1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
7 * This file is released under the GPL.
10 #include "dm-bio-record.h"
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
29 #define DM_MSG_PREFIX "integrity"
31 #define DEFAULT_INTERLEAVE_SECTORS 32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
34 #define DEFAULT_BUFFER_SECTORS 128
35 #define DEFAULT_JOURNAL_WATERMARK 50
36 #define DEFAULT_SYNC_MSEC 10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
38 #define MIN_LOG2_INTERLEAVE_SECTORS 3
39 #define MAX_LOG2_INTERLEAVE_SECTORS 31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
41 #define RECALC_SECTORS 32768
42 #define RECALC_WRITE_SUPER 16
43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
44 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
45 #define DISCARD_FILLER 0xf6
49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50 * so it should not be enabled in the official kernel
53 //#define INTERNAL_VERIFY
59 #define SB_MAGIC "integrt"
60 #define SB_VERSION_1 1
61 #define SB_VERSION_2 2
62 #define SB_VERSION_3 3
63 #define SB_VERSION_4 4
64 #define SB_VERSION_5 5
66 #define MAX_SECTORS_PER_BLOCK 8
71 __u8 log2_interleave_sectors;
72 __le16 integrity_tag_size;
73 __le32 journal_sections;
74 __le64 provided_data_sectors; /* userspace uses this value */
76 __u8 log2_sectors_per_block;
77 __u8 log2_blocks_per_bitmap_bit;
84 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
85 #define SB_FLAG_RECALCULATING 0x2
86 #define SB_FLAG_DIRTY_BITMAP 0x4
87 #define SB_FLAG_FIXED_PADDING 0x8
88 #define SB_FLAG_FIXED_HMAC 0x10
90 #define JOURNAL_ENTRY_ROUNDUP 8
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR 8
95 struct journal_entry {
103 commit_id_t last_bytes[];
107 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
112 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
114 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
120 #define JOURNAL_BLOCK_SECTORS 8
121 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
124 struct journal_sector {
125 struct_group(sectors,
126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 __u8 mac[JOURNAL_MAC_PER_SECTOR];
129 commit_id_t commit_id;
132 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
134 #define METADATA_PADDING_SECTORS 8
136 #define N_COMMIT_IDS 4
138 static unsigned char prev_commit_seq(unsigned char seq)
140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
143 static unsigned char next_commit_seq(unsigned char seq)
145 return (seq + 1) % N_COMMIT_IDS;
149 * In-memory structures
152 struct journal_node {
161 unsigned int key_size;
164 struct dm_integrity_c {
166 struct dm_dev *meta_dev;
167 unsigned int tag_size;
170 mempool_t journal_io_mempool;
171 struct dm_io_client *io;
172 struct dm_bufio_client *bufio;
173 struct workqueue_struct *metadata_wq;
174 struct superblock *sb;
175 unsigned int journal_pages;
176 unsigned int n_bitmap_blocks;
178 struct page_list *journal;
179 struct page_list *journal_io;
180 struct page_list *journal_xor;
181 struct page_list *recalc_bitmap;
182 struct page_list *may_write_bitmap;
183 struct bitmap_block_status *bbs;
184 unsigned int bitmap_flush_interval;
185 int synchronous_mode;
186 struct bio_list synchronous_bios;
187 struct delayed_work bitmap_flush_work;
189 struct crypto_skcipher *journal_crypt;
190 struct scatterlist **journal_scatterlist;
191 struct scatterlist **journal_io_scatterlist;
192 struct skcipher_request **sk_requests;
194 struct crypto_shash *journal_mac;
196 struct journal_node *journal_tree;
197 struct rb_root journal_tree_root;
199 sector_t provided_data_sectors;
201 unsigned short journal_entry_size;
202 unsigned char journal_entries_per_sector;
203 unsigned char journal_section_entries;
204 unsigned short journal_section_sectors;
205 unsigned int journal_sections;
206 unsigned int journal_entries;
207 sector_t data_device_sectors;
208 sector_t meta_device_sectors;
209 unsigned int initial_sectors;
210 unsigned int metadata_run;
211 __s8 log2_metadata_run;
