Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[platform/kernel/linux-rpi.git] / drivers / md / dm-kcopyd.c
1 /*
2  * Copyright (C) 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2006 Red Hat GmbH
4  *
5  * This file is released under the GPL.
6  *
7  * Kcopyd provides a simple interface for copying an area of one
8  * block-device to one or more other block-devices, with an asynchronous
9  * completion notification.
10  */
11
12 #include <linux/types.h>
13 #include <linux/atomic.h>
14 #include <linux/blkdev.h>
15 #include <linux/fs.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/delay.h>
26 #include <linux/device-mapper.h>
27 #include <linux/dm-kcopyd.h>
28
29 #include "dm-core.h"
30
31 #define SPLIT_COUNT     8
32 #define MIN_JOBS        8
33
34 #define DEFAULT_SUB_JOB_SIZE_KB 512
35 #define MAX_SUB_JOB_SIZE_KB     1024
36
37 static unsigned kcopyd_subjob_size_kb = DEFAULT_SUB_JOB_SIZE_KB;
38
39 module_param(kcopyd_subjob_size_kb, uint, S_IRUGO | S_IWUSR);
40 MODULE_PARM_DESC(kcopyd_subjob_size_kb, "Sub-job size for dm-kcopyd clients");
41
42 static unsigned dm_get_kcopyd_subjob_size(void)
43 {
44         unsigned sub_job_size_kb;
45
46         sub_job_size_kb = __dm_get_module_param(&kcopyd_subjob_size_kb,
47                                                 DEFAULT_SUB_JOB_SIZE_KB,
48                                                 MAX_SUB_JOB_SIZE_KB);
49
50         return sub_job_size_kb << 1;
51 }
52
53 /*-----------------------------------------------------------------
54  * Each kcopyd client has its own little pool of preallocated
55  * pages for kcopyd io.
56  *---------------------------------------------------------------*/
57 struct dm_kcopyd_client {
58         struct page_list *pages;
59         unsigned nr_reserved_pages;
60         unsigned nr_free_pages;
61         unsigned sub_job_size;
62
63         struct dm_io_client *io_client;
64
65         wait_queue_head_t destroyq;
66
67         mempool_t job_pool;
68
69         struct workqueue_struct *kcopyd_wq;
70         struct work_struct kcopyd_work;
71
72         struct dm_kcopyd_throttle *throttle;
73
74         atomic_t nr_jobs;
75
76 /*
77  * We maintain four lists of jobs:
78  *
79  * i)   jobs waiting for pages
80  * ii)  jobs that have pages, and are waiting for the io to be issued.
81  * iii) jobs that don't need to do any IO and just run a callback
82  * iv) jobs that have completed.
83  *
84  * All four of these are protected by job_lock.
85  */
86         spinlock_t job_lock;
87         struct list_head callback_jobs;
88         struct list_head complete_jobs;
89         struct list_head io_jobs;
90         struct list_head pages_jobs;
91 };
92
93 static struct page_list zero_page_list;
94
95 static DEFINE_SPINLOCK(throttle_spinlock);
96
97 /*
98  * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
99  * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
100  * by 2.
101  */
102 #define ACCOUNT_INTERVAL_SHIFT          SHIFT_HZ
103
104 /*
105  * Sleep this number of milliseconds.
106  *
107  * The value was decided experimentally.
108  * Smaller values seem to cause an increased copy rate above the limit.
109  * The reason for this is unknown but possibly due to jiffies rounding errors
110  * or read/write cache inside the disk.
111  */
112 #define SLEEP_MSEC                      100
113
114 /*
115  * Maximum number of sleep events. There is a theoretical livelock if more
116  * kcopyd clients do work simultaneously which this limit avoids.
