Merge tag 'v5.15-rc2' into spi-5.15
[platform/kernel/linux-rpi.git] / drivers / md / dm-kcopyd.c
1 /*
2  * Copyright (C) 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2006 Red Hat GmbH
4  *
5  * This file is released under the GPL.
6  *
7  * Kcopyd provides a simple interface for copying an area of one
8  * block-device to one or more other block-devices, with an asynchronous
9  * completion notification.
10  */
11
12 #include <linux/types.h>
13 #include <linux/atomic.h>
14 #include <linux/blkdev.h>
15 #include <linux/fs.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/delay.h>
26 #include <linux/device-mapper.h>
27 #include <linux/dm-kcopyd.h>
28
29 #include "dm-core.h"
30
31 #define SPLIT_COUNT     8
32 #define MIN_JOBS        8
33
34 #define DEFAULT_SUB_JOB_SIZE_KB 512
35 #define MAX_SUB_JOB_SIZE_KB     1024
36
37 static unsigned kcopyd_subjob_size_kb = DEFAULT_SUB_JOB_SIZE_KB;
38
39 module_param(kcopyd_subjob_size_kb, uint, S_IRUGO | S_IWUSR);
40 MODULE_PARM_DESC(kcopyd_subjob_size_kb, "Sub-job size for dm-kcopyd clients");
41
42 static unsigned dm_get_kcopyd_subjob_size(void)
43 {
44         unsigned sub_job_size_kb;
45
46         sub_job_size_kb = __dm_get_module_param(&kcopyd_subjob_size_kb,
47                                                 DEFAULT_SUB_JOB_SIZE_KB,
48                                                 MAX_SUB_JOB_SIZE_KB);
49
50         return sub_job_size_kb << 1;
51 }
52
53 /*-----------------------------------------------------------------
54  * Each kcopyd client has its own little pool of preallocated
55  * pages for kcopyd io.
56  *---------------------------------------------------------------*/
57 struct dm_kcopyd_client {
58         struct page_list *pages;
59         unsigned nr_reserved_pages;
60         unsigned nr_free_pages;
61         unsigned sub_job_size;
62
63         struct dm_io_client *io_client;
64
65         wait_queue_head_t destroyq;
66
67         mempool_t job_pool;
68
69         struct workqueue_struct *kcopyd_wq;
70         struct work_struct kcopyd_work;
71
72         struct dm_kcopyd_throttle *throttle;
73
74         atomic_t nr_jobs;
75
76 /*
77  * We maintain four lists of jobs:
78  *
79  * i)   jobs waiting for pages
80  * ii)  jobs that have pages, and are waiting for the io to be issued.
81  * iii) jobs that don't need to do any IO and just run a callback
82  * iv) jobs that have completed.
83  *
84  * All four of these are protected by job_lock.
85  */
86         spinlock_t job_lock;
87         struct list_head callback_jobs;
88         struct list_head complete_jobs;
89         struct list_head io_jobs;
90         struct list_head pages_jobs;
91 };
92
93 static struct page_list zero_page_list;
94
95 static DEFINE_SPINLOCK(throttle_spinlock);
96
97 /*
98  * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
99  * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
100  * by 2.
101  */
102 #define ACCOUNT_INTERVAL_SHIFT          SHIFT_HZ
103
104 /*
105  * Sleep this number of milliseconds.
106  *
107  * The value was decided experimentally.
108  * Smaller values seem to cause an increased copy rate above the limit.
109  * The reason for this is unknown but possibly due to jiffies rounding errors
110  * or read/write cache inside the disk.
111  */
112 #define SLEEP_MSEC                      100
113
114 /*
115  * Maximum number of sleep events. There is a theoretical livelock if more
116  * kcopyd clients do work simultaneously which this limit avoids.
117  */
118 #define MAX_SLEEPS                      10
119
120 static void io_job_start(struct dm_kcopyd_throttle *t)
121 {
122         unsigned throttle, now, difference;
123         int slept = 0, skew;
124
125         if (unlikely(!t))
126                 return;
127
128 try_again:
129         spin_lock_irq(&throttle_spinlock);
130
131         throttle = READ_ONCE(t->throttle);
132
133         if (likely(throttle >= 100))
134                 goto skip_limit;
135
136         now = jiffies;
137         difference = now - t->last_jiffies;
138         t->last_jiffies = now;
139         if (t->num_io_jobs)
140                 t->io_period += difference;
141         t->total_period += difference;
142
143         /*
144          * Maintain sane values if we got a temporary overflow.
