dm integrity: only allocate recalculate buffer when needed
[platform/kernel/linux-rpi.git] / drivers / md / dm-integrity.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9
10 #include "dm-bio-record.h"
11
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26
27 #include "dm-audit.h"
28
29 #define DM_MSG_PREFIX "integrity"
30
31 #define DEFAULT_INTERLEAVE_SECTORS      32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
34 #define DEFAULT_BUFFER_SECTORS          128
35 #define DEFAULT_JOURNAL_WATERMARK       50
36 #define DEFAULT_SYNC_MSEC               10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS     (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS     3
39 #define MAX_LOG2_INTERLEAVE_SECTORS     31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
41 #define RECALC_SECTORS                  (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER              16
43 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
44 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
45 #define DISCARD_FILLER                  0xf6
46 #define SALT_SIZE                       16
47
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54
55 /*
56  * On disk structures
57  */
58
59 #define SB_MAGIC                        "integrt"
60 #define SB_VERSION_1                    1
61 #define SB_VERSION_2                    2
62 #define SB_VERSION_3                    3
63 #define SB_VERSION_4                    4
64 #define SB_VERSION_5                    5
65 #define SB_SECTORS                      8
66 #define MAX_SECTORS_PER_BLOCK           8
67
68 struct superblock {
69         __u8 magic[8];
70         __u8 version;
71         __u8 log2_interleave_sectors;
72         __le16 integrity_tag_size;
73         __le32 journal_sections;
74         __le64 provided_data_sectors;   /* userspace uses this value */
75         __le32 flags;
76         __u8 log2_sectors_per_block;
77         __u8 log2_blocks_per_bitmap_bit;
78         __u8 pad[2];
79         __le64 recalc_sector;
80         __u8 pad2[8];
81         __u8 salt[SALT_SIZE];
82 };
83
84 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
85 #define SB_FLAG_RECALCULATING           0x2
86 #define SB_FLAG_DIRTY_BITMAP            0x4
87 #define SB_FLAG_FIXED_PADDING           0x8
88 #define SB_FLAG_FIXED_HMAC              0x10
89
90 #define JOURNAL_ENTRY_ROUNDUP           8
91
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR          8
94
95 struct journal_entry {
96         union {
97                 struct {
98                         __le32 sector_lo;
99                         __le32 sector_hi;
100                 } s;
101                 __le64 sector;
102         } u;
103         commit_id_t last_bytes[];
104         /* __u8 tag[0]; */
105 };
106
107 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)            ((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)        ((je)->u.s.sector_hi = cpu_to_le32(-2))
119
120 #define JOURNAL_BLOCK_SECTORS           8
121 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123
124 struct journal_sector {
125         struct_group(sectors,
126                 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127                 __u8 mac[JOURNAL_MAC_PER_SECTOR];
128         );
129         commit_id_t commit_id;
130 };
131
132 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133
134 #define METADATA_PADDING_SECTORS        8
135
136 #define N_COMMIT_IDS                    4
137
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145         return (seq + 1) % N_COMMIT_IDS;
146 }
147
148 /*
149  * In-memory structures
150  */
151
152 struct journal_node {
153         struct rb_node node;
154         sector_t sector;
155 };
156
157 struct alg_spec {
158         char *alg_string;
159         char *key_string;
160         __u8 *key;
161         unsigned int key_size;
162 };
163
164 struct dm_integrity_c {
165         struct dm_dev *dev;
166         struct dm_dev *meta_dev;
167         unsigned int tag_size;
168         __s8 log2_tag_size;
169         sector_t start;
170         mempool_t journal_io_mempool;
171         struct dm_io_client *io;
172         struct dm_bufio_client *bufio;
173         struct workqueue_struct *metadata_wq;
174         struct superblock *sb;
175         unsigned int journal_pages;
176         unsigned int n_bitmap_blocks;
177
178         struct page_list *journal;
179         struct page_list *journal_io;
180         struct page_list *journal_xor;
181         struct page_list *recalc_bitmap;
182         struct page_list *may_write_bitmap;
183         struct bitmap_block_status *bbs;
184         unsigned int bitmap_flush_interval;
185         int synchronous_mode;
186         struct bio_list synchronous_bios;
187         struct delayed_work bitmap_flush_work;
188
189         struct crypto_skcipher *journal_crypt;
190         struct scatterlist **journal_scatterlist;
191         struct scatterlist **journal_io_scatterlist;
192         struct skcipher_request **sk_requests;
193
194         struct crypto_shash *journal_mac;
195
196         struct journal_node *journal_tree;
197         struct rb_root journal_tree_root;
198
199         sector_t provided_data_sectors;
200
201         unsigned short journal_entry_size;
202         unsigned char journal_entries_per_sector;
203         unsigned char journal_section_entries;
204         unsigned short journal_section_sectors;
205         unsigned int journal_sections;
206         unsigned int journal_entries;
207         sector_t data_device_sectors;
208         sector_t meta_device_sectors;
209         unsigned int initial_sectors;
210         unsigned int metadata_run;
211         __s8 log2_metadata_run;
212         __u8 log2_buffer_sectors;
213         __u8 sectors_per_block;
214         __u8 log2_blocks_per_bitmap_bit;
215
216         unsigned char mode;
217
218         int failed;
219
220         struct crypto_shash *internal_hash;
221
222         struct dm_target *ti;
223
224         /* these variables are locked with endio_wait.lock */
225         struct rb_root in_progress;
226         struct list_head wait_list;
227         wait_queue_head_t endio_wait;
228         struct workqueue_struct *wait_wq;
229         struct workqueue_struct *offload_wq;
230
231         unsigned char commit_seq;
232         commit_id_t commit_ids[N_COMMIT_IDS];
233
234         unsigned int committed_section;
235         unsigned int n_committed_sections;
236
237         unsigned int uncommitted_section;
238         unsigned int n_uncommitted_sections;
239
240         unsigned int free_section;
241         unsigned char free_section_entry;
242         unsigned int free_sectors;
243
244         unsigned int free_sectors_threshold;
245
246         struct workqueue_struct *commit_wq;
247         struct work_struct commit_work;
248
249         struct workqueue_struct *writer_wq;
250         struct work_struct writer_work;
251
252         struct workqueue_struct *recalc_wq;
253         struct work_struct recalc_work;
254
255         struct bio_list flush_bio_list;
256
257         unsigned long autocommit_jiffies;
258         struct timer_list autocommit_timer;
259         unsigned int autocommit_msec;
260
261         wait_queue_head_t copy_to_journal_wait;
262
263         struct completion crypto_backoff;
264
265         bool wrote_to_journal;
266         bool journal_uptodate;
267         bool just_formatted;
268         bool recalculate_flag;
269         bool reset_recalculate_flag;
270         bool discard;
271         bool fix_padding;
272         bool fix_hmac;
273         bool legacy_recalculate;
274
275         struct alg_spec internal_hash_alg;
276         struct alg_spec journal_crypt_alg;
277         struct alg_spec journal_mac_alg;
278
279         atomic64_t number_of_mismatches;
280
281         struct notifier_block reboot_notifier;
282 };
283
284 struct dm_integrity_range {
285         sector_t logical_sector;
286         sector_t n_sectors;
287         bool waiting;
288         union {
289                 struct rb_node node;
290                 struct {
291                         struct task_struct *task;
292                         struct list_head wait_entry;
293                 };
294         };
295 };
296
297 struct dm_integrity_io {
298         struct work_struct work;
299
300         struct dm_integrity_c *ic;
301         enum req_op op;
302         bool fua;
303
304         struct dm_integrity_range range;
305
306         sector_t metadata_block;
307         unsigned int metadata_offset;
308
309         atomic_t in_flight;
310         blk_status_t bi_status;
311
312         struct completion *completion;
313
314         struct dm_bio_details bio_details;
315 };
316
317 struct journal_completion {
318         struct dm_integrity_c *ic;
319         atomic_t in_flight;
320         struct completion comp;
321 };
322
323 struct journal_io {
324         struct dm_integrity_range range;
325         struct journal_completion *comp;
326 };
327
328 struct bitmap_block_status {
329         struct work_struct work;
330         struct dm_integrity_c *ic;
331         unsigned int idx;
332         unsigned long *bitmap;
333         struct bio_list bio_queue;
334         spinlock_t bio_queue_lock;
335
336 };
337
338 static struct kmem_cache *journal_io_cache;
339
340 #define JOURNAL_IO_MEMPOOL      32
341
342 #ifdef DEBUG_PRINT
343 #define DEBUG_print(x, ...)                     printk(KERN_DEBUG x, ##__VA_ARGS__)
344 #define DEBUG_bytes(bytes, len, msg, ...)       printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
345                                                        len ? ": " : "", len, bytes)
346 #else
347 #define DEBUG_print(x, ...)                     do { } while (0)
348 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
349 #endif
350
351 static void dm_integrity_prepare(struct request *rq)
352 {
353 }
354
355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
356 {
357 }
358
359 /*
360  * DM Integrity profile, protection is performed layer above (dm-crypt)
361  */
362 static const struct blk_integrity_profile dm_integrity_profile = {
363         .name                   = "DM-DIF-EXT-TAG",
364         .generate_fn            = NULL,
365         .verify_fn              = NULL,
366         .prepare_fn             = dm_integrity_prepare,
367         .complete_fn            = dm_integrity_complete,
368 };
369
370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
371 static void integrity_bio_wait(struct work_struct *w);
372 static void dm_integrity_dtr(struct dm_target *ti);
373
374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
375 {
376         if (err == -EILSEQ)
377                 atomic64_inc(&ic->number_of_mismatches);
378         if (!cmpxchg(&ic->failed, 0, err))
379                 DMERR("Error on %s: %d", msg, err);
380 }
381
382 static int dm_integrity_failed(struct dm_integrity_c *ic)
383 {
384         return READ_ONCE(ic->failed);
385 }
386
387 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
388 {
389         if (ic->legacy_recalculate)
390                 return false;
391         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
392             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
393             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
394                 return true;
395         return false;
396 }
397
398 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
399                                           unsigned int j, unsigned char seq)
400 {
401         /*
402          * Xor the number with section and sector, so that if a piece of
403          * journal is written at wrong place, it is detected.
404          */
405         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
406 }
407
408 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
409                                 sector_t *area, sector_t *offset)
410 {
411         if (!ic->meta_dev) {
412                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
413                 *area = data_sector >> log2_interleave_sectors;
414                 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
415         } else {
416                 *area = 0;
417                 *offset = data_sector;
418         }
419 }
420
421 #define sector_to_block(ic, n)                                          \
422 do {                                                                    \
423         BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));              \
424         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
425 } while (0)
426
427 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
428                                             sector_t offset, unsigned int *metadata_offset)
429 {
430         __u64 ms;
431         unsigned int mo;
432
433         ms = area << ic->sb->log2_interleave_sectors;
434         if (likely(ic->log2_metadata_run >= 0))
435                 ms += area << ic->log2_metadata_run;
436         else
437                 ms += area * ic->metadata_run;
438         ms >>= ic->log2_buffer_sectors;
439
440         sector_to_block(ic, offset);
441
442         if (likely(ic->log2_tag_size >= 0)) {
443                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
444                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
445         } else {
446                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
447                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
448         }
449         *metadata_offset = mo;
450         return ms;
451 }
452
453 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
454 {
455         sector_t result;
456
457         if (ic->meta_dev)
458                 return offset;
459
460         result = area << ic->sb->log2_interleave_sectors;
461         if (likely(ic->log2_metadata_run >= 0))
462                 result += (area + 1) << ic->log2_metadata_run;
463         else
464                 result += (area + 1) * ic->metadata_run;
465
466         result += (sector_t)ic->initial_sectors + offset;
467         result += ic->start;
468
469         return result;
470 }
471
472 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
473 {
474         if (unlikely(*sec_ptr >= ic->journal_sections))
475                 *sec_ptr -= ic->journal_sections;
476 }
477
478 static void sb_set_version(struct dm_integrity_c *ic)
479 {
480         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
481                 ic->sb->version = SB_VERSION_5;
482         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
483                 ic->sb->version = SB_VERSION_4;
484         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
485                 ic->sb->version = SB_VERSION_3;
486         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
487                 ic->sb->version = SB_VERSION_2;
488         else
489                 ic->sb->version = SB_VERSION_1;
490 }
491
492 static int sb_mac(struct dm_integrity_c *ic, bool wr)
493 {
494         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
495         int r;
496         unsigned int size = crypto_shash_digestsize(ic->journal_mac);
497
498         if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
499                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
500                 return -EINVAL;
501         }
502
503         desc->tfm = ic->journal_mac;
504
505         r = crypto_shash_init(desc);
506         if (unlikely(r < 0)) {
507                 dm_integrity_io_error(ic, "crypto_shash_init", r);
508                 return r;
509         }
510
511         r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
512         if (unlikely(r < 0)) {
513                 dm_integrity_io_error(ic, "crypto_shash_update", r);
514                 return r;
515         }
516
517         if (likely(wr)) {
518                 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
519                 if (unlikely(r < 0)) {
520                         dm_integrity_io_error(ic, "crypto_shash_final", r);
521                         return r;
522                 }
523         } else {
524                 __u8 result[HASH_MAX_DIGESTSIZE];
525
526                 r = crypto_shash_final(desc, result);
527                 if (unlikely(r < 0)) {
528                         dm_integrity_io_error(ic, "crypto_shash_final", r);
529                         return r;
530                 }
531                 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
532                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
533                         dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
534                         return -EILSEQ;
535                 }
536         }
537
538         return 0;
539 }
540
541 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
542 {
543         struct dm_io_request io_req;
544         struct dm_io_region io_loc;
545         const enum req_op op = opf & REQ_OP_MASK;
546         int r;
547
548         io_req.bi_opf = opf;
549         io_req.mem.type = DM_IO_KMEM;
550         io_req.mem.ptr.addr = ic->sb;
551         io_req.notify.fn = NULL;
552         io_req.client = ic->io;
553         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
554         io_loc.sector = ic->start;
555         io_loc.count = SB_SECTORS;
556
557         if (op == REQ_OP_WRITE) {
558                 sb_set_version(ic);
559                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
560                         r = sb_mac(ic, true);
561                         if (unlikely(r))
562                                 return r;
563                 }
564         }
565
566         r = dm_io(&io_req, 1, &io_loc, NULL);
567         if (unlikely(r))
568                 return r;
569
570         if (op == REQ_OP_READ) {
571                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
572                         r = sb_mac(ic, false);
573                         if (unlikely(r))
574                                 return r;
575                 }
576         }
577
578         return 0;
579 }
580
581 #define BITMAP_OP_TEST_ALL_SET          0
582 #define BITMAP_OP_TEST_ALL_CLEAR        1
583 #define BITMAP_OP_SET                   2
584 #define BITMAP_OP_CLEAR                 3
585
586 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
587                             sector_t sector, sector_t n_sectors, int mode)
588 {
589         unsigned long bit, end_bit, this_end_bit, page, end_page;
590         unsigned long *data;
591
592         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
593                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
594                         sector,
595                         n_sectors,
596                         ic->sb->log2_sectors_per_block,
597                         ic->log2_blocks_per_bitmap_bit,
598                         mode);
599                 BUG();
600         }
601
602         if (unlikely(!n_sectors))
603                 return true;
604
605         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
606         end_bit = (sector + n_sectors - 1) >>
607                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
608
609         page = bit / (PAGE_SIZE * 8);
610         bit %= PAGE_SIZE * 8;
611
612         end_page = end_bit / (PAGE_SIZE * 8);
613         end_bit %= PAGE_SIZE * 8;
614
615 repeat:
616         if (page < end_page)
617                 this_end_bit = PAGE_SIZE * 8 - 1;
618         else
619                 this_end_bit = end_bit;
620
621         data = lowmem_page_address(bitmap[page].page);
622
623         if (mode == BITMAP_OP_TEST_ALL_SET) {
624                 while (bit <= this_end_bit) {
625                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
626                                 do {
627                                         if (data[bit / BITS_PER_LONG] != -1)
628                                                 return false;
629                                         bit += BITS_PER_LONG;
630                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
631                                 continue;
632                         }
633                         if (!test_bit(bit, data))
634                                 return false;
635                         bit++;
636                 }
637         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
638                 while (bit <= this_end_bit) {
639                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
640                                 do {
641                                         if (data[bit / BITS_PER_LONG] != 0)
642                                                 return false;
643                                         bit += BITS_PER_LONG;
644                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
645                                 continue;
646                         }
647                         if (test_bit(bit, data))
648                                 return false;
649                         bit++;
650                 }
651         } else if (mode == BITMAP_OP_SET) {
652                 while (bit <= this_end_bit) {
653                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
654                                 do {
655                                         data[bit / BITS_PER_LONG] = -1;
656                                         bit += BITS_PER_LONG;
657                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
658                                 continue;
659                         }
660                         __set_bit(bit, data);
661                         bit++;
662                 }
663         } else if (mode == BITMAP_OP_CLEAR) {
664                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
665                         clear_page(data);
666                 else {
667                         while (bit <= this_end_bit) {
668                                 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
669                                         do {
670                                                 data[bit / BITS_PER_LONG] = 0;
671                                                 bit += BITS_PER_LONG;
672                                         } while (this_end_bit >= bit + BITS_PER_LONG - 1);
673                                         continue;
674                                 }
675                                 __clear_bit(bit, data);
676                                 bit++;
677                         }
678                 }
679         } else {
680                 BUG();
681         }
682
683         if (unlikely(page < end_page)) {
684                 bit = 0;
685                 page++;
686                 goto repeat;
687         }
688
689         return true;
690 }
691
692 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
693 {
694         unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
695         unsigned int i;
696
697         for (i = 0; i < n_bitmap_pages; i++) {
698                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
699                 unsigned long *src_data = lowmem_page_address(src[i].page);
700
701                 copy_page(dst_data, src_data);
702         }
703 }
704