117  */
118 #define MAX_SLEEPS                      10
119
120 static void io_job_start(struct dm_kcopyd_throttle *t)
121 {
122         unsigned throttle, now, difference;
123         int slept = 0, skew;
124
125         if (unlikely(!t))
126                 return;
127
128 try_again:
129         spin_lock_irq(&throttle_spinlock);
130
131         throttle = READ_ONCE(t->throttle);
132
133         if (likely(throttle >= 100))
134                 goto skip_limit;
135
136         now = jiffies;
137         difference = now - t->last_jiffies;
138         t->last_jiffies = now;
139         if (t->num_io_jobs)
140                 t->io_period += difference;
141         t->total_period += difference;
142
143         /*
144          * Maintain sane values if we got a temporary overflow.
145          */
146         if (unlikely(t->io_period > t->total_period))
147                 t->io_period = t->total_period;
148
149         if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
150                 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
151                 t->total_period >>= shift;
152                 t->io_period >>= shift;
153         }
154
155         skew = t->io_period - throttle * t->total_period / 100;
156
157         if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
158                 slept++;
159                 spin_unlock_irq(&throttle_spinlock);
160                 msleep(SLEEP_MSEC);
161                 goto try_again;
162         }
163
164 skip_limit:
165         t->num_io_jobs++;
166
167         spin_unlock_irq(&throttle_spinlock);
168 }
169
170 static void io_job_finish(struct dm_kcopyd_throttle *t)
171 {
172         unsigned long flags;
173
174         if (unlikely(!t))
175                 return;
176
177         spin_lock_irqsave(&throttle_spinlock, flags);
178
179         t->num_io_jobs--;
180
181         if (likely(READ_ONCE(t->throttle) >= 100))
182                 goto skip_limit;
183
184         if (!t->num_io_jobs) {
185                 unsigned now, difference;
186
187                 now = jiffies;
188                 difference = now - t->last_jiffies;
189                 t->last_jiffies = now;
190
191                 t->io_period += difference;
192                 t->total_period += difference;
193
194                 /*
195                  * Maintain sane values if we got a temporary overflow.
196                  */
197                 if (unlikely(t->io_period > t->total_period))
198                         t->io_period = t->total_period;
199         }
200
201 skip_limit:
202         spin_unlock_irqrestore(&throttle_spinlock, flags);
203 }
204
205
206 static void wake(struct dm_kcopyd_client *kc)
207 {
208         queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
209 }
210
211 /*
212  * Obtain one page for the use of kcopyd.
213  */
214 static struct page_list *alloc_pl(gfp_t gfp)
215 {
216         struct page_list *pl;
217
218         pl = kmalloc(sizeof(*pl), gfp);
219         if (!pl)
220                 return NULL;
221
222         pl->page = alloc_page(gfp);
223         if (!pl->page) {
224                 kfree(pl);
225                 return NULL;
226         }
227
228         return pl;
229 }
230
231 static void free_pl(struct page_list *pl)
232 {
233         __free_page(pl->page);
234         kfree(pl);
235 }
236
237 /*
238  * Add the provided pages to a client's free page list, releasing
239  * back to the system any beyond the reserved_pages limit.
240  */
241 static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
242 {
243         struct page_list *next;
244
245         do {
246                 next = pl->next;
247
248                 if (kc->nr_free_pages >= kc->nr_reserved_pages)
249                         free_pl(pl);
250                 else {
251                         pl->next = kc->pages;
252                         kc->pages = pl;
253                         kc->nr_free_pages++;
254                 }
255
256                 pl = next;
257         } while (pl);
258 }
259
260 static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
261                             unsigned int nr, struct page_list **pages)
262 {
263         struct page_list *pl;
264
265         *pages = NULL;
266
267         do {
268                 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
269                 if (unlikely(!pl)) {
270                         /* Use reserved pages */
271                         pl = kc->pages;
272                         if (unlikely(!pl))
273                                 goto out_of_memory;
274                         kc->pages = pl->next;
275                         kc->nr_free_pages--;
276                 }
277                 pl->next = *pages;
278                 *pages = pl;
279         } while (--nr);
280
281         return 0;
282
283 out_of_memory:
284         if (*pages)
285                 kcopyd_put_pages(kc, *pages);
286         return -ENOMEM;
287 }
288
289 /*
290  * These three functions resize the page pool.