145          */
146         if (unlikely(t->io_period > t->total_period))
147                 t->io_period = t->total_period;
148
149         if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
150                 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
151                 t->total_period >>= shift;
152                 t->io_period >>= shift;
153         }
154
155         skew = t->io_period - throttle * t->total_period / 100;
156
157         if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
158                 slept++;
159                 spin_unlock_irq(&throttle_spinlock);
160                 msleep(SLEEP_MSEC);
161                 goto try_again;
162         }
163
164 skip_limit:
165         t->num_io_jobs++;
166
167         spin_unlock_irq(&throttle_spinlock);
168 }
169
170 static void io_job_finish(struct dm_kcopyd_throttle *t)
171 {
172         unsigned long flags;
173
174         if (unlikely(!t))
175                 return;
176
177         spin_lock_irqsave(&throttle_spinlock, flags);
178
179         t->num_io_jobs--;
180
181         if (likely(READ_ONCE(t->throttle) >= 100))
182                 goto skip_limit;
183
184         if (!t->num_io_jobs) {
185                 unsigned now, difference;
186
187                 now = jiffies;
188                 difference = now - t->last_jiffies;
189                 t->last_jiffies = now;
190
191                 t->io_period += difference;
192                 t->total_period += difference;
193
194                 /*
195                  * Maintain sane values if we got a temporary overflow.
196                  */
197                 if (unlikely(t->io_period > t->total_period))
198                         t->io_period = t->total_period;
199         }
200
201 skip_limit:
202         spin_unlock_irqrestore(&throttle_spinlock, flags);
203 }
204
205
206 static void wake(struct dm_kcopyd_client *kc)
207 {
208         queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
209 }
210
211 /*
212  * Obtain one page for the use of kcopyd.
213  */
214 static struct page_list *alloc_pl(gfp_t gfp)
215 {
216         struct page_list *pl;
217
218         pl = kmalloc(sizeof(*pl), gfp);
219         if (!pl)
220                 return NULL;
221
222         pl->page = alloc_page(gfp);
223         if (!pl->page) {
224                 kfree(pl);
225                 return NULL;
226         }
227
228         return pl;
229 }
230
231 static void free_pl(struct page_list *pl)
232 {
233         __free_page(pl->page);
234         kfree(pl);
235 }
236
237 /*
238  * Add the provided pages to a client's free page list, releasing
239  * back to the system any beyond the reserved_pages limit.
240  */
241 static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
242 {
243         struct page_list *next;
244
245         do {
246                 next = pl->next;
247
248                 if (kc->nr_free_pages >= kc->nr_reserved_pages)
249                         free_pl(pl);
250                 else {
251                         pl->next = kc->pages;
252                         kc->pages = pl;
253                         kc->nr_free_pages++;
254                 }
255
256                 pl = next;
257         } while (pl);
258 }
259
260 static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
261                             unsigned int nr, struct page_list **pages)
262 {
263         struct page_list *pl;
264
265         *pages = NULL;
266
267         do {
268                 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
269                 if (unlikely(!pl)) {
270                         /* Use reserved pages */
271                         pl = kc->pages;
272                         if (unlikely(!pl))
273                                 goto out_of_memory;
274                         kc->pages = pl->next;
275                         kc->nr_free_pages--;
276                 }
277                 pl->next = *pages;
278                 *pages = pl;
279         } while (--nr);
280
281         return 0;
282
283 out_of_memory:
284         if (*pages)
285                 kcopyd_put_pages(kc, *pages);
286         return -ENOMEM;
287 }
288
289 /*
290  * These three functions resize the page pool.
291  */
292 static void drop_pages(struct page_list *pl)
293 {
294         struct page_list *next;
295
296         while (pl) {
297                 next = pl->next;
298                 free_pl(pl);
299                 pl = next;
300         }
301 }
302
303 /*
304  * Allocate and reserve nr_pages for the use of a specific client.
