1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
7 * This file is released under the GPL.
10 #include "dm-bio-record.h"
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
29 #define DM_MSG_PREFIX "integrity"
31 #define DEFAULT_INTERLEAVE_SECTORS 32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
34 #define DEFAULT_BUFFER_SECTORS 128
35 #define DEFAULT_JOURNAL_WATERMARK 50
36 #define DEFAULT_SYNC_MSEC 10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS 3
39 #define MAX_LOG2_INTERLEAVE_SECTORS 31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
41 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER 16
43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
44 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
45 #define DISCARD_FILLER 0xf6
49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50 * so it should not be enabled in the official kernel
53 //#define INTERNAL_VERIFY
59 #define SB_MAGIC "integrt"
60 #define SB_VERSION_1 1
61 #define SB_VERSION_2 2
62 #define SB_VERSION_3 3
63 #define SB_VERSION_4 4
64 #define SB_VERSION_5 5
66 #define MAX_SECTORS_PER_BLOCK 8
71 __u8 log2_interleave_sectors;
72 __le16 integrity_tag_size;
73 __le32 journal_sections;
74 __le64 provided_data_sectors; /* userspace uses this value */
76 __u8 log2_sectors_per_block;
77 __u8 log2_blocks_per_bitmap_bit;
84 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
85 #define SB_FLAG_RECALCULATING 0x2
86 #define SB_FLAG_DIRTY_BITMAP 0x4
87 #define SB_FLAG_FIXED_PADDING 0x8
88 #define SB_FLAG_FIXED_HMAC 0x10
90 #define JOURNAL_ENTRY_ROUNDUP 8
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR 8
95 struct journal_entry {
103 commit_id_t last_bytes[];
107 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
112 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
114 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
120 #define JOURNAL_BLOCK_SECTORS 8
121 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
124 struct journal_sector {
125 struct_group(sectors,
126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 __u8 mac[JOURNAL_MAC_PER_SECTOR];
129 commit_id_t commit_id;
132 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
134 #define METADATA_PADDING_SECTORS 8
136 #define N_COMMIT_IDS 4
138 static unsigned char prev_commit_seq(unsigned char seq)
140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
143 static unsigned char next_commit_seq(unsigned char seq)
145 return (seq + 1) % N_COMMIT_IDS;
149 * In-memory structures
152 struct journal_node {
161 unsigned int key_size;
164 struct dm_integrity_c {
166 struct dm_dev *meta_dev;
167 unsigned int tag_size;
170 mempool_t journal_io_mempool;
171 struct dm_io_client *io;
172 struct dm_bufio_client *bufio;
173 struct workqueue_struct *metadata_wq;
174 struct superblock *sb;
175 unsigned int journal_pages;
176 unsigned int n_bitmap_blocks;
178 struct page_list *journal;
179 struct page_list *journal_io;
180 struct page_list *journal_xor;
181 struct page_list *recalc_bitmap;
182 struct page_list *may_write_bitmap;
183 struct bitmap_block_status *bbs;
184 unsigned int bitmap_flush_interval;
185 int synchronous_mode;
186 struct bio_list synchronous_bios;
187 struct delayed_work bitmap_flush_work;
189 struct crypto_skcipher *journal_crypt;
190 struct scatterlist **journal_scatterlist;
191 struct scatterlist **journal_io_scatterlist;
192 struct skcipher_request **sk_requests;
194 struct crypto_shash *journal_mac;
196 struct journal_node *journal_tree;
197 struct rb_root journal_tree_root;
199 sector_t provided_data_sectors;
201 unsigned short journal_entry_size;
202 unsigned char journal_entries_per_sector;
203 unsigned char journal_section_entries;
204 unsigned short journal_section_sectors;
205 unsigned int journal_sections;
206 unsigned int journal_entries;
207 sector_t data_device_sectors;
208 sector_t meta_device_sectors;
209 unsigned int initial_sectors;
210 unsigned int metadata_run;
211 __s8 log2_metadata_run;
212 __u8 log2_buffer_sectors;
213 __u8 sectors_per_block;
214 __u8 log2_blocks_per_bitmap_bit;
220 struct crypto_shash *internal_hash;
222 struct dm_target *ti;
224 /* these variables are locked with endio_wait.lock */
225 struct rb_root in_progress;
226 struct list_head wait_list;
227 wait_queue_head_t endio_wait;
228 struct workqueue_struct *wait_wq;
229 struct workqueue_struct *offload_wq;
231 unsigned char commit_seq;
232 commit_id_t commit_ids[N_COMMIT_IDS];
234 unsigned int committed_section;
235 unsigned int n_committed_sections;
237 unsigned int uncommitted_section;
238 unsigned int n_uncommitted_sections;
240 unsigned int free_section;
241 unsigned char free_section_entry;
242 unsigned int free_sectors;
244 unsigned int free_sectors_threshold;
246 struct workqueue_struct *commit_wq;
247 struct work_struct commit_work;
249 struct workqueue_struct *writer_wq;
250 struct work_struct writer_work;
252 struct workqueue_struct *recalc_wq;
253 struct work_struct recalc_work;
257 struct bio_list flush_bio_list;
259 unsigned long autocommit_jiffies;
260 struct timer_list autocommit_timer;
261 unsigned int autocommit_msec;
263 wait_queue_head_t copy_to_journal_wait;
265 struct completion crypto_backoff;
267 bool wrote_to_journal;
268 bool journal_uptodate;
270 bool recalculate_flag;
271 bool reset_recalculate_flag;
275 bool legacy_recalculate;
277 struct alg_spec internal_hash_alg;
278 struct alg_spec journal_crypt_alg;
279 struct alg_spec journal_mac_alg;
281 atomic64_t number_of_mismatches;
283 struct notifier_block reboot_notifier;
286 struct dm_integrity_range {
287 sector_t logical_sector;
293 struct task_struct *task;
294 struct list_head wait_entry;
299 struct dm_integrity_io {
300 struct work_struct work;
302 struct dm_integrity_c *ic;
306 struct dm_integrity_range range;
308 sector_t metadata_block;
309 unsigned int metadata_offset;
312 blk_status_t bi_status;
314 struct completion *completion;
316 struct dm_bio_details bio_details;
319 struct journal_completion {
320 struct dm_integrity_c *ic;
322 struct completion comp;
326 struct dm_integrity_range range;
327 struct journal_completion *comp;
330 struct bitmap_block_status {
331 struct work_struct work;
332 struct dm_integrity_c *ic;
334 unsigned long *bitmap;
335 struct bio_list bio_queue;
336 spinlock_t bio_queue_lock;
340 static struct kmem_cache *journal_io_cache;
342 #define JOURNAL_IO_MEMPOOL 32
345 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
346 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347 len ? ": " : "", len, bytes)
349 #define DEBUG_print(x, ...) do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
353 static void dm_integrity_prepare(struct request *rq)
357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
362 * DM Integrity profile, protection is performed layer above (dm-crypt)
364 static const struct blk_integrity_profile dm_integrity_profile = {
365 .name = "DM-DIF-EXT-TAG",
368 .prepare_fn = dm_integrity_prepare,
369 .complete_fn = dm_integrity_complete,
372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373 static void integrity_bio_wait(struct work_struct *w);
374 static void dm_integrity_dtr(struct dm_target *ti);
376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
379 atomic64_inc(&ic->number_of_mismatches);
380 if (!cmpxchg(&ic->failed, 0, err))
381 DMERR("Error on %s: %d", msg, err);
384 static int dm_integrity_failed(struct dm_integrity_c *ic)
386 return READ_ONCE(ic->failed);
389 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
391 if (ic->legacy_recalculate)
393 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
394 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
395 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
400 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
401 unsigned int j, unsigned char seq)
404 * Xor the number with section and sector, so that if a piece of
405 * journal is written at wrong place, it is detected.
407 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
410 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
411 sector_t *area, sector_t *offset)
414 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
415 *area = data_sector >> log2_interleave_sectors;
416 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
419 *offset = data_sector;
423 #define sector_to_block(ic, n) \
425 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
426 (n) >>= (ic)->sb->log2_sectors_per_block; \
429 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
430 sector_t offset, unsigned int *metadata_offset)
435 ms = area << ic->sb->log2_interleave_sectors;
436 if (likely(ic->log2_metadata_run >= 0))
437 ms += area << ic->log2_metadata_run;
439 ms += area * ic->metadata_run;
440 ms >>= ic->log2_buffer_sectors;
442 sector_to_block(ic, offset);
444 if (likely(ic->log2_tag_size >= 0)) {
445 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
446 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
448 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
449 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
451 *metadata_offset = mo;
455 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
462 result = area << ic->sb->log2_interleave_sectors;
463 if (likely(ic->log2_metadata_run >= 0))
464 result += (area + 1) << ic->log2_metadata_run;
466 result += (area + 1) * ic->metadata_run;
468 result += (sector_t)ic->initial_sectors + offset;
474 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
476 if (unlikely(*sec_ptr >= ic->journal_sections))
477 *sec_ptr -= ic->journal_sections;
480 static void sb_set_version(struct dm_integrity_c *ic)
482 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
483 ic->sb->version = SB_VERSION_5;
484 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
485 ic->sb->version = SB_VERSION_4;
486 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
487 ic->sb->version = SB_VERSION_3;
488 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
489 ic->sb->version = SB_VERSION_2;
491 ic->sb->version = SB_VERSION_1;
494 static int sb_mac(struct dm_integrity_c *ic, bool wr)
496 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
498 unsigned int size = crypto_shash_digestsize(ic->journal_mac);
500 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
501 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
505 desc->tfm = ic->journal_mac;
507 r = crypto_shash_init(desc);
508 if (unlikely(r < 0)) {
509 dm_integrity_io_error(ic, "crypto_shash_init", r);
513 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
514 if (unlikely(r < 0)) {
515 dm_integrity_io_error(ic, "crypto_shash_update", r);
520 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
521 if (unlikely(r < 0)) {
522 dm_integrity_io_error(ic, "crypto_shash_final", r);
526 __u8 result[HASH_MAX_DIGESTSIZE];
528 r = crypto_shash_final(desc, result);
529 if (unlikely(r < 0)) {
530 dm_integrity_io_error(ic, "crypto_shash_final", r);
533 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
534 dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
535 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
543 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
545 struct dm_io_request io_req;
546 struct dm_io_region io_loc;
547 const enum req_op op = opf & REQ_OP_MASK;
551 io_req.mem.type = DM_IO_KMEM;
552 io_req.mem.ptr.addr = ic->sb;
553 io_req.notify.fn = NULL;
554 io_req.client = ic->io;
555 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
556 io_loc.sector = ic->start;
557 io_loc.count = SB_SECTORS;
559 if (op == REQ_OP_WRITE) {
561 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
562 r = sb_mac(ic, true);
568 r = dm_io(&io_req, 1, &io_loc, NULL);
572 if (op == REQ_OP_READ) {
573 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
574 r = sb_mac(ic, false);
583 #define BITMAP_OP_TEST_ALL_SET 0
584 #define BITMAP_OP_TEST_ALL_CLEAR 1
585 #define BITMAP_OP_SET 2
586 #define BITMAP_OP_CLEAR 3
588 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
589 sector_t sector, sector_t n_sectors, int mode)
591 unsigned long bit, end_bit, this_end_bit, page, end_page;
594 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
595 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
598 ic->sb->log2_sectors_per_block,
599 ic->log2_blocks_per_bitmap_bit,
604 if (unlikely(!n_sectors))
607 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
608 end_bit = (sector + n_sectors - 1) >>
609 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
611 page = bit / (PAGE_SIZE * 8);
612 bit %= PAGE_SIZE * 8;
614 end_page = end_bit / (PAGE_SIZE * 8);
615 end_bit %= PAGE_SIZE * 8;
619 this_end_bit = PAGE_SIZE * 8 - 1;
621 this_end_bit = end_bit;
623 data = lowmem_page_address(bitmap[page].page);
625 if (mode == BITMAP_OP_TEST_ALL_SET) {
626 while (bit <= this_end_bit) {
627 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
629 if (data[bit / BITS_PER_LONG] != -1)
631 bit += BITS_PER_LONG;
632 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
635 if (!test_bit(bit, data))
639 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
640 while (bit <= this_end_bit) {
641 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
643 if (data[bit / BITS_PER_LONG] != 0)
645 bit += BITS_PER_LONG;
646 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
649 if (test_bit(bit, data))
653 } else if (mode == BITMAP_OP_SET) {
654 while (bit <= this_end_bit) {
655 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
657 data[bit / BITS_PER_LONG] = -1;
658 bit += BITS_PER_LONG;
659 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
662 __set_bit(bit, data);
665 } else if (mode == BITMAP_OP_CLEAR) {
666 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
669 while (bit <= this_end_bit) {
670 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
672 data[bit / BITS_PER_LONG] = 0;
673 bit += BITS_PER_LONG;
674 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
677 __clear_bit(bit, data);
685 if (unlikely(page < end_page)) {
694 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
696 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
699 for (i = 0; i < n_bitmap_pages; i++) {
700 unsigned long *dst_data = lowmem_page_address(dst[i].page);