212 __u8 log2_buffer_sectors;
213 __u8 sectors_per_block;
214 __u8 log2_blocks_per_bitmap_bit;
220 struct crypto_shash *internal_hash;
222 struct dm_target *ti;
224 /* these variables are locked with endio_wait.lock */
225 struct rb_root in_progress;
226 struct list_head wait_list;
227 wait_queue_head_t endio_wait;
228 struct workqueue_struct *wait_wq;
229 struct workqueue_struct *offload_wq;
231 unsigned char commit_seq;
232 commit_id_t commit_ids[N_COMMIT_IDS];
234 unsigned int committed_section;
235 unsigned int n_committed_sections;
237 unsigned int uncommitted_section;
238 unsigned int n_uncommitted_sections;
240 unsigned int free_section;
241 unsigned char free_section_entry;
242 unsigned int free_sectors;
244 unsigned int free_sectors_threshold;
246 struct workqueue_struct *commit_wq;
247 struct work_struct commit_work;
249 struct workqueue_struct *writer_wq;
250 struct work_struct writer_work;
252 struct workqueue_struct *recalc_wq;
253 struct work_struct recalc_work;
257 struct bio_list flush_bio_list;
259 unsigned long autocommit_jiffies;
260 struct timer_list autocommit_timer;
261 unsigned int autocommit_msec;
263 wait_queue_head_t copy_to_journal_wait;
265 struct completion crypto_backoff;
267 bool wrote_to_journal;
268 bool journal_uptodate;
270 bool recalculate_flag;
271 bool reset_recalculate_flag;
275 bool legacy_recalculate;
277 struct alg_spec internal_hash_alg;
278 struct alg_spec journal_crypt_alg;
279 struct alg_spec journal_mac_alg;
281 atomic64_t number_of_mismatches;
283 struct notifier_block reboot_notifier;
286 struct dm_integrity_range {
287 sector_t logical_sector;
293 struct task_struct *task;
294 struct list_head wait_entry;
299 struct dm_integrity_io {
300 struct work_struct work;
302 struct dm_integrity_c *ic;
306 struct dm_integrity_range range;
308 sector_t metadata_block;
309 unsigned int metadata_offset;
312 blk_status_t bi_status;
314 struct completion *completion;
316 struct dm_bio_details bio_details;
319 struct journal_completion {
320 struct dm_integrity_c *ic;
322 struct completion comp;
326 struct dm_integrity_range range;
327 struct journal_completion *comp;
330 struct bitmap_block_status {
331 struct work_struct work;
332 struct dm_integrity_c *ic;
334 unsigned long *bitmap;
335 struct bio_list bio_queue;
336 spinlock_t bio_queue_lock;
340 static struct kmem_cache *journal_io_cache;
342 #define JOURNAL_IO_MEMPOOL 32
345 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
346 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
356 pr_cont(" %02x", *bytes);
362 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
364 #define DEBUG_print(x, ...) do { } while (0)
365 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
368 static void dm_integrity_prepare(struct request *rq)
372 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
377 * DM Integrity profile, protection is performed layer above (dm-crypt)
379 static const struct blk_integrity_profile dm_integrity_profile = {
380 .name = "DM-DIF-EXT-TAG",
383 .prepare_fn = dm_integrity_prepare,
384 .complete_fn = dm_integrity_complete,
387 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
388 static void integrity_bio_wait(struct work_struct *w);
389 static void dm_integrity_dtr(struct dm_target *ti);
391 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
394 atomic64_inc(&ic->number_of_mismatches);
395 if (!cmpxchg(&ic->failed, 0, err))
396 DMERR("Error on %s: %d", msg, err);
399 static int dm_integrity_failed(struct dm_integrity_c *ic)
401 return READ_ONCE(ic->failed);
404 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
406 if (ic->legacy_recalculate)
408 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
409 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
410 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
415 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
416 unsigned int j, unsigned char seq)
419 * Xor the number with section and sector, so that if a piece of
420 * journal is written at wrong place, it is detected.