305  */
306 static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
307 {
308         unsigned i;
309         struct page_list *pl = NULL, *next;
310
311         for (i = 0; i < nr_pages; i++) {
312                 next = alloc_pl(GFP_KERNEL);
313                 if (!next) {
314                         if (pl)
315                                 drop_pages(pl);
316                         return -ENOMEM;
317                 }
318                 next->next = pl;
319                 pl = next;
320         }
321
322         kc->nr_reserved_pages += nr_pages;
323         kcopyd_put_pages(kc, pl);
324
325         return 0;
326 }
327
328 static void client_free_pages(struct dm_kcopyd_client *kc)
329 {
330         BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
331         drop_pages(kc->pages);
332         kc->pages = NULL;
333         kc->nr_free_pages = kc->nr_reserved_pages = 0;
334 }
335
336 /*-----------------------------------------------------------------
337  * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
338  * for this reason we use a mempool to prevent the client from
339  * ever having to do io (which could cause a deadlock).
340  *---------------------------------------------------------------*/
341 struct kcopyd_job {
342         struct dm_kcopyd_client *kc;
343         struct list_head list;
344         unsigned flags;
345
346         /*
347          * Error state of the job.
348          */
349         int read_err;
350         unsigned long write_err;
351
352         /*
353          * Either READ or WRITE
354          */
355         int rw;
356         struct dm_io_region source;
357
358         /*
359          * The destinations for the transfer.
360          */
361         unsigned int num_dests;
362         struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
363
364         struct page_list *pages;
365
366         /*
367          * Set this to ensure you are notified when the job has
368          * completed.  'context' is for callback to use.
369          */
370         dm_kcopyd_notify_fn fn;
371         void *context;
372
373         /*
374          * These fields are only used if the job has been split
375          * into more manageable parts.
376          */
377         struct mutex lock;
378         atomic_t sub_jobs;
379         sector_t progress;
380         sector_t write_offset;
381
382         struct kcopyd_job *master_job;
383 };
384
385 static struct kmem_cache *_job_cache;
386
387 int __init dm_kcopyd_init(void)
388 {
389         _job_cache = kmem_cache_create("kcopyd_job",
390                                 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
391                                 __alignof__(struct kcopyd_job), 0, NULL);
392         if (!_job_cache)
393                 return -ENOMEM;
394
395         zero_page_list.next = &zero_page_list;
396         zero_page_list.page = ZERO_PAGE(0);
397
398         return 0;
399 }
400
401 void dm_kcopyd_exit(void)
402 {
403         kmem_cache_destroy(_job_cache);
404         _job_cache = NULL;
405 }
406
407 /*
408  * Functions to push and pop a job onto the head of a given job
409  * list.
410  */
411 static struct kcopyd_job *pop_io_job(struct list_head *jobs,
412                                      struct dm_kcopyd_client *kc)
413 {
414         struct kcopyd_job *job;
415
416         /*
417          * For I/O jobs, pop any read, any write without sequential write
418          * constraint and sequential writes that are at the right position.
419          */
420         list_for_each_entry(job, jobs, list) {
421                 if (job->rw == READ || !(job->flags & BIT(DM_KCOPYD_WRITE_SEQ))) {
422                         list_del(&job->list);
423                         return job;
424                 }
425
426                 if (job->write_offset == job->master_job->write_offset) {
427                         job->master_job->write_offset += job->source.count;
428                         list_del(&job->list);
429                         return job;
430                 }
431         }
432
433         return NULL;
434 }
435
436 static struct kcopyd_job *pop(struct list_head *jobs,
437                               struct dm_kcopyd_client *kc)
438 {
439         struct kcopyd_job *job = NULL;
440
441         spin_lock_irq(&kc->job_lock);
442
443         if (!list_empty(jobs)) {
444                 if (jobs == &kc->io_jobs)
445                         job = pop_io_job(jobs, kc);
446                 else {
447                         job = list_entry(jobs->next, struct kcopyd_job, list);
448                         list_del(&job->list);
449                 }
450         }
451         spin_unlock_irq(&kc->job_lock);
452
453         return job;
454 }
455
456 static void push(struct list_head *jobs, struct kcopyd_job *job)
457 {
458         unsigned long flags;
459         struct dm_kcopyd_client *kc = job->kc;
460
461         spin_lock_irqsave(&kc->job_lock, flags);
462         list_add_tail(&job->list, jobs);
463         spin_unlock_irqrestore(&kc->job_lock, flags);
464 }
465
466
467 static void push_head(struct list_head *jobs, struct kcopyd_job *job)
468 {
469         struct dm_kcopyd_client *kc = job->kc;
470
471         spin_lock_irq(&kc->job_lock);
472         list_add(&job->list, jobs);
473         spin_unlock_irq(&kc->job_lock);
474 }
475
476 /*
477  * These three functions process 1 item from the corresponding
478  * job list.