701 unsigned long *src_data = lowmem_page_address(src[i].page);
703 copy_page(dst_data, src_data);
707 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
709 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
710 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
712 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
713 return &ic->bbs[bitmap_block];
716 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
717 bool e, const char *function)
719 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
720 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
722 if (unlikely(section >= ic->journal_sections) ||
723 unlikely(offset >= limit)) {
724 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
725 function, section, offset, ic->journal_sections, limit);
731 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
732 unsigned int *pl_index, unsigned int *pl_offset)
736 access_journal_check(ic, section, offset, false, "page_list_location");
738 sector = section * ic->journal_section_sectors + offset;
740 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
741 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
744 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
745 unsigned int section, unsigned int offset, unsigned int *n_sectors)
747 unsigned int pl_index, pl_offset;
750 page_list_location(ic, section, offset, &pl_index, &pl_offset);
753 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
755 va = lowmem_page_address(pl[pl_index].page);
757 return (struct journal_sector *)(va + pl_offset);
760 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
762 return access_page_list(ic, ic->journal, section, offset, NULL);
765 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
767 unsigned int rel_sector, offset;
768 struct journal_sector *js;
770 access_journal_check(ic, section, n, true, "access_journal_entry");
772 rel_sector = n % JOURNAL_BLOCK_SECTORS;
773 offset = n / JOURNAL_BLOCK_SECTORS;
775 js = access_journal(ic, section, rel_sector);
776 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
779 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
781 n <<= ic->sb->log2_sectors_per_block;
783 n += JOURNAL_BLOCK_SECTORS;
785 access_journal_check(ic, section, n, false, "access_journal_data");
787 return access_journal(ic, section, n);
790 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
792 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
794 unsigned int j, size;
796 desc->tfm = ic->journal_mac;
798 r = crypto_shash_init(desc);
799 if (unlikely(r < 0)) {
800 dm_integrity_io_error(ic, "crypto_shash_init", r);
804 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
807 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
808 if (unlikely(r < 0)) {
809 dm_integrity_io_error(ic, "crypto_shash_update", r);
813 section_le = cpu_to_le64(section);
814 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le));
815 if (unlikely(r < 0)) {
816 dm_integrity_io_error(ic, "crypto_shash_update", r);
821 for (j = 0; j < ic->journal_section_entries; j++) {
822 struct journal_entry *je = access_journal_entry(ic, section, j);
824 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
825 if (unlikely(r < 0)) {
826 dm_integrity_io_error(ic, "crypto_shash_update", r);
831 size = crypto_shash_digestsize(ic->journal_mac);
833 if (likely(size <= JOURNAL_MAC_SIZE)) {
834 r = crypto_shash_final(desc, result);
835 if (unlikely(r < 0)) {
836 dm_integrity_io_error(ic, "crypto_shash_final", r);
839 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
841 __u8 digest[HASH_MAX_DIGESTSIZE];
843 if (WARN_ON(size > sizeof(digest))) {
844 dm_integrity_io_error(ic, "digest_size", -EINVAL);
847 r = crypto_shash_final(desc, digest);
848 if (unlikely(r < 0)) {
849 dm_integrity_io_error(ic, "crypto_shash_final", r);
852 memcpy(result, digest, JOURNAL_MAC_SIZE);
857 memset(result, 0, JOURNAL_MAC_SIZE);
860 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
862 __u8 result[JOURNAL_MAC_SIZE];
865 if (!ic->journal_mac)
868 section_mac(ic, section, result);
870 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
871 struct journal_sector *js = access_journal(ic, section, j);
874 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
876 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
877 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
878 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
884 static void complete_journal_op(void *context)
886 struct journal_completion *comp = context;
888 BUG_ON(!atomic_read(&comp->in_flight));
889 if (likely(atomic_dec_and_test(&comp->in_flight)))
890 complete(&comp->comp);
893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
894 unsigned int n_sections, struct journal_completion *comp)
896 struct async_submit_ctl submit;
897 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
898 unsigned int pl_index, pl_offset, section_index;
899 struct page_list *source_pl, *target_pl;
901 if (likely(encrypt)) {
902 source_pl = ic->journal;
903 target_pl = ic->journal_io;
905 source_pl = ic->journal_io;
906 target_pl = ic->journal;
909 page_list_location(ic, section, 0, &pl_index, &pl_offset);
911 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
913 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
915 section_index = pl_index;
919 struct page *src_pages[2];
920 struct page *dst_page;
922 while (unlikely(pl_index == section_index)) {
926 rw_section_mac(ic, section, true);
931 page_list_location(ic, section, 0, §ion_index, &dummy);
934 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
935 dst_page = target_pl[pl_index].page;
936 src_pages[0] = source_pl[pl_index].page;
937 src_pages[1] = ic->journal_xor[pl_index].page;
939 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
943 n_bytes -= this_step;
948 async_tx_issue_pending_all();
951 static void complete_journal_encrypt(void *data, int err)
953 struct journal_completion *comp = data;
956 if (likely(err == -EINPROGRESS)) {
957 complete(&comp->ic->crypto_backoff);
960 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
962 complete_journal_op(comp);
965 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
969 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
970 complete_journal_encrypt, comp);
972 r = crypto_skcipher_encrypt(req);
974 r = crypto_skcipher_decrypt(req);
977 if (likely(r == -EINPROGRESS))
979 if (likely(r == -EBUSY)) {
980 wait_for_completion(&comp->ic->crypto_backoff);
981 reinit_completion(&comp->ic->crypto_backoff);
984 dm_integrity_io_error(comp->ic, "encrypt", r);
988 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
989 unsigned int n_sections, struct journal_completion *comp)
991 struct scatterlist **source_sg;
992 struct scatterlist **target_sg;
994 atomic_add(2, &comp->in_flight);
996 if (likely(encrypt)) {
997 source_sg = ic->journal_scatterlist;
998 target_sg = ic->journal_io_scatterlist;
1000 source_sg = ic->journal_io_scatterlist;
1001 target_sg = ic->journal_scatterlist;
1005 struct skcipher_request *req;
1006 unsigned int ivsize;
1009 if (likely(encrypt))
1010 rw_section_mac(ic, section, true);
1012 req = ic->sk_requests[section];
1013 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1016 memcpy(iv, iv + ivsize, ivsize);
1018 req->src = source_sg[section];
1019 req->dst = target_sg[section];
1021 if (unlikely(do_crypt(encrypt, req, comp)))
1022 atomic_inc(&comp->in_flight);
1026 } while (n_sections);
1028 atomic_dec(&comp->in_flight);
1029 complete_journal_op(comp);
1032 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1033 unsigned int n_sections, struct journal_completion *comp)
1035 if (ic->journal_xor)
1036 return xor_journal(ic, encrypt, section, n_sections, comp);
1038 return crypt_journal(ic, encrypt, section, n_sections, comp);
1041 static void complete_journal_io(unsigned long error, void *context)
1043 struct journal_completion *comp = context;
1045 if (unlikely(error != 0))
1046 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1047 complete_journal_op(comp);
1050 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1051 unsigned int sector, unsigned int n_sectors,
1052 struct journal_completion *comp)
1054 struct dm_io_request io_req;
1055 struct dm_io_region io_loc;
1056 unsigned int pl_index, pl_offset;
1059 if (unlikely(dm_integrity_failed(ic))) {
1061 complete_journal_io(-1UL, comp);
1065 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1066 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1068 io_req.bi_opf = opf;
1069 io_req.mem.type = DM_IO_PAGE_LIST;
1071 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1073 io_req.mem.ptr.pl = &ic->journal[pl_index];
1074 io_req.mem.offset = pl_offset;
1075 if (likely(comp != NULL)) {
1076 io_req.notify.fn = complete_journal_io;
1077 io_req.notify.context = comp;
1079 io_req.notify.fn = NULL;
1081 io_req.client = ic->io;
1082 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1083 io_loc.sector = ic->start + SB_SECTORS + sector;
1084 io_loc.count = n_sectors;
1086 r = dm_io(&io_req, 1, &io_loc, NULL);
1088 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1089 "reading journal" : "writing journal", r);
1091 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1092 complete_journal_io(-1UL, comp);
1097 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1098 unsigned int section, unsigned int n_sections,
1099 struct journal_completion *comp)
1101 unsigned int sector, n_sectors;
1103 sector = section * ic->journal_section_sectors;
1104 n_sectors = n_sections * ic->journal_section_sectors;
1106 rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1109 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1111 struct journal_completion io_comp;
1112 struct journal_completion crypt_comp_1;
1113 struct journal_completion crypt_comp_2;
1117 init_completion(&io_comp.comp);
1119 if (commit_start + commit_sections <= ic->journal_sections) {
1120 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1121 if (ic->journal_io) {
1122 crypt_comp_1.ic = ic;
1123 init_completion(&crypt_comp_1.comp);
1124 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1125 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1126 wait_for_completion_io(&crypt_comp_1.comp);
1128 for (i = 0; i < commit_sections; i++)
1129 rw_section_mac(ic, commit_start + i, true);
1131 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1132 commit_sections, &io_comp);
1134 unsigned int to_end;
1136 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1137 to_end = ic->journal_sections - commit_start;
1138 if (ic->journal_io) {
1139 crypt_comp_1.ic = ic;
1140 init_completion(&crypt_comp_1.comp);
1141 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1142 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1143 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1144 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1145 commit_start, to_end, &io_comp);
1146 reinit_completion(&crypt_comp_1.comp);
1147 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1148 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1149 wait_for_completion_io(&crypt_comp_1.comp);
1151 crypt_comp_2.ic = ic;
1152 init_completion(&crypt_comp_2.comp);
1153 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1154 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1155 wait_for_completion_io(&crypt_comp_1.comp);
1156 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1157 wait_for_completion_io(&crypt_comp_2.comp);
1160 for (i = 0; i < to_end; i++)
1161 rw_section_mac(ic, commit_start + i, true);
1162 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1163 for (i = 0; i < commit_sections - to_end; i++)
1164 rw_section_mac(ic, i, true);
1166 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1169 wait_for_completion_io(&io_comp.comp);
1172 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1173 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1175 struct dm_io_request io_req;
1176 struct dm_io_region io_loc;
1178 unsigned int sector, pl_index, pl_offset;
1180 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1182 if (unlikely(dm_integrity_failed(ic))) {
1187 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1189 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1190 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1192 io_req.bi_opf = REQ_OP_WRITE;
1193 io_req.mem.type = DM_IO_PAGE_LIST;
1194 io_req.mem.ptr.pl = &ic->journal[pl_index];
1195 io_req.mem.offset = pl_offset;
1196 io_req.notify.fn = fn;
1197 io_req.notify.context = data;
1198 io_req.client = ic->io;
1199 io_loc.bdev = ic->dev->bdev;
1200 io_loc.sector = target;
1201 io_loc.count = n_sectors;
1203 r = dm_io(&io_req, 1, &io_loc, NULL);
1205 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1212 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1213 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1218 struct rb_node **n = &ic->in_progress.rb_node;
1219 struct rb_node *parent;
1221 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1223 if (likely(check_waiting)) {
1224 struct dm_integrity_range *range;
1226 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1227 if (unlikely(ranges_overlap(range, new_range)))
1235 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1238 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1239 n = &range->node.rb_left;
1240 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1241 n = &range->node.rb_right;
1246 rb_link_node(&new_range->node, parent, n);
1247 rb_insert_color(&new_range->node, &ic->in_progress);
1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1254 rb_erase(&range->node, &ic->in_progress);
1255 while (unlikely(!list_empty(&ic->wait_list))) {
1256 struct dm_integrity_range *last_range =
1257 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1258 struct task_struct *last_range_task;
1260 last_range_task = last_range->task;
1261 list_del(&last_range->wait_entry);
1262 if (!add_new_range(ic, last_range, false)) {
1263 last_range->task = last_range_task;
1264 list_add(&last_range->wait_entry, &ic->wait_list);
1267 last_range->waiting = false;
1268 wake_up_process(last_range_task);
1272 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1274 unsigned long flags;