422 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
425 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
426 sector_t *area, sector_t *offset)
429 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
430 *area = data_sector >> log2_interleave_sectors;
431 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
434 *offset = data_sector;
438 #define sector_to_block(ic, n) \
440 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
441 (n) >>= (ic)->sb->log2_sectors_per_block; \
444 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
445 sector_t offset, unsigned int *metadata_offset)
450 ms = area << ic->sb->log2_interleave_sectors;
451 if (likely(ic->log2_metadata_run >= 0))
452 ms += area << ic->log2_metadata_run;
454 ms += area * ic->metadata_run;
455 ms >>= ic->log2_buffer_sectors;
457 sector_to_block(ic, offset);
459 if (likely(ic->log2_tag_size >= 0)) {
460 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
461 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
463 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
464 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
466 *metadata_offset = mo;
470 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
477 result = area << ic->sb->log2_interleave_sectors;
478 if (likely(ic->log2_metadata_run >= 0))
479 result += (area + 1) << ic->log2_metadata_run;
481 result += (area + 1) * ic->metadata_run;
483 result += (sector_t)ic->initial_sectors + offset;
489 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
491 if (unlikely(*sec_ptr >= ic->journal_sections))
492 *sec_ptr -= ic->journal_sections;
495 static void sb_set_version(struct dm_integrity_c *ic)
497 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
498 ic->sb->version = SB_VERSION_5;
499 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
500 ic->sb->version = SB_VERSION_4;
501 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
502 ic->sb->version = SB_VERSION_3;
503 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
504 ic->sb->version = SB_VERSION_2;
506 ic->sb->version = SB_VERSION_1;
509 static int sb_mac(struct dm_integrity_c *ic, bool wr)
511 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
513 unsigned int size = crypto_shash_digestsize(ic->journal_mac);
515 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
516 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
520 desc->tfm = ic->journal_mac;
522 r = crypto_shash_init(desc);
523 if (unlikely(r < 0)) {
524 dm_integrity_io_error(ic, "crypto_shash_init", r);
528 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
529 if (unlikely(r < 0)) {
530 dm_integrity_io_error(ic, "crypto_shash_update", r);
535 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
536 if (unlikely(r < 0)) {
537 dm_integrity_io_error(ic, "crypto_shash_final", r);
541 __u8 result[HASH_MAX_DIGESTSIZE];
543 r = crypto_shash_final(desc, result);
544 if (unlikely(r < 0)) {
545 dm_integrity_io_error(ic, "crypto_shash_final", r);
548 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
549 dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
550 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
558 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
560 struct dm_io_request io_req;
561 struct dm_io_region io_loc;
562 const enum req_op op = opf & REQ_OP_MASK;
566 io_req.mem.type = DM_IO_KMEM;
567 io_req.mem.ptr.addr = ic->sb;
568 io_req.notify.fn = NULL;
569 io_req.client = ic->io;
570 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
571 io_loc.sector = ic->start;
572 io_loc.count = SB_SECTORS;
574 if (op == REQ_OP_WRITE) {
576 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
577 r = sb_mac(ic, true);
583 r = dm_io(&io_req, 1, &io_loc, NULL);
587 if (op == REQ_OP_READ) {
588 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
589 r = sb_mac(ic, false);
598 #define BITMAP_OP_TEST_ALL_SET 0
599 #define BITMAP_OP_TEST_ALL_CLEAR 1
600 #define BITMAP_OP_SET 2
601 #define BITMAP_OP_CLEAR 3
603 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
604 sector_t sector, sector_t n_sectors, int mode)
606 unsigned long bit, end_bit, this_end_bit, page, end_page;
609 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
610 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
613 ic->sb->log2_sectors_per_block,
614 ic->log2_blocks_per_bitmap_bit,
619 if (unlikely(!n_sectors))
622 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
623 end_bit = (sector + n_sectors - 1) >>
624 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
626 page = bit / (PAGE_SIZE * 8);
627 bit %= PAGE_SIZE * 8;
629 end_page = end_bit / (PAGE_SIZE * 8);
630 end_bit %= PAGE_SIZE * 8;
634 this_end_bit = PAGE_SIZE * 8 - 1;
636 this_end_bit = end_bit;
638 data = lowmem_page_address(bitmap[page].page);
640 if (mode == BITMAP_OP_TEST_ALL_SET) {
641 while (bit <= this_end_bit) {