479  *
480  * They return:
481  * < 0: error
482  *   0: success
483  * > 0: can't process yet.
484  */
485 static int run_complete_job(struct kcopyd_job *job)
486 {
487         void *context = job->context;
488         int read_err = job->read_err;
489         unsigned long write_err = job->write_err;
490         dm_kcopyd_notify_fn fn = job->fn;
491         struct dm_kcopyd_client *kc = job->kc;
492
493         if (job->pages && job->pages != &zero_page_list)
494                 kcopyd_put_pages(kc, job->pages);
495         /*
496          * If this is the master job, the sub jobs have already
497          * completed so we can free everything.
498          */
499         if (job->master_job == job) {
500                 mutex_destroy(&job->lock);
501                 mempool_free(job, &kc->job_pool);
502         }
503         fn(read_err, write_err, context);
504
505         if (atomic_dec_and_test(&kc->nr_jobs))
506                 wake_up(&kc->destroyq);
507
508         cond_resched();
509
510         return 0;
511 }
512
513 static void complete_io(unsigned long error, void *context)
514 {
515         struct kcopyd_job *job = (struct kcopyd_job *) context;
516         struct dm_kcopyd_client *kc = job->kc;
517
518         io_job_finish(kc->throttle);
519
520         if (error) {
521                 if (op_is_write(job->rw))
522                         job->write_err |= error;
523                 else
524                         job->read_err = 1;
525
526                 if (!(job->flags & BIT(DM_KCOPYD_IGNORE_ERROR))) {
527                         push(&kc->complete_jobs, job);
528                         wake(kc);
529                         return;
530                 }
531         }
532
533         if (op_is_write(job->rw))
534                 push(&kc->complete_jobs, job);
535
536         else {
537                 job->rw = WRITE;
538                 push(&kc->io_jobs, job);
539         }
540
541         wake(kc);
542 }
543
544 /*
545  * Request io on as many buffer heads as we can currently get for
546  * a particular job.
547  */
548 static int run_io_job(struct kcopyd_job *job)
549 {
550         int r;
551         struct dm_io_request io_req = {
552                 .bi_op = job->rw,
553                 .bi_op_flags = 0,
554                 .mem.type = DM_IO_PAGE_LIST,
555                 .mem.ptr.pl = job->pages,
556                 .mem.offset = 0,
557                 .notify.fn = complete_io,
558                 .notify.context = job,
559                 .client = job->kc->io_client,
560         };
561
562         /*
563          * If we need to write sequentially and some reads or writes failed,
564          * no point in continuing.
565          */
566         if (job->flags & BIT(DM_KCOPYD_WRITE_SEQ) &&
567             job->master_job->write_err) {
568                 job->write_err = job->master_job->write_err;
569                 return -EIO;
570         }
571
572         io_job_start(job->kc->throttle);
573
574         if (job->rw == READ)
575                 r = dm_io(&io_req, 1, &job->source, NULL);
576         else
577                 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
578
579         return r;
580 }
581
582 static int run_pages_job(struct kcopyd_job *job)
583 {
584         int r;
585         unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
586
587         r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
588         if (!r) {
589                 /* this job is ready for io */
590                 push(&job->kc->io_jobs, job);
591                 return 0;
592         }
593
594         if (r == -ENOMEM)
595                 /* can't complete now */
596                 return 1;
597
598         return r;
599 }
600
601 /*
602  * Run through a list for as long as possible.  Returns the count
603  * of successful jobs.