705 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
706 {
707         unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
708         unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
709
710         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
711         return &ic->bbs[bitmap_block];
712 }
713
714 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
715                                  bool e, const char *function)
716 {
717 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
718         unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
719
720         if (unlikely(section >= ic->journal_sections) ||
721             unlikely(offset >= limit)) {
722                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
723                        function, section, offset, ic->journal_sections, limit);
724                 BUG();
725         }
726 #endif
727 }
728
729 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
730                                unsigned int *pl_index, unsigned int *pl_offset)
731 {
732         unsigned int sector;
733
734         access_journal_check(ic, section, offset, false, "page_list_location");
735
736         sector = section * ic->journal_section_sectors + offset;
737
738         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
739         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
740 }
741
742 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
743                                                unsigned int section, unsigned int offset, unsigned int *n_sectors)
744 {
745         unsigned int pl_index, pl_offset;
746         char *va;
747
748         page_list_location(ic, section, offset, &pl_index, &pl_offset);
749
750         if (n_sectors)
751                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
752
753         va = lowmem_page_address(pl[pl_index].page);
754
755         return (struct journal_sector *)(va + pl_offset);
756 }
757
758 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
759 {
760         return access_page_list(ic, ic->journal, section, offset, NULL);
761 }
762
763 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
764 {
765         unsigned int rel_sector, offset;
766         struct journal_sector *js;
767
768         access_journal_check(ic, section, n, true, "access_journal_entry");
769
770         rel_sector = n % JOURNAL_BLOCK_SECTORS;
771         offset = n / JOURNAL_BLOCK_SECTORS;
772
773         js = access_journal(ic, section, rel_sector);
774         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
775 }
776
777 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
778 {
779         n <<= ic->sb->log2_sectors_per_block;
780
781         n += JOURNAL_BLOCK_SECTORS;
782
783         access_journal_check(ic, section, n, false, "access_journal_data");
784
785         return access_journal(ic, section, n);
786 }
787
788 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
789 {
790         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
791         int r;
792         unsigned int j, size;
793
794         desc->tfm = ic->journal_mac;
795
796         r = crypto_shash_init(desc);
797         if (unlikely(r < 0)) {
798                 dm_integrity_io_error(ic, "crypto_shash_init", r);
799                 goto err;
800         }
801
802         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
803                 __le64 section_le;
804
805                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
806                 if (unlikely(r < 0)) {
807                         dm_integrity_io_error(ic, "crypto_shash_update", r);
808                         goto err;
809                 }
810
811                 section_le = cpu_to_le64(section);
812                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
813                 if (unlikely(r < 0)) {
814                         dm_integrity_io_error(ic, "crypto_shash_update", r);
815                         goto err;
816                 }
817         }
818
819         for (j = 0; j < ic->journal_section_entries; j++) {
820                 struct journal_entry *je = access_journal_entry(ic, section, j);
821
822                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
823                 if (unlikely(r < 0)) {
824                         dm_integrity_io_error(ic, "crypto_shash_update", r);
825                         goto err;
826                 }
827         }
828
829         size = crypto_shash_digestsize(ic->journal_mac);
830
831         if (likely(size <= JOURNAL_MAC_SIZE)) {
832                 r = crypto_shash_final(desc, result);
833                 if (unlikely(r < 0)) {
834                         dm_integrity_io_error(ic, "crypto_shash_final", r);
835                         goto err;
836                 }
837                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
838         } else {
839                 __u8 digest[HASH_MAX_DIGESTSIZE];
840
841                 if (WARN_ON(size > sizeof(digest))) {
842                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
843                         goto err;
844                 }
845                 r = crypto_shash_final(desc, digest);
846                 if (unlikely(r < 0)) {
847                         dm_integrity_io_error(ic, "crypto_shash_final", r);
848                         goto err;
849                 }
850                 memcpy(result, digest, JOURNAL_MAC_SIZE);
851         }
852
853         return;
854 err:
855         memset(result, 0, JOURNAL_MAC_SIZE);
856 }
857
858 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
859 {
860         __u8 result[JOURNAL_MAC_SIZE];
861         unsigned int j;
862
863         if (!ic->journal_mac)
864                 return;
865
866         section_mac(ic, section, result);
867
868         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
869                 struct journal_sector *js = access_journal(ic, section, j);
870
871                 if (likely(wr))
872                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
873                 else {
874                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
875                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
876                                 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
877                         }
878                 }
879         }
880 }
881
882 static void complete_journal_op(void *context)
883 {
884         struct journal_completion *comp = context;
885
886         BUG_ON(!atomic_read(&comp->in_flight));
887         if (likely(atomic_dec_and_test(&comp->in_flight)))
888                 complete(&comp->comp);
889 }
890
891 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
892                         unsigned int n_sections, struct journal_completion *comp)
893 {
894         struct async_submit_ctl submit;
895         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
896         unsigned int pl_index, pl_offset, section_index;
897         struct page_list *source_pl, *target_pl;
898
899         if (likely(encrypt)) {
900                 source_pl = ic->journal;
901                 target_pl = ic->journal_io;
902         } else {
903                 source_pl = ic->journal_io;
904                 target_pl = ic->journal;
905         }
906
907         page_list_location(ic, section, 0, &pl_index, &pl_offset);
908
909         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
910
911         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
912
913         section_index = pl_index;
914
915         do {
916                 size_t this_step;
917                 struct page *src_pages[2];
918                 struct page *dst_page;
919
920                 while (unlikely(pl_index == section_index)) {
921                         unsigned int dummy;
922
923                         if (likely(encrypt))
924                                 rw_section_mac(ic, section, true);
925                         section++;
926                         n_sections--;
927                         if (!n_sections)
928                                 break;
929                         page_list_location(ic, section, 0, &section_index, &dummy);
930                 }
931
932                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
933                 dst_page = target_pl[pl_index].page;
934                 src_pages[0] = source_pl[pl_index].page;
935                 src_pages[1] = ic->journal_xor[pl_index].page;
936
937                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
938
939                 pl_index++;
940                 pl_offset = 0;
941                 n_bytes -= this_step;
942         } while (n_bytes);
943
944         BUG_ON(n_sections);
945
946         async_tx_issue_pending_all();
947 }
948
949 static void complete_journal_encrypt(void *data, int err)
950 {
951         struct journal_completion *comp = data;
952
953         if (unlikely(err)) {
954                 if (likely(err == -EINPROGRESS)) {
955                         complete(&comp->ic->crypto_backoff);
956                         return;
957                 }
958                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
959         }
960         complete_journal_op(comp);
961 }
962
963 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
964 {
965         int r;
966
967         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
968                                       complete_journal_encrypt, comp);
969         if (likely(encrypt))
970                 r = crypto_skcipher_encrypt(req);
971         else
972                 r = crypto_skcipher_decrypt(req);
973         if (likely(!r))
974                 return false;
975         if (likely(r == -EINPROGRESS))
976                 return true;
977         if (likely(r == -EBUSY)) {
978                 wait_for_completion(&comp->ic->crypto_backoff);
979                 reinit_completion(&comp->ic->crypto_backoff);
980                 return true;
981         }
982         dm_integrity_io_error(comp->ic, "encrypt", r);
983         return false;
984 }
985
986 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
987                           unsigned int n_sections, struct journal_completion *comp)
988 {
989         struct scatterlist **source_sg;
990         struct scatterlist **target_sg;
991
992         atomic_add(2, &comp->in_flight);
993
994         if (likely(encrypt)) {
995                 source_sg = ic->journal_scatterlist;
996                 target_sg = ic->journal_io_scatterlist;
997         } else {
998                 source_sg = ic->journal_io_scatterlist;
999                 target_sg = ic->journal_scatterlist;
1000         }
1001
1002         do {
1003                 struct skcipher_request *req;
1004                 unsigned int ivsize;
1005                 char *iv;
1006
1007                 if (likely(encrypt))
1008                         rw_section_mac(ic, section, true);
1009
1010                 req = ic->sk_requests[section];
1011                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1012                 iv = req->iv;
1013
1014                 memcpy(iv, iv + ivsize, ivsize);
1015
1016                 req->src = source_sg[section];
1017                 req->dst = target_sg[section];
1018
1019                 if (unlikely(do_crypt(encrypt, req, comp)))
1020                         atomic_inc(&comp->in_flight);
1021
1022                 section++;
1023                 n_sections--;
1024         } while (n_sections);
1025
1026         atomic_dec(&comp->in_flight);
1027         complete_journal_op(comp);
1028 }
1029
1030 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1031                             unsigned int n_sections, struct journal_completion *comp)
1032 {
1033         if (ic->journal_xor)
1034                 return xor_journal(ic, encrypt, section, n_sections, comp);
1035         else
1036                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1037 }
1038
1039 static void complete_journal_io(unsigned long error, void *context)
1040 {
1041         struct journal_completion *comp = context;
1042
1043         if (unlikely(error != 0))
1044                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1045         complete_journal_op(comp);
1046 }
1047
1048 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1049                                unsigned int sector, unsigned int n_sectors,
1050                                struct journal_completion *comp)
1051 {
1052         struct dm_io_request io_req;
1053         struct dm_io_region io_loc;
1054         unsigned int pl_index, pl_offset;
1055         int r;
1056
1057         if (unlikely(dm_integrity_failed(ic))) {
1058                 if (comp)
1059                         complete_journal_io(-1UL, comp);
1060                 return;
1061         }
1062
1063         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1064         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1065
1066         io_req.bi_opf = opf;
1067         io_req.mem.type = DM_IO_PAGE_LIST;
1068         if (ic->journal_io)
1069                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1070         else
1071                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1072         io_req.mem.offset = pl_offset;
1073         if (likely(comp != NULL)) {
1074                 io_req.notify.fn = complete_journal_io;
1075                 io_req.notify.context = comp;
1076         } else {
1077                 io_req.notify.fn = NULL;
1078         }
1079         io_req.client = ic->io;
1080         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1081         io_loc.sector = ic->start + SB_SECTORS + sector;
1082         io_loc.count = n_sectors;
1083
1084         r = dm_io(&io_req, 1, &io_loc, NULL);
1085         if (unlikely(r)) {
1086                 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1087                                       "reading journal" : "writing journal", r);
1088                 if (comp) {
1089                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1090                         complete_journal_io(-1UL, comp);
1091                 }
1092         }
1093 }
1094
1095 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1096                        unsigned int section, unsigned int n_sections,
1097                        struct journal_completion *comp)
1098 {
1099         unsigned int sector, n_sectors;
1100
1101         sector = section * ic->journal_section_sectors;
1102         n_sectors = n_sections * ic->journal_section_sectors;
1103
1104         rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1105 }
1106
1107 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1108 {
1109         struct journal_completion io_comp;
1110         struct journal_completion crypt_comp_1;
1111         struct journal_completion crypt_comp_2;
1112         unsigned int i;
1113
1114         io_comp.ic = ic;
1115         init_completion(&io_comp.comp);
1116
1117         if (commit_start + commit_sections <= ic->journal_sections) {
1118                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1119                 if (ic->journal_io) {
1120                         crypt_comp_1.ic = ic;
1121                         init_completion(&crypt_comp_1.comp);
1122                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1123                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1124                         wait_for_completion_io(&crypt_comp_1.comp);
1125                 } else {
1126                         for (i = 0; i < commit_sections; i++)
1127                                 rw_section_mac(ic, commit_start + i, true);
1128                 }
1129                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1130                            commit_sections, &io_comp);
1131         } else {
1132                 unsigned int to_end;
1133
1134                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1135                 to_end = ic->journal_sections - commit_start;
1136                 if (ic->journal_io) {
1137                         crypt_comp_1.ic = ic;
1138                         init_completion(&crypt_comp_1.comp);
1139                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1141                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1142                                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1143                                            commit_start, to_end, &io_comp);
1144                                 reinit_completion(&crypt_comp_1.comp);
1145                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1146                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1147                                 wait_for_completion_io(&crypt_comp_1.comp);
1148                         } else {
1149                                 crypt_comp_2.ic = ic;
1150                                 init_completion(&crypt_comp_2.comp);
1151                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1152                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1153                                 wait_for_completion_io(&crypt_comp_1.comp);
1154                                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1155                                 wait_for_completion_io(&crypt_comp_2.comp);
1156                         }
1157                 } else {
1158                         for (i = 0; i < to_end; i++)
1159                                 rw_section_mac(ic, commit_start + i, true);
1160                         rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1161                         for (i = 0; i < commit_sections - to_end; i++)
1162                                 rw_section_mac(ic, i, true);
1163                 }
1164                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1165         }
1166
1167         wait_for_completion_io(&io_comp.comp);
1168 }
1169
1170 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1171                               unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1172 {
1173         struct dm_io_request io_req;
1174         struct dm_io_region io_loc;
1175         int r;
1176         unsigned int sector, pl_index, pl_offset;
1177
1178         BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1179
1180         if (unlikely(dm_integrity_failed(ic))) {
1181                 fn(-1UL, data);
1182                 return;
1183         }
1184
1185         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1186
1187         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1188         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1189
1190         io_req.bi_opf = REQ_OP_WRITE;
1191         io_req.mem.type = DM_IO_PAGE_LIST;
1192         io_req.mem.ptr.pl = &ic->journal[pl_index];
1193         io_req.mem.offset = pl_offset;
1194         io_req.notify.fn = fn;
1195         io_req.notify.context = data;
1196         io_req.client = ic->io;
1197         io_loc.bdev = ic->dev->bdev;
1198         io_loc.sector = target;
1199         io_loc.count = n_sectors;
1200
1201         r = dm_io(&io_req, 1, &io_loc, NULL);
1202         if (unlikely(r)) {
1203                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1204                 fn(-1UL, data);
1205         }
1206 }
1207
1208 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1209 {
1210         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1211                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1212 }
1213
1214 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1215 {
1216         struct rb_node **n = &ic->in_progress.rb_node;
1217         struct rb_node *parent;
1218
1219         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1220
1221         if (likely(check_waiting)) {
1222                 struct dm_integrity_range *range;
1223
1224                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1225                         if (unlikely(ranges_overlap(range, new_range)))
1226                                 return false;
1227                 }
1228         }
1229
1230         parent = NULL;
1231
1232         while (*n) {
1233                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1234
1235                 parent = *n;
1236                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1237                         n = &range->node.rb_left;
1238                 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1239                         n = &range->node.rb_right;
1240                 else
1241                         return false;
1242         }
1243
1244         rb_link_node(&new_range->node, parent, n);
1245         rb_insert_color(&new_range->node, &ic->in_progress);
1246
1247         return true;
1248 }
1249
1250 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1251 {
1252         rb_erase(&range->node, &ic->in_progress);
1253         while (unlikely(!list_empty(&ic->wait_list))) {
1254                 struct dm_integrity_range *last_range =
1255                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1256                 struct task_struct *last_range_task;
1257
1258                 last_range_task = last_range->task;
1259                 list_del(&last_range->wait_entry);
1260                 if (!add_new_range(ic, last_range, false)) {
1261                         last_range->task = last_range_task;
1262                         list_add(&last_range->wait_entry, &ic->wait_list);
1263                         break;
1264                 }
1265                 last_range->waiting = false;
1266                 wake_up_process(last_range_task);
1267         }
1268 }
1269
1270 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1271 {
1272         unsigned long flags;
1273
1274         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1275         remove_range_unlocked(ic, range);
1276         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1277 }
1278
1279 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1280 {
1281         new_range->waiting = true;
1282         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1283         new_range->task = current;
1284         do {
1285                 __set_current_state(TASK_UNINTERRUPTIBLE);
1286                 spin_unlock_irq(&ic->endio_wait.lock);
1287                 io_schedule();
1288                 spin_lock_irq(&ic->endio_wait.lock);
1289         } while (unlikely(new_range->waiting));
1290 }
1291
1292 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1293 {
1294         if (unlikely(!add_new_range(ic, new_range, true)))
1295                 wait_and_add_new_range(ic, new_range);
1296 }
1297
1298 static void init_journal_node(struct journal_node *node)
1299 {
1300         RB_CLEAR_NODE(&node->node);
1301         node->sector = (sector_t)-1;
1302 }
1303
1304 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1305 {
1306         struct rb_node **link;
1307         struct rb_node *parent;
1308
1309         node->sector = sector;
1310         BUG_ON(!RB_EMPTY_NODE(&node->node));
1311
1312         link = &ic->journal_tree_root.rb_node;
1313         parent = NULL;
1314
1315         while (*link) {