1276 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1277 remove_range_unlocked(ic, range);
1278 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1281 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1283 new_range->waiting = true;
1284 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1285 new_range->task = current;
1287 __set_current_state(TASK_UNINTERRUPTIBLE);
1288 spin_unlock_irq(&ic->endio_wait.lock);
1290 spin_lock_irq(&ic->endio_wait.lock);
1291 } while (unlikely(new_range->waiting));
1294 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1296 if (unlikely(!add_new_range(ic, new_range, true)))
1297 wait_and_add_new_range(ic, new_range);
1300 static void init_journal_node(struct journal_node *node)
1302 RB_CLEAR_NODE(&node->node);
1303 node->sector = (sector_t)-1;
1306 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1308 struct rb_node **link;
1309 struct rb_node *parent;
1311 node->sector = sector;
1312 BUG_ON(!RB_EMPTY_NODE(&node->node));
1314 link = &ic->journal_tree_root.rb_node;
1318 struct journal_node *j;
1321 j = container_of(parent, struct journal_node, node);
1322 if (sector < j->sector)
1323 link = &j->node.rb_left;
1325 link = &j->node.rb_right;
1328 rb_link_node(&node->node, parent, link);
1329 rb_insert_color(&node->node, &ic->journal_tree_root);
1332 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1334 BUG_ON(RB_EMPTY_NODE(&node->node));
1335 rb_erase(&node->node, &ic->journal_tree_root);
1336 init_journal_node(node);
1339 #define NOT_FOUND (-1U)
1341 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1343 struct rb_node *n = ic->journal_tree_root.rb_node;
1344 unsigned int found = NOT_FOUND;
1346 *next_sector = (sector_t)-1;
1348 struct journal_node *j = container_of(n, struct journal_node, node);
1350 if (sector == j->sector)
1351 found = j - ic->journal_tree;
1353 if (sector < j->sector) {
1354 *next_sector = j->sector;
1355 n = j->node.rb_left;
1357 n = j->node.rb_right;
1363 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1365 struct journal_node *node, *next_node;
1366 struct rb_node *next;
1368 if (unlikely(pos >= ic->journal_entries))
1370 node = &ic->journal_tree[pos];
1371 if (unlikely(RB_EMPTY_NODE(&node->node)))
1373 if (unlikely(node->sector != sector))
1376 next = rb_next(&node->node);
1377 if (unlikely(!next))
1380 next_node = container_of(next, struct journal_node, node);
1381 return next_node->sector != sector;
1384 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1386 struct rb_node *next;
1387 struct journal_node *next_node;
1388 unsigned int next_section;
1390 BUG_ON(RB_EMPTY_NODE(&node->node));
1392 next = rb_next(&node->node);
1393 if (unlikely(!next))
1396 next_node = container_of(next, struct journal_node, node);
1398 if (next_node->sector != node->sector)
1401 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1402 if (next_section >= ic->committed_section &&
1403 next_section < ic->committed_section + ic->n_committed_sections)
1405 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1415 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1416 unsigned int *metadata_offset, unsigned int total_size, int op)
1418 #define MAY_BE_FILLER 1
1419 #define MAY_BE_HASH 2
1420 unsigned int hash_offset = 0;
1421 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1424 unsigned char *data, *dp;
1425 struct dm_buffer *b;
1426 unsigned int to_copy;
1429 r = dm_integrity_failed(ic);
1433 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1435 return PTR_ERR(data);
1437 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1438 dp = data + *metadata_offset;
1439 if (op == TAG_READ) {
1440 memcpy(tag, dp, to_copy);
1441 } else if (op == TAG_WRITE) {
1442 if (memcmp(dp, tag, to_copy)) {
1443 memcpy(dp, tag, to_copy);
1444 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1447 /* e.g.: op == TAG_CMP */
1449 if (likely(is_power_of_2(ic->tag_size))) {
1450 if (unlikely(memcmp(dp, tag, to_copy)))
1451 if (unlikely(!ic->discard) ||
1452 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1460 for (i = 0; i < to_copy; i++, ts--) {
1461 if (unlikely(dp[i] != tag[i]))
1462 may_be &= ~MAY_BE_HASH;
1463 if (likely(dp[i] != DISCARD_FILLER))
1464 may_be &= ~MAY_BE_FILLER;
1466 if (unlikely(hash_offset == ic->tag_size)) {
1467 if (unlikely(!may_be)) {
1468 dm_bufio_release(b);
1472 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1477 dm_bufio_release(b);
1480 *metadata_offset += to_copy;
1481 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1482 (*metadata_block)++;
1483 *metadata_offset = 0;
1486 if (unlikely(!is_power_of_2(ic->tag_size)))
1487 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1489 total_size -= to_copy;
1490 } while (unlikely(total_size));
1493 #undef MAY_BE_FILLER
1497 struct flush_request {
1498 struct dm_io_request io_req;
1499 struct dm_io_region io_reg;
1500 struct dm_integrity_c *ic;
1501 struct completion comp;
1504 static void flush_notify(unsigned long error, void *fr_)
1506 struct flush_request *fr = fr_;
1508 if (unlikely(error != 0))
1509 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1510 complete(&fr->comp);
1513 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1516 struct flush_request fr;
1521 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1522 fr.io_req.mem.type = DM_IO_KMEM,
1523 fr.io_req.mem.ptr.addr = NULL,
1524 fr.io_req.notify.fn = flush_notify,
1525 fr.io_req.notify.context = &fr;
1526 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1527 fr.io_reg.bdev = ic->dev->bdev,
1528 fr.io_reg.sector = 0,
1529 fr.io_reg.count = 0,
1531 init_completion(&fr.comp);
1532 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1536 r = dm_bufio_write_dirty_buffers(ic->bufio);
1538 dm_integrity_io_error(ic, "writing tags", r);
1541 wait_for_completion(&fr.comp);
1544 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1546 DECLARE_WAITQUEUE(wait, current);
1548 __add_wait_queue(&ic->endio_wait, &wait);
1549 __set_current_state(TASK_UNINTERRUPTIBLE);
1550 spin_unlock_irq(&ic->endio_wait.lock);
1552 spin_lock_irq(&ic->endio_wait.lock);
1553 __remove_wait_queue(&ic->endio_wait, &wait);
1556 static void autocommit_fn(struct timer_list *t)
1558 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1560 if (likely(!dm_integrity_failed(ic)))
1561 queue_work(ic->commit_wq, &ic->commit_work);
1564 static void schedule_autocommit(struct dm_integrity_c *ic)
1566 if (!timer_pending(&ic->autocommit_timer))
1567 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1570 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1573 unsigned long flags;
1575 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1576 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1577 bio_list_add(&ic->flush_bio_list, bio);
1578 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1580 queue_work(ic->commit_wq, &ic->commit_work);
1583 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1587 r = dm_integrity_failed(ic);
1588 if (unlikely(r) && !bio->bi_status)
1589 bio->bi_status = errno_to_blk_status(r);
1590 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1591 unsigned long flags;
1593 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1594 bio_list_add(&ic->synchronous_bios, bio);
1595 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1596 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1602 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1604 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1606 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1607 submit_flush_bio(ic, dio);
1612 static void dec_in_flight(struct dm_integrity_io *dio)
1614 if (atomic_dec_and_test(&dio->in_flight)) {
1615 struct dm_integrity_c *ic = dio->ic;
1618 remove_range(ic, &dio->range);
1620 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1621 schedule_autocommit(ic);
1623 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1624 if (unlikely(dio->bi_status) && !bio->bi_status)
1625 bio->bi_status = dio->bi_status;
1626 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1627 dio->range.logical_sector += dio->range.n_sectors;
1628 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1629 INIT_WORK(&dio->work, integrity_bio_wait);
1630 queue_work(ic->offload_wq, &dio->work);
1633 do_endio_flush(ic, dio);
1637 static void integrity_end_io(struct bio *bio)
1639 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1641 dm_bio_restore(&dio->bio_details, bio);
1642 if (bio->bi_integrity)
1643 bio->bi_opf |= REQ_INTEGRITY;
1645 if (dio->completion)
1646 complete(dio->completion);
1651 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1652 const char *data, char *result)
1654 __le64 sector_le = cpu_to_le64(sector);
1655 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1657 unsigned int digest_size;
1659 req->tfm = ic->internal_hash;
1661 r = crypto_shash_init(req);
1662 if (unlikely(r < 0)) {
1663 dm_integrity_io_error(ic, "crypto_shash_init", r);
1667 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1668 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1669 if (unlikely(r < 0)) {
1670 dm_integrity_io_error(ic, "crypto_shash_update", r);
1675 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le));
1676 if (unlikely(r < 0)) {
1677 dm_integrity_io_error(ic, "crypto_shash_update", r);
1681 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1682 if (unlikely(r < 0)) {
1683 dm_integrity_io_error(ic, "crypto_shash_update", r);
1687 r = crypto_shash_final(req, result);
1688 if (unlikely(r < 0)) {
1689 dm_integrity_io_error(ic, "crypto_shash_final", r);
1693 digest_size = crypto_shash_digestsize(ic->internal_hash);
1694 if (unlikely(digest_size < ic->tag_size))
1695 memset(result + digest_size, 0, ic->tag_size - digest_size);
1700 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1701 get_random_bytes(result, ic->tag_size);
1704 static void integrity_metadata(struct work_struct *w)
1706 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1707 struct dm_integrity_c *ic = dio->ic;
1711 if (ic->internal_hash) {
1712 struct bvec_iter iter;
1714 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1715 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1717 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1718 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1720 unsigned int sectors_to_process;
1722 if (unlikely(ic->mode == 'R'))
1725 if (likely(dio->op != REQ_OP_DISCARD))
1726 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1727 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1729 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1731 checksums = checksums_onstack;
1732 if (WARN_ON(extra_space &&
1733 digest_size > sizeof(checksums_onstack))) {
1739 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1740 unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1741 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1742 unsigned int max_blocks = max_size / ic->tag_size;
1744 memset(checksums, DISCARD_FILLER, max_size);
1747 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1749 this_step_blocks = min(this_step_blocks, max_blocks);
1750 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1751 this_step_blocks * ic->tag_size, TAG_WRITE);
1753 if (likely(checksums != checksums_onstack))
1758 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1761 if (likely(checksums != checksums_onstack))
1766 sector = dio->range.logical_sector;
1767 sectors_to_process = dio->range.n_sectors;
1769 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1771 char *mem, *checksums_ptr;
1774 mem = bvec_kmap_local(&bv);
1776 checksums_ptr = checksums;
1778 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1779 checksums_ptr += ic->tag_size;
1780 sectors_to_process -= ic->sectors_per_block;
1781 pos += ic->sectors_per_block << SECTOR_SHIFT;
1782 sector += ic->sectors_per_block;
1783 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1786 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1787 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1792 s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1793 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1796 atomic64_inc(&ic->number_of_mismatches);
1797 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1800 if (likely(checksums != checksums_onstack))
1805 if (!sectors_to_process)
1808 if (unlikely(pos < bv.bv_len)) {
1809 bv.bv_offset += pos;
1815 if (likely(checksums != checksums_onstack))
1818 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1822 struct bvec_iter iter;
1823 unsigned int data_to_process = dio->range.n_sectors;
1825 sector_to_block(ic, data_to_process);
1826 data_to_process *= ic->tag_size;
1828 bip_for_each_vec(biv, bip, iter) {
1830 unsigned int this_len;
1832 BUG_ON(PageHighMem(biv.bv_page));
1833 tag = bvec_virt(&biv);
1834 this_len = min(biv.bv_len, data_to_process);
1835 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1836 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1839 data_to_process -= this_len;
1840 if (!data_to_process)
1849 dio->bi_status = errno_to_blk_status(r);
1853 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1855 struct dm_integrity_c *ic = ti->private;
1856 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1857 struct bio_integrity_payload *bip;
1859 sector_t area, offset;
1863 dio->op = bio_op(bio);
1865 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1866 if (ti->max_io_len) {
1867 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1868 unsigned int log2_max_io_len = __fls(ti->max_io_len);
1869 sector_t start_boundary = sec >> log2_max_io_len;
1870 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1872 if (start_boundary < end_boundary) {
1873 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1875 dm_accept_partial_bio(bio, len);
1880 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1881 submit_flush_bio(ic, dio);
1882 return DM_MAPIO_SUBMITTED;
1885 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1886 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1887 if (unlikely(dio->fua)) {
1889 * Don't pass down the FUA flag because we have to flush
1890 * disk cache anyway.