604  */
605 static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
606                         int (*fn) (struct kcopyd_job *))
607 {
608         struct kcopyd_job *job;
609         int r, count = 0;
610
611         while ((job = pop(jobs, kc))) {
612
613                 r = fn(job);
614
615                 if (r < 0) {
616                         /* error this rogue job */
617                         if (op_is_write(job->rw))
618                                 job->write_err = (unsigned long) -1L;
619                         else
620                                 job->read_err = 1;
621                         push(&kc->complete_jobs, job);
622                         wake(kc);
623                         break;
624                 }
625
626                 if (r > 0) {
627                         /*
628                          * We couldn't service this job ATM, so
629                          * push this job back onto the list.
630                          */
631                         push_head(jobs, job);
632                         break;
633                 }
634
635                 count++;
636         }
637
638         return count;
639 }
640
641 /*
642  * kcopyd does this every time it's woken up.
643  */
644 static void do_work(struct work_struct *work)
645 {
646         struct dm_kcopyd_client *kc = container_of(work,
647                                         struct dm_kcopyd_client, kcopyd_work);
648         struct blk_plug plug;
649
650         /*
651          * The order that these are called is *very* important.
652          * complete jobs can free some pages for pages jobs.
653          * Pages jobs when successful will jump onto the io jobs
654          * list.  io jobs call wake when they complete and it all
655          * starts again.
656          */
657         spin_lock_irq(&kc->job_lock);
658         list_splice_tail_init(&kc->callback_jobs, &kc->complete_jobs);
659         spin_unlock_irq(&kc->job_lock);
660
661         blk_start_plug(&plug);
662         process_jobs(&kc->complete_jobs, kc, run_complete_job);
663         process_jobs(&kc->pages_jobs, kc, run_pages_job);
664         process_jobs(&kc->io_jobs, kc, run_io_job);
665         blk_finish_plug(&plug);
666 }
667
668 /*
669  * If we are copying a small region we just dispatch a single job
670  * to do the copy, otherwise the io has to be split up into many
671  * jobs.
672  */
673 static void dispatch_job(struct kcopyd_job *job)
674 {
675         struct dm_kcopyd_client *kc = job->kc;
676         atomic_inc(&kc->nr_jobs);
677         if (unlikely(!job->source.count))
678                 push(&kc->callback_jobs, job);
679         else if (job->pages == &zero_page_list)
680                 push(&kc->io_jobs, job);
681         else
682                 push(&kc->pages_jobs, job);
683         wake(kc);
684 }
685
686 static void segment_complete(int read_err, unsigned long write_err,
687                              void *context)
688 {
689         /* FIXME: tidy this function */
690         sector_t progress = 0;
691         sector_t count = 0;
692         struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
693         struct kcopyd_job *job = sub_job->master_job;
694         struct dm_kcopyd_client *kc = job->kc;
695
696         mutex_lock(&job->lock);
697
698         /* update the error */
699         if (read_err)
700                 job->read_err = 1;
701
702         if (write_err)
703                 job->write_err |= write_err;
704
705         /*
706          * Only dispatch more work if there hasn't been an error.
707          */
708         if ((!job->read_err && !job->write_err) ||
709             job->flags & BIT(DM_KCOPYD_IGNORE_ERROR)) {
710                 /* get the next chunk of work */
711                 progress = job->progress;
712                 count = job->source.count - progress;
713                 if (count) {
714                         if (count > kc->sub_job_size)
715                                 count = kc->sub_job_size;
716
717                         job->progress += count;
718                 }
719         }
720         mutex_unlock(&job->lock);
721
722         if (count) {
723                 int i;
724
725                 *sub_job = *job;
726                 sub_job->write_offset = progress;
727                 sub_job->source.sector += progress;
728                 sub_job->source.count = count;
729
730                 for (i = 0; i < job->num_dests; i++) {
731                         sub_job->dests[i].sector += progress;
732                         sub_job->dests[i].count = count;
733                 }
734
735                 sub_job->fn = segment_complete;
736                 sub_job->context = sub_job;
737                 dispatch_job(sub_job);
738
739         } else if (atomic_dec_and_test(&job->sub_jobs)) {
740
741                 /*
742                  * Queue the completion callback to the kcopyd thread.