1316                 struct journal_node *j;
1317
1318                 parent = *link;
1319                 j = container_of(parent, struct journal_node, node);
1320                 if (sector < j->sector)
1321                         link = &j->node.rb_left;
1322                 else
1323                         link = &j->node.rb_right;
1324         }
1325
1326         rb_link_node(&node->node, parent, link);
1327         rb_insert_color(&node->node, &ic->journal_tree_root);
1328 }
1329
1330 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1331 {
1332         BUG_ON(RB_EMPTY_NODE(&node->node));
1333         rb_erase(&node->node, &ic->journal_tree_root);
1334         init_journal_node(node);
1335 }
1336
1337 #define NOT_FOUND       (-1U)
1338
1339 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1340 {
1341         struct rb_node *n = ic->journal_tree_root.rb_node;
1342         unsigned int found = NOT_FOUND;
1343
1344         *next_sector = (sector_t)-1;
1345         while (n) {
1346                 struct journal_node *j = container_of(n, struct journal_node, node);
1347
1348                 if (sector == j->sector)
1349                         found = j - ic->journal_tree;
1350
1351                 if (sector < j->sector) {
1352                         *next_sector = j->sector;
1353                         n = j->node.rb_left;
1354                 } else
1355                         n = j->node.rb_right;
1356         }
1357
1358         return found;
1359 }
1360
1361 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1362 {
1363         struct journal_node *node, *next_node;
1364         struct rb_node *next;
1365
1366         if (unlikely(pos >= ic->journal_entries))
1367                 return false;
1368         node = &ic->journal_tree[pos];
1369         if (unlikely(RB_EMPTY_NODE(&node->node)))
1370                 return false;
1371         if (unlikely(node->sector != sector))
1372                 return false;
1373
1374         next = rb_next(&node->node);
1375         if (unlikely(!next))
1376                 return true;
1377
1378         next_node = container_of(next, struct journal_node, node);
1379         return next_node->sector != sector;
1380 }
1381
1382 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1383 {
1384         struct rb_node *next;
1385         struct journal_node *next_node;
1386         unsigned int next_section;
1387
1388         BUG_ON(RB_EMPTY_NODE(&node->node));
1389
1390         next = rb_next(&node->node);
1391         if (unlikely(!next))
1392                 return false;
1393
1394         next_node = container_of(next, struct journal_node, node);
1395
1396         if (next_node->sector != node->sector)
1397                 return false;
1398
1399         next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1400         if (next_section >= ic->committed_section &&
1401             next_section < ic->committed_section + ic->n_committed_sections)
1402                 return true;
1403         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1404                 return true;
1405
1406         return false;
1407 }
1408
1409 #define TAG_READ        0
1410 #define TAG_WRITE       1
1411 #define TAG_CMP         2
1412
1413 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1414                                unsigned int *metadata_offset, unsigned int total_size, int op)
1415 {
1416 #define MAY_BE_FILLER           1
1417 #define MAY_BE_HASH             2
1418         unsigned int hash_offset = 0;
1419         unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1420
1421         do {
1422                 unsigned char *data, *dp;
1423                 struct dm_buffer *b;
1424                 unsigned int to_copy;
1425                 int r;
1426
1427                 r = dm_integrity_failed(ic);
1428                 if (unlikely(r))
1429                         return r;
1430
1431                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1432                 if (IS_ERR(data))
1433                         return PTR_ERR(data);
1434
1435                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1436                 dp = data + *metadata_offset;
1437                 if (op == TAG_READ) {
1438                         memcpy(tag, dp, to_copy);
1439                 } else if (op == TAG_WRITE) {
1440                         if (memcmp(dp, tag, to_copy)) {
1441                                 memcpy(dp, tag, to_copy);
1442                                 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1443                         }
1444                 } else {
1445                         /* e.g.: op == TAG_CMP */
1446
1447                         if (likely(is_power_of_2(ic->tag_size))) {
1448                                 if (unlikely(memcmp(dp, tag, to_copy)))
1449                                         if (unlikely(!ic->discard) ||
1450                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1451                                                 goto thorough_test;
1452                                 }
1453                         } else {
1454                                 unsigned int i, ts;
1455 thorough_test:
1456                                 ts = total_size;
1457
1458                                 for (i = 0; i < to_copy; i++, ts--) {
1459                                         if (unlikely(dp[i] != tag[i]))
1460                                                 may_be &= ~MAY_BE_HASH;
1461                                         if (likely(dp[i] != DISCARD_FILLER))
1462                                                 may_be &= ~MAY_BE_FILLER;
1463                                         hash_offset++;
1464                                         if (unlikely(hash_offset == ic->tag_size)) {
1465                                                 if (unlikely(!may_be)) {
1466                                                         dm_bufio_release(b);
1467                                                         return ts;
1468                                                 }
1469                                                 hash_offset = 0;
1470                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1471                                         }
1472                                 }
1473                         }
1474                 }
1475                 dm_bufio_release(b);
1476
1477                 tag += to_copy;
1478                 *metadata_offset += to_copy;
1479                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1480                         (*metadata_block)++;
1481                         *metadata_offset = 0;
1482                 }
1483
1484                 if (unlikely(!is_power_of_2(ic->tag_size)))
1485                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1486
1487                 total_size -= to_copy;
1488         } while (unlikely(total_size));
1489
1490         return 0;
1491 #undef MAY_BE_FILLER
1492 #undef MAY_BE_HASH
1493 }
1494
1495 struct flush_request {
1496         struct dm_io_request io_req;
1497         struct dm_io_region io_reg;
1498         struct dm_integrity_c *ic;
1499         struct completion comp;
1500 };
1501
1502 static void flush_notify(unsigned long error, void *fr_)
1503 {
1504         struct flush_request *fr = fr_;
1505
1506         if (unlikely(error != 0))
1507                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1508         complete(&fr->comp);
1509 }
1510
1511 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1512 {
1513         int r;
1514         struct flush_request fr;
1515
1516         if (!ic->meta_dev)
1517                 flush_data = false;
1518         if (flush_data) {
1519                 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1520                 fr.io_req.mem.type = DM_IO_KMEM,
1521                 fr.io_req.mem.ptr.addr = NULL,
1522                 fr.io_req.notify.fn = flush_notify,
1523                 fr.io_req.notify.context = &fr;
1524                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1525                 fr.io_reg.bdev = ic->dev->bdev,
1526                 fr.io_reg.sector = 0,
1527                 fr.io_reg.count = 0,
1528                 fr.ic = ic;
1529                 init_completion(&fr.comp);
1530                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1531                 BUG_ON(r);
1532         }
1533
1534         r = dm_bufio_write_dirty_buffers(ic->bufio);
1535         if (unlikely(r))
1536                 dm_integrity_io_error(ic, "writing tags", r);
1537
1538         if (flush_data)
1539                 wait_for_completion(&fr.comp);
1540 }
1541
1542 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1543 {
1544         DECLARE_WAITQUEUE(wait, current);
1545
1546         __add_wait_queue(&ic->endio_wait, &wait);
1547         __set_current_state(TASK_UNINTERRUPTIBLE);
1548         spin_unlock_irq(&ic->endio_wait.lock);
1549         io_schedule();
1550         spin_lock_irq(&ic->endio_wait.lock);
1551         __remove_wait_queue(&ic->endio_wait, &wait);
1552 }
1553
1554 static void autocommit_fn(struct timer_list *t)
1555 {
1556         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1557
1558         if (likely(!dm_integrity_failed(ic)))
1559                 queue_work(ic->commit_wq, &ic->commit_work);
1560 }
1561
1562 static void schedule_autocommit(struct dm_integrity_c *ic)
1563 {
1564         if (!timer_pending(&ic->autocommit_timer))
1565                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1566 }
1567
1568 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1569 {
1570         struct bio *bio;
1571         unsigned long flags;
1572
1573         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1574         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1575         bio_list_add(&ic->flush_bio_list, bio);
1576         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1577
1578         queue_work(ic->commit_wq, &ic->commit_work);
1579 }
1580
1581 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1582 {
1583         int r;
1584
1585         r = dm_integrity_failed(ic);
1586         if (unlikely(r) && !bio->bi_status)
1587                 bio->bi_status = errno_to_blk_status(r);
1588         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1589                 unsigned long flags;
1590
1591                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1592                 bio_list_add(&ic->synchronous_bios, bio);
1593                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1594                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1595                 return;
1596         }
1597         bio_endio(bio);
1598 }
1599
1600 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1601 {
1602         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1603
1604         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1605                 submit_flush_bio(ic, dio);
1606         else
1607                 do_endio(ic, bio);
1608 }
1609
1610 static void dec_in_flight(struct dm_integrity_io *dio)
1611 {
1612         if (atomic_dec_and_test(&dio->in_flight)) {
1613                 struct dm_integrity_c *ic = dio->ic;
1614                 struct bio *bio;
1615
1616                 remove_range(ic, &dio->range);
1617
1618                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1619                         schedule_autocommit(ic);
1620
1621                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1622                 if (unlikely(dio->bi_status) && !bio->bi_status)
1623                         bio->bi_status = dio->bi_status;
1624                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1625                         dio->range.logical_sector += dio->range.n_sectors;
1626                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1627                         INIT_WORK(&dio->work, integrity_bio_wait);
1628                         queue_work(ic->offload_wq, &dio->work);
1629                         return;
1630                 }
1631                 do_endio_flush(ic, dio);
1632         }
1633 }
1634
1635 static void integrity_end_io(struct bio *bio)
1636 {
1637         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1638
1639         dm_bio_restore(&dio->bio_details, bio);
1640         if (bio->bi_integrity)
1641                 bio->bi_opf |= REQ_INTEGRITY;
1642
1643         if (dio->completion)
1644                 complete(dio->completion);
1645
1646         dec_in_flight(dio);
1647 }
1648
1649 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1650                                       const char *data, char *result)
1651 {
1652         __le64 sector_le = cpu_to_le64(sector);
1653         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1654         int r;
1655         unsigned int digest_size;
1656
1657         req->tfm = ic->internal_hash;
1658
1659         r = crypto_shash_init(req);
1660         if (unlikely(r < 0)) {
1661                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1662                 goto failed;
1663         }
1664
1665         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1666                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1667                 if (unlikely(r < 0)) {
1668                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1669                         goto failed;
1670                 }
1671         }
1672
1673         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1674         if (unlikely(r < 0)) {
1675                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1676                 goto failed;
1677         }
1678
1679         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1680         if (unlikely(r < 0)) {
1681                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1682                 goto failed;
1683         }
1684
1685         r = crypto_shash_final(req, result);
1686         if (unlikely(r < 0)) {
1687                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1688                 goto failed;
1689         }
1690
1691         digest_size = crypto_shash_digestsize(ic->internal_hash);
1692         if (unlikely(digest_size < ic->tag_size))
1693                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1694
1695         return;
1696
1697 failed:
1698         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1699         get_random_bytes(result, ic->tag_size);
1700 }
1701
1702 static void integrity_metadata(struct work_struct *w)
1703 {
1704         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1705         struct dm_integrity_c *ic = dio->ic;
1706
1707         int r;
1708
1709         if (ic->internal_hash) {
1710                 struct bvec_iter iter;
1711                 struct bio_vec bv;
1712                 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1713                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1714                 char *checksums;
1715                 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1716                 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1717                 sector_t sector;
1718                 unsigned int sectors_to_process;
1719
1720                 if (unlikely(ic->mode == 'R'))
1721                         goto skip_io;
1722
1723                 if (likely(dio->op != REQ_OP_DISCARD))
1724                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1725                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1726                 else
1727                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1728                 if (!checksums) {
1729                         checksums = checksums_onstack;
1730                         if (WARN_ON(extra_space &&
1731                                     digest_size > sizeof(checksums_onstack))) {
1732                                 r = -EINVAL;
1733                                 goto error;
1734                         }
1735                 }
1736
1737                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1738                         unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1739                         unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1740                         unsigned int max_blocks = max_size / ic->tag_size;
1741
1742                         memset(checksums, DISCARD_FILLER, max_size);
1743
1744                         while (bi_size) {
1745                                 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1746
1747                                 this_step_blocks = min(this_step_blocks, max_blocks);
1748                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1749                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1750                                 if (unlikely(r)) {
1751                                         if (likely(checksums != checksums_onstack))
1752                                                 kfree(checksums);
1753                                         goto error;
1754                                 }
1755
1756                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1757                         }
1758
1759                         if (likely(checksums != checksums_onstack))
1760                                 kfree(checksums);
1761                         goto skip_io;
1762                 }
1763
1764                 sector = dio->range.logical_sector;
1765                 sectors_to_process = dio->range.n_sectors;
1766
1767                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1768                         unsigned int pos;
1769                         char *mem, *checksums_ptr;
1770
1771 again:
1772                         mem = bvec_kmap_local(&bv);
1773                         pos = 0;
1774                         checksums_ptr = checksums;
1775                         do {
1776                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1777                                 checksums_ptr += ic->tag_size;
1778                                 sectors_to_process -= ic->sectors_per_block;
1779                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1780                                 sector += ic->sectors_per_block;
1781                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1782                         kunmap_local(mem);
1783
1784                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1785                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1786                         if (unlikely(r)) {
1787                                 if (r > 0) {
1788                                         sector_t s;
1789
1790                                         s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1791                                         DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1792                                                     bio->bi_bdev, s);
1793                                         r = -EILSEQ;
1794                                         atomic64_inc(&ic->number_of_mismatches);
1795                                         dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1796                                                          bio, s, 0);
1797                                 }
1798                                 if (likely(checksums != checksums_onstack))
1799                                         kfree(checksums);
1800                                 goto error;
1801                         }
1802
1803                         if (!sectors_to_process)
1804                                 break;
1805
1806                         if (unlikely(pos < bv.bv_len)) {
1807                                 bv.bv_offset += pos;
1808                                 bv.bv_len -= pos;
1809                                 goto again;
1810                         }
1811                 }
1812
1813                 if (likely(checksums != checksums_onstack))
1814                         kfree(checksums);
1815         } else {
1816                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1817
1818                 if (bip) {
1819                         struct bio_vec biv;
1820                         struct bvec_iter iter;
1821                         unsigned int data_to_process = dio->range.n_sectors;
1822
1823                         sector_to_block(ic, data_to_process);
1824                         data_to_process *= ic->tag_size;
1825
1826                         bip_for_each_vec(biv, bip, iter) {
1827                                 unsigned char *tag;
1828                                 unsigned int this_len;
1829
1830                                 BUG_ON(PageHighMem(biv.bv_page));
1831                                 tag = bvec_virt(&biv);
1832                                 this_len = min(biv.bv_len, data_to_process);
1833                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1834                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1835                                 if (unlikely(r))
1836                                         goto error;
1837                                 data_to_process -= this_len;
1838                                 if (!data_to_process)
1839                                         break;
1840                         }
1841                 }
1842         }
1843 skip_io:
1844         dec_in_flight(dio);
1845         return;
1846 error:
1847         dio->bi_status = errno_to_blk_status(r);
1848         dec_in_flight(dio);
1849 }
1850
1851 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1852 {
1853         struct dm_integrity_c *ic = ti->private;
1854         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1855         struct bio_integrity_payload *bip;
1856
1857         sector_t area, offset;
1858
1859         dio->ic = ic;
1860         dio->bi_status = 0;
1861         dio->op = bio_op(bio);
1862
1863         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1864                 if (ti->max_io_len) {
1865                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1866                         unsigned int log2_max_io_len = __fls(ti->max_io_len);
1867                         sector_t start_boundary = sec >> log2_max_io_len;
1868                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1869
1870                         if (start_boundary < end_boundary) {
1871                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1872
1873                                 dm_accept_partial_bio(bio, len);
1874                         }
1875                 }
1876         }
1877
1878         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1879                 submit_flush_bio(ic, dio);
1880                 return DM_MAPIO_SUBMITTED;
1881         }
1882
1883         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1884         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1885         if (unlikely(dio->fua)) {
1886                 /*
1887                  * Don't pass down the FUA flag because we have to flush
1888                  * disk cache anyway.