291  */
292 static void drop_pages(struct page_list *pl)
293 {
294         struct page_list *next;
295
296         while (pl) {
297                 next = pl->next;
298                 free_pl(pl);
299                 pl = next;
300         }
301 }
302
303 /*
304  * Allocate and reserve nr_pages for the use of a specific client.
305  */
306 static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
307 {
308         unsigned i;
309         struct page_list *pl = NULL, *next;
310
311         for (i = 0; i < nr_pages; i++) {
312                 next = alloc_pl(GFP_KERNEL);
313                 if (!next) {
314                         if (pl)
315                                 drop_pages(pl);
316                         return -ENOMEM;
317                 }
318                 next->next = pl;
319                 pl = next;
320         }
321
322         kc->nr_reserved_pages += nr_pages;
323         kcopyd_put_pages(kc, pl);
324
325         return 0;
326 }
327
328 static void client_free_pages(struct dm_kcopyd_client *kc)
329 {
330         BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
331         drop_pages(kc->pages);
332         kc->pages = NULL;
333         kc->nr_free_pages = kc->nr_reserved_pages = 0;
334 }
335
336 /*-----------------------------------------------------------------
337  * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
338  * for this reason we use a mempool to prevent the client from
339  * ever having to do io (which could cause a deadlock).
340  *---------------------------------------------------------------*/
341 struct kcopyd_job {
342         struct dm_kcopyd_client *kc;
343         struct list_head list;
344         unsigned long flags;
345
346         /*
347          * Error state of the job.
348          */
349         int read_err;
350         unsigned long write_err;
351
352         /*
353          * Either READ or WRITE
354          */
355         int rw;
356         struct dm_io_region source;
357
358         /*
359          * The destinations for the transfer.
360          */
361         unsigned int num_dests;
362         struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
363
364         struct page_list *pages;
365
366         /*
367          * Set this to ensure you are notified when the job has
368          * completed.  'context' is for callback to use.
369          */
370         dm_kcopyd_notify_fn fn;
371         void *context;
372
373         /*
374          * These fields are only used if the job has been split
375          * into more manageable parts.
376          */
377         struct mutex lock;
378         atomic_t sub_jobs;
379         sector_t progress;
380         sector_t write_offset;
381
382         struct kcopyd_job *master_job;
383 };
384
385 static struct kmem_cache *_job_cache;
386
387 int __init dm_kcopyd_init(void)
388 {
389         _job_cache = kmem_cache_create("kcopyd_job",
390                                 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
391                                 __alignof__(struct kcopyd_job), 0, NULL);
392         if (!_job_cache)
393                 return -ENOMEM;
394
395         zero_page_list.next = &zero_page_list;
396         zero_page_list.page = ZERO_PAGE(0);
397
398         return 0;
399 }
400
401 void dm_kcopyd_exit(void)
402 {
403         kmem_cache_destroy(_job_cache);
404         _job_cache = NULL;
405 }
406
407 /*
408  * Functions to push and pop a job onto the head of a given job
409  * list.
410  */
411 static struct kcopyd_job *pop_io_job(struct list_head *jobs,
412                                      struct dm_kcopyd_client *kc)
413 {
414         struct kcopyd_job *job;
415
416         /*
417          * For I/O jobs, pop any read, any write without sequential write
418          * constraint and sequential writes that are at the right position.