642 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
644 if (data[bit / BITS_PER_LONG] != -1)
646 bit += BITS_PER_LONG;
647 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
650 if (!test_bit(bit, data))
654 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
655 while (bit <= this_end_bit) {
656 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
658 if (data[bit / BITS_PER_LONG] != 0)
660 bit += BITS_PER_LONG;
661 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
664 if (test_bit(bit, data))
668 } else if (mode == BITMAP_OP_SET) {
669 while (bit <= this_end_bit) {
670 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
672 data[bit / BITS_PER_LONG] = -1;
673 bit += BITS_PER_LONG;
674 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
677 __set_bit(bit, data);
680 } else if (mode == BITMAP_OP_CLEAR) {
681 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
684 while (bit <= this_end_bit) {
685 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
687 data[bit / BITS_PER_LONG] = 0;
688 bit += BITS_PER_LONG;
689 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
692 __clear_bit(bit, data);
700 if (unlikely(page < end_page)) {
709 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
711 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
714 for (i = 0; i < n_bitmap_pages; i++) {
715 unsigned long *dst_data = lowmem_page_address(dst[i].page);
716 unsigned long *src_data = lowmem_page_address(src[i].page);
718 copy_page(dst_data, src_data);
722 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
724 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
725 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
727 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
728 return &ic->bbs[bitmap_block];
731 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
732 bool e, const char *function)
734 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
735 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
737 if (unlikely(section >= ic->journal_sections) ||
738 unlikely(offset >= limit)) {
739 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
740 function, section, offset, ic->journal_sections, limit);
746 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
747 unsigned int *pl_index, unsigned int *pl_offset)
751 access_journal_check(ic, section, offset, false, "page_list_location");
753 sector = section * ic->journal_section_sectors + offset;
755 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
756 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
759 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
760 unsigned int section, unsigned int offset, unsigned int *n_sectors)
762 unsigned int pl_index, pl_offset;
765 page_list_location(ic, section, offset, &pl_index, &pl_offset);
768 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
770 va = lowmem_page_address(pl[pl_index].page);
772 return (struct journal_sector *)(va + pl_offset);
775 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
777 return access_page_list(ic, ic->journal, section, offset, NULL);
780 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
782 unsigned int rel_sector, offset;
783 struct journal_sector *js;
785 access_journal_check(ic, section, n, true, "access_journal_entry");
787 rel_sector = n % JOURNAL_BLOCK_SECTORS;
788 offset = n / JOURNAL_BLOCK_SECTORS;
790 js = access_journal(ic, section, rel_sector);
791 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
794 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
796 n <<= ic->sb->log2_sectors_per_block;
798 n += JOURNAL_BLOCK_SECTORS;
800 access_journal_check(ic, section, n, false, "access_journal_data");
802 return access_journal(ic, section, n);
805 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
807 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
809 unsigned int j, size;
811 desc->tfm = ic->journal_mac;
813 r = crypto_shash_init(desc);
814 if (unlikely(r < 0)) {
815 dm_integrity_io_error(ic, "crypto_shash_init", r);
819 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
822 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
823 if (unlikely(r < 0)) {
824 dm_integrity_io_error(ic, "crypto_shash_update", r);
828 section_le = cpu_to_le64(section);
829 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le));
830 if (unlikely(r < 0)) {
831 dm_integrity_io_error(ic, "crypto_shash_update", r);
836 for (j = 0; j < ic->journal_section_entries; j++) {
837 struct journal_entry *je = access_journal_entry(ic, section, j);
839 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
840 if (unlikely(r < 0)) {
841 dm_integrity_io_error(ic, "crypto_shash_update", r);
846 size = crypto_shash_digestsize(ic->journal_mac);
848 if (likely(size <= JOURNAL_MAC_SIZE)) {
849 r = crypto_shash_final(desc, result);
850 if (unlikely(r < 0)) {