1889                  */
1890                 bio->bi_opf &= ~REQ_FUA;
1891         }
1892         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1893                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1894                       dio->range.logical_sector, bio_sectors(bio),
1895                       ic->provided_data_sectors);
1896                 return DM_MAPIO_KILL;
1897         }
1898         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1899                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1900                       ic->sectors_per_block,
1901                       dio->range.logical_sector, bio_sectors(bio));
1902                 return DM_MAPIO_KILL;
1903         }
1904
1905         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1906                 struct bvec_iter iter;
1907                 struct bio_vec bv;
1908
1909                 bio_for_each_segment(bv, bio, iter) {
1910                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1911                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1912                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1913                                 return DM_MAPIO_KILL;
1914                         }
1915                 }
1916         }
1917
1918         bip = bio_integrity(bio);
1919         if (!ic->internal_hash) {
1920                 if (bip) {
1921                         unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1922
1923                         if (ic->log2_tag_size >= 0)
1924                                 wanted_tag_size <<= ic->log2_tag_size;
1925                         else
1926                                 wanted_tag_size *= ic->tag_size;
1927                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1928                                 DMERR("Invalid integrity data size %u, expected %u",
1929                                       bip->bip_iter.bi_size, wanted_tag_size);
1930                                 return DM_MAPIO_KILL;
1931                         }
1932                 }
1933         } else {
1934                 if (unlikely(bip != NULL)) {
1935                         DMERR("Unexpected integrity data when using internal hash");
1936                         return DM_MAPIO_KILL;
1937                 }
1938         }
1939
1940         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1941                 return DM_MAPIO_KILL;
1942
1943         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1944         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1945         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1946
1947         dm_integrity_map_continue(dio, true);
1948         return DM_MAPIO_SUBMITTED;
1949 }
1950
1951 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1952                                  unsigned int journal_section, unsigned int journal_entry)
1953 {
1954         struct dm_integrity_c *ic = dio->ic;
1955         sector_t logical_sector;
1956         unsigned int n_sectors;
1957
1958         logical_sector = dio->range.logical_sector;
1959         n_sectors = dio->range.n_sectors;
1960         do {
1961                 struct bio_vec bv = bio_iovec(bio);
1962                 char *mem;
1963
1964                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1965                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1966                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1967                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1968 retry_kmap:
1969                 mem = kmap_local_page(bv.bv_page);
1970                 if (likely(dio->op == REQ_OP_WRITE))
1971                         flush_dcache_page(bv.bv_page);
1972
1973                 do {
1974                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1975
1976                         if (unlikely(dio->op == REQ_OP_READ)) {
1977                                 struct journal_sector *js;
1978                                 char *mem_ptr;
1979                                 unsigned int s;
1980
1981                                 if (unlikely(journal_entry_is_inprogress(je))) {
1982                                         flush_dcache_page(bv.bv_page);
1983                                         kunmap_local(mem);
1984
1985                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1986                                         goto retry_kmap;
1987                                 }
1988                                 smp_rmb();
1989                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1990                                 js = access_journal_data(ic, journal_section, journal_entry);
1991                                 mem_ptr = mem + bv.bv_offset;
1992                                 s = 0;
1993                                 do {
1994                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1995                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1996                                         js++;
1997                                         mem_ptr += 1 << SECTOR_SHIFT;
1998                                 } while (++s < ic->sectors_per_block);
1999 #ifdef INTERNAL_VERIFY
2000                                 if (ic->internal_hash) {
2001                                         char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2002
2003                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2004                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2005                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2006                                                             logical_sector);
2007                                                 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2008                                                                  bio, logical_sector, 0);
2009                                         }
2010                                 }
2011 #endif
2012                         }
2013
2014                         if (!ic->internal_hash) {
2015                                 struct bio_integrity_payload *bip = bio_integrity(bio);
2016                                 unsigned int tag_todo = ic->tag_size;
2017                                 char *tag_ptr = journal_entry_tag(ic, je);
2018
2019                                 if (bip) {
2020                                         do {
2021                                                 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2022                                                 unsigned int tag_now = min(biv.bv_len, tag_todo);
2023                                                 char *tag_addr;
2024
2025                                                 BUG_ON(PageHighMem(biv.bv_page));
2026                                                 tag_addr = bvec_virt(&biv);
2027                                                 if (likely(dio->op == REQ_OP_WRITE))
2028                                                         memcpy(tag_ptr, tag_addr, tag_now);
2029                                                 else
2030                                                         memcpy(tag_addr, tag_ptr, tag_now);
2031                                                 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2032                                                 tag_ptr += tag_now;
2033                                                 tag_todo -= tag_now;
2034                                         } while (unlikely(tag_todo));
2035                                 } else if (likely(dio->op == REQ_OP_WRITE))
2036                                         memset(tag_ptr, 0, tag_todo);
2037                         }
2038
2039                         if (likely(dio->op == REQ_OP_WRITE)) {
2040                                 struct journal_sector *js;
2041                                 unsigned int s;
2042
2043                                 js = access_journal_data(ic, journal_section, journal_entry);
2044                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2045
2046                                 s = 0;
2047                                 do {
2048                                         je->last_bytes[s] = js[s].commit_id;
2049                                 } while (++s < ic->sectors_per_block);
2050
2051                                 if (ic->internal_hash) {
2052                                         unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2053
2054                                         if (unlikely(digest_size > ic->tag_size)) {
2055                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2056
2057                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2058                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2059                                         } else
2060                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2061                                 }
2062
2063                                 journal_entry_set_sector(je, logical_sector);
2064                         }
2065                         logical_sector += ic->sectors_per_block;
2066
2067                         journal_entry++;
2068                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2069                                 journal_entry = 0;
2070                                 journal_section++;
2071                                 wraparound_section(ic, &journal_section);
2072                         }
2073
2074                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2075                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2076
2077                 if (unlikely(dio->op == REQ_OP_READ))
2078                         flush_dcache_page(bv.bv_page);
2079                 kunmap_local(mem);
2080         } while (n_sectors);
2081
2082         if (likely(dio->op == REQ_OP_WRITE)) {
2083                 smp_mb();
2084                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2085                         wake_up(&ic->copy_to_journal_wait);
2086                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2087                         queue_work(ic->commit_wq, &ic->commit_work);
2088                 else
2089                         schedule_autocommit(ic);
2090         } else
2091                 remove_range(ic, &dio->range);
2092
2093         if (unlikely(bio->bi_iter.bi_size)) {
2094                 sector_t area, offset;
2095
2096                 dio->range.logical_sector = logical_sector;
2097                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2098                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2099                 return true;
2100         }
2101
2102         return false;
2103 }
2104
2105 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2106 {
2107         struct dm_integrity_c *ic = dio->ic;
2108         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2109         unsigned int journal_section, journal_entry;
2110         unsigned int journal_read_pos;
2111         struct completion read_comp;
2112         bool discard_retried = false;
2113         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2114
2115         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2116                 need_sync_io = true;
2117
2118         if (need_sync_io && from_map) {
2119                 INIT_WORK(&dio->work, integrity_bio_wait);
2120                 queue_work(ic->offload_wq, &dio->work);
2121                 return;
2122         }
2123
2124 lock_retry:
2125         spin_lock_irq(&ic->endio_wait.lock);
2126 retry:
2127         if (unlikely(dm_integrity_failed(ic))) {
2128                 spin_unlock_irq(&ic->endio_wait.lock);
2129                 do_endio(ic, bio);
2130                 return;
2131         }
2132         dio->range.n_sectors = bio_sectors(bio);
2133         journal_read_pos = NOT_FOUND;
2134         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2135                 if (dio->op == REQ_OP_WRITE) {
2136                         unsigned int next_entry, i, pos;
2137                         unsigned int ws, we, range_sectors;
2138
2139                         dio->range.n_sectors = min(dio->range.n_sectors,
2140                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2141                         if (unlikely(!dio->range.n_sectors)) {
2142                                 if (from_map)
2143                                         goto offload_to_thread;
2144                                 sleep_on_endio_wait(ic);
2145                                 goto retry;
2146                         }
2147                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2148                         ic->free_sectors -= range_sectors;
2149                         journal_section = ic->free_section;
2150                         journal_entry = ic->free_section_entry;
2151
2152                         next_entry = ic->free_section_entry + range_sectors;
2153                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2154                         ic->free_section += next_entry / ic->journal_section_entries;
2155                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2156                         wraparound_section(ic, &ic->free_section);
2157
2158                         pos = journal_section * ic->journal_section_entries + journal_entry;
2159                         ws = journal_section;
2160                         we = journal_entry;
2161                         i = 0;
2162                         do {
2163                                 struct journal_entry *je;
2164
2165                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2166                                 pos++;
2167                                 if (unlikely(pos >= ic->journal_entries))
2168                                         pos = 0;
2169
2170                                 je = access_journal_entry(ic, ws, we);
2171                                 BUG_ON(!journal_entry_is_unused(je));
2172                                 journal_entry_set_inprogress(je);
2173                                 we++;
2174                                 if (unlikely(we == ic->journal_section_entries)) {
2175                                         we = 0;
2176                                         ws++;
2177                                         wraparound_section(ic, &ws);
2178                                 }
2179                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2180
2181                         spin_unlock_irq(&ic->endio_wait.lock);
2182                         goto journal_read_write;
2183                 } else {
2184                         sector_t next_sector;
2185
2186                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2187                         if (likely(journal_read_pos == NOT_FOUND)) {
2188                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2189                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2190                         } else {
2191                                 unsigned int i;
2192                                 unsigned int jp = journal_read_pos + 1;
2193
2194                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2195                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2196                                                 break;
2197                                 }
2198                                 dio->range.n_sectors = i;
2199                         }
2200                 }
2201         }
2202         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2203                 /*
2204                  * We must not sleep in the request routine because it could
2205                  * stall bios on current->bio_list.
2206                  * So, we offload the bio to a workqueue if we have to sleep.
2207                  */
2208                 if (from_map) {
2209 offload_to_thread:
2210                         spin_unlock_irq(&ic->endio_wait.lock);
2211                         INIT_WORK(&dio->work, integrity_bio_wait);
2212                         queue_work(ic->wait_wq, &dio->work);
2213                         return;
2214                 }
2215                 if (journal_read_pos != NOT_FOUND)
2216                         dio->range.n_sectors = ic->sectors_per_block;
2217                 wait_and_add_new_range(ic, &dio->range);
2218                 /*
2219                  * wait_and_add_new_range drops the spinlock, so the journal
2220                  * may have been changed arbitrarily. We need to recheck.
2221                  * To simplify the code, we restrict I/O size to just one block.
2222                  */
2223                 if (journal_read_pos != NOT_FOUND) {
2224                         sector_t next_sector;
2225                         unsigned int new_pos;
2226
2227                         new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2228                         if (unlikely(new_pos != journal_read_pos)) {
2229                                 remove_range_unlocked(ic, &dio->range);
2230                                 goto retry;
2231                         }
2232                 }
2233         }
2234         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2235                 sector_t next_sector;
2236                 unsigned int new_pos;
2237
2238                 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2239                 if (unlikely(new_pos != NOT_FOUND) ||
2240                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2241                         remove_range_unlocked(ic, &dio->range);
2242                         spin_unlock_irq(&ic->endio_wait.lock);
2243                         queue_work(ic->commit_wq, &ic->commit_work);
2244                         flush_workqueue(ic->commit_wq);
2245                         queue_work(ic->writer_wq, &ic->writer_work);
2246                         flush_workqueue(ic->writer_wq);
2247                         discard_retried = true;
2248                         goto lock_retry;
2249                 }
2250         }
2251         spin_unlock_irq(&ic->endio_wait.lock);
2252
2253         if (unlikely(journal_read_pos != NOT_FOUND)) {
2254                 journal_section = journal_read_pos / ic->journal_section_entries;
2255                 journal_entry = journal_read_pos % ic->journal_section_entries;
2256                 goto journal_read_write;
2257         }
2258
2259         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2260                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2261                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2262                         struct bitmap_block_status *bbs;
2263
2264                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2265                         spin_lock(&bbs->bio_queue_lock);
2266                         bio_list_add(&bbs->bio_queue, bio);
2267                         spin_unlock(&bbs->bio_queue_lock);
2268                         queue_work(ic->writer_wq, &bbs->work);
2269                         return;
2270                 }
2271         }
2272
2273         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2274
2275         if (need_sync_io) {
2276                 init_completion(&read_comp);
2277                 dio->completion = &read_comp;
2278         } else
2279                 dio->completion = NULL;
2280
2281         dm_bio_record(&dio->bio_details, bio);
2282         bio_set_dev(bio, ic->dev->bdev);
2283         bio->bi_integrity = NULL;
2284         bio->bi_opf &= ~REQ_INTEGRITY;
2285         bio->bi_end_io = integrity_end_io;
2286         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2287
2288         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2289                 integrity_metadata(&dio->work);
2290                 dm_integrity_flush_buffers(ic, false);
2291
2292                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2293                 dio->completion = NULL;
2294
2295                 submit_bio_noacct(bio);
2296
2297                 return;
2298         }
2299
2300         submit_bio_noacct(bio);
2301
2302         if (need_sync_io) {
2303                 wait_for_completion_io(&read_comp);
2304                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2305                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2306                         goto skip_check;
2307                 if (ic->mode == 'B') {
2308                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2309                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2310                                 goto skip_check;
2311                 }
2312
2313                 if (likely(!bio->bi_status))
2314                         integrity_metadata(&dio->work);
2315                 else
2316 skip_check:
2317                         dec_in_flight(dio);
2318         } else {
2319                 INIT_WORK(&dio->work, integrity_metadata);
2320                 queue_work(ic->metadata_wq, &dio->work);
2321         }
2322
2323         return;
2324
2325 journal_read_write:
2326         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2327                 goto lock_retry;
2328
2329         do_endio_flush(ic, dio);
2330 }
2331
2332
2333 static void integrity_bio_wait(struct work_struct *w)
2334 {
2335         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2336
2337         dm_integrity_map_continue(dio, false);
2338 }
2339
2340 static void pad_uncommitted(struct dm_integrity_c *ic)
2341 {
2342         if (ic->free_section_entry) {
2343                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2344                 ic->free_section_entry = 0;
2345                 ic->free_section++;
2346                 wraparound_section(ic, &ic->free_section);
2347                 ic->n_uncommitted_sections++;
2348         }
2349         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2350                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2351                     ic->journal_section_entries + ic->free_sectors)) {
2352                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2353                        "n_uncommitted_sections %u, n_committed_sections %u, "
2354                        "journal_section_entries %u, free_sectors %u",
2355                        ic->journal_sections, ic->journal_section_entries,
2356                        ic->n_uncommitted_sections, ic->n_committed_sections,
2357                        ic->journal_section_entries, ic->free_sectors);
2358         }
2359 }
2360
2361 static void integrity_commit(struct work_struct *w)
2362 {
2363         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2364         unsigned int commit_start, commit_sections;
2365         unsigned int i, j, n;
2366         struct bio *flushes;
2367
2368         del_timer(&ic->autocommit_timer);
2369
2370         spin_lock_irq(&ic->endio_wait.lock);
2371         flushes = bio_list_get(&ic->flush_bio_list);
2372         if (unlikely(ic->mode != 'J')) {
2373                 spin_unlock_irq(&ic->endio_wait.lock);
2374                 dm_integrity_flush_buffers(ic, true);
2375                 goto release_flush_bios;
2376         }
2377
2378         pad_uncommitted(ic);
2379         commit_start = ic->uncommitted_section;
2380         commit_sections = ic->n_uncommitted_sections;
2381         spin_unlock_irq(&ic->endio_wait.lock);
2382
2383         if (!commit_sections)
2384                 goto release_flush_bios;
2385
2386         ic->wrote_to_journal = true;
2387
2388         i = commit_start;
2389         for (n = 0; n < commit_sections; n++) {
2390                 for (j = 0; j < ic->journal_section_entries; j++) {
2391                         struct journal_entry *je;
2392
2393                         je = access_journal_entry(ic, i, j);
2394                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2395                 }
2396                 for (j = 0; j < ic->journal_section_sectors; j++) {
2397                         struct journal_sector *js;
2398
2399                         js = access_journal(ic, i, j);
2400                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2401                 }
2402                 i++;
2403                 if (unlikely(i >= ic->journal_sections))
2404                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2405                 wraparound_section(ic, &i);
2406         }
2407         smp_rmb();
2408
2409         write_journal(ic, commit_start, commit_sections);
2410
2411         spin_lock_irq(&ic->endio_wait.lock);
2412         ic->uncommitted_section += commit_sections;
2413         wraparound_section(ic, &ic->uncommitted_section);
2414         ic->n_uncommitted_sections -= commit_sections;
2415         ic->n_committed_sections += commit_sections;
2416         spin_unlock_irq(&ic->endio_wait.lock);
2417
2418         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2419                 queue_work(ic->writer_wq, &ic->writer_work);
2420
2421 release_flush_bios:
2422         while (flushes) {
2423                 struct bio *next = flushes->bi_next;
2424
2425                 flushes->bi_next = NULL;
2426                 do_endio(ic, flushes);
2427                 flushes = next;
2428         }
2429 }
2430
2431 static void complete_copy_from_journal(unsigned long error, void *context)
2432 {
2433         struct journal_io *io = context;
2434         struct journal_completion *comp = io->comp;