419          */
420         list_for_each_entry(job, jobs, list) {
421                 if (job->rw == READ || !test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
422                         list_del(&job->list);
423                         return job;
424                 }
425
426                 if (job->write_offset == job->master_job->write_offset) {
427                         job->master_job->write_offset += job->source.count;
428                         list_del(&job->list);
429                         return job;
430                 }
431         }
432
433         return NULL;
434 }
435
436 static struct kcopyd_job *pop(struct list_head *jobs,
437                               struct dm_kcopyd_client *kc)
438 {
439         struct kcopyd_job *job = NULL;
440         unsigned long flags;
441
442         spin_lock_irqsave(&kc->job_lock, flags);
443
444         if (!list_empty(jobs)) {
445                 if (jobs == &kc->io_jobs)
446                         job = pop_io_job(jobs, kc);
447                 else {
448                         job = list_entry(jobs->next, struct kcopyd_job, list);
449                         list_del(&job->list);
450                 }
451         }
452         spin_unlock_irqrestore(&kc->job_lock, flags);
453
454         return job;
455 }
456
457 static void push(struct list_head *jobs, struct kcopyd_job *job)
458 {
459         unsigned long flags;
460         struct dm_kcopyd_client *kc = job->kc;
461
462         spin_lock_irqsave(&kc->job_lock, flags);
463         list_add_tail(&job->list, jobs);
464         spin_unlock_irqrestore(&kc->job_lock, flags);
465 }
466
467
468 static void push_head(struct list_head *jobs, struct kcopyd_job *job)
469 {
470         unsigned long flags;
471         struct dm_kcopyd_client *kc = job->kc;
472
473         spin_lock_irqsave(&kc->job_lock, flags);
474         list_add(&job->list, jobs);
475         spin_unlock_irqrestore(&kc->job_lock, flags);
476 }
477
478 /*
479  * These three functions process 1 item from the corresponding
480  * job list.
481  *
482  * They return:
483  * < 0: error
484  *   0: success
485  * > 0: can't process yet.
486  */
487 static int run_complete_job(struct kcopyd_job *job)
488 {
489         void *context = job->context;
490         int read_err = job->read_err;
491         unsigned long write_err = job->write_err;
492         dm_kcopyd_notify_fn fn = job->fn;
493         struct dm_kcopyd_client *kc = job->kc;
494
495         if (job->pages && job->pages != &zero_page_list)
496                 kcopyd_put_pages(kc, job->pages);
497         /*
498          * If this is the master job, the sub jobs have already
499          * completed so we can free everything.
500          */
501         if (job->master_job == job) {
502                 mutex_destroy(&job->lock);
503                 mempool_free(job, &kc->job_pool);
504         }
505         fn(read_err, write_err, context);
506
507         if (atomic_dec_and_test(&kc->nr_jobs))
508                 wake_up(&kc->destroyq);
509
510         cond_resched();
511
512         return 0;
513 }
514
515 static void complete_io(unsigned long error, void *context)
516 {
517         struct kcopyd_job *job = (struct kcopyd_job *) context;
518         struct dm_kcopyd_client *kc = job->kc;
519
520         io_job_finish(kc->throttle);
521
522         if (error) {
523                 if (op_is_write(job->rw))
524                         job->write_err |= error;
525                 else
526                         job->read_err = 1;
527
528                 if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
529                         push(&kc->complete_jobs, job);
530                         wake(kc);
531                         return;
532                 }
533         }
534
535         if (op_is_write(job->rw))
536                 push(&kc->complete_jobs, job);
537
538         else {
539                 job->rw = WRITE;
540                 push(&kc->io_jobs, job);
541         }
542
543         wake(kc);
544 }
545
546 /*
547  * Request io on as many buffer heads as we can currently get for
548  * a particular job.
549  */
550 static int run_io_job(struct kcopyd_job *job)
551 {
552         int r;
553         struct dm_io_request io_req = {
554                 .bi_op = job->rw,
555                 .bi_op_flags = 0,
556                 .mem.type = DM_IO_PAGE_LIST,
557                 .mem.ptr.pl = job->pages,
558                 .mem.offset = 0,
559                 .notify.fn = complete_io,
560                 .notify.context = job,
561                 .client = job->kc->io_client,
562         };
563
564         /*
565          * If we need to write sequentially and some reads or writes failed,
566          * no point in continuing.