851 dm_integrity_io_error(ic, "crypto_shash_final", r);
854 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
856 __u8 digest[HASH_MAX_DIGESTSIZE];
858 if (WARN_ON(size > sizeof(digest))) {
859 dm_integrity_io_error(ic, "digest_size", -EINVAL);
862 r = crypto_shash_final(desc, digest);
863 if (unlikely(r < 0)) {
864 dm_integrity_io_error(ic, "crypto_shash_final", r);
867 memcpy(result, digest, JOURNAL_MAC_SIZE);
872 memset(result, 0, JOURNAL_MAC_SIZE);
875 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
877 __u8 result[JOURNAL_MAC_SIZE];
880 if (!ic->journal_mac)
883 section_mac(ic, section, result);
885 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
886 struct journal_sector *js = access_journal(ic, section, j);
889 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
891 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
892 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
893 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
899 static void complete_journal_op(void *context)
901 struct journal_completion *comp = context;
903 BUG_ON(!atomic_read(&comp->in_flight));
904 if (likely(atomic_dec_and_test(&comp->in_flight)))
905 complete(&comp->comp);
908 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
909 unsigned int n_sections, struct journal_completion *comp)
911 struct async_submit_ctl submit;
912 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
913 unsigned int pl_index, pl_offset, section_index;
914 struct page_list *source_pl, *target_pl;
916 if (likely(encrypt)) {
917 source_pl = ic->journal;
918 target_pl = ic->journal_io;
920 source_pl = ic->journal_io;
921 target_pl = ic->journal;
924 page_list_location(ic, section, 0, &pl_index, &pl_offset);
926 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
928 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
930 section_index = pl_index;
934 struct page *src_pages[2];
935 struct page *dst_page;
937 while (unlikely(pl_index == section_index)) {
941 rw_section_mac(ic, section, true);
946 page_list_location(ic, section, 0, §ion_index, &dummy);
949 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
950 dst_page = target_pl[pl_index].page;
951 src_pages[0] = source_pl[pl_index].page;
952 src_pages[1] = ic->journal_xor[pl_index].page;
954 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
958 n_bytes -= this_step;
963 async_tx_issue_pending_all();
966 static void complete_journal_encrypt(void *data, int err)
968 struct journal_completion *comp = data;
971 if (likely(err == -EINPROGRESS)) {
972 complete(&comp->ic->crypto_backoff);
975 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
977 complete_journal_op(comp);
980 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
984 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
985 complete_journal_encrypt, comp);
987 r = crypto_skcipher_encrypt(req);
989 r = crypto_skcipher_decrypt(req);
992 if (likely(r == -EINPROGRESS))
994 if (likely(r == -EBUSY)) {
995 wait_for_completion(&comp->ic->crypto_backoff);
996 reinit_completion(&comp->ic->crypto_backoff);
999 dm_integrity_io_error(comp->ic, "encrypt", r);
1003 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1004 unsigned int n_sections, struct journal_completion *comp)
1006 struct scatterlist **source_sg;
1007 struct scatterlist **target_sg;
1009 atomic_add(2, &comp->in_flight);
1011 if (likely(encrypt)) {
1012 source_sg = ic->journal_scatterlist;
1013 target_sg = ic->journal_io_scatterlist;
1015 source_sg = ic->journal_io_scatterlist;
1016 target_sg = ic->journal_scatterlist;
1020 struct skcipher_request *req;
1021 unsigned int ivsize;
1024 if (likely(encrypt))
1025 rw_section_mac(ic, section, true);
1027 req = ic->sk_requests[section];
1028 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1031 memcpy(iv, iv + ivsize, ivsize);
1033 req->src = source_sg[section];
1034 req->dst = target_sg[section];
1036 if (unlikely(do_crypt(encrypt, req, comp)))
1037 atomic_inc(&comp->in_flight);
1041 } while (n_sections);
1043 atomic_dec(&comp->in_flight);
1044 complete_journal_op(comp);
1047 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1048 unsigned int n_sections, struct journal_completion *comp)
1050 if (ic->journal_xor)
1051 return xor_journal(ic, encrypt, section, n_sections, comp);
1053 return crypt_journal(ic, encrypt, section, n_sections, comp);
1056 static void complete_journal_io(unsigned long error, void *context)
1058 struct journal_completion *comp = context;
1060 if (unlikely(error != 0))
1061 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1062 complete_journal_op(comp);
1065 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1066 unsigned int sector, unsigned int n_sectors,
1067 struct journal_completion *comp)
1069 struct dm_io_request io_req;
1070 struct dm_io_region io_loc;
1071 unsigned int pl_index, pl_offset;