2435         struct dm_integrity_c *ic = comp->ic;
2436
2437         remove_range(ic, &io->range);
2438         mempool_free(io, &ic->journal_io_mempool);
2439         if (unlikely(error != 0))
2440                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2441         complete_journal_op(comp);
2442 }
2443
2444 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2445                                struct journal_entry *je)
2446 {
2447         unsigned int s = 0;
2448
2449         do {
2450                 js->commit_id = je->last_bytes[s];
2451                 js++;
2452         } while (++s < ic->sectors_per_block);
2453 }
2454
2455 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2456                              unsigned int write_sections, bool from_replay)
2457 {
2458         unsigned int i, j, n;
2459         struct journal_completion comp;
2460         struct blk_plug plug;
2461
2462         blk_start_plug(&plug);
2463
2464         comp.ic = ic;
2465         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2466         init_completion(&comp.comp);
2467
2468         i = write_start;
2469         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2470 #ifndef INTERNAL_VERIFY
2471                 if (unlikely(from_replay))
2472 #endif
2473                         rw_section_mac(ic, i, false);
2474                 for (j = 0; j < ic->journal_section_entries; j++) {
2475                         struct journal_entry *je = access_journal_entry(ic, i, j);
2476                         sector_t sec, area, offset;
2477                         unsigned int k, l, next_loop;
2478                         sector_t metadata_block;
2479                         unsigned int metadata_offset;
2480                         struct journal_io *io;
2481
2482                         if (journal_entry_is_unused(je))
2483                                 continue;
2484                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2485                         sec = journal_entry_get_sector(je);
2486                         if (unlikely(from_replay)) {
2487                                 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2488                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2489                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2490                                 }
2491                                 if (unlikely(sec >= ic->provided_data_sectors)) {
2492                                         journal_entry_set_unused(je);
2493                                         continue;
2494                                 }
2495                         }
2496                         get_area_and_offset(ic, sec, &area, &offset);
2497                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2498                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2499                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2500                                 sector_t sec2, area2, offset2;
2501
2502                                 if (journal_entry_is_unused(je2))
2503                                         break;
2504                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2505                                 sec2 = journal_entry_get_sector(je2);
2506                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2507                                         break;
2508                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2509                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2510                                         break;
2511                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2512                         }
2513                         next_loop = k - 1;
2514
2515                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2516                         io->comp = &comp;
2517                         io->range.logical_sector = sec;
2518                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2519
2520                         spin_lock_irq(&ic->endio_wait.lock);
2521                         add_new_range_and_wait(ic, &io->range);
2522
2523                         if (likely(!from_replay)) {
2524                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2525
2526                                 /* don't write if there is newer committed sector */
2527                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2528                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2529
2530                                         journal_entry_set_unused(je2);
2531                                         remove_journal_node(ic, &section_node[j]);
2532                                         j++;
2533                                         sec += ic->sectors_per_block;
2534                                         offset += ic->sectors_per_block;
2535                                 }
2536                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2537                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2538
2539                                         journal_entry_set_unused(je2);
2540                                         remove_journal_node(ic, &section_node[k - 1]);
2541                                         k--;
2542                                 }
2543                                 if (j == k) {
2544                                         remove_range_unlocked(ic, &io->range);
2545                                         spin_unlock_irq(&ic->endio_wait.lock);
2546                                         mempool_free(io, &ic->journal_io_mempool);
2547                                         goto skip_io;
2548                                 }
2549                                 for (l = j; l < k; l++)
2550                                         remove_journal_node(ic, &section_node[l]);
2551                         }
2552                         spin_unlock_irq(&ic->endio_wait.lock);
2553
2554                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2555                         for (l = j; l < k; l++) {
2556                                 int r;
2557                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2558
2559                                 if (
2560 #ifndef INTERNAL_VERIFY
2561                                     unlikely(from_replay) &&
2562 #endif
2563                                     ic->internal_hash) {
2564                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2565
2566                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2567                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2568                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2569                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2570                                                 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2571                                         }
2572                                 }
2573
2574                                 journal_entry_set_unused(je2);
2575                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2576                                                         ic->tag_size, TAG_WRITE);
2577                                 if (unlikely(r))
2578                                         dm_integrity_io_error(ic, "reading tags", r);
2579                         }
2580
2581                         atomic_inc(&comp.in_flight);
2582                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2583                                           (k - j) << ic->sb->log2_sectors_per_block,
2584                                           get_data_sector(ic, area, offset),
2585                                           complete_copy_from_journal, io);
2586 skip_io:
2587                         j = next_loop;
2588                 }
2589         }
2590
2591         dm_bufio_write_dirty_buffers_async(ic->bufio);
2592
2593         blk_finish_plug(&plug);
2594
2595         complete_journal_op(&comp);
2596         wait_for_completion_io(&comp.comp);
2597
2598         dm_integrity_flush_buffers(ic, true);
2599 }
2600
2601 static void integrity_writer(struct work_struct *w)
2602 {
2603         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2604         unsigned int write_start, write_sections;
2605         unsigned int prev_free_sectors;
2606
2607         spin_lock_irq(&ic->endio_wait.lock);
2608         write_start = ic->committed_section;
2609         write_sections = ic->n_committed_sections;
2610         spin_unlock_irq(&ic->endio_wait.lock);
2611
2612         if (!write_sections)
2613                 return;
2614
2615         do_journal_write(ic, write_start, write_sections, false);
2616
2617         spin_lock_irq(&ic->endio_wait.lock);
2618
2619         ic->committed_section += write_sections;
2620         wraparound_section(ic, &ic->committed_section);
2621         ic->n_committed_sections -= write_sections;
2622
2623         prev_free_sectors = ic->free_sectors;
2624         ic->free_sectors += write_sections * ic->journal_section_entries;
2625         if (unlikely(!prev_free_sectors))
2626                 wake_up_locked(&ic->endio_wait);
2627
2628         spin_unlock_irq(&ic->endio_wait.lock);
2629 }
2630
2631 static void recalc_write_super(struct dm_integrity_c *ic)
2632 {
2633         int r;
2634
2635         dm_integrity_flush_buffers(ic, false);
2636         if (dm_integrity_failed(ic))
2637                 return;
2638
2639         r = sync_rw_sb(ic, REQ_OP_WRITE);
2640         if (unlikely(r))
2641                 dm_integrity_io_error(ic, "writing superblock", r);
2642 }
2643
2644 static void integrity_recalc(struct work_struct *w)
2645 {
2646         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2647         size_t recalc_tags_size;
2648         u8 *recalc_buffer = NULL;
2649         u8 *recalc_tags = NULL;
2650         struct dm_integrity_range range;
2651         struct dm_io_request io_req;
2652         struct dm_io_region io_loc;
2653         sector_t area, offset;
2654         sector_t metadata_block;
2655         unsigned int metadata_offset;
2656         sector_t logical_sector, n_sectors;
2657         __u8 *t;
2658         unsigned int i;
2659         int r;
2660         unsigned int super_counter = 0;
2661
2662         recalc_buffer = __vmalloc(RECALC_SECTORS << SECTOR_SHIFT, GFP_NOIO);
2663         if (!recalc_buffer) {
2664                 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2665                 goto free_ret;
2666         }
2667         recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2668         if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2669                 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2670         recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2671         if (!recalc_tags) {
2672                 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2673                 goto free_ret;
2674         }
2675
2676         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2677
2678         spin_lock_irq(&ic->endio_wait.lock);
2679
2680 next_chunk:
2681
2682         if (unlikely(dm_post_suspending(ic->ti)))
2683                 goto unlock_ret;
2684
2685         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2686         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2687                 if (ic->mode == 'B') {
2688                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2689                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2690                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2691                 }
2692                 goto unlock_ret;
2693         }
2694
2695         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2696         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2697         if (!ic->meta_dev)
2698                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2699
2700         add_new_range_and_wait(ic, &range);
2701         spin_unlock_irq(&ic->endio_wait.lock);
2702         logical_sector = range.logical_sector;
2703         n_sectors = range.n_sectors;
2704
2705         if (ic->mode == 'B') {
2706                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2707                         goto advance_and_next;
2708
2709                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2710                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2711                         logical_sector += ic->sectors_per_block;
2712                         n_sectors -= ic->sectors_per_block;
2713                         cond_resched();
2714                 }
2715                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2716                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2717                         n_sectors -= ic->sectors_per_block;
2718                         cond_resched();
2719                 }
2720                 get_area_and_offset(ic, logical_sector, &area, &offset);
2721         }
2722
2723         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2724
2725         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2726                 recalc_write_super(ic);
2727                 if (ic->mode == 'B')
2728                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2729
2730                 super_counter = 0;
2731         }
2732
2733         if (unlikely(dm_integrity_failed(ic)))
2734                 goto err;
2735
2736         io_req.bi_opf = REQ_OP_READ;
2737         io_req.mem.type = DM_IO_VMA;
2738         io_req.mem.ptr.addr = recalc_buffer;
2739         io_req.notify.fn = NULL;
2740         io_req.client = ic->io;
2741         io_loc.bdev = ic->dev->bdev;
2742         io_loc.sector = get_data_sector(ic, area, offset);
2743         io_loc.count = n_sectors;
2744
2745         r = dm_io(&io_req, 1, &io_loc, NULL);
2746         if (unlikely(r)) {
2747                 dm_integrity_io_error(ic, "reading data", r);
2748                 goto err;
2749         }
2750
2751         t = recalc_tags;
2752         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2753                 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2754                 t += ic->tag_size;
2755         }
2756
2757         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2758
2759         r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2760         if (unlikely(r)) {
2761                 dm_integrity_io_error(ic, "writing tags", r);
2762                 goto err;
2763         }
2764
2765         if (ic->mode == 'B') {
2766                 sector_t start, end;
2767
2768                 start = (range.logical_sector >>
2769                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2770                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2771                 end = ((range.logical_sector + range.n_sectors) >>
2772                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2773                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2774                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2775         }
2776
2777 advance_and_next:
2778         cond_resched();
2779
2780         spin_lock_irq(&ic->endio_wait.lock);
2781         remove_range_unlocked(ic, &range);
2782         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2783         goto next_chunk;
2784
2785 err:
2786         remove_range(ic, &range);
2787         goto free_ret;
2788
2789 unlock_ret:
2790         spin_unlock_irq(&ic->endio_wait.lock);
2791
2792         recalc_write_super(ic);
2793
2794 free_ret:
2795         vfree(recalc_buffer);
2796         kvfree(recalc_tags);
2797 }
2798
2799 static void bitmap_block_work(struct work_struct *w)
2800 {
2801         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2802         struct dm_integrity_c *ic = bbs->ic;
2803         struct bio *bio;
2804         struct bio_list bio_queue;
2805         struct bio_list waiting;
2806
2807         bio_list_init(&waiting);
2808
2809         spin_lock(&bbs->bio_queue_lock);
2810         bio_queue = bbs->bio_queue;
2811         bio_list_init(&bbs->bio_queue);
2812         spin_unlock(&bbs->bio_queue_lock);
2813
2814         while ((bio = bio_list_pop(&bio_queue))) {
2815                 struct dm_integrity_io *dio;
2816
2817                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2818
2819                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2820                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2821                         remove_range(ic, &dio->range);
2822                         INIT_WORK(&dio->work, integrity_bio_wait);
2823                         queue_work(ic->offload_wq, &dio->work);
2824                 } else {
2825                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2826                                         dio->range.n_sectors, BITMAP_OP_SET);
2827                         bio_list_add(&waiting, bio);
2828                 }
2829         }
2830
2831         if (bio_list_empty(&waiting))
2832                 return;
2833
2834         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2835                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2836                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2837
2838         while ((bio = bio_list_pop(&waiting))) {
2839                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2840
2841                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2842                                 dio->range.n_sectors, BITMAP_OP_SET);
2843
2844                 remove_range(ic, &dio->range);
2845                 INIT_WORK(&dio->work, integrity_bio_wait);
2846                 queue_work(ic->offload_wq, &dio->work);
2847         }
2848
2849         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2850 }
2851
2852 static void bitmap_flush_work(struct work_struct *work)
2853 {
2854         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2855         struct dm_integrity_range range;
2856         unsigned long limit;
2857         struct bio *bio;
2858
2859         dm_integrity_flush_buffers(ic, false);
2860
2861         range.logical_sector = 0;
2862         range.n_sectors = ic->provided_data_sectors;
2863
2864         spin_lock_irq(&ic->endio_wait.lock);
2865         add_new_range_and_wait(ic, &range);
2866         spin_unlock_irq(&ic->endio_wait.lock);
2867
2868         dm_integrity_flush_buffers(ic, true);
2869
2870         limit = ic->provided_data_sectors;
2871         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2872                 limit = le64_to_cpu(ic->sb->recalc_sector)
2873                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2874                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2875         }
2876         /*DEBUG_print("zeroing journal\n");*/
2877         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2878         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2879
2880         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2881                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2882
2883         spin_lock_irq(&ic->endio_wait.lock);
2884         remove_range_unlocked(ic, &range);
2885         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2886                 bio_endio(bio);
2887                 spin_unlock_irq(&ic->endio_wait.lock);
2888                 spin_lock_irq(&ic->endio_wait.lock);
2889         }
2890         spin_unlock_irq(&ic->endio_wait.lock);
2891 }
2892
2893
2894 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2895                          unsigned int n_sections, unsigned char commit_seq)
2896 {
2897         unsigned int i, j, n;
2898
2899         if (!n_sections)
2900                 return;
2901
2902         for (n = 0; n < n_sections; n++) {
2903                 i = start_section + n;
2904                 wraparound_section(ic, &i);
2905                 for (j = 0; j < ic->journal_section_sectors; j++) {
2906                         struct journal_sector *js = access_journal(ic, i, j);
2907
2908                         BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2909                         memset(&js->sectors, 0, sizeof(js->sectors));
2910                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2911                 }
2912                 for (j = 0; j < ic->journal_section_entries; j++) {
2913                         struct journal_entry *je = access_journal_entry(ic, i, j);
2914
2915                         journal_entry_set_unused(je);
2916                 }
2917         }
2918
2919         write_journal(ic, start_section, n_sections);
2920 }
2921
2922 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2923 {
2924         unsigned char k;
2925
2926         for (k = 0; k < N_COMMIT_IDS; k++) {
2927                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2928                         return k;
2929         }
2930         dm_integrity_io_error(ic, "journal commit id", -EIO);
2931         return -EIO;
2932 }
2933
2934 static void replay_journal(struct dm_integrity_c *ic)
2935 {
2936         unsigned int i, j;
2937         bool used_commit_ids[N_COMMIT_IDS];
2938         unsigned int max_commit_id_sections[N_COMMIT_IDS];
2939         unsigned int write_start, write_sections;
2940         unsigned int continue_section;
2941         bool journal_empty;
2942         unsigned char unused, last_used, want_commit_seq;
2943
2944         if (ic->mode == 'R')
2945                 return;
2946
2947         if (ic->journal_uptodate)
2948                 return;
2949
2950         last_used = 0;
2951         write_start = 0;
2952
2953         if (!ic->just_formatted) {
2954                 DEBUG_print("reading journal\n");
2955                 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2956                 if (ic->journal_io)
2957                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2958                 if (ic->journal_io) {
2959                         struct journal_completion crypt_comp;
2960
2961                         crypt_comp.ic = ic;
2962                         init_completion(&crypt_comp.comp);
2963                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2964                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2965                         wait_for_completion(&crypt_comp.comp);
2966                 }
2967                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2968         }
2969
2970         if (dm_integrity_failed(ic))
2971                 goto clear_journal;
2972
2973         journal_empty = true;
2974         memset(used_commit_ids, 0, sizeof(used_commit_ids));
2975         memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2976         for (i = 0; i < ic->journal_sections; i++) {
2977                 for (j = 0; j < ic->journal_section_sectors; j++) {
2978                         int k;
2979                         struct journal_sector *js = access_journal(ic, i, j);
2980
2981                         k = find_commit_seq(ic, i, j, js->commit_id);
2982                         if (k < 0)
2983                                 goto clear_journal;
2984                         used_commit_ids[k] = true;
2985                         max_commit_id_sections[k] = i;
2986                 }
2987                 if (journal_empty) {
2988                         for (j = 0; j < ic->journal_section_entries; j++) {
2989                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2990
2991                                 if (!journal_entry_is_unused(je)) {
2992                                         journal_empty = false;
2993                                         break;
2994                                 }
2995                         }
2996                 }
2997         }
2998
2999         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3000                 unused = N_COMMIT_IDS - 1;
3001                 while (unused && !used_commit_ids[unused - 1])
3002                         unused--;
3003         } else {
3004                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3005                         if (!used_commit_ids[unused])
3006                                 break;
3007                 if (unused == N_COMMIT_IDS) {
3008                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
3009                         goto clear_journal;
3010                 }
3011         }
3012         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3013                     unused, used_commit_ids[0], used_commit_ids[1],
3014                     used_commit_ids[2], used_commit_ids[3]);
3015
3016         last_used = prev_commit_seq(unused);
3017         want_commit_seq = prev_commit_seq(last_used);
3018
3019         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3020                 journal_empty = true;
3021
3022         write_start = max_commit_id_sections[last_used] + 1;
3023         if (unlikely(write_start >= ic->journal_sections))
3024                 want_commit_seq = next_commit_seq(want_commit_seq);
3025         wraparound_section(ic, &write_start);
3026
3027         i = write_start;
3028         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3029                 for (j = 0; j < ic->journal_section_sectors; j++) {
3030                         struct journal_sector *js = access_journal(ic, i, j);
3031
3032                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3033                                 /*
3034                                  * This could be caused by crash during writing.
