956         }
957
958         init_waitqueue_head(&kc->destroyq);
959         atomic_set(&kc->nr_jobs, 0);
960
961         return kc;
962
963 bad_io_client:
964         client_free_pages(kc);
965 bad_client_pages:
966         destroy_workqueue(kc->kcopyd_wq);
967 bad_workqueue:
968         mempool_exit(&kc->job_pool);
969 bad_slab:
970         kfree(kc);
971
972         return ERR_PTR(r);
973 }
974 EXPORT_SYMBOL(dm_kcopyd_client_create);
975
976 void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
977 {
978         /* Wait for completion of all jobs submitted by this client. */
979         wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
980
981         BUG_ON(!list_empty(&kc->callback_jobs));
982         BUG_ON(!list_empty(&kc->complete_jobs));
983         BUG_ON(!list_empty(&kc->io_jobs));
984         BUG_ON(!list_empty(&kc->pages_jobs));
985         destroy_workqueue(kc->kcopyd_wq);
986         dm_io_client_destroy(kc->io_client);
987         client_free_pages(kc);
988         mempool_exit(&kc->job_pool);
989         kfree(kc);
990 }
991 EXPORT_SYMBOL(dm_kcopyd_client_destroy);
992
993 void dm_kcopyd_client_flush(struct dm_kcopyd_client *kc)
994 {
995         flush_workqueue(kc->kcopyd_wq);
996 }
997 EXPORT_SYMBOL(dm_kcopyd_client_flush);