567          */
568         if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
569             job->master_job->write_err) {
570                 job->write_err = job->master_job->write_err;
571                 return -EIO;
572         }
573
574         io_job_start(job->kc->throttle);
575
576         if (job->rw == READ)
577                 r = dm_io(&io_req, 1, &job->source, NULL);
578         else
579                 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
580
581         return r;
582 }
583
584 static int run_pages_job(struct kcopyd_job *job)
585 {
586         int r;
587         unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
588
589         r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
590         if (!r) {
591                 /* this job is ready for io */
592                 push(&job->kc->io_jobs, job);
593                 return 0;
594         }
595
596         if (r == -ENOMEM)
597                 /* can't complete now */
598                 return 1;
599
600         return r;
601 }
602
603 /*
604  * Run through a list for as long as possible.  Returns the count
605  * of successful jobs.
606  */
607 static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
608                         int (*fn) (struct kcopyd_job *))
609 {
610         struct kcopyd_job *job;
611         int r, count = 0;
612
613         while ((job = pop(jobs, kc))) {
614
615                 r = fn(job);
616
617                 if (r < 0) {
618                         /* error this rogue job */
619                         if (op_is_write(job->rw))
620                                 job->write_err = (unsigned long) -1L;
621                         else
622                                 job->read_err = 1;
623                         push(&kc->complete_jobs, job);
624                         wake(kc);
625                         break;
626                 }
627
628                 if (r > 0) {
629                         /*
630                          * We couldn't service this job ATM, so
631                          * push this job back onto the list.
632                          */
633                         push_head(jobs, job);
634                         break;
635                 }
636
637                 count++;
638         }
639
640         return count;
641 }
642
643 /*
644  * kcopyd does this every time it's woken up.
645  */
646 static void do_work(struct work_struct *work)
647 {
648         struct dm_kcopyd_client *kc = container_of(work,
649                                         struct dm_kcopyd_client, kcopyd_work);
650         struct blk_plug plug;
651         unsigned long flags;
652
653         /*
654          * The order that these are called is *very* important.
655          * complete jobs can free some pages for pages jobs.
656          * Pages jobs when successful will jump onto the io jobs
657          * list.  io jobs call wake when they complete and it all
658          * starts again.
659          */
660         spin_lock_irqsave(&kc->job_lock, flags);
661         list_splice_tail_init(&kc->callback_jobs, &kc->complete_jobs);
662         spin_unlock_irqrestore(&kc->job_lock, flags);
663
664         blk_start_plug(&plug);
665         process_jobs(&kc->complete_jobs, kc, run_complete_job);
666         process_jobs(&kc->pages_jobs, kc, run_pages_job);
667         process_jobs(&kc->io_jobs, kc, run_io_job);
668         blk_finish_plug(&plug);
669 }
670
671 /*
672  * If we are copying a small region we just dispatch a single job
673  * to do the copy, otherwise the io has to be split up into many
674  * jobs.
675  */
676 static void dispatch_job(struct kcopyd_job *job)
677 {
678         struct dm_kcopyd_client *kc = job->kc;
679         atomic_inc(&kc->nr_jobs);
680         if (unlikely(!job->source.count))
681                 push(&kc->callback_jobs, job);
682         else if (job->pages == &zero_page_list)
683                 push(&kc->io_jobs, job);
684         else
685                 push(&kc->pages_jobs, job);
686         wake(kc);
687 }
688
689 static void segment_complete(int read_err, unsigned long write_err,
690                              void *context)
691 {
692         /* FIXME: tidy this function */
693         sector_t progress = 0;
694         sector_t count = 0;
695         struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
696         struct kcopyd_job *job = sub_job->master_job;
697         struct dm_kcopyd_client *kc = job->kc;
698
699         mutex_lock(&job->lock);
700
701         /* update the error */
702         if (read_err)
703                 job->read_err = 1;
704
705         if (write_err)
706                 job->write_err |= write_err;
707
708         /*
709          * Only dispatch more work if there hasn't been an error.