3035                                  * We won't replay the inconsistent part of the
3036                                  * journal.
3037                                  */
3038                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3039                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3040                                 goto brk;
3041                         }
3042                 }
3043                 i++;
3044                 if (unlikely(i >= ic->journal_sections))
3045                         want_commit_seq = next_commit_seq(want_commit_seq);
3046                 wraparound_section(ic, &i);
3047         }
3048 brk:
3049
3050         if (!journal_empty) {
3051                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3052                             write_sections, write_start, want_commit_seq);
3053                 do_journal_write(ic, write_start, write_sections, true);
3054         }
3055
3056         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3057                 continue_section = write_start;
3058                 ic->commit_seq = want_commit_seq;
3059                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3060         } else {
3061                 unsigned int s;
3062                 unsigned char erase_seq;
3063
3064 clear_journal:
3065                 DEBUG_print("clearing journal\n");
3066
3067                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3068                 s = write_start;
3069                 init_journal(ic, s, 1, erase_seq);
3070                 s++;
3071                 wraparound_section(ic, &s);
3072                 if (ic->journal_sections >= 2) {
3073                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3074                         s += ic->journal_sections - 2;
3075                         wraparound_section(ic, &s);
3076                         init_journal(ic, s, 1, erase_seq);
3077                 }
3078
3079                 continue_section = 0;
3080                 ic->commit_seq = next_commit_seq(erase_seq);
3081         }
3082
3083         ic->committed_section = continue_section;
3084         ic->n_committed_sections = 0;
3085
3086         ic->uncommitted_section = continue_section;
3087         ic->n_uncommitted_sections = 0;
3088
3089         ic->free_section = continue_section;
3090         ic->free_section_entry = 0;
3091         ic->free_sectors = ic->journal_entries;
3092
3093         ic->journal_tree_root = RB_ROOT;
3094         for (i = 0; i < ic->journal_entries; i++)
3095                 init_journal_node(&ic->journal_tree[i]);
3096 }
3097
3098 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3099 {
3100         DEBUG_print("%s\n", __func__);
3101
3102         if (ic->mode == 'B') {
3103                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3104                 ic->synchronous_mode = 1;
3105
3106                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3107                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3108                 flush_workqueue(ic->commit_wq);
3109         }
3110 }
3111
3112 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3113 {
3114         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3115
3116         DEBUG_print("%s\n", __func__);
3117
3118         dm_integrity_enter_synchronous_mode(ic);
3119
3120         return NOTIFY_DONE;
3121 }
3122
3123 static void dm_integrity_postsuspend(struct dm_target *ti)
3124 {
3125         struct dm_integrity_c *ic = ti->private;
3126         int r;
3127
3128         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3129
3130         del_timer_sync(&ic->autocommit_timer);
3131
3132         if (ic->recalc_wq)
3133                 drain_workqueue(ic->recalc_wq);
3134
3135         if (ic->mode == 'B')
3136                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3137
3138         queue_work(ic->commit_wq, &ic->commit_work);
3139         drain_workqueue(ic->commit_wq);
3140
3141         if (ic->mode == 'J') {
3142                 queue_work(ic->writer_wq, &ic->writer_work);
3143                 drain_workqueue(ic->writer_wq);
3144                 dm_integrity_flush_buffers(ic, true);
3145                 if (ic->wrote_to_journal) {
3146                         init_journal(ic, ic->free_section,
3147                                      ic->journal_sections - ic->free_section, ic->commit_seq);
3148                         if (ic->free_section) {
3149                                 init_journal(ic, 0, ic->free_section,
3150                                              next_commit_seq(ic->commit_seq));
3151                         }
3152                 }
3153         }
3154
3155         if (ic->mode == 'B') {
3156                 dm_integrity_flush_buffers(ic, true);
3157 #if 1
3158                 /* set to 0 to test bitmap replay code */
3159                 init_journal(ic, 0, ic->journal_sections, 0);
3160                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3161                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3162                 if (unlikely(r))
3163                         dm_integrity_io_error(ic, "writing superblock", r);
3164 #endif
3165         }
3166
3167         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3168
3169         ic->journal_uptodate = true;
3170 }
3171
3172 static void dm_integrity_resume(struct dm_target *ti)
3173 {
3174         struct dm_integrity_c *ic = ti->private;
3175         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3176         int r;
3177
3178         DEBUG_print("resume\n");
3179
3180         ic->wrote_to_journal = false;
3181
3182         if (ic->provided_data_sectors != old_provided_data_sectors) {
3183                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3184                     ic->mode == 'B' &&
3185                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3186                         rw_journal_sectors(ic, REQ_OP_READ, 0,
3187                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3188                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3189                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3190                         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3191                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3192                 }
3193
3194                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3195                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3196                 if (unlikely(r))
3197                         dm_integrity_io_error(ic, "writing superblock", r);
3198         }
3199
3200         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3201                 DEBUG_print("resume dirty_bitmap\n");
3202                 rw_journal_sectors(ic, REQ_OP_READ, 0,
3203                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3204                 if (ic->mode == 'B') {
3205                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3206                             !ic->reset_recalculate_flag) {
3207                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3208                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3209                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3210                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3211                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3212                                         ic->sb->recalc_sector = cpu_to_le64(0);
3213                                 }
3214                         } else {
3215                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3216                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3217                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3218                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3219                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3220                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3221                                 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3222                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3223                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3224                                 ic->sb->recalc_sector = cpu_to_le64(0);
3225                         }
3226                 } else {
3227                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3228                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3229                             ic->reset_recalculate_flag) {
3230                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3231                                 ic->sb->recalc_sector = cpu_to_le64(0);
3232                         }
3233                         init_journal(ic, 0, ic->journal_sections, 0);
3234                         replay_journal(ic);
3235                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3236                 }
3237                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3238                 if (unlikely(r))
3239                         dm_integrity_io_error(ic, "writing superblock", r);
3240         } else {
3241                 replay_journal(ic);
3242                 if (ic->reset_recalculate_flag) {
3243                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3244                         ic->sb->recalc_sector = cpu_to_le64(0);
3245                 }
3246                 if (ic->mode == 'B') {
3247                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3248                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3249                         r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3250                         if (unlikely(r))
3251                                 dm_integrity_io_error(ic, "writing superblock", r);
3252
3253                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3254                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3255                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3256                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3257                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3258                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3259                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3260                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3261                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3262                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3263                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3264                         }
3265                         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3266                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3267                 }
3268         }
3269
3270         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3271         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3272                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3273
3274                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3275                 if (recalc_pos < ic->provided_data_sectors) {
3276                         queue_work(ic->recalc_wq, &ic->recalc_work);
3277                 } else if (recalc_pos > ic->provided_data_sectors) {
3278                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3279                         recalc_write_super(ic);
3280                 }
3281         }
3282
3283         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3284         ic->reboot_notifier.next = NULL;
3285         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3286         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3287
3288 #if 0
3289         /* set to 1 to stress test synchronous mode */
3290         dm_integrity_enter_synchronous_mode(ic);
3291 #endif
3292 }
3293
3294 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3295                                 unsigned int status_flags, char *result, unsigned int maxlen)
3296 {
3297         struct dm_integrity_c *ic = ti->private;
3298         unsigned int arg_count;
3299         size_t sz = 0;
3300
3301         switch (type) {
3302         case STATUSTYPE_INFO:
3303                 DMEMIT("%llu %llu",
3304                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3305                         ic->provided_data_sectors);
3306                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3307                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3308                 else
3309                         DMEMIT(" -");
3310                 break;
3311
3312         case STATUSTYPE_TABLE: {
3313                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3314
3315                 watermark_percentage += ic->journal_entries / 2;
3316                 do_div(watermark_percentage, ic->journal_entries);
3317                 arg_count = 3;
3318                 arg_count += !!ic->meta_dev;
3319                 arg_count += ic->sectors_per_block != 1;
3320                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3321                 arg_count += ic->reset_recalculate_flag;
3322                 arg_count += ic->discard;
3323                 arg_count += ic->mode == 'J';
3324                 arg_count += ic->mode == 'J';
3325                 arg_count += ic->mode == 'B';
3326                 arg_count += ic->mode == 'B';
3327                 arg_count += !!ic->internal_hash_alg.alg_string;
3328                 arg_count += !!ic->journal_crypt_alg.alg_string;
3329                 arg_count += !!ic->journal_mac_alg.alg_string;
3330                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3331                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3332                 arg_count += ic->legacy_recalculate;
3333                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3334                        ic->tag_size, ic->mode, arg_count);
3335                 if (ic->meta_dev)
3336                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3337                 if (ic->sectors_per_block != 1)
3338                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3339                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3340                         DMEMIT(" recalculate");
3341                 if (ic->reset_recalculate_flag)
3342                         DMEMIT(" reset_recalculate");
3343                 if (ic->discard)
3344                         DMEMIT(" allow_discards");
3345                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3346                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3347                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3348                 if (ic->mode == 'J') {
3349                         DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3350                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3351                 }
3352                 if (ic->mode == 'B') {
3353                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3354                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3355                 }
3356                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3357                         DMEMIT(" fix_padding");
3358                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3359                         DMEMIT(" fix_hmac");
3360                 if (ic->legacy_recalculate)
3361                         DMEMIT(" legacy_recalculate");
3362
3363 #define EMIT_ALG(a, n)                                                  \
3364                 do {                                                    \
3365                         if (ic->a.alg_string) {                         \
3366                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3367                                 if (ic->a.key_string)                   \
3368                                         DMEMIT(":%s", ic->a.key_string);\
3369                         }                                               \
3370                 } while (0)
3371                 EMIT_ALG(internal_hash_alg, "internal_hash");
3372                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3373                 EMIT_ALG(journal_mac_alg, "journal_mac");
3374                 break;
3375         }
3376         case STATUSTYPE_IMA:
3377                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3378                 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3379                         ic->dev->name, ic->start, ic->tag_size, ic->mode);
3380
3381                 if (ic->meta_dev)
3382                         DMEMIT(",meta_device=%s", ic->meta_dev->name);
3383                 if (ic->sectors_per_block != 1)
3384                         DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3385
3386                 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3387                        'y' : 'n');
3388                 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3389                 DMEMIT(",fix_padding=%c",
3390                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3391                 DMEMIT(",fix_hmac=%c",
3392                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3393                 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3394
3395                 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3396                 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3397                 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3398                 DMEMIT(";");
3399                 break;
3400         }
3401 }
3402
3403 static int dm_integrity_iterate_devices(struct dm_target *ti,
3404                                         iterate_devices_callout_fn fn, void *data)
3405 {
3406         struct dm_integrity_c *ic = ti->private;
3407
3408         if (!ic->meta_dev)
3409                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3410         else
3411                 return fn(ti, ic->dev, 0, ti->len, data);
3412 }
3413
3414 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3415 {
3416         struct dm_integrity_c *ic = ti->private;
3417
3418         if (ic->sectors_per_block > 1) {
3419                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3420                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3421                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3422                 limits->dma_alignment = limits->logical_block_size - 1;
3423         }
3424 }
3425
3426 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3427 {
3428         unsigned int sector_space = JOURNAL_SECTOR_DATA;
3429
3430         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3431         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3432                                          JOURNAL_ENTRY_ROUNDUP);
3433
3434         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3435                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3436         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3437         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3438         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3439         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3440 }
3441
3442 static int calculate_device_limits(struct dm_integrity_c *ic)
3443 {
3444         __u64 initial_sectors;
3445
3446         calculate_journal_section_size(ic);
3447         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3448         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3449                 return -EINVAL;
3450         ic->initial_sectors = initial_sectors;
3451
3452         if (!ic->meta_dev) {
3453                 sector_t last_sector, last_area, last_offset;
3454
3455                 /* we have to maintain excessive padding for compatibility with existing volumes */
3456                 __u64 metadata_run_padding =
3457                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3458                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3459                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3460
3461                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3462                                             metadata_run_padding) >> SECTOR_SHIFT;
3463                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3464                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3465                 else
3466                         ic->log2_metadata_run = -1;
3467
3468                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3469                 last_sector = get_data_sector(ic, last_area, last_offset);
3470                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3471                         return -EINVAL;
3472         } else {
3473                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3474
3475                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3476                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3477                 meta_size <<= ic->log2_buffer_sectors;
3478                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3479                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3480                         return -EINVAL;
3481                 ic->metadata_run = 1;
3482                 ic->log2_metadata_run = 0;
3483         }
3484
3485         return 0;
3486 }
3487
3488 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3489 {
3490         if (!ic->meta_dev) {
3491                 int test_bit;
3492
3493                 ic->provided_data_sectors = 0;
3494                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3495                         __u64 prev_data_sectors = ic->provided_data_sectors;
3496
3497                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3498                         if (calculate_device_limits(ic))
3499                                 ic->provided_data_sectors = prev_data_sectors;
3500                 }
3501         } else {
3502                 ic->provided_data_sectors = ic->data_device_sectors;
3503                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3504         }
3505 }
3506
3507 static int initialize_superblock(struct dm_integrity_c *ic,
3508                                  unsigned int journal_sectors, unsigned int interleave_sectors)
3509 {
3510         unsigned int journal_sections;
3511         int test_bit;
3512
3513         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3514         memcpy(ic->sb->magic, SB_MAGIC, 8);
3515         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3516         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3517         if (ic->journal_mac_alg.alg_string)
3518                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3519
3520         calculate_journal_section_size(ic);
3521         journal_sections = journal_sectors / ic->journal_section_sectors;
3522         if (!journal_sections)
3523                 journal_sections = 1;
3524
3525         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3526                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3527                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3528         }
3529
3530         if (!ic->meta_dev) {
3531                 if (ic->fix_padding)
3532                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3533                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3534                 if (!interleave_sectors)
3535                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3536                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3537                 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3538                 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3539
3540                 get_provided_data_sectors(ic);
3541                 if (!ic->provided_data_sectors)
3542                         return -EINVAL;
3543         } else {
3544                 ic->sb->log2_interleave_sectors = 0;
3545
3546                 get_provided_data_sectors(ic);
3547                 if (!ic->provided_data_sectors)
3548                         return -EINVAL;
3549
3550 try_smaller_buffer:
3551                 ic->sb->journal_sections = cpu_to_le32(0);
3552                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3553                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3554                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3555
3556                         if (test_journal_sections > journal_sections)
3557                                 continue;
3558                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3559                         if (calculate_device_limits(ic))
3560                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3561
3562                 }
3563                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3564                         if (ic->log2_buffer_sectors > 3) {
3565                                 ic->log2_buffer_sectors--;
3566                                 goto try_smaller_buffer;
3567                         }
3568                         return -EINVAL;
3569                 }
3570         }
3571
3572         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3573
3574         sb_set_version(ic);
3575
3576         return 0;
3577 }
3578
3579 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3580 {
3581         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3582         struct blk_integrity bi;
3583
3584         memset(&bi, 0, sizeof(bi));
3585         bi.profile = &dm_integrity_profile;
3586         bi.tuple_size = ic->tag_size;
3587         bi.tag_size = bi.tuple_size;
3588         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3589
3590         blk_integrity_register(disk, &bi);
3591         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3592 }
3593
3594 static void dm_integrity_free_page_list(struct page_list *pl)
3595 {
3596         unsigned int i;
3597
3598         if (!pl)
3599                 return;
3600         for (i = 0; pl[i].page; i++)
3601                 __free_page(pl[i].page);
3602         kvfree(pl);
3603 }
3604
3605 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3606 {
3607         struct page_list *pl;
3608         unsigned int i;
3609
3610         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3611         if (!pl)
3612                 return NULL;
3613
3614         for (i = 0; i < n_pages; i++) {
3615                 pl[i].page = alloc_page(GFP_KERNEL);
3616                 if (!pl[i].page) {
3617                         dm_integrity_free_page_list(pl);
3618                         return NULL;
3619                 }
3620                 if (i)
3621                         pl[i - 1].next = &pl[i];
3622         }
3623         pl[i].page = NULL;
3624         pl[i].next = NULL;
3625
3626         return pl;
3627 }
3628
3629 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3630 {
3631         unsigned int i;
3632
3633         for (i = 0; i < ic->journal_sections; i++)
3634                 kvfree(sl[i]);
3635         kvfree(sl);
3636 }
3637
3638 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3639                                                                    struct page_list *pl)
3640 {
3641         struct scatterlist **sl;
3642         unsigned int i;
3643
3644         sl = kvmalloc_array(ic->journal_sections,
3645                             sizeof(struct scatterlist *),