1892 bio->bi_opf &= ~REQ_FUA;
1894 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1895 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1896 dio->range.logical_sector, bio_sectors(bio),
1897 ic->provided_data_sectors);
1898 return DM_MAPIO_KILL;
1900 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1901 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1902 ic->sectors_per_block,
1903 dio->range.logical_sector, bio_sectors(bio));
1904 return DM_MAPIO_KILL;
1907 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1908 struct bvec_iter iter;
1911 bio_for_each_segment(bv, bio, iter) {
1912 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1913 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1914 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1915 return DM_MAPIO_KILL;
1920 bip = bio_integrity(bio);
1921 if (!ic->internal_hash) {
1923 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1925 if (ic->log2_tag_size >= 0)
1926 wanted_tag_size <<= ic->log2_tag_size;
1928 wanted_tag_size *= ic->tag_size;
1929 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1930 DMERR("Invalid integrity data size %u, expected %u",
1931 bip->bip_iter.bi_size, wanted_tag_size);
1932 return DM_MAPIO_KILL;
1936 if (unlikely(bip != NULL)) {
1937 DMERR("Unexpected integrity data when using internal hash");
1938 return DM_MAPIO_KILL;
1942 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1943 return DM_MAPIO_KILL;
1945 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1946 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1947 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1949 dm_integrity_map_continue(dio, true);
1950 return DM_MAPIO_SUBMITTED;
1953 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1954 unsigned int journal_section, unsigned int journal_entry)
1956 struct dm_integrity_c *ic = dio->ic;
1957 sector_t logical_sector;
1958 unsigned int n_sectors;
1960 logical_sector = dio->range.logical_sector;
1961 n_sectors = dio->range.n_sectors;
1963 struct bio_vec bv = bio_iovec(bio);
1966 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1967 bv.bv_len = n_sectors << SECTOR_SHIFT;
1968 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1969 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1971 mem = kmap_local_page(bv.bv_page);
1972 if (likely(dio->op == REQ_OP_WRITE))
1973 flush_dcache_page(bv.bv_page);
1976 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1978 if (unlikely(dio->op == REQ_OP_READ)) {
1979 struct journal_sector *js;
1983 if (unlikely(journal_entry_is_inprogress(je))) {
1984 flush_dcache_page(bv.bv_page);
1987 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1991 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1992 js = access_journal_data(ic, journal_section, journal_entry);
1993 mem_ptr = mem + bv.bv_offset;
1996 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1997 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1999 mem_ptr += 1 << SECTOR_SHIFT;
2000 } while (++s < ic->sectors_per_block);
2001 #ifdef INTERNAL_VERIFY
2002 if (ic->internal_hash) {
2003 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2005 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2006 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2007 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2009 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2010 bio, logical_sector, 0);
2016 if (!ic->internal_hash) {
2017 struct bio_integrity_payload *bip = bio_integrity(bio);
2018 unsigned int tag_todo = ic->tag_size;
2019 char *tag_ptr = journal_entry_tag(ic, je);
2023 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2024 unsigned int tag_now = min(biv.bv_len, tag_todo);
2027 BUG_ON(PageHighMem(biv.bv_page));
2028 tag_addr = bvec_virt(&biv);
2029 if (likely(dio->op == REQ_OP_WRITE))
2030 memcpy(tag_ptr, tag_addr, tag_now);
2032 memcpy(tag_addr, tag_ptr, tag_now);
2033 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2035 tag_todo -= tag_now;
2036 } while (unlikely(tag_todo));
2037 } else if (likely(dio->op == REQ_OP_WRITE))
2038 memset(tag_ptr, 0, tag_todo);
2041 if (likely(dio->op == REQ_OP_WRITE)) {
2042 struct journal_sector *js;
2045 js = access_journal_data(ic, journal_section, journal_entry);
2046 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2050 je->last_bytes[s] = js[s].commit_id;
2051 } while (++s < ic->sectors_per_block);
2053 if (ic->internal_hash) {
2054 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2056 if (unlikely(digest_size > ic->tag_size)) {
2057 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2059 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2060 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2062 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2065 journal_entry_set_sector(je, logical_sector);
2067 logical_sector += ic->sectors_per_block;
2070 if (unlikely(journal_entry == ic->journal_section_entries)) {
2073 wraparound_section(ic, &journal_section);
2076 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2077 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2079 if (unlikely(dio->op == REQ_OP_READ))
2080 flush_dcache_page(bv.bv_page);
2082 } while (n_sectors);
2084 if (likely(dio->op == REQ_OP_WRITE)) {
2086 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2087 wake_up(&ic->copy_to_journal_wait);
2088 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2089 queue_work(ic->commit_wq, &ic->commit_work);
2091 schedule_autocommit(ic);
2093 remove_range(ic, &dio->range);
2095 if (unlikely(bio->bi_iter.bi_size)) {
2096 sector_t area, offset;
2098 dio->range.logical_sector = logical_sector;
2099 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2100 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2107 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2109 struct dm_integrity_c *ic = dio->ic;
2110 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2111 unsigned int journal_section, journal_entry;
2112 unsigned int journal_read_pos;
2113 struct completion read_comp;
2114 bool discard_retried = false;
2115 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2117 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2118 need_sync_io = true;
2120 if (need_sync_io && from_map) {
2121 INIT_WORK(&dio->work, integrity_bio_wait);
2122 queue_work(ic->offload_wq, &dio->work);
2127 spin_lock_irq(&ic->endio_wait.lock);
2129 if (unlikely(dm_integrity_failed(ic))) {
2130 spin_unlock_irq(&ic->endio_wait.lock);
2134 dio->range.n_sectors = bio_sectors(bio);
2135 journal_read_pos = NOT_FOUND;
2136 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2137 if (dio->op == REQ_OP_WRITE) {
2138 unsigned int next_entry, i, pos;
2139 unsigned int ws, we, range_sectors;
2141 dio->range.n_sectors = min(dio->range.n_sectors,
2142 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2143 if (unlikely(!dio->range.n_sectors)) {
2145 goto offload_to_thread;
2146 sleep_on_endio_wait(ic);
2149 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2150 ic->free_sectors -= range_sectors;
2151 journal_section = ic->free_section;
2152 journal_entry = ic->free_section_entry;
2154 next_entry = ic->free_section_entry + range_sectors;
2155 ic->free_section_entry = next_entry % ic->journal_section_entries;
2156 ic->free_section += next_entry / ic->journal_section_entries;
2157 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2158 wraparound_section(ic, &ic->free_section);
2160 pos = journal_section * ic->journal_section_entries + journal_entry;
2161 ws = journal_section;
2165 struct journal_entry *je;
2167 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2169 if (unlikely(pos >= ic->journal_entries))
2172 je = access_journal_entry(ic, ws, we);
2173 BUG_ON(!journal_entry_is_unused(je));
2174 journal_entry_set_inprogress(je);
2176 if (unlikely(we == ic->journal_section_entries)) {
2179 wraparound_section(ic, &ws);
2181 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2183 spin_unlock_irq(&ic->endio_wait.lock);
2184 goto journal_read_write;
2186 sector_t next_sector;
2188 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2189 if (likely(journal_read_pos == NOT_FOUND)) {
2190 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2191 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2194 unsigned int jp = journal_read_pos + 1;
2196 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2197 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2200 dio->range.n_sectors = i;
2204 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2206 * We must not sleep in the request routine because it could
2207 * stall bios on current->bio_list.
2208 * So, we offload the bio to a workqueue if we have to sleep.
2212 spin_unlock_irq(&ic->endio_wait.lock);
2213 INIT_WORK(&dio->work, integrity_bio_wait);
2214 queue_work(ic->wait_wq, &dio->work);
2217 if (journal_read_pos != NOT_FOUND)
2218 dio->range.n_sectors = ic->sectors_per_block;
2219 wait_and_add_new_range(ic, &dio->range);
2221 * wait_and_add_new_range drops the spinlock, so the journal
2222 * may have been changed arbitrarily. We need to recheck.
2223 * To simplify the code, we restrict I/O size to just one block.