1074 if (unlikely(dm_integrity_failed(ic))) {
1076 complete_journal_io(-1UL, comp);
1080 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1081 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1083 io_req.bi_opf = opf;
1084 io_req.mem.type = DM_IO_PAGE_LIST;
1086 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1088 io_req.mem.ptr.pl = &ic->journal[pl_index];
1089 io_req.mem.offset = pl_offset;
1090 if (likely(comp != NULL)) {
1091 io_req.notify.fn = complete_journal_io;
1092 io_req.notify.context = comp;
1094 io_req.notify.fn = NULL;
1096 io_req.client = ic->io;
1097 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1098 io_loc.sector = ic->start + SB_SECTORS + sector;
1099 io_loc.count = n_sectors;
1101 r = dm_io(&io_req, 1, &io_loc, NULL);
1103 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1104 "reading journal" : "writing journal", r);
1106 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1107 complete_journal_io(-1UL, comp);
1112 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1113 unsigned int section, unsigned int n_sections,
1114 struct journal_completion *comp)
1116 unsigned int sector, n_sectors;
1118 sector = section * ic->journal_section_sectors;
1119 n_sectors = n_sections * ic->journal_section_sectors;
1121 rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1124 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1126 struct journal_completion io_comp;
1127 struct journal_completion crypt_comp_1;
1128 struct journal_completion crypt_comp_2;
1132 init_completion(&io_comp.comp);
1134 if (commit_start + commit_sections <= ic->journal_sections) {
1135 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1136 if (ic->journal_io) {
1137 crypt_comp_1.ic = ic;
1138 init_completion(&crypt_comp_1.comp);
1139 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1141 wait_for_completion_io(&crypt_comp_1.comp);
1143 for (i = 0; i < commit_sections; i++)
1144 rw_section_mac(ic, commit_start + i, true);
1146 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1147 commit_sections, &io_comp);
1149 unsigned int to_end;
1151 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1152 to_end = ic->journal_sections - commit_start;
1153 if (ic->journal_io) {
1154 crypt_comp_1.ic = ic;
1155 init_completion(&crypt_comp_1.comp);
1156 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1157 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1158 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1159 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1160 commit_start, to_end, &io_comp);
1161 reinit_completion(&crypt_comp_1.comp);
1162 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1163 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1164 wait_for_completion_io(&crypt_comp_1.comp);
1166 crypt_comp_2.ic = ic;
1167 init_completion(&crypt_comp_2.comp);
1168 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1169 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1170 wait_for_completion_io(&crypt_comp_1.comp);
1171 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1172 wait_for_completion_io(&crypt_comp_2.comp);
1175 for (i = 0; i < to_end; i++)
1176 rw_section_mac(ic, commit_start + i, true);
1177 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1178 for (i = 0; i < commit_sections - to_end; i++)
1179 rw_section_mac(ic, i, true);
1181 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1184 wait_for_completion_io(&io_comp.comp);
1187 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1188 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1190 struct dm_io_request io_req;
1191 struct dm_io_region io_loc;
1193 unsigned int sector, pl_index, pl_offset;
1195 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1197 if (unlikely(dm_integrity_failed(ic))) {
1202 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1204 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1205 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1207 io_req.bi_opf = REQ_OP_WRITE;
1208 io_req.mem.type = DM_IO_PAGE_LIST;
1209 io_req.mem.ptr.pl = &ic->journal[pl_index];
1210 io_req.mem.offset = pl_offset;
1211 io_req.notify.fn = fn;
1212 io_req.notify.context = data;
1213 io_req.client = ic->io;
1214 io_loc.bdev = ic->dev->bdev;
1215 io_loc.sector = target;
1216 io_loc.count = n_sectors;
1218 r = dm_io(&io_req, 1, &io_loc, NULL);
1220 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1225 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1227 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1228 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1231 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1233 struct rb_node **n = &ic->in_progress.rb_node;
1234 struct rb_node *parent;
1236 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1238 if (likely(check_waiting)) {
1239 struct dm_integrity_range *range;