743                  *
744                  * Some callers assume that all the completions are called
745                  * from a single thread and don't race with each other.
746                  *
747                  * We must not call the callback directly here because this
748                  * code may not be executing in the thread.
749                  */
750                 push(&kc->complete_jobs, job);
751                 wake(kc);
752         }
753 }
754
755 /*
756  * Create some sub jobs to share the work between them.
757  */
758 static void split_job(struct kcopyd_job *master_job)
759 {
760         int i;
761
762         atomic_inc(&master_job->kc->nr_jobs);
763
764         atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
765         for (i = 0; i < SPLIT_COUNT; i++) {
766                 master_job[i + 1].master_job = master_job;
767                 segment_complete(0, 0u, &master_job[i + 1]);
768         }
769 }
770
771 void dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
772                     unsigned int num_dests, struct dm_io_region *dests,
773                     unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
774 {
775         struct kcopyd_job *job;
776         int i;
777
778         /*
779          * Allocate an array of jobs consisting of one master job
780          * followed by SPLIT_COUNT sub jobs.
781          */
782         job = mempool_alloc(&kc->job_pool, GFP_NOIO);
783         mutex_init(&job->lock);
784
785         /*
786          * set up for the read.
787          */
788         job->kc = kc;
789         job->flags = flags;
790         job->read_err = 0;
791         job->write_err = 0;
792
793         job->num_dests = num_dests;
794         memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
795
796         /*
797          * If one of the destination is a host-managed zoned block device,
798          * we need to write sequentially. If one of the destination is a
799          * host-aware device, then leave it to the caller to choose what to do.
800          */
801         if (!(job->flags & BIT(DM_KCOPYD_WRITE_SEQ))) {
802                 for (i = 0; i < job->num_dests; i++) {
803                         if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
804                                 job->flags |= BIT(DM_KCOPYD_WRITE_SEQ);
805                                 break;
806                         }
807                 }
808         }
809
810         /*
811          * If we need to write sequentially, errors cannot be ignored.
812          */
813         if (job->flags & BIT(DM_KCOPYD_WRITE_SEQ) &&
814             job->flags & BIT(DM_KCOPYD_IGNORE_ERROR))
815                 job->flags &= ~BIT(DM_KCOPYD_IGNORE_ERROR);
816
817         if (from) {
818                 job->source = *from;
819                 job->pages = NULL;
820                 job->rw = READ;
821         } else {
822                 memset(&job->source, 0, sizeof job->source);
823                 job->source.count = job->dests[0].count;
824                 job->pages = &zero_page_list;
825
826                 /*
827                  * Use WRITE ZEROES to optimize zeroing if all dests support it.
828                  */
829                 job->rw = REQ_OP_WRITE_ZEROES;
830                 for (i = 0; i < job->num_dests; i++)
831                         if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
832                                 job->rw = WRITE;
833                                 break;
834                         }
835         }
836
837         job->fn = fn;
838         job->context = context;
839         job->master_job = job;
840         job->write_offset = 0;
841
842         if (job->source.count <= kc->sub_job_size)
843                 dispatch_job(job);
844         else {
845                 job->progress = 0;
846                 split_job(job);
847         }
848 }
849 EXPORT_SYMBOL(dm_kcopyd_copy);
850
851 void dm_kcopyd_zero(struct dm_kcopyd_client *kc,
852                     unsigned num_dests, struct dm_io_region *dests,
853                     unsigned flags, dm_kcopyd_notify_fn fn, void *context)
854 {
855         dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
856 }
857 EXPORT_SYMBOL(dm_kcopyd_zero);
858
859 void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
860                                  dm_kcopyd_notify_fn fn, void *context)
861 {
862         struct kcopyd_job *job;
863
864         job = mempool_alloc(&kc->job_pool, GFP_NOIO);
865
866         memset(job, 0, sizeof(struct kcopyd_job));
867         job->kc = kc;
868         job->fn = fn;
869         job->context = context;
870         job->master_job = job;
871
872         atomic_inc(&kc->nr_jobs);
873
874         return job;
875 }
876 EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
877
878 void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
879 {
880         struct kcopyd_job *job = j;
881         struct dm_kcopyd_client *kc = job->kc;
882
883         job->read_err = read_err;
884         job->write_err = write_err;
885
886         push(&kc->callback_jobs, job);
887         wake(kc);
888 }
889 EXPORT_SYMBOL(dm_kcopyd_do_callback);
890
891 /*
892  * Cancels a kcopyd job, eg. someone might be deactivating a
893  * mirror.