710          */
711         if ((!job->read_err && !job->write_err) ||
712             test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
713                 /* get the next chunk of work */
714                 progress = job->progress;
715                 count = job->source.count - progress;
716                 if (count) {
717                         if (count > kc->sub_job_size)
718                                 count = kc->sub_job_size;
719
720                         job->progress += count;
721                 }
722         }
723         mutex_unlock(&job->lock);
724
725         if (count) {
726                 int i;
727
728                 *sub_job = *job;
729                 sub_job->write_offset = progress;
730                 sub_job->source.sector += progress;
731                 sub_job->source.count = count;
732
733                 for (i = 0; i < job->num_dests; i++) {
734                         sub_job->dests[i].sector += progress;
735                         sub_job->dests[i].count = count;
736                 }
737
738                 sub_job->fn = segment_complete;
739                 sub_job->context = sub_job;
740                 dispatch_job(sub_job);
741
742         } else if (atomic_dec_and_test(&job->sub_jobs)) {
743
744                 /*
745                  * Queue the completion callback to the kcopyd thread.
746                  *
747                  * Some callers assume that all the completions are called
748                  * from a single thread and don't race with each other.
749                  *
750                  * We must not call the callback directly here because this
751                  * code may not be executing in the thread.
752                  */
753                 push(&kc->complete_jobs, job);
754                 wake(kc);
755         }
756 }
757
758 /*
759  * Create some sub jobs to share the work between them.
760  */
761 static void split_job(struct kcopyd_job *master_job)
762 {
763         int i;
764
765         atomic_inc(&master_job->kc->nr_jobs);
766
767         atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
768         for (i = 0; i < SPLIT_COUNT; i++) {
769                 master_job[i + 1].master_job = master_job;
770                 segment_complete(0, 0u, &master_job[i + 1]);
771         }
772 }
773
774 void dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
775                     unsigned int num_dests, struct dm_io_region *dests,
776                     unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
777 {
778         struct kcopyd_job *job;
779         int i;
780
781         /*
782          * Allocate an array of jobs consisting of one master job
783          * followed by SPLIT_COUNT sub jobs.
784          */
785         job = mempool_alloc(&kc->job_pool, GFP_NOIO);
786         mutex_init(&job->lock);
787
788         /*
789          * set up for the read.
790          */
791         job->kc = kc;
792         job->flags = flags;
793         job->read_err = 0;
794         job->write_err = 0;
795
796         job->num_dests = num_dests;
797         memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
798
799         /*
800          * If one of the destination is a host-managed zoned block device,
801          * we need to write sequentially. If one of the destination is a
802          * host-aware device, then leave it to the caller to choose what to do.
803          */
804         if (!test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
805                 for (i = 0; i < job->num_dests; i++) {
806                         if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
807                                 set_bit(DM_KCOPYD_WRITE_SEQ, &job->flags);
808                                 break;
809                         }
810                 }
811         }
812
813         /*
814          * If we need to write sequentially, errors cannot be ignored.
815          */
816         if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
817             test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags))
818                 clear_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags);
819
820         if (from) {
821                 job->source = *from;
822                 job->pages = NULL;
823                 job->rw = READ;
824         } else {
825                 memset(&job->source, 0, sizeof job->source);
826                 job->source.count = job->dests[0].count;
827                 job->pages = &zero_page_list;
828
829                 /*
830                  * Use WRITE ZEROES to optimize zeroing if all dests support it.
831                  */
832                 job->rw = REQ_OP_WRITE_ZEROES;
833                 for (i = 0; i < job->num_dests; i++)
834                         if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
835                                 job->rw = WRITE;
836                                 break;
837                         }
838         }
839
840         job->fn = fn;
841         job->context = context;
842         job->master_job = job;
843         job->write_offset = 0;
844
845         if (job->source.count <= kc->sub_job_size)
846                 dispatch_job(job);
847         else {
848                 job->progress = 0;
849                 split_job(job);
850         }
851 }
852 EXPORT_SYMBOL(dm_kcopyd_copy);
853
854 void dm_kcopyd_zero(struct dm_kcopyd_client *kc,
855                     unsigned num_dests, struct dm_io_region *dests,
856                     unsigned flags, dm_kcopyd_notify_fn fn, void *context)
857 {
858         dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
859 }
860 EXPORT_SYMBOL(dm_kcopyd_zero);
861
862 void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
863                                  dm_kcopyd_notify_fn fn, void *context)
864 {
865         struct kcopyd_job *job;
866
867         job = mempool_alloc(&kc->job_pool, GFP_NOIO);
868
869         memset(job, 0, sizeof(struct kcopyd_job));
870         job->kc = kc;
871         job->fn = fn;
872         job->context = context;
873         job->master_job = job;
874
875         atomic_inc(&kc->nr_jobs);
876
877         return job;
878 }
879 EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
880
881 void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
882 {
883         struct kcopyd_job *job = j;
884         struct dm_kcopyd_client *kc = job->kc;
885
886         job->read_err = read_err;
887         job->write_err = write_err;
888
889         push(&kc->callback_jobs, job);
890         wake(kc);
891 }
892 EXPORT_SYMBOL(dm_kcopyd_do_callback);
893
894 /*
895  * Cancels a kcopyd job, eg. someone might be deactivating a
896  * mirror.