3646                             GFP_KERNEL | __GFP_ZERO);
3647         if (!sl)
3648                 return NULL;
3649
3650         for (i = 0; i < ic->journal_sections; i++) {
3651                 struct scatterlist *s;
3652                 unsigned int start_index, start_offset;
3653                 unsigned int end_index, end_offset;
3654                 unsigned int n_pages;
3655                 unsigned int idx;
3656
3657                 page_list_location(ic, i, 0, &start_index, &start_offset);
3658                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3659                                    &end_index, &end_offset);
3660
3661                 n_pages = (end_index - start_index + 1);
3662
3663                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3664                                    GFP_KERNEL);
3665                 if (!s) {
3666                         dm_integrity_free_journal_scatterlist(ic, sl);
3667                         return NULL;
3668                 }
3669
3670                 sg_init_table(s, n_pages);
3671                 for (idx = start_index; idx <= end_index; idx++) {
3672                         char *va = lowmem_page_address(pl[idx].page);
3673                         unsigned int start = 0, end = PAGE_SIZE;
3674
3675                         if (idx == start_index)
3676                                 start = start_offset;
3677                         if (idx == end_index)
3678                                 end = end_offset + (1 << SECTOR_SHIFT);
3679                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3680                 }
3681
3682                 sl[i] = s;
3683         }
3684
3685         return sl;
3686 }
3687
3688 static void free_alg(struct alg_spec *a)
3689 {
3690         kfree_sensitive(a->alg_string);
3691         kfree_sensitive(a->key);
3692         memset(a, 0, sizeof(*a));
3693 }
3694
3695 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3696 {
3697         char *k;
3698
3699         free_alg(a);
3700
3701         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3702         if (!a->alg_string)
3703                 goto nomem;
3704
3705         k = strchr(a->alg_string, ':');
3706         if (k) {
3707                 *k = 0;
3708                 a->key_string = k + 1;
3709                 if (strlen(a->key_string) & 1)
3710                         goto inval;
3711
3712                 a->key_size = strlen(a->key_string) / 2;
3713                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3714                 if (!a->key)
3715                         goto nomem;
3716                 if (hex2bin(a->key, a->key_string, a->key_size))
3717                         goto inval;
3718         }
3719
3720         return 0;
3721 inval:
3722         *error = error_inval;
3723         return -EINVAL;
3724 nomem:
3725         *error = "Out of memory for an argument";
3726         return -ENOMEM;
3727 }
3728
3729 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3730                    char *error_alg, char *error_key)
3731 {
3732         int r;
3733
3734         if (a->alg_string) {
3735                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3736                 if (IS_ERR(*hash)) {
3737                         *error = error_alg;
3738                         r = PTR_ERR(*hash);
3739                         *hash = NULL;
3740                         return r;
3741                 }
3742
3743                 if (a->key) {
3744                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3745                         if (r) {
3746                                 *error = error_key;
3747                                 return r;
3748                         }
3749                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3750                         *error = error_key;
3751                         return -ENOKEY;
3752                 }
3753         }
3754
3755         return 0;
3756 }
3757
3758 static int create_journal(struct dm_integrity_c *ic, char **error)
3759 {
3760         int r = 0;
3761         unsigned int i;
3762         __u64 journal_pages, journal_desc_size, journal_tree_size;
3763         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3764         struct skcipher_request *req = NULL;
3765
3766         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3767         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3768         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3769         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3770
3771         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3772                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3773         journal_desc_size = journal_pages * sizeof(struct page_list);
3774         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3775                 *error = "Journal doesn't fit into memory";
3776                 r = -ENOMEM;
3777                 goto bad;
3778         }
3779         ic->journal_pages = journal_pages;
3780
3781         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3782         if (!ic->journal) {
3783                 *error = "Could not allocate memory for journal";
3784                 r = -ENOMEM;
3785                 goto bad;
3786         }
3787         if (ic->journal_crypt_alg.alg_string) {
3788                 unsigned int ivsize, blocksize;
3789                 struct journal_completion comp;
3790
3791                 comp.ic = ic;
3792                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3793                 if (IS_ERR(ic->journal_crypt)) {
3794                         *error = "Invalid journal cipher";
3795                         r = PTR_ERR(ic->journal_crypt);
3796                         ic->journal_crypt = NULL;
3797                         goto bad;
3798                 }
3799                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3800                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3801
3802                 if (ic->journal_crypt_alg.key) {
3803                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3804                                                    ic->journal_crypt_alg.key_size);
3805                         if (r) {
3806                                 *error = "Error setting encryption key";
3807                                 goto bad;
3808                         }
3809                 }
3810                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3811                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3812
3813                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3814                 if (!ic->journal_io) {
3815                         *error = "Could not allocate memory for journal io";
3816                         r = -ENOMEM;
3817                         goto bad;
3818                 }
3819
3820                 if (blocksize == 1) {
3821                         struct scatterlist *sg;
3822
3823                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3824                         if (!req) {
3825                                 *error = "Could not allocate crypt request";
3826                                 r = -ENOMEM;
3827                                 goto bad;
3828                         }
3829
3830                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3831                         if (!crypt_iv) {
3832                                 *error = "Could not allocate iv";
3833                                 r = -ENOMEM;
3834                                 goto bad;
3835                         }
3836
3837                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3838                         if (!ic->journal_xor) {
3839                                 *error = "Could not allocate memory for journal xor";
3840                                 r = -ENOMEM;
3841                                 goto bad;
3842                         }
3843
3844                         sg = kvmalloc_array(ic->journal_pages + 1,
3845                                             sizeof(struct scatterlist),
3846                                             GFP_KERNEL);
3847                         if (!sg) {
3848                                 *error = "Unable to allocate sg list";
3849                                 r = -ENOMEM;
3850                                 goto bad;
3851                         }
3852                         sg_init_table(sg, ic->journal_pages + 1);
3853                         for (i = 0; i < ic->journal_pages; i++) {
3854                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3855
3856                                 clear_page(va);
3857                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3858                         }
3859                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3860
3861                         skcipher_request_set_crypt(req, sg, sg,
3862                                                    PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3863                         init_completion(&comp.comp);
3864                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3865                         if (do_crypt(true, req, &comp))
3866                                 wait_for_completion(&comp.comp);
3867                         kvfree(sg);
3868                         r = dm_integrity_failed(ic);
3869                         if (r) {
3870                                 *error = "Unable to encrypt journal";
3871                                 goto bad;
3872                         }
3873                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3874
3875                         crypto_free_skcipher(ic->journal_crypt);
3876                         ic->journal_crypt = NULL;
3877                 } else {
3878                         unsigned int crypt_len = roundup(ivsize, blocksize);
3879
3880                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3881                         if (!req) {
3882                                 *error = "Could not allocate crypt request";
3883                                 r = -ENOMEM;
3884                                 goto bad;
3885                         }
3886
3887                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3888                         if (!crypt_iv) {
3889                                 *error = "Could not allocate iv";
3890                                 r = -ENOMEM;
3891                                 goto bad;
3892                         }
3893
3894                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3895                         if (!crypt_data) {
3896                                 *error = "Unable to allocate crypt data";
3897                                 r = -ENOMEM;
3898                                 goto bad;
3899                         }
3900
3901                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3902                         if (!ic->journal_scatterlist) {
3903                                 *error = "Unable to allocate sg list";
3904                                 r = -ENOMEM;
3905                                 goto bad;
3906                         }
3907                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3908                         if (!ic->journal_io_scatterlist) {
3909                                 *error = "Unable to allocate sg list";
3910                                 r = -ENOMEM;
3911                                 goto bad;
3912                         }
3913                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3914                                                          sizeof(struct skcipher_request *),
3915                                                          GFP_KERNEL | __GFP_ZERO);
3916                         if (!ic->sk_requests) {
3917                                 *error = "Unable to allocate sk requests";
3918                                 r = -ENOMEM;
3919                                 goto bad;
3920                         }
3921                         for (i = 0; i < ic->journal_sections; i++) {
3922                                 struct scatterlist sg;
3923                                 struct skcipher_request *section_req;
3924                                 __le32 section_le = cpu_to_le32(i);
3925
3926                                 memset(crypt_iv, 0x00, ivsize);
3927                                 memset(crypt_data, 0x00, crypt_len);
3928                                 memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3929
3930                                 sg_init_one(&sg, crypt_data, crypt_len);
3931                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3932                                 init_completion(&comp.comp);
3933                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3934                                 if (do_crypt(true, req, &comp))
3935                                         wait_for_completion(&comp.comp);
3936
3937                                 r = dm_integrity_failed(ic);
3938                                 if (r) {
3939                                         *error = "Unable to generate iv";
3940                                         goto bad;
3941                                 }
3942
3943                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3944                                 if (!section_req) {
3945                                         *error = "Unable to allocate crypt request";
3946                                         r = -ENOMEM;
3947                                         goto bad;
3948                                 }
3949                                 section_req->iv = kmalloc_array(ivsize, 2,
3950                                                                 GFP_KERNEL);
3951                                 if (!section_req->iv) {
3952                                         skcipher_request_free(section_req);
3953                                         *error = "Unable to allocate iv";
3954                                         r = -ENOMEM;
3955                                         goto bad;
3956                                 }
3957                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3958                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3959                                 ic->sk_requests[i] = section_req;
3960                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3961                         }
3962                 }
3963         }
3964
3965         for (i = 0; i < N_COMMIT_IDS; i++) {
3966                 unsigned int j;
3967
3968 retest_commit_id:
3969                 for (j = 0; j < i; j++) {
3970                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3971                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3972                                 goto retest_commit_id;
3973                         }
3974                 }
3975                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3976         }
3977
3978         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3979         if (journal_tree_size > ULONG_MAX) {
3980                 *error = "Journal doesn't fit into memory";
3981                 r = -ENOMEM;
3982                 goto bad;
3983         }
3984         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3985         if (!ic->journal_tree) {
3986                 *error = "Could not allocate memory for journal tree";
3987                 r = -ENOMEM;
3988         }
3989 bad:
3990         kfree(crypt_data);
3991         kfree(crypt_iv);
3992         skcipher_request_free(req);
3993
3994         return r;
3995 }
3996
3997 /*
3998  * Construct a integrity mapping
3999  *
4000  * Arguments:
4001  *      device
4002  *      offset from the start of the device
4003  *      tag size
4004  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4005  *      number of optional arguments
4006  *      optional arguments:
4007  *              journal_sectors
4008  *              interleave_sectors
4009  *              buffer_sectors
4010  *              journal_watermark
4011  *              commit_time
4012  *              meta_device
4013  *              block_size
4014  *              sectors_per_bit
4015  *              bitmap_flush_interval
4016  *              internal_hash
4017  *              journal_crypt
4018  *              journal_mac
4019  *              recalculate
4020  */
4021 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4022 {
4023         struct dm_integrity_c *ic;
4024         char dummy;
4025         int r;
4026         unsigned int extra_args;
4027         struct dm_arg_set as;
4028         static const struct dm_arg _args[] = {
4029                 {0, 18, "Invalid number of feature args"},
4030         };
4031         unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4032         bool should_write_sb;
4033         __u64 threshold;
4034         unsigned long long start;
4035         __s8 log2_sectors_per_bitmap_bit = -1;
4036         __s8 log2_blocks_per_bitmap_bit;
4037         __u64 bits_in_journal;
4038         __u64 n_bitmap_bits;
4039
4040 #define DIRECT_ARGUMENTS        4
4041
4042         if (argc <= DIRECT_ARGUMENTS) {
4043                 ti->error = "Invalid argument count";
4044                 return -EINVAL;
4045         }
4046
4047         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4048         if (!ic) {
4049                 ti->error = "Cannot allocate integrity context";
4050                 return -ENOMEM;
4051         }
4052         ti->private = ic;
4053         ti->per_io_data_size = sizeof(struct dm_integrity_io);
4054         ic->ti = ti;
4055
4056         ic->in_progress = RB_ROOT;
4057         INIT_LIST_HEAD(&ic->wait_list);
4058         init_waitqueue_head(&ic->endio_wait);
4059         bio_list_init(&ic->flush_bio_list);
4060         init_waitqueue_head(&ic->copy_to_journal_wait);
4061         init_completion(&ic->crypto_backoff);
4062         atomic64_set(&ic->number_of_mismatches, 0);
4063         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4064
4065         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4066         if (r) {
4067                 ti->error = "Device lookup failed";
4068                 goto bad;
4069         }
4070
4071         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4072                 ti->error = "Invalid starting offset";
4073                 r = -EINVAL;
4074                 goto bad;
4075         }
4076         ic->start = start;
4077
4078         if (strcmp(argv[2], "-")) {
4079                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4080                         ti->error = "Invalid tag size";
4081                         r = -EINVAL;
4082                         goto bad;
4083                 }
4084         }
4085
4086         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4087             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4088                 ic->mode = argv[3][0];
4089         } else {
4090                 ti->error = "Invalid mode (expecting J, B, D, R)";
4091                 r = -EINVAL;
4092                 goto bad;
4093         }
4094
4095         journal_sectors = 0;
4096         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4097         buffer_sectors = DEFAULT_BUFFER_SECTORS;
4098         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4099         sync_msec = DEFAULT_SYNC_MSEC;
4100         ic->sectors_per_block = 1;
4101
4102         as.argc = argc - DIRECT_ARGUMENTS;
4103         as.argv = argv + DIRECT_ARGUMENTS;
4104         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4105         if (r)
4106                 goto bad;
4107
4108         while (extra_args--) {
4109                 const char *opt_string;
4110                 unsigned int val;
4111                 unsigned long long llval;
4112
4113                 opt_string = dm_shift_arg(&as);
4114                 if (!opt_string) {
4115                         r = -EINVAL;
4116                         ti->error = "Not enough feature arguments";
4117                         goto bad;
4118                 }
4119                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4120                         journal_sectors = val ? val : 1;
4121                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4122                         interleave_sectors = val;
4123                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4124                         buffer_sectors = val;
4125                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4126                         journal_watermark = val;
4127                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4128                         sync_msec = val;
4129                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4130                         if (ic->meta_dev) {
4131                                 dm_put_device(ti, ic->meta_dev);
4132                                 ic->meta_dev = NULL;
4133                         }
4134                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4135                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4136                         if (r) {
4137                                 ti->error = "Device lookup failed";
4138                                 goto bad;
4139                         }
4140                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4141                         if (val < 1 << SECTOR_SHIFT ||
4142                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4143                             (val & (val - 1))) {
4144                                 r = -EINVAL;
4145                                 ti->error = "Invalid block_size argument";
4146                                 goto bad;
4147                         }
4148                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4149                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4150                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4151                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4152                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4153                                 r = -EINVAL;
4154                                 ti->error = "Invalid bitmap_flush_interval argument";
4155                                 goto bad;
4156                         }
4157                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4158                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4159                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4160                                             "Invalid internal_hash argument");
4161                         if (r)
4162                                 goto bad;
4163                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4164                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4165                                             "Invalid journal_crypt argument");
4166                         if (r)
4167                                 goto bad;
4168                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4169                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4170                                             "Invalid journal_mac argument");
4171                         if (r)
4172                                 goto bad;
4173                 } else if (!strcmp(opt_string, "recalculate")) {
4174                         ic->recalculate_flag = true;
4175                 } else if (!strcmp(opt_string, "reset_recalculate")) {
4176                         ic->recalculate_flag = true;
4177                         ic->reset_recalculate_flag = true;
4178                 } else if (!strcmp(opt_string, "allow_discards")) {
4179                         ic->discard = true;
4180                 } else if (!strcmp(opt_string, "fix_padding")) {
4181                         ic->fix_padding = true;
4182                 } else if (!strcmp(opt_string, "fix_hmac")) {
4183                         ic->fix_hmac = true;
4184                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4185                         ic->legacy_recalculate = true;
4186                 } else {
4187                         r = -EINVAL;
4188                         ti->error = "Invalid argument";
4189                         goto bad;
4190                 }
4191         }
4192
4193         ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4194         if (!ic->meta_dev)
4195                 ic->meta_device_sectors = ic->data_device_sectors;
4196         else
4197                 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4198
4199         if (!journal_sectors) {
4200                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4201                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4202         }
4203
4204         if (!buffer_sectors)
4205                 buffer_sectors = 1;
4206         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4207
4208         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4209                     "Invalid internal hash", "Error setting internal hash key");
4210         if (r)
4211                 goto bad;
4212
4213         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4214                     "Invalid journal mac", "Error setting journal mac key");
4215         if (r)
4216                 goto bad;
4217
4218         if (!ic->tag_size) {
4219                 if (!ic->internal_hash) {
4220                         ti->error = "Unknown tag size";
4221                         r = -EINVAL;
4222                         goto bad;
4223                 }
4224                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4225         }
4226         if (ic->tag_size > MAX_TAG_SIZE) {
4227                 ti->error = "Too big tag size";
4228                 r = -EINVAL;
4229                 goto bad;
4230         }
4231         if (!(ic->tag_size & (ic->tag_size - 1)))
4232                 ic->log2_tag_size = __ffs(ic->tag_size);
4233         else
4234                 ic->log2_tag_size = -1;
4235
4236         if (ic->mode == 'B' && !ic->internal_hash) {
4237                 r = -EINVAL;
4238                 ti->error = "Bitmap mode can be only used with internal hash";
4239                 goto bad;
4240         }
4241
4242         if (ic->discard && !ic->internal_hash) {
4243                 r = -EINVAL;
4244                 ti->error = "Discard can be only used with internal hash";
4245                 goto bad;
4246         }
4247
4248         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4249         ic->autocommit_msec = sync_msec;
4250         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4251
4252         ic->io = dm_io_client_create();
4253         if (IS_ERR(ic->io)) {
4254                 r = PTR_ERR(ic->io);
4255                 ic->io = NULL;
4256                 ti->error = "Cannot allocate dm io";
4257                 goto bad;
4258         }
4259
4260         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4261         if (r) {
4262                 ti->error = "Cannot allocate mempool";
4263                 goto bad;
4264         }
4265
4266         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4267                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4268         if (!ic->metadata_wq) {
4269                 ti->error = "Cannot allocate workqueue";
4270                 r = -ENOMEM;
4271                 goto bad;
4272         }
4273
4274         /*
4275          * If this workqueue were percpu, it would cause bio reordering
4276          * and reduced performance.