2225 if (journal_read_pos != NOT_FOUND) {
2226 sector_t next_sector;
2227 unsigned int new_pos;
2229 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2230 if (unlikely(new_pos != journal_read_pos)) {
2231 remove_range_unlocked(ic, &dio->range);
2236 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2237 sector_t next_sector;
2238 unsigned int new_pos;
2240 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2241 if (unlikely(new_pos != NOT_FOUND) ||
2242 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2243 remove_range_unlocked(ic, &dio->range);
2244 spin_unlock_irq(&ic->endio_wait.lock);
2245 queue_work(ic->commit_wq, &ic->commit_work);
2246 flush_workqueue(ic->commit_wq);
2247 queue_work(ic->writer_wq, &ic->writer_work);
2248 flush_workqueue(ic->writer_wq);
2249 discard_retried = true;
2253 spin_unlock_irq(&ic->endio_wait.lock);
2255 if (unlikely(journal_read_pos != NOT_FOUND)) {
2256 journal_section = journal_read_pos / ic->journal_section_entries;
2257 journal_entry = journal_read_pos % ic->journal_section_entries;
2258 goto journal_read_write;
2261 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2262 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2263 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2264 struct bitmap_block_status *bbs;
2266 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2267 spin_lock(&bbs->bio_queue_lock);
2268 bio_list_add(&bbs->bio_queue, bio);
2269 spin_unlock(&bbs->bio_queue_lock);
2270 queue_work(ic->writer_wq, &bbs->work);
2275 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2278 init_completion(&read_comp);
2279 dio->completion = &read_comp;
2281 dio->completion = NULL;
2283 dm_bio_record(&dio->bio_details, bio);
2284 bio_set_dev(bio, ic->dev->bdev);
2285 bio->bi_integrity = NULL;
2286 bio->bi_opf &= ~REQ_INTEGRITY;
2287 bio->bi_end_io = integrity_end_io;
2288 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2290 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2291 integrity_metadata(&dio->work);
2292 dm_integrity_flush_buffers(ic, false);
2294 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2295 dio->completion = NULL;
2297 submit_bio_noacct(bio);
2302 submit_bio_noacct(bio);
2305 wait_for_completion_io(&read_comp);
2306 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2307 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2309 if (ic->mode == 'B') {
2310 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2311 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2315 if (likely(!bio->bi_status))
2316 integrity_metadata(&dio->work);
2321 INIT_WORK(&dio->work, integrity_metadata);
2322 queue_work(ic->metadata_wq, &dio->work);
2328 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2331 do_endio_flush(ic, dio);
2335 static void integrity_bio_wait(struct work_struct *w)
2337 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2339 dm_integrity_map_continue(dio, false);
2342 static void pad_uncommitted(struct dm_integrity_c *ic)
2344 if (ic->free_section_entry) {
2345 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2346 ic->free_section_entry = 0;
2348 wraparound_section(ic, &ic->free_section);
2349 ic->n_uncommitted_sections++;
2351 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2352 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2353 ic->journal_section_entries + ic->free_sectors)) {
2354 DMCRIT("journal_sections %u, journal_section_entries %u, "
2355 "n_uncommitted_sections %u, n_committed_sections %u, "
2356 "journal_section_entries %u, free_sectors %u",
2357 ic->journal_sections, ic->journal_section_entries,
2358 ic->n_uncommitted_sections, ic->n_committed_sections,
2359 ic->journal_section_entries, ic->free_sectors);
2363 static void integrity_commit(struct work_struct *w)
2365 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2366 unsigned int commit_start, commit_sections;
2367 unsigned int i, j, n;
2368 struct bio *flushes;
2370 del_timer(&ic->autocommit_timer);
2372 spin_lock_irq(&ic->endio_wait.lock);
2373 flushes = bio_list_get(&ic->flush_bio_list);
2374 if (unlikely(ic->mode != 'J')) {
2375 spin_unlock_irq(&ic->endio_wait.lock);
2376 dm_integrity_flush_buffers(ic, true);
2377 goto release_flush_bios;
2380 pad_uncommitted(ic);
2381 commit_start = ic->uncommitted_section;
2382 commit_sections = ic->n_uncommitted_sections;
2383 spin_unlock_irq(&ic->endio_wait.lock);
2385 if (!commit_sections)
2386 goto release_flush_bios;
2388 ic->wrote_to_journal = true;
2391 for (n = 0; n < commit_sections; n++) {
2392 for (j = 0; j < ic->journal_section_entries; j++) {
2393 struct journal_entry *je;
2395 je = access_journal_entry(ic, i, j);
2396 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2398 for (j = 0; j < ic->journal_section_sectors; j++) {
2399 struct journal_sector *js;
2401 js = access_journal(ic, i, j);
2402 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2405 if (unlikely(i >= ic->journal_sections))
2406 ic->commit_seq = next_commit_seq(ic->commit_seq);
2407 wraparound_section(ic, &i);
2411 write_journal(ic, commit_start, commit_sections);
2413 spin_lock_irq(&ic->endio_wait.lock);
2414 ic->uncommitted_section += commit_sections;
2415 wraparound_section(ic, &ic->uncommitted_section);
2416 ic->n_uncommitted_sections -= commit_sections;
2417 ic->n_committed_sections += commit_sections;
2418 spin_unlock_irq(&ic->endio_wait.lock);
2420 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2421 queue_work(ic->writer_wq, &ic->writer_work);
2425 struct bio *next = flushes->bi_next;
2427 flushes->bi_next = NULL;
2428 do_endio(ic, flushes);
2433 static void complete_copy_from_journal(unsigned long error, void *context)
2435 struct journal_io *io = context;
2436 struct journal_completion *comp = io->comp;
2437 struct dm_integrity_c *ic = comp->ic;
2439 remove_range(ic, &io->range);
2440 mempool_free(io, &ic->journal_io_mempool);
2441 if (unlikely(error != 0))
2442 dm_integrity_io_error(ic, "copying from journal", -EIO);
2443 complete_journal_op(comp);
2446 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2447 struct journal_entry *je)
2452 js->commit_id = je->last_bytes[s];
2454 } while (++s < ic->sectors_per_block);
2457 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2458 unsigned int write_sections, bool from_replay)
2460 unsigned int i, j, n;
2461 struct journal_completion comp;
2462 struct blk_plug plug;
2464 blk_start_plug(&plug);
2467 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2468 init_completion(&comp.comp);
2471 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2472 #ifndef INTERNAL_VERIFY
2473 if (unlikely(from_replay))
2475 rw_section_mac(ic, i, false);
2476 for (j = 0; j < ic->journal_section_entries; j++) {
2477 struct journal_entry *je = access_journal_entry(ic, i, j);
2478 sector_t sec, area, offset;
2479 unsigned int k, l, next_loop;
2480 sector_t metadata_block;
2481 unsigned int metadata_offset;
2482 struct journal_io *io;
2484 if (journal_entry_is_unused(je))
2486 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2487 sec = journal_entry_get_sector(je);
2488 if (unlikely(from_replay)) {
2489 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2490 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2491 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2493 if (unlikely(sec >= ic->provided_data_sectors)) {
2494 journal_entry_set_unused(je);
2498 get_area_and_offset(ic, sec, &area, &offset);
2499 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2500 for (k = j + 1; k < ic->journal_section_entries; k++) {
2501 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2502 sector_t sec2, area2, offset2;
2504 if (journal_entry_is_unused(je2))
2506 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2507 sec2 = journal_entry_get_sector(je2);
2508 if (unlikely(sec2 >= ic->provided_data_sectors))
2510 get_area_and_offset(ic, sec2, &area2, &offset2);
2511 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2513 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2517 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2519 io->range.logical_sector = sec;
2520 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2522 spin_lock_irq(&ic->endio_wait.lock);
2523 add_new_range_and_wait(ic, &io->range);
2525 if (likely(!from_replay)) {
2526 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2528 /* don't write if there is newer committed sector */
2529 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2530 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2532 journal_entry_set_unused(je2);
2533 remove_journal_node(ic, §ion_node[j]);
2535 sec += ic->sectors_per_block;
2536 offset += ic->sectors_per_block;
2538 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2539 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2541 journal_entry_set_unused(je2);
2542 remove_journal_node(ic, §ion_node[k - 1]);
2546 remove_range_unlocked(ic, &io->range);
2547 spin_unlock_irq(&ic->endio_wait.lock);
2548 mempool_free(io, &ic->journal_io_mempool);
2551 for (l = j; l < k; l++)
2552 remove_journal_node(ic, §ion_node[l]);
2554 spin_unlock_irq(&ic->endio_wait.lock);
2556 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2557 for (l = j; l < k; l++) {
2559 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2562 #ifndef INTERNAL_VERIFY
2563 unlikely(from_replay) &&
2565 ic->internal_hash) {
2566 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2568 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2569 (char *)access_journal_data(ic, i, l), test_tag);
2570 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2571 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2572 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2576 journal_entry_set_unused(je2);
2577 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2578 ic->tag_size, TAG_WRITE);
2580 dm_integrity_io_error(ic, "reading tags", r);
2583 atomic_inc(&comp.in_flight);
2584 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2585 (k - j) << ic->sb->log2_sectors_per_block,
2586 get_data_sector(ic, area, offset),
2587 complete_copy_from_journal, io);
2593 dm_bufio_write_dirty_buffers_async(ic->bufio);
2595 blk_finish_plug(&plug);
2597 complete_journal_op(&comp);
2598 wait_for_completion_io(&comp.comp);
2600 dm_integrity_flush_buffers(ic, true);
2603 static void integrity_writer(struct work_struct *w)
2605 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2606 unsigned int write_start, write_sections;
2607 unsigned int prev_free_sectors;
2609 spin_lock_irq(&ic->endio_wait.lock);
2610 write_start = ic->committed_section;
2611 write_sections = ic->n_committed_sections;
2612 spin_unlock_irq(&ic->endio_wait.lock);
2614 if (!write_sections)
2617 do_journal_write(ic, write_start, write_sections, false);
2619 spin_lock_irq(&ic->endio_wait.lock);
2621 ic->committed_section += write_sections;
2622 wraparound_section(ic, &ic->committed_section);
2623 ic->n_committed_sections -= write_sections;
2625 prev_free_sectors = ic->free_sectors;
2626 ic->free_sectors += write_sections * ic->journal_section_entries;
2627 if (unlikely(!prev_free_sectors))
2628 wake_up_locked(&ic->endio_wait);
2630 spin_unlock_irq(&ic->endio_wait.lock);
2633 static void recalc_write_super(struct dm_integrity_c *ic)
2637 dm_integrity_flush_buffers(ic, false);
2638 if (dm_integrity_failed(ic))
2641 r = sync_rw_sb(ic, REQ_OP_WRITE);
2643 dm_integrity_io_error(ic, "writing superblock", r);
2646 static void integrity_recalc(struct work_struct *w)
2648 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2649 struct dm_integrity_range range;
2650 struct dm_io_request io_req;
2651 struct dm_io_region io_loc;
2652 sector_t area, offset;
2653 sector_t metadata_block;
2654 unsigned int metadata_offset;
2655 sector_t logical_sector, n_sectors;
2659 unsigned int super_counter = 0;
2661 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2663 spin_lock_irq(&ic->endio_wait.lock);
2667 if (unlikely(dm_post_suspending(ic->ti)))
2670 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2671 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2672 if (ic->mode == 'B') {
2673 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2674 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2675 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2680 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2681 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2683 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2685 add_new_range_and_wait(ic, &range);
2686 spin_unlock_irq(&ic->endio_wait.lock);
2687 logical_sector = range.logical_sector;
2688 n_sectors = range.n_sectors;
2690 if (ic->mode == 'B') {
2691 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2692 goto advance_and_next;
2694 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2695 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2696 logical_sector += ic->sectors_per_block;
2697 n_sectors -= ic->sectors_per_block;
2700 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2701 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2702 n_sectors -= ic->sectors_per_block;
2705 get_area_and_offset(ic, logical_sector, &area, &offset);
2708 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2710 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2711 recalc_write_super(ic);
2712 if (ic->mode == 'B')
2713 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2718 if (unlikely(dm_integrity_failed(ic)))
2721 io_req.bi_opf = REQ_OP_READ;
2722 io_req.mem.type = DM_IO_VMA;
2723 io_req.mem.ptr.addr = ic->recalc_buffer;
2724 io_req.notify.fn = NULL;
2725 io_req.client = ic->io;
2726 io_loc.bdev = ic->dev->bdev;
2727 io_loc.sector = get_data_sector(ic, area, offset);
2728 io_loc.count = n_sectors;
2730 r = dm_io(&io_req, 1, &io_loc, NULL);
2732 dm_integrity_io_error(ic, "reading data", r);
2736 t = ic->recalc_tags;
2737 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2738 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2742 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2744 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2746 dm_integrity_io_error(ic, "writing tags", r);
2750 if (ic->mode == 'B') {
2751 sector_t start, end;
2753 start = (range.logical_sector >>
2754 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2755 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2756 end = ((range.logical_sector + range.n_sectors) >>
2757 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2758 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2759 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2765 spin_lock_irq(&ic->endio_wait.lock);
2766 remove_range_unlocked(ic, &range);
2767 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2771 remove_range(ic, &range);
2775 spin_unlock_irq(&ic->endio_wait.lock);
2777 recalc_write_super(ic);
2780 static void bitmap_block_work(struct work_struct *w)
2782 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2783 struct dm_integrity_c *ic = bbs->ic;
2785 struct bio_list bio_queue;
2786 struct bio_list waiting;
2788 bio_list_init(&waiting);
2790 spin_lock(&bbs->bio_queue_lock);
2791 bio_queue = bbs->bio_queue;
2792 bio_list_init(&bbs->bio_queue);
2793 spin_unlock(&bbs->bio_queue_lock);
2795 while ((bio = bio_list_pop(&bio_queue))) {
2796 struct dm_integrity_io *dio;
2798 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2800 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2801 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2802 remove_range(ic, &dio->range);
2803 INIT_WORK(&dio->work, integrity_bio_wait);
2804 queue_work(ic->offload_wq, &dio->work);
2806 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2807 dio->range.n_sectors, BITMAP_OP_SET);
2808 bio_list_add(&waiting, bio);
2812 if (bio_list_empty(&waiting))
2815 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2816 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2817 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2819 while ((bio = bio_list_pop(&waiting))) {
2820 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2822 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2823 dio->range.n_sectors, BITMAP_OP_SET);
2825 remove_range(ic, &dio->range);
2826 INIT_WORK(&dio->work, integrity_bio_wait);
2827 queue_work(ic->offload_wq, &dio->work);
2830 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2833 static void bitmap_flush_work(struct work_struct *work)
2835 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2836 struct dm_integrity_range range;
2837 unsigned long limit;
2840 dm_integrity_flush_buffers(ic, false);
2842 range.logical_sector = 0;
2843 range.n_sectors = ic->provided_data_sectors;
2845 spin_lock_irq(&ic->endio_wait.lock);
2846 add_new_range_and_wait(ic, &range);
2847 spin_unlock_irq(&ic->endio_wait.lock);
2849 dm_integrity_flush_buffers(ic, true);
2851 limit = ic->provided_data_sectors;
2852 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2853 limit = le64_to_cpu(ic->sb->recalc_sector)
2854 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2855 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2857 /*DEBUG_print("zeroing journal\n");*/
2858 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2859 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2861 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2862 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2864 spin_lock_irq(&ic->endio_wait.lock);
2865 remove_range_unlocked(ic, &range);
2866 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2868 spin_unlock_irq(&ic->endio_wait.lock);
2869 spin_lock_irq(&ic->endio_wait.lock);
2871 spin_unlock_irq(&ic->endio_wait.lock);
2875 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2876 unsigned int n_sections, unsigned char commit_seq)
2878 unsigned int i, j, n;
2883 for (n = 0; n < n_sections; n++) {
2884 i = start_section + n;
2885 wraparound_section(ic, &i);
2886 for (j = 0; j < ic->journal_section_sectors; j++) {
2887 struct journal_sector *js = access_journal(ic, i, j);
2889 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2890 memset(&js->sectors, 0, sizeof(js->sectors));
2891 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2893 for (j = 0; j < ic->journal_section_entries; j++) {
2894 struct journal_entry *je = access_journal_entry(ic, i, j);
2896 journal_entry_set_unused(je);
2900 write_journal(ic, start_section, n_sections);
2903 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2907 for (k = 0; k < N_COMMIT_IDS; k++) {
2908 if (dm_integrity_commit_id(ic, i, j, k) == id)
2911 dm_integrity_io_error(ic, "journal commit id", -EIO);
2915 static void replay_journal(struct dm_integrity_c *ic)
2918 bool used_commit_ids[N_COMMIT_IDS];
2919 unsigned int max_commit_id_sections[N_COMMIT_IDS];
2920 unsigned int write_start, write_sections;
2921 unsigned int continue_section;
2923 unsigned char unused, last_used, want_commit_seq;
2925 if (ic->mode == 'R')
2928 if (ic->journal_uptodate)
2934 if (!ic->just_formatted) {
2935 DEBUG_print("reading journal\n");
2936 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2938 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2939 if (ic->journal_io) {
2940 struct journal_completion crypt_comp;
2943 init_completion(&crypt_comp.comp);
2944 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2945 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2946 wait_for_completion(&crypt_comp.comp);
2948 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2951 if (dm_integrity_failed(ic))
2954 journal_empty = true;
2955 memset(used_commit_ids, 0, sizeof(used_commit_ids));
2956 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2957 for (i = 0; i < ic->journal_sections; i++) {
2958 for (j = 0; j < ic->journal_section_sectors; j++) {
2960 struct journal_sector *js = access_journal(ic, i, j);
2962 k = find_commit_seq(ic, i, j, js->commit_id);
2965 used_commit_ids[k] = true;
2966 max_commit_id_sections[k] = i;
2968 if (journal_empty) {
2969 for (j = 0; j < ic->journal_section_entries; j++) {
2970 struct journal_entry *je = access_journal_entry(ic, i, j);
2972 if (!journal_entry_is_unused(je)) {
2973 journal_empty = false;
2980 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2981 unused = N_COMMIT_IDS - 1;
2982 while (unused && !used_commit_ids[unused - 1])
2985 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2986 if (!used_commit_ids[unused])
2988 if (unused == N_COMMIT_IDS) {
2989 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2993 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2994 unused, used_commit_ids[0], used_commit_ids[1],
2995 used_commit_ids[2], used_commit_ids[3]);
2997 last_used = prev_commit_seq(unused);
2998 want_commit_seq = prev_commit_seq(last_used);
3000 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3001 journal_empty = true;
3003 write_start = max_commit_id_sections[last_used] + 1;
3004 if (unlikely(write_start >= ic->journal_sections))
3005 want_commit_seq = next_commit_seq(want_commit_seq);
3006 wraparound_section(ic, &write_start);
3009 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3010 for (j = 0; j < ic->journal_section_sectors; j++) {
3011 struct journal_sector *js = access_journal(ic, i, j);
3013 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3015 * This could be caused by crash during writing.