1241 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1242 if (unlikely(ranges_overlap(range, new_range)))
1250 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1253 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1254 n = &range->node.rb_left;
1255 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1256 n = &range->node.rb_right;
1261 rb_link_node(&new_range->node, parent, n);
1262 rb_insert_color(&new_range->node, &ic->in_progress);
1267 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1269 rb_erase(&range->node, &ic->in_progress);
1270 while (unlikely(!list_empty(&ic->wait_list))) {
1271 struct dm_integrity_range *last_range =
1272 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1273 struct task_struct *last_range_task;
1275 last_range_task = last_range->task;
1276 list_del(&last_range->wait_entry);
1277 if (!add_new_range(ic, last_range, false)) {
1278 last_range->task = last_range_task;
1279 list_add(&last_range->wait_entry, &ic->wait_list);
1282 last_range->waiting = false;
1283 wake_up_process(last_range_task);
1287 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1289 unsigned long flags;
1291 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1292 remove_range_unlocked(ic, range);
1293 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1296 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1298 new_range->waiting = true;
1299 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1300 new_range->task = current;
1302 __set_current_state(TASK_UNINTERRUPTIBLE);
1303 spin_unlock_irq(&ic->endio_wait.lock);
1305 spin_lock_irq(&ic->endio_wait.lock);
1306 } while (unlikely(new_range->waiting));
1309 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1311 if (unlikely(!add_new_range(ic, new_range, true)))
1312 wait_and_add_new_range(ic, new_range);
1315 static void init_journal_node(struct journal_node *node)
1317 RB_CLEAR_NODE(&node->node);
1318 node->sector = (sector_t)-1;
1321 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1323 struct rb_node **link;
1324 struct rb_node *parent;
1326 node->sector = sector;
1327 BUG_ON(!RB_EMPTY_NODE(&node->node));
1329 link = &ic->journal_tree_root.rb_node;
1333 struct journal_node *j;
1336 j = container_of(parent, struct journal_node, node);
1337 if (sector < j->sector)
1338 link = &j->node.rb_left;
1340 link = &j->node.rb_right;
1343 rb_link_node(&node->node, parent, link);
1344 rb_insert_color(&node->node, &ic->journal_tree_root);
1347 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1349 BUG_ON(RB_EMPTY_NODE(&node->node));
1350 rb_erase(&node->node, &ic->journal_tree_root);
1351 init_journal_node(node);
1354 #define NOT_FOUND (-1U)
1356 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1358 struct rb_node *n = ic->journal_tree_root.rb_node;
1359 unsigned int found = NOT_FOUND;
1361 *next_sector = (sector_t)-1;
1363 struct journal_node *j = container_of(n, struct journal_node, node);
1365 if (sector == j->sector)
1366 found = j - ic->journal_tree;
1368 if (sector < j->sector) {
1369 *next_sector = j->sector;
1370 n = j->node.rb_left;
1372 n = j->node.rb_right;
1378 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1380 struct journal_node *node, *next_node;
1381 struct rb_node *next;
1383 if (unlikely(pos >= ic->journal_entries))
1385 node = &ic->journal_tree[pos];
1386 if (unlikely(RB_EMPTY_NODE(&node->node)))
1388 if (unlikely(node->sector != sector))
1391 next = rb_next(&node->node);
1392 if (unlikely(!next))
1395 next_node = container_of(next, struct journal_node, node);
1396 return next_node->sector != sector;
1399 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1401 struct rb_node *next;
1402 struct journal_node *next_node;
1403 unsigned int next_section;
1405 BUG_ON(RB_EMPTY_NODE(&node->node));
1407 next = rb_next(&node->node);
1408 if (unlikely(!next))
1411 next_node = container_of(next, struct journal_node, node);
1413 if (next_node->sector != node->sector)
1416 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1417 if (next_section >= ic->committed_section &&
1418 next_section < ic->committed_section + ic->n_committed_sections)
1420 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1430 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1431 unsigned int *metadata_offset, unsigned int total_size, int op)
1433 #define MAY_BE_FILLER 1
1434 #define MAY_BE_HASH 2
1435 unsigned int hash_offset = 0;
1436 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1439 unsigned char *data, *dp;
1440 struct dm_buffer *b;
1441 unsigned int to_copy;
1444 r = dm_integrity_failed(ic);
1448 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1450 return PTR_ERR(data);
1452 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1453 dp = data + *metadata_offset;
1454 if (op == TAG_READ) {
1455 memcpy(tag, dp, to_copy);
1456 } else if (op == TAG_WRITE) {