4277          */
4278         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4279         if (!ic->wait_wq) {
4280                 ti->error = "Cannot allocate workqueue";
4281                 r = -ENOMEM;
4282                 goto bad;
4283         }
4284
4285         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4286                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4287         if (!ic->offload_wq) {
4288                 ti->error = "Cannot allocate workqueue";
4289                 r = -ENOMEM;
4290                 goto bad;
4291         }
4292
4293         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4294         if (!ic->commit_wq) {
4295                 ti->error = "Cannot allocate workqueue";
4296                 r = -ENOMEM;
4297                 goto bad;
4298         }
4299         INIT_WORK(&ic->commit_work, integrity_commit);
4300
4301         if (ic->mode == 'J' || ic->mode == 'B') {
4302                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4303                 if (!ic->writer_wq) {
4304                         ti->error = "Cannot allocate workqueue";
4305                         r = -ENOMEM;
4306                         goto bad;
4307                 }
4308                 INIT_WORK(&ic->writer_work, integrity_writer);
4309         }
4310
4311         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4312         if (!ic->sb) {
4313                 r = -ENOMEM;
4314                 ti->error = "Cannot allocate superblock area";
4315                 goto bad;
4316         }
4317
4318         r = sync_rw_sb(ic, REQ_OP_READ);
4319         if (r) {
4320                 ti->error = "Error reading superblock";
4321                 goto bad;
4322         }
4323         should_write_sb = false;
4324         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4325                 if (ic->mode != 'R') {
4326                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4327                                 r = -EINVAL;
4328                                 ti->error = "The device is not initialized";
4329                                 goto bad;
4330                         }
4331                 }
4332
4333                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4334                 if (r) {
4335                         ti->error = "Could not initialize superblock";
4336                         goto bad;
4337                 }
4338                 if (ic->mode != 'R')
4339                         should_write_sb = true;
4340         }
4341
4342         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4343                 r = -EINVAL;
4344                 ti->error = "Unknown version";
4345                 goto bad;
4346         }
4347         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4348                 r = -EINVAL;
4349                 ti->error = "Tag size doesn't match the information in superblock";
4350                 goto bad;
4351         }
4352         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4353                 r = -EINVAL;
4354                 ti->error = "Block size doesn't match the information in superblock";
4355                 goto bad;
4356         }
4357         if (!le32_to_cpu(ic->sb->journal_sections)) {
4358                 r = -EINVAL;
4359                 ti->error = "Corrupted superblock, journal_sections is 0";
4360                 goto bad;
4361         }
4362         /* make sure that ti->max_io_len doesn't overflow */
4363         if (!ic->meta_dev) {
4364                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4365                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4366                         r = -EINVAL;
4367                         ti->error = "Invalid interleave_sectors in the superblock";
4368                         goto bad;
4369                 }
4370         } else {
4371                 if (ic->sb->log2_interleave_sectors) {
4372                         r = -EINVAL;
4373                         ti->error = "Invalid interleave_sectors in the superblock";
4374                         goto bad;
4375                 }
4376         }
4377         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4378                 r = -EINVAL;
4379                 ti->error = "Journal mac mismatch";
4380                 goto bad;
4381         }
4382
4383         get_provided_data_sectors(ic);
4384         if (!ic->provided_data_sectors) {
4385                 r = -EINVAL;
4386                 ti->error = "The device is too small";
4387                 goto bad;
4388         }
4389
4390 try_smaller_buffer:
4391         r = calculate_device_limits(ic);
4392         if (r) {
4393                 if (ic->meta_dev) {
4394                         if (ic->log2_buffer_sectors > 3) {
4395                                 ic->log2_buffer_sectors--;
4396                                 goto try_smaller_buffer;
4397                         }
4398                 }
4399                 ti->error = "The device is too small";
4400                 goto bad;
4401         }
4402
4403         if (log2_sectors_per_bitmap_bit < 0)
4404                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4405         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4406                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4407
4408         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4409         if (bits_in_journal > UINT_MAX)
4410                 bits_in_journal = UINT_MAX;
4411         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4412                 log2_sectors_per_bitmap_bit++;
4413
4414         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4415         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4416         if (should_write_sb)
4417                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4418
4419         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4420                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4421         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4422
4423         if (!ic->meta_dev)
4424                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4425
4426         if (ti->len > ic->provided_data_sectors) {
4427                 r = -EINVAL;
4428                 ti->error = "Not enough provided sectors for requested mapping size";
4429                 goto bad;
4430         }
4431
4432
4433         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4434         threshold += 50;
4435         do_div(threshold, 100);
4436         ic->free_sectors_threshold = threshold;
4437
4438         DEBUG_print("initialized:\n");
4439         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4440         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4441         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4442         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4443         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4444         DEBUG_print("   journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4445         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4446         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4447         DEBUG_print("   data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4448         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4449         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4450         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4451         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4452         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4453         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4454
4455         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4456                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4457                 ic->sb->recalc_sector = cpu_to_le64(0);
4458         }
4459
4460         if (ic->internal_hash) {
4461                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4462                 if (!ic->recalc_wq) {
4463                         ti->error = "Cannot allocate workqueue";
4464                         r = -ENOMEM;
4465                         goto bad;
4466                 }
4467                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4468         } else {
4469                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4470                         ti->error = "Recalculate can only be specified with internal_hash";
4471                         r = -EINVAL;
4472                         goto bad;
4473                 }
4474         }
4475
4476         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4477             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4478             dm_integrity_disable_recalculate(ic)) {
4479                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4480                 r = -EOPNOTSUPP;
4481                 goto bad;
4482         }
4483
4484         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4485                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4486         if (IS_ERR(ic->bufio)) {
4487                 r = PTR_ERR(ic->bufio);
4488                 ti->error = "Cannot initialize dm-bufio";
4489                 ic->bufio = NULL;
4490                 goto bad;
4491         }
4492         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4493
4494         if (ic->mode != 'R') {
4495                 r = create_journal(ic, &ti->error);
4496                 if (r)
4497                         goto bad;
4498
4499         }
4500
4501         if (ic->mode == 'B') {
4502                 unsigned int i;
4503                 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4504
4505                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4506                 if (!ic->recalc_bitmap) {
4507                         r = -ENOMEM;
4508                         goto bad;
4509                 }
4510                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4511                 if (!ic->may_write_bitmap) {
4512                         r = -ENOMEM;
4513                         goto bad;
4514                 }
4515                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4516                 if (!ic->bbs) {
4517                         r = -ENOMEM;
4518                         goto bad;
4519                 }
4520                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4521                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4522                         struct bitmap_block_status *bbs = &ic->bbs[i];
4523                         unsigned int sector, pl_index, pl_offset;
4524
4525                         INIT_WORK(&bbs->work, bitmap_block_work);
4526                         bbs->ic = ic;
4527                         bbs->idx = i;
4528                         bio_list_init(&bbs->bio_queue);
4529                         spin_lock_init(&bbs->bio_queue_lock);
4530
4531                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4532                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4533                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4534
4535                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4536                 }
4537         }
4538
4539         if (should_write_sb) {
4540                 init_journal(ic, 0, ic->journal_sections, 0);
4541                 r = dm_integrity_failed(ic);
4542                 if (unlikely(r)) {
4543                         ti->error = "Error initializing journal";
4544                         goto bad;
4545                 }
4546                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4547                 if (r) {
4548                         ti->error = "Error initializing superblock";
4549                         goto bad;
4550                 }
4551                 ic->just_formatted = true;
4552         }
4553
4554         if (!ic->meta_dev) {
4555                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4556                 if (r)
4557                         goto bad;
4558         }
4559         if (ic->mode == 'B') {
4560                 unsigned int max_io_len;
4561
4562                 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4563                 if (!max_io_len)
4564                         max_io_len = 1U << 31;
4565                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4566                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4567                         r = dm_set_target_max_io_len(ti, max_io_len);
4568                         if (r)
4569                                 goto bad;
4570                 }
4571         }
4572
4573         if (!ic->internal_hash)
4574                 dm_integrity_set(ti, ic);
4575
4576         ti->num_flush_bios = 1;
4577         ti->flush_supported = true;
4578         if (ic->discard)
4579                 ti->num_discard_bios = 1;
4580
4581         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4582         return 0;
4583
4584 bad:
4585         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4586         dm_integrity_dtr(ti);
4587         return r;
4588 }
4589
4590 static void dm_integrity_dtr(struct dm_target *ti)
4591 {
4592         struct dm_integrity_c *ic = ti->private;
4593
4594         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4595         BUG_ON(!list_empty(&ic->wait_list));
4596
4597         if (ic->mode == 'B')
4598                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4599         if (ic->metadata_wq)
4600                 destroy_workqueue(ic->metadata_wq);
4601         if (ic->wait_wq)
4602                 destroy_workqueue(ic->wait_wq);
4603         if (ic->offload_wq)
4604                 destroy_workqueue(ic->offload_wq);
4605         if (ic->commit_wq)
4606                 destroy_workqueue(ic->commit_wq);
4607         if (ic->writer_wq)
4608                 destroy_workqueue(ic->writer_wq);
4609         if (ic->recalc_wq)
4610                 destroy_workqueue(ic->recalc_wq);
4611         kvfree(ic->bbs);
4612         if (ic->bufio)
4613                 dm_bufio_client_destroy(ic->bufio);
4614         mempool_exit(&ic->journal_io_mempool);
4615         if (ic->io)
4616                 dm_io_client_destroy(ic->io);
4617         if (ic->dev)
4618                 dm_put_device(ti, ic->dev);
4619         if (ic->meta_dev)
4620                 dm_put_device(ti, ic->meta_dev);
4621         dm_integrity_free_page_list(ic->journal);
4622         dm_integrity_free_page_list(ic->journal_io);
4623         dm_integrity_free_page_list(ic->journal_xor);
4624         dm_integrity_free_page_list(ic->recalc_bitmap);
4625         dm_integrity_free_page_list(ic->may_write_bitmap);
4626         if (ic->journal_scatterlist)
4627                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4628         if (ic->journal_io_scatterlist)
4629                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4630         if (ic->sk_requests) {
4631                 unsigned int i;
4632
4633                 for (i = 0; i < ic->journal_sections; i++) {
4634                         struct skcipher_request *req;
4635
4636                         req = ic->sk_requests[i];
4637                         if (req) {
4638                                 kfree_sensitive(req->iv);
4639                                 skcipher_request_free(req);
4640                         }
4641                 }
4642                 kvfree(ic->sk_requests);
4643         }
4644         kvfree(ic->journal_tree);
4645         if (ic->sb)
4646                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4647
4648         if (ic->internal_hash)
4649                 crypto_free_shash(ic->internal_hash);
4650         free_alg(&ic->internal_hash_alg);
4651
4652         if (ic->journal_crypt)
4653                 crypto_free_skcipher(ic->journal_crypt);
4654         free_alg(&ic->journal_crypt_alg);
4655
4656         if (ic->journal_mac)
4657                 crypto_free_shash(ic->journal_mac);
4658         free_alg(&ic->journal_mac_alg);
4659
4660         kfree(ic);
4661         dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4662 }
4663
4664 static struct target_type integrity_target = {
4665         .name                   = "integrity",
4666         .version                = {1, 10, 0},
4667         .module                 = THIS_MODULE,
4668         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4669         .ctr                    = dm_integrity_ctr,
4670         .dtr                    = dm_integrity_dtr,
4671         .map                    = dm_integrity_map,
4672         .postsuspend            = dm_integrity_postsuspend,
4673         .resume                 = dm_integrity_resume,
4674         .status                 = dm_integrity_status,
4675         .iterate_devices        = dm_integrity_iterate_devices,
4676         .io_hints               = dm_integrity_io_hints,
4677 };
4678
4679 static int __init dm_integrity_init(void)
4680 {
4681         int r;
4682
4683         journal_io_cache = kmem_cache_create("integrity_journal_io",
4684                                              sizeof(struct journal_io), 0, 0, NULL);
4685         if (!journal_io_cache) {
4686                 DMERR("can't allocate journal io cache");
4687                 return -ENOMEM;
4688         }
4689
4690         r = dm_register_target(&integrity_target);
4691         if (r < 0) {
4692                 kmem_cache_destroy(journal_io_cache);
4693                 return r;
4694         }
4695
4696         return 0;
4697 }
4698
4699 static void __exit dm_integrity_exit(void)
4700 {
4701         dm_unregister_target(&integrity_target);
4702         kmem_cache_destroy(journal_io_cache);
4703 }
4704
4705 module_init(dm_integrity_init);
4706 module_exit(dm_integrity_exit);
4707
4708 MODULE_AUTHOR("Milan Broz");
4709 MODULE_AUTHOR("Mikulas Patocka");
4710 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4711 MODULE_LICENSE("GPL");