3016 * We won't replay the inconsistent part of the
3019 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3020 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3025 if (unlikely(i >= ic->journal_sections))
3026 want_commit_seq = next_commit_seq(want_commit_seq);
3027 wraparound_section(ic, &i);
3031 if (!journal_empty) {
3032 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3033 write_sections, write_start, want_commit_seq);
3034 do_journal_write(ic, write_start, write_sections, true);
3037 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3038 continue_section = write_start;
3039 ic->commit_seq = want_commit_seq;
3040 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3043 unsigned char erase_seq;
3046 DEBUG_print("clearing journal\n");
3048 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3050 init_journal(ic, s, 1, erase_seq);
3052 wraparound_section(ic, &s);
3053 if (ic->journal_sections >= 2) {
3054 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3055 s += ic->journal_sections - 2;
3056 wraparound_section(ic, &s);
3057 init_journal(ic, s, 1, erase_seq);
3060 continue_section = 0;
3061 ic->commit_seq = next_commit_seq(erase_seq);
3064 ic->committed_section = continue_section;
3065 ic->n_committed_sections = 0;
3067 ic->uncommitted_section = continue_section;
3068 ic->n_uncommitted_sections = 0;
3070 ic->free_section = continue_section;
3071 ic->free_section_entry = 0;
3072 ic->free_sectors = ic->journal_entries;
3074 ic->journal_tree_root = RB_ROOT;
3075 for (i = 0; i < ic->journal_entries; i++)
3076 init_journal_node(&ic->journal_tree[i]);
3079 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3081 DEBUG_print("%s\n", __func__);
3083 if (ic->mode == 'B') {
3084 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3085 ic->synchronous_mode = 1;
3087 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3088 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3089 flush_workqueue(ic->commit_wq);
3093 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3095 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3097 DEBUG_print("%s\n", __func__);
3099 dm_integrity_enter_synchronous_mode(ic);
3104 static void dm_integrity_postsuspend(struct dm_target *ti)
3106 struct dm_integrity_c *ic = ti->private;
3109 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3111 del_timer_sync(&ic->autocommit_timer);
3114 drain_workqueue(ic->recalc_wq);
3116 if (ic->mode == 'B')
3117 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3119 queue_work(ic->commit_wq, &ic->commit_work);
3120 drain_workqueue(ic->commit_wq);
3122 if (ic->mode == 'J') {
3123 queue_work(ic->writer_wq, &ic->writer_work);
3124 drain_workqueue(ic->writer_wq);
3125 dm_integrity_flush_buffers(ic, true);
3126 if (ic->wrote_to_journal) {
3127 init_journal(ic, ic->free_section,
3128 ic->journal_sections - ic->free_section, ic->commit_seq);
3129 if (ic->free_section) {
3130 init_journal(ic, 0, ic->free_section,
3131 next_commit_seq(ic->commit_seq));
3136 if (ic->mode == 'B') {
3137 dm_integrity_flush_buffers(ic, true);
3139 /* set to 0 to test bitmap replay code */
3140 init_journal(ic, 0, ic->journal_sections, 0);
3141 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3142 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3144 dm_integrity_io_error(ic, "writing superblock", r);
3148 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3150 ic->journal_uptodate = true;
3153 static void dm_integrity_resume(struct dm_target *ti)
3155 struct dm_integrity_c *ic = ti->private;
3156 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3159 DEBUG_print("resume\n");
3161 ic->wrote_to_journal = false;
3163 if (ic->provided_data_sectors != old_provided_data_sectors) {
3164 if (ic->provided_data_sectors > old_provided_data_sectors &&
3166 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3167 rw_journal_sectors(ic, REQ_OP_READ, 0,
3168 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3169 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3170 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3171 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3172 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3175 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3176 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3178 dm_integrity_io_error(ic, "writing superblock", r);
3181 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3182 DEBUG_print("resume dirty_bitmap\n");
3183 rw_journal_sectors(ic, REQ_OP_READ, 0,
3184 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3185 if (ic->mode == 'B') {
3186 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3187 !ic->reset_recalculate_flag) {
3188 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3189 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3190 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3191 BITMAP_OP_TEST_ALL_CLEAR)) {
3192 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3193 ic->sb->recalc_sector = cpu_to_le64(0);
3196 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3197 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3198 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3199 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3200 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3201 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3202 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3203 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3204 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3205 ic->sb->recalc_sector = cpu_to_le64(0);
3208 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3209 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3210 ic->reset_recalculate_flag) {
3211 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3212 ic->sb->recalc_sector = cpu_to_le64(0);
3214 init_journal(ic, 0, ic->journal_sections, 0);
3216 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3218 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3220 dm_integrity_io_error(ic, "writing superblock", r);
3223 if (ic->reset_recalculate_flag) {
3224 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3225 ic->sb->recalc_sector = cpu_to_le64(0);
3227 if (ic->mode == 'B') {
3228 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3229 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3230 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3232 dm_integrity_io_error(ic, "writing superblock", r);
3234 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3235 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3236 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3237 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3238 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3239 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3240 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3241 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3242 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3243 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3244 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3246 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3247 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3251 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3252 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3253 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3255 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3256 if (recalc_pos < ic->provided_data_sectors) {
3257 queue_work(ic->recalc_wq, &ic->recalc_work);
3258 } else if (recalc_pos > ic->provided_data_sectors) {
3259 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3260 recalc_write_super(ic);
3264 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3265 ic->reboot_notifier.next = NULL;
3266 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3267 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3270 /* set to 1 to stress test synchronous mode */
3271 dm_integrity_enter_synchronous_mode(ic);
3275 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3276 unsigned int status_flags, char *result, unsigned int maxlen)
3278 struct dm_integrity_c *ic = ti->private;
3279 unsigned int arg_count;
3283 case STATUSTYPE_INFO:
3285 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3286 ic->provided_data_sectors);
3287 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3288 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3293 case STATUSTYPE_TABLE: {
3294 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3296 watermark_percentage += ic->journal_entries / 2;
3297 do_div(watermark_percentage, ic->journal_entries);
3299 arg_count += !!ic->meta_dev;
3300 arg_count += ic->sectors_per_block != 1;
3301 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3302 arg_count += ic->reset_recalculate_flag;
3303 arg_count += ic->discard;
3304 arg_count += ic->mode == 'J';
3305 arg_count += ic->mode == 'J';
3306 arg_count += ic->mode == 'B';
3307 arg_count += ic->mode == 'B';
3308 arg_count += !!ic->internal_hash_alg.alg_string;
3309 arg_count += !!ic->journal_crypt_alg.alg_string;
3310 arg_count += !!ic->journal_mac_alg.alg_string;
3311 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3312 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3313 arg_count += ic->legacy_recalculate;
3314 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3315 ic->tag_size, ic->mode, arg_count);
3317 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3318 if (ic->sectors_per_block != 1)
3319 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3320 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3321 DMEMIT(" recalculate");
3322 if (ic->reset_recalculate_flag)
3323 DMEMIT(" reset_recalculate");
3325 DMEMIT(" allow_discards");
3326 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3327 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3328 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3329 if (ic->mode == 'J') {
3330 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3331 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3333 if (ic->mode == 'B') {
3334 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3335 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3337 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3338 DMEMIT(" fix_padding");
3339 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3340 DMEMIT(" fix_hmac");
3341 if (ic->legacy_recalculate)
3342 DMEMIT(" legacy_recalculate");
3344 #define EMIT_ALG(a, n) \
3346 if (ic->a.alg_string) { \
3347 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3348 if (ic->a.key_string) \
3349 DMEMIT(":%s", ic->a.key_string);\
3352 EMIT_ALG(internal_hash_alg, "internal_hash");
3353 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3354 EMIT_ALG(journal_mac_alg, "journal_mac");
3357 case STATUSTYPE_IMA:
3358 DMEMIT_TARGET_NAME_VERSION(ti->type);
3359 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3360 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3363 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3364 if (ic->sectors_per_block != 1)
3365 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3367 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3369 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3370 DMEMIT(",fix_padding=%c",
3371 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3372 DMEMIT(",fix_hmac=%c",
3373 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3374 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3376 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3377 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3378 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3384 static int dm_integrity_iterate_devices(struct dm_target *ti,
3385 iterate_devices_callout_fn fn, void *data)
3387 struct dm_integrity_c *ic = ti->private;
3390 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3392 return fn(ti, ic->dev, 0, ti->len, data);
3395 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3397 struct dm_integrity_c *ic = ti->private;
3399 if (ic->sectors_per_block > 1) {
3400 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3401 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3402 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3403 limits->dma_alignment = limits->logical_block_size - 1;
3407 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3409 unsigned int sector_space = JOURNAL_SECTOR_DATA;
3411 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3412 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3413 JOURNAL_ENTRY_ROUNDUP);
3415 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3416 sector_space -= JOURNAL_MAC_PER_SECTOR;
3417 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3418 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3419 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3420 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3423 static int calculate_device_limits(struct dm_integrity_c *ic)
3425 __u64 initial_sectors;
3427 calculate_journal_section_size(ic);
3428 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3429 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3431 ic->initial_sectors = initial_sectors;
3433 if (!ic->meta_dev) {
3434 sector_t last_sector, last_area, last_offset;
3436 /* we have to maintain excessive padding for compatibility with existing volumes */
3437 __u64 metadata_run_padding =
3438 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3439 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3440 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3442 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3443 metadata_run_padding) >> SECTOR_SHIFT;
3444 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3445 ic->log2_metadata_run = __ffs(ic->metadata_run);
3447 ic->log2_metadata_run = -1;
3449 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3450 last_sector = get_data_sector(ic, last_area, last_offset);
3451 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3454 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3456 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3457 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3458 meta_size <<= ic->log2_buffer_sectors;
3459 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3460 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3462 ic->metadata_run = 1;
3463 ic->log2_metadata_run = 0;
3469 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3471 if (!ic->meta_dev) {
3474 ic->provided_data_sectors = 0;
3475 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3476 __u64 prev_data_sectors = ic->provided_data_sectors;
3478 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3479 if (calculate_device_limits(ic))
3480 ic->provided_data_sectors = prev_data_sectors;
3483 ic->provided_data_sectors = ic->data_device_sectors;
3484 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3488 static int initialize_superblock(struct dm_integrity_c *ic,
3489 unsigned int journal_sectors, unsigned int interleave_sectors)
3491 unsigned int journal_sections;
3494 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3495 memcpy(ic->sb->magic, SB_MAGIC, 8);
3496 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3497 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3498 if (ic->journal_mac_alg.alg_string)
3499 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3501 calculate_journal_section_size(ic);
3502 journal_sections = journal_sectors / ic->journal_section_sectors;
3503 if (!journal_sections)
3504 journal_sections = 1;
3506 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3507 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3508 get_random_bytes(ic->sb->salt, SALT_SIZE);
3511 if (!ic->meta_dev) {
3512 if (ic->fix_padding)
3513 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3514 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3515 if (!interleave_sectors)
3516 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3517 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3518 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3519 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3521 get_provided_data_sectors(ic);
3522 if (!ic->provided_data_sectors)