897  */
898 #if 0
899 int kcopyd_cancel(struct kcopyd_job *job, int block)
900 {
901         /* FIXME: finish */
902         return -1;
903 }
904 #endif  /*  0  */
905
906 /*-----------------------------------------------------------------
907  * Client setup
908  *---------------------------------------------------------------*/
909 struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
910 {
911         int r;
912         unsigned reserve_pages;
913         struct dm_kcopyd_client *kc;
914
915         kc = kzalloc(sizeof(*kc), GFP_KERNEL);
916         if (!kc)
917                 return ERR_PTR(-ENOMEM);
918
919         spin_lock_init(&kc->job_lock);
920         INIT_LIST_HEAD(&kc->callback_jobs);
921         INIT_LIST_HEAD(&kc->complete_jobs);
922         INIT_LIST_HEAD(&kc->io_jobs);
923         INIT_LIST_HEAD(&kc->pages_jobs);
924         kc->throttle = throttle;
925
926         r = mempool_init_slab_pool(&kc->job_pool, MIN_JOBS, _job_cache);
927         if (r)
928                 goto bad_slab;
929
930         INIT_WORK(&kc->kcopyd_work, do_work);
931         kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
932         if (!kc->kcopyd_wq) {
933                 r = -ENOMEM;
934                 goto bad_workqueue;
935         }
936
937         kc->sub_job_size = dm_get_kcopyd_subjob_size();
938         reserve_pages = DIV_ROUND_UP(kc->sub_job_size << SECTOR_SHIFT, PAGE_SIZE);
939
940         kc->pages = NULL;
941         kc->nr_reserved_pages = kc->nr_free_pages = 0;
942         r = client_reserve_pages(kc, reserve_pages);
943         if (r)
944                 goto bad_client_pages;
945
946         kc->io_client = dm_io_client_create();
947         if (IS_ERR(kc->io_client)) {
948                 r = PTR_ERR(kc->io_client);
949                 goto bad_io_client;
950         }
951
952         init_waitqueue_head(&kc->destroyq);
953         atomic_set(&kc->nr_jobs, 0);
954
955         return kc;
956
957 bad_io_client:
958         client_free_pages(kc);
959 bad_client_pages:
960         destroy_workqueue(kc->kcopyd_wq);
961 bad_workqueue:
962         mempool_exit(&kc->job_pool);
963 bad_slab:
964         kfree(kc);
965
966         return ERR_PTR(r);
967 }
968 EXPORT_SYMBOL(dm_kcopyd_client_create);
969
970 void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
971 {
972         /* Wait for completion of all jobs submitted by this client. */
973         wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
974
975         BUG_ON(!list_empty(&kc->callback_jobs));
976         BUG_ON(!list_empty(&kc->complete_jobs));
977         BUG_ON(!list_empty(&kc->io_jobs));
978         BUG_ON(!list_empty(&kc->pages_jobs));
979         destroy_workqueue(kc->kcopyd_wq);
980         dm_io_client_destroy(kc->io_client);
981         client_free_pages(kc);
982         mempool_exit(&kc->job_pool);
983         kfree(kc);
984 }
985 EXPORT_SYMBOL(dm_kcopyd_client_destroy);