894  */
895 #if 0
896 int kcopyd_cancel(struct kcopyd_job *job, int block)
897 {
898         /* FIXME: finish */
899         return -1;
900 }
901 #endif  /*  0  */
902
903 /*-----------------------------------------------------------------
904  * Client setup
905  *---------------------------------------------------------------*/
906 struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
907 {
908         int r;
909         unsigned reserve_pages;
910         struct dm_kcopyd_client *kc;
911
912         kc = kzalloc(sizeof(*kc), GFP_KERNEL);
913         if (!kc)
914                 return ERR_PTR(-ENOMEM);
915
916         spin_lock_init(&kc->job_lock);
917         INIT_LIST_HEAD(&kc->callback_jobs);
918         INIT_LIST_HEAD(&kc->complete_jobs);
919         INIT_LIST_HEAD(&kc->io_jobs);
920         INIT_LIST_HEAD(&kc->pages_jobs);
921         kc->throttle = throttle;
922
923         r = mempool_init_slab_pool(&kc->job_pool, MIN_JOBS, _job_cache);
924         if (r)
925                 goto bad_slab;
926
927         INIT_WORK(&kc->kcopyd_work, do_work);
928         kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
929         if (!kc->kcopyd_wq) {
930                 r = -ENOMEM;
931                 goto bad_workqueue;
932         }
933
934         kc->sub_job_size = dm_get_kcopyd_subjob_size();
935         reserve_pages = DIV_ROUND_UP(kc->sub_job_size << SECTOR_SHIFT, PAGE_SIZE);
936
937         kc->pages = NULL;
938         kc->nr_reserved_pages = kc->nr_free_pages = 0;
939         r = client_reserve_pages(kc, reserve_pages);
940         if (r)
941                 goto bad_client_pages;
942
943         kc->io_client = dm_io_client_create();
944         if (IS_ERR(kc->io_client)) {
945                 r = PTR_ERR(kc->io_client);
946                 goto bad_io_client;
947         }
948
949         init_waitqueue_head(&kc->destroyq);
950         atomic_set(&kc->nr_jobs, 0);
951
952         return kc;
953
954 bad_io_client:
955         client_free_pages(kc);
956 bad_client_pages:
957         destroy_workqueue(kc->kcopyd_wq);
958 bad_workqueue:
959         mempool_exit(&kc->job_pool);
960 bad_slab:
961         kfree(kc);
962
963         return ERR_PTR(r);
964 }
965 EXPORT_SYMBOL(dm_kcopyd_client_create);
966
967 void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
968 {
969         /* Wait for completion of all jobs submitted by this client. */
970         wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
971
972         BUG_ON(!list_empty(&kc->callback_jobs));
973         BUG_ON(!list_empty(&kc->complete_jobs));
974         BUG_ON(!list_empty(&kc->io_jobs));
975         BUG_ON(!list_empty(&kc->pages_jobs));
976         destroy_workqueue(kc->kcopyd_wq);
977         dm_io_client_destroy(kc->io_client);
978         client_free_pages(kc);
979         mempool_exit(&kc->job_pool);
980         kfree(kc);
981 }
982 EXPORT_SYMBOL(dm_kcopyd_client_destroy);
983
984 void dm_kcopyd_client_flush(struct dm_kcopyd_client *kc)
985 {
986         flush_workqueue(kc->kcopyd_wq);
987 }
988 EXPORT_SYMBOL(dm_kcopyd_client_flush);