3525 ic->sb->log2_interleave_sectors = 0;
3527 get_provided_data_sectors(ic);
3528 if (!ic->provided_data_sectors)
3532 ic->sb->journal_sections = cpu_to_le32(0);
3533 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3534 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3535 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3537 if (test_journal_sections > journal_sections)
3539 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3540 if (calculate_device_limits(ic))
3541 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3544 if (!le32_to_cpu(ic->sb->journal_sections)) {
3545 if (ic->log2_buffer_sectors > 3) {
3546 ic->log2_buffer_sectors--;
3547 goto try_smaller_buffer;
3553 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3560 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3562 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3563 struct blk_integrity bi;
3565 memset(&bi, 0, sizeof(bi));
3566 bi.profile = &dm_integrity_profile;
3567 bi.tuple_size = ic->tag_size;
3568 bi.tag_size = bi.tuple_size;
3569 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3571 blk_integrity_register(disk, &bi);
3572 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3575 static void dm_integrity_free_page_list(struct page_list *pl)
3581 for (i = 0; pl[i].page; i++)
3582 __free_page(pl[i].page);
3586 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3588 struct page_list *pl;
3591 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3595 for (i = 0; i < n_pages; i++) {
3596 pl[i].page = alloc_page(GFP_KERNEL);
3598 dm_integrity_free_page_list(pl);
3602 pl[i - 1].next = &pl[i];
3610 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3614 for (i = 0; i < ic->journal_sections; i++)
3619 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3620 struct page_list *pl)
3622 struct scatterlist **sl;
3625 sl = kvmalloc_array(ic->journal_sections,
3626 sizeof(struct scatterlist *),
3627 GFP_KERNEL | __GFP_ZERO);
3631 for (i = 0; i < ic->journal_sections; i++) {
3632 struct scatterlist *s;
3633 unsigned int start_index, start_offset;
3634 unsigned int end_index, end_offset;
3635 unsigned int n_pages;
3638 page_list_location(ic, i, 0, &start_index, &start_offset);
3639 page_list_location(ic, i, ic->journal_section_sectors - 1,
3640 &end_index, &end_offset);
3642 n_pages = (end_index - start_index + 1);
3644 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3647 dm_integrity_free_journal_scatterlist(ic, sl);
3651 sg_init_table(s, n_pages);
3652 for (idx = start_index; idx <= end_index; idx++) {
3653 char *va = lowmem_page_address(pl[idx].page);
3654 unsigned int start = 0, end = PAGE_SIZE;
3656 if (idx == start_index)
3657 start = start_offset;
3658 if (idx == end_index)
3659 end = end_offset + (1 << SECTOR_SHIFT);
3660 sg_set_buf(&s[idx - start_index], va + start, end - start);
3669 static void free_alg(struct alg_spec *a)
3671 kfree_sensitive(a->alg_string);
3672 kfree_sensitive(a->key);
3673 memset(a, 0, sizeof(*a));
3676 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3682 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3686 k = strchr(a->alg_string, ':');
3689 a->key_string = k + 1;
3690 if (strlen(a->key_string) & 1)
3693 a->key_size = strlen(a->key_string) / 2;
3694 a->key = kmalloc(a->key_size, GFP_KERNEL);
3697 if (hex2bin(a->key, a->key_string, a->key_size))
3703 *error = error_inval;
3706 *error = "Out of memory for an argument";
3710 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3711 char *error_alg, char *error_key)
3715 if (a->alg_string) {
3716 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3717 if (IS_ERR(*hash)) {
3725 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3730 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3739 static int create_journal(struct dm_integrity_c *ic, char **error)
3743 __u64 journal_pages, journal_desc_size, journal_tree_size;
3744 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3745 struct skcipher_request *req = NULL;
3747 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3748 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3749 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3750 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3752 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3753 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3754 journal_desc_size = journal_pages * sizeof(struct page_list);
3755 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3756 *error = "Journal doesn't fit into memory";
3760 ic->journal_pages = journal_pages;
3762 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3764 *error = "Could not allocate memory for journal";
3768 if (ic->journal_crypt_alg.alg_string) {
3769 unsigned int ivsize, blocksize;
3770 struct journal_completion comp;
3773 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3774 if (IS_ERR(ic->journal_crypt)) {
3775 *error = "Invalid journal cipher";
3776 r = PTR_ERR(ic->journal_crypt);
3777 ic->journal_crypt = NULL;
3780 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3781 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3783 if (ic->journal_crypt_alg.key) {
3784 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3785 ic->journal_crypt_alg.key_size);
3787 *error = "Error setting encryption key";
3791 DEBUG_print("cipher %s, block size %u iv size %u\n",
3792 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3794 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3795 if (!ic->journal_io) {
3796 *error = "Could not allocate memory for journal io";
3801 if (blocksize == 1) {
3802 struct scatterlist *sg;
3804 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3806 *error = "Could not allocate crypt request";
3811 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3813 *error = "Could not allocate iv";
3818 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3819 if (!ic->journal_xor) {
3820 *error = "Could not allocate memory for journal xor";
3825 sg = kvmalloc_array(ic->journal_pages + 1,
3826 sizeof(struct scatterlist),
3829 *error = "Unable to allocate sg list";
3833 sg_init_table(sg, ic->journal_pages + 1);
3834 for (i = 0; i < ic->journal_pages; i++) {
3835 char *va = lowmem_page_address(ic->journal_xor[i].page);
3838 sg_set_buf(&sg[i], va, PAGE_SIZE);
3840 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3842 skcipher_request_set_crypt(req, sg, sg,
3843 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3844 init_completion(&comp.comp);
3845 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3846 if (do_crypt(true, req, &comp))
3847 wait_for_completion(&comp.comp);
3849 r = dm_integrity_failed(ic);
3851 *error = "Unable to encrypt journal";
3854 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3856 crypto_free_skcipher(ic->journal_crypt);
3857 ic->journal_crypt = NULL;
3859 unsigned int crypt_len = roundup(ivsize, blocksize);
3861 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3863 *error = "Could not allocate crypt request";
3868 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3870 *error = "Could not allocate iv";
3875 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3877 *error = "Unable to allocate crypt data";
3882 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3883 if (!ic->journal_scatterlist) {
3884 *error = "Unable to allocate sg list";
3888 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3889 if (!ic->journal_io_scatterlist) {
3890 *error = "Unable to allocate sg list";
3894 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3895 sizeof(struct skcipher_request *),
3896 GFP_KERNEL | __GFP_ZERO);
3897 if (!ic->sk_requests) {
3898 *error = "Unable to allocate sk requests";
3902 for (i = 0; i < ic->journal_sections; i++) {
3903 struct scatterlist sg;
3904 struct skcipher_request *section_req;
3905 __le32 section_le = cpu_to_le32(i);
3907 memset(crypt_iv, 0x00, ivsize);
3908 memset(crypt_data, 0x00, crypt_len);
3909 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le)));
3911 sg_init_one(&sg, crypt_data, crypt_len);
3912 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3913 init_completion(&comp.comp);
3914 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3915 if (do_crypt(true, req, &comp))
3916 wait_for_completion(&comp.comp);
3918 r = dm_integrity_failed(ic);
3920 *error = "Unable to generate iv";
3924 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3926 *error = "Unable to allocate crypt request";
3930 section_req->iv = kmalloc_array(ivsize, 2,
3932 if (!section_req->iv) {
3933 skcipher_request_free(section_req);
3934 *error = "Unable to allocate iv";
3938 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3939 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3940 ic->sk_requests[i] = section_req;
3941 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3946 for (i = 0; i < N_COMMIT_IDS; i++) {
3950 for (j = 0; j < i; j++) {
3951 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3952 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3953 goto retest_commit_id;
3956 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3959 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3960 if (journal_tree_size > ULONG_MAX) {
3961 *error = "Journal doesn't fit into memory";
3965 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3966 if (!ic->journal_tree) {
3967 *error = "Could not allocate memory for journal tree";
3973 skcipher_request_free(req);
3979 * Construct a integrity mapping
3983 * offset from the start of the device
3985 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3986 * number of optional arguments
3987 * optional arguments:
3989 * interleave_sectors
3996 * bitmap_flush_interval
4002 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4004 struct dm_integrity_c *ic;
4007 unsigned int extra_args;
4008 struct dm_arg_set as;
4009 static const struct dm_arg _args[] = {
4010 {0, 18, "Invalid number of feature args"},
4012 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4013 bool should_write_sb;
4015 unsigned long long start;
4016 __s8 log2_sectors_per_bitmap_bit = -1;
4017 __s8 log2_blocks_per_bitmap_bit;
4018 __u64 bits_in_journal;
4019 __u64 n_bitmap_bits;
4021 #define DIRECT_ARGUMENTS 4
4023 if (argc <= DIRECT_ARGUMENTS) {
4024 ti->error = "Invalid argument count";
4028 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4030 ti->error = "Cannot allocate integrity context";
4034 ti->per_io_data_size = sizeof(struct dm_integrity_io);
4037 ic->in_progress = RB_ROOT;
4038 INIT_LIST_HEAD(&ic->wait_list);
4039 init_waitqueue_head(&ic->endio_wait);
4040 bio_list_init(&ic->flush_bio_list);
4041 init_waitqueue_head(&ic->copy_to_journal_wait);
4042 init_completion(&ic->crypto_backoff);
4043 atomic64_set(&ic->number_of_mismatches, 0);
4044 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4046 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4048 ti->error = "Device lookup failed";
4052 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4053 ti->error = "Invalid starting offset";
4059 if (strcmp(argv[2], "-")) {
4060 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4061 ti->error = "Invalid tag size";
4067 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4068 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4069 ic->mode = argv[3][0];
4071 ti->error = "Invalid mode (expecting J, B, D, R)";
4076 journal_sectors = 0;
4077 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4078 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4079 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4080 sync_msec = DEFAULT_SYNC_MSEC;
4081 ic->sectors_per_block = 1;
4083 as.argc = argc - DIRECT_ARGUMENTS;
4084 as.argv = argv + DIRECT_ARGUMENTS;
4085 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4089 while (extra_args--) {
4090 const char *opt_string;
4092 unsigned long long llval;
4094 opt_string = dm_shift_arg(&as);
4097 ti->error = "Not enough feature arguments";
4100 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4101 journal_sectors = val ? val : 1;
4102 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4103 interleave_sectors = val;
4104 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4105 buffer_sectors = val;
4106 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4107 journal_watermark = val;
4108 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4110 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4112 dm_put_device(ti, ic->meta_dev);
4113 ic->meta_dev = NULL;
4115 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4116 dm_table_get_mode(ti->table), &ic->meta_dev);
4118 ti->error = "Device lookup failed";
4121 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4122 if (val < 1 << SECTOR_SHIFT ||
4123 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4124 (val & (val - 1))) {
4126 ti->error = "Invalid block_size argument";
4129 ic->sectors_per_block = val >> SECTOR_SHIFT;
4130 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4131 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4132 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4133 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4135 ti->error = "Invalid bitmap_flush_interval argument";
4138 ic->bitmap_flush_interval = msecs_to_jiffies(val);
4139 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4140 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4141 "Invalid internal_hash argument");
4144 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4145 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4146 "Invalid journal_crypt argument");
4149 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4150 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4151 "Invalid journal_mac argument");
4154 } else if (!strcmp(opt_string, "recalculate")) {
4155 ic->recalculate_flag = true;
4156 } else if (!strcmp(opt_string, "reset_recalculate")) {
4157 ic->recalculate_flag = true;
4158 ic->reset_recalculate_flag = true;
4159 } else if (!strcmp(opt_string, "allow_discards")) {
4161 } else if (!strcmp(opt_string, "fix_padding")) {
4162 ic->fix_padding = true;
4163 } else if (!strcmp(opt_string, "fix_hmac")) {
4164 ic->fix_hmac = true;
4165 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4166 ic->legacy_recalculate = true;
4169 ti->error = "Invalid argument";
4174 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4176 ic->meta_device_sectors = ic->data_device_sectors;
4178 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4180 if (!journal_sectors) {
4181 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4182 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4185 if (!buffer_sectors)
4187 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4189 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4190 "Invalid internal hash", "Error setting internal hash key");
4194 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4195 "Invalid journal mac", "Error setting journal mac key");
4199 if (!ic->tag_size) {
4200 if (!ic->internal_hash) {
4201 ti->error = "Unknown tag size";
4205 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4207 if (ic->tag_size > MAX_TAG_SIZE) {
4208 ti->error = "Too big tag size";
4212 if (!(ic->tag_size & (ic->tag_size - 1)))
4213 ic->log2_tag_size = __ffs(ic->tag_size);
4215 ic->log2_tag_size = -1;
4217 if (ic->mode == 'B' && !ic->internal_hash) {
4219 ti->error = "Bitmap mode can be only used with internal hash";
4223 if (ic->discard && !ic->internal_hash) {
4225 ti->error = "Discard can be only used with internal hash";
4229 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4230 ic->autocommit_msec = sync_msec;
4231 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4233 ic->io = dm_io_client_create();
4234 if (IS_ERR(ic->io)) {
4235 r = PTR_ERR(ic->io);
4237 ti->error = "Cannot allocate dm io";
4241 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4243 ti->error = "Cannot allocate mempool";
4247 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4248 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4249 if (!ic->metadata_wq) {
4250 ti->error = "Cannot allocate workqueue";
4256 * If this workqueue were percpu, it would cause bio reordering
4257 * and reduced performance.
4259 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4261 ti->error = "Cannot allocate workqueue";
4266 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4267 METADATA_WORKQUEUE_MAX_ACTIVE);
4268 if (!ic->offload_wq) {
4269 ti->error = "Cannot allocate workqueue";
4274 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4275 if (!ic->commit_wq) {
4276 ti->error = "Cannot allocate workqueue";
4280 INIT_WORK(&ic->commit_work, integrity_commit);
4282 if (ic->mode == 'J' || ic->mode == 'B') {
4283 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4284 if (!ic->writer_wq) {
4285 ti->error = "Cannot allocate workqueue";
4289 INIT_WORK(&ic->writer_work, integrity_writer);
4292 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4295 ti->error = "Cannot allocate superblock area";
4299 r = sync_rw_sb(ic, REQ_OP_READ);
4301 ti->error = "Error reading superblock";
4304 should_write_sb = false;
4305 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4306 if (ic->mode != 'R') {
4307 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4309 ti->error = "The device is not initialized";
4314 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4316 ti->error = "Could not initialize superblock";
4319 if (ic->mode != 'R')
4320 should_write_sb = true;
4323 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4325 ti->error = "Unknown version";
4328 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4330 ti->error = "Tag size doesn't match the information in superblock";
4333 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4335 ti->error = "Block size doesn't match the information in superblock";
4338 if (!le32_to_cpu(ic->sb->journal_sections)) {
4340 ti->error = "Corrupted superblock, journal_sections is 0";
4343 /* make sure that ti->max_io_len doesn't overflow */
4344 if (!ic->meta_dev) {
4345 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4346 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4348 ti->error = "Invalid interleave_sectors in the superblock";
4352 if (ic->sb->log2_interleave_sectors) {
4354 ti->error = "Invalid interleave_sectors in the superblock";
4358 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4360 ti->error = "Journal mac mismatch";
4364 get_provided_data_sectors(ic);
4365 if (!ic->provided_data_sectors) {
4367 ti->error = "The device is too small";
4372 r = calculate_device_limits(ic);
4375 if (ic->log2_buffer_sectors > 3) {
4376 ic->log2_buffer_sectors--;
4377 goto try_smaller_buffer;
4380 ti->error = "The device is too small";
4384 if (log2_sectors_per_bitmap_bit < 0)
4385 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4386 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4387 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4389 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4390 if (bits_in_journal > UINT_MAX)
4391 bits_in_journal = UINT_MAX;
4392 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4393 log2_sectors_per_bitmap_bit++;
4395 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4396 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4397 if (should_write_sb)
4398 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4400 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4401 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4402 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4405 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4407 if (ti->len > ic->provided_data_sectors) {
4409 ti->error = "Not enough provided sectors for requested mapping size";
4414 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4416 do_div(threshold, 100);
4417 ic->free_sectors_threshold = threshold;
4419 DEBUG_print("initialized:\n");
4420 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4421 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4422 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4423 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4424 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4425 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4426 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4427 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4428 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4429 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4430 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4431 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4432 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4433 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4434 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4436 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4437 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4438 ic->sb->recalc_sector = cpu_to_le64(0);
4441 if (ic->internal_hash) {
4442 size_t recalc_tags_size;
4444 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4445 if (!ic->recalc_wq) {
4446 ti->error = "Cannot allocate workqueue";
4450 INIT_WORK(&ic->recalc_work, integrity_recalc);
4451 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4452 if (!ic->recalc_buffer) {
4453 ti->error = "Cannot allocate buffer for recalculating";
4457 recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4458 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4459 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4460 ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4461 if (!ic->recalc_tags) {
4462 ti->error = "Cannot allocate tags for recalculating";
4467 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4468 ti->error = "Recalculate can only be specified with internal_hash";
4474 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4475 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4476 dm_integrity_disable_recalculate(ic)) {
4477 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4482 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4483 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4484 if (IS_ERR(ic->bufio)) {
4485 r = PTR_ERR(ic->bufio);
4486 ti->error = "Cannot initialize dm-bufio";
4490 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4492 if (ic->mode != 'R') {
4493 r = create_journal(ic, &ti->error);
4499 if (ic->mode == 'B') {
4501 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4503 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4504 if (!ic->recalc_bitmap) {
4508 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4509 if (!ic->may_write_bitmap) {
4513 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4518 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4519 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4520 struct bitmap_block_status *bbs = &ic->bbs[i];
4521 unsigned int sector, pl_index, pl_offset;
4523 INIT_WORK(&bbs->work, bitmap_block_work);
4526 bio_list_init(&bbs->bio_queue);
4527 spin_lock_init(&bbs->bio_queue_lock);
4529 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4530 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4531 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4533 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4537 if (should_write_sb) {
4538 init_journal(ic, 0, ic->journal_sections, 0);
4539 r = dm_integrity_failed(ic);
4541 ti->error = "Error initializing journal";
4544 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4546 ti->error = "Error initializing superblock";
4549 ic->just_formatted = true;
4552 if (!ic->meta_dev) {
4553 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4557 if (ic->mode == 'B') {
4558 unsigned int max_io_len;
4560 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4562 max_io_len = 1U << 31;
4563 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4564 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4565 r = dm_set_target_max_io_len(ti, max_io_len);
4571 if (!ic->internal_hash)
4572 dm_integrity_set(ti, ic);
4574 ti->num_flush_bios = 1;
4575 ti->flush_supported = true;
4577 ti->num_discard_bios = 1;
4579 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4583 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4584 dm_integrity_dtr(ti);
4588 static void dm_integrity_dtr(struct dm_target *ti)
4590 struct dm_integrity_c *ic = ti->private;
4592 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4593 BUG_ON(!list_empty(&ic->wait_list));
4595 if (ic->mode == 'B')
4596 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4597 if (ic->metadata_wq)
4598 destroy_workqueue(ic->metadata_wq);
4600 destroy_workqueue(ic->wait_wq);
4602 destroy_workqueue(ic->offload_wq);
4604 destroy_workqueue(ic->commit_wq);
4606 destroy_workqueue(ic->writer_wq);
4608 destroy_workqueue(ic->recalc_wq);
4609 vfree(ic->recalc_buffer);
4610 kvfree(ic->recalc_tags);
4613 dm_bufio_client_destroy(ic->bufio);
4614 mempool_exit(&ic->journal_io_mempool);
4616 dm_io_client_destroy(ic->io);
4618 dm_put_device(ti, ic->dev);
4620 dm_put_device(ti, ic->meta_dev);
4621 dm_integrity_free_page_list(ic->journal);
4622 dm_integrity_free_page_list(ic->journal_io);
4623 dm_integrity_free_page_list(ic->journal_xor);
4624 dm_integrity_free_page_list(ic->recalc_bitmap);
4625 dm_integrity_free_page_list(ic->may_write_bitmap);
4626 if (ic->journal_scatterlist)
4627 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4628 if (ic->journal_io_scatterlist)
4629 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4630 if (ic->sk_requests) {
4633 for (i = 0; i < ic->journal_sections; i++) {
4634 struct skcipher_request *req;
4636 req = ic->sk_requests[i];
4638 kfree_sensitive(req->iv);
4639 skcipher_request_free(req);
4642 kvfree(ic->sk_requests);
4644 kvfree(ic->journal_tree);
4646 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4648 if (ic->internal_hash)
4649 crypto_free_shash(ic->internal_hash);
4650 free_alg(&ic->internal_hash_alg);
4652 if (ic->journal_crypt)
4653 crypto_free_skcipher(ic->journal_crypt);
4654 free_alg(&ic->journal_crypt_alg);
4656 if (ic->journal_mac)
4657 crypto_free_shash(ic->journal_mac);
4658 free_alg(&ic->journal_mac_alg);
4661 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4664 static struct target_type integrity_target = {
4665 .name = "integrity",
4666 .version = {1, 10, 0},
4667 .module = THIS_MODULE,
4668 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4669 .ctr = dm_integrity_ctr,
4670 .dtr = dm_integrity_dtr,
4671 .map = dm_integrity_map,
4672 .postsuspend = dm_integrity_postsuspend,
4673 .resume = dm_integrity_resume,
4674 .status = dm_integrity_status,
4675 .iterate_devices = dm_integrity_iterate_devices,
4676 .io_hints = dm_integrity_io_hints,
4679 static int __init dm_integrity_init(void)
4683 journal_io_cache = kmem_cache_create("integrity_journal_io",
4684 sizeof(struct journal_io), 0, 0, NULL);
4685 if (!journal_io_cache) {
4686 DMERR("can't allocate journal io cache");
4690 r = dm_register_target(&integrity_target);
4692 kmem_cache_destroy(journal_io_cache);
4699 static void __exit dm_integrity_exit(void)
4701 dm_unregister_target(&integrity_target);
4702 kmem_cache_destroy(journal_io_cache);
4705 module_init(dm_integrity_init);
4706 module_exit(dm_integrity_exit);
4708 MODULE_AUTHOR("Milan Broz");
4709 MODULE_AUTHOR("Mikulas Patocka");
4710 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4711 MODULE_LICENSE("GPL");