1457 if (memcmp(dp, tag, to_copy)) {
1458 memcpy(dp, tag, to_copy);
1459 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1462 /* e.g.: op == TAG_CMP */
1464 if (likely(is_power_of_2(ic->tag_size))) {
1465 if (unlikely(memcmp(dp, tag, to_copy)))
1466 if (unlikely(!ic->discard) ||
1467 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1475 for (i = 0; i < to_copy; i++, ts--) {
1476 if (unlikely(dp[i] != tag[i]))
1477 may_be &= ~MAY_BE_HASH;
1478 if (likely(dp[i] != DISCARD_FILLER))
1479 may_be &= ~MAY_BE_FILLER;
1481 if (unlikely(hash_offset == ic->tag_size)) {
1482 if (unlikely(!may_be)) {
1483 dm_bufio_release(b);
1487 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1492 dm_bufio_release(b);
1495 *metadata_offset += to_copy;
1496 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1497 (*metadata_block)++;
1498 *metadata_offset = 0;
1501 if (unlikely(!is_power_of_2(ic->tag_size)))
1502 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1504 total_size -= to_copy;
1505 } while (unlikely(total_size));
1508 #undef MAY_BE_FILLER
1512 struct flush_request {
1513 struct dm_io_request io_req;
1514 struct dm_io_region io_reg;
1515 struct dm_integrity_c *ic;
1516 struct completion comp;
1519 static void flush_notify(unsigned long error, void *fr_)
1521 struct flush_request *fr = fr_;
1523 if (unlikely(error != 0))
1524 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1525 complete(&fr->comp);
1528 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1531 struct flush_request fr;
1536 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1537 fr.io_req.mem.type = DM_IO_KMEM,
1538 fr.io_req.mem.ptr.addr = NULL,
1539 fr.io_req.notify.fn = flush_notify,
1540 fr.io_req.notify.context = &fr;
1541 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1542 fr.io_reg.bdev = ic->dev->bdev,
1543 fr.io_reg.sector = 0,
1544 fr.io_reg.count = 0,
1546 init_completion(&fr.comp);
1547 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1551 r = dm_bufio_write_dirty_buffers(ic->bufio);
1553 dm_integrity_io_error(ic, "writing tags", r);
1556 wait_for_completion(&fr.comp);
1559 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1561 DECLARE_WAITQUEUE(wait, current);
1563 __add_wait_queue(&ic->endio_wait, &wait);
1564 __set_current_state(TASK_UNINTERRUPTIBLE);
1565 spin_unlock_irq(&ic->endio_wait.lock);
1567 spin_lock_irq(&ic->endio_wait.lock);
1568 __remove_wait_queue(&ic->endio_wait, &wait);
1571 static void autocommit_fn(struct timer_list *t)
1573 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1575 if (likely(!dm_integrity_failed(ic)))
1576 queue_work(ic->commit_wq, &ic->commit_work);
1579 static void schedule_autocommit(struct dm_integrity_c *ic)
1581 if (!timer_pending(&ic->autocommit_timer))
1582 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1585 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1588 unsigned long flags;
1590 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1591 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1592 bio_list_add(&ic->flush_bio_list, bio);
1593 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1595 queue_work(ic->commit_wq, &ic->commit_work);
1598 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1602 r = dm_integrity_failed(ic);
1603 if (unlikely(r) && !bio->bi_status)
1604 bio->bi_status = errno_to_blk_status(r);
1605 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1606 unsigned long flags;
1608 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1609 bio_list_add(&ic->synchronous_bios, bio);
1610 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1611 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1617 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1619 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1621 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1622 submit_flush_bio(ic, dio);
1627 static void dec_in_flight(struct dm_integrity_io *dio)
1629 if (atomic_dec_and_test(&dio->in_flight)) {
1630 struct dm_integrity_c *ic = dio->ic;
1633 remove_range(ic, &dio->range);
1635 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1636 schedule_autocommit(ic);
1638 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1639 if (unlikely(dio->bi_status) && !bio->bi_status)
1640 bio->bi_status = dio->bi_status;
1641 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1642 dio->range.logical_sector += dio->range.n_sectors;
1643 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1644 INIT_WORK(&dio->work, integrity_bio_wait);
1645 queue_work(ic->offload_wq, &dio->work);
1648 do_endio_flush(ic, dio);
1652 static void integrity_end_io(struct bio *bio)
1654 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1656 dm_bio_restore(&dio->bio_details, bio);
1657 if (bio->bi_integrity)
1658 bio->bi_opf |= REQ_INTEGRITY;
1660 if (dio->completion)
1661 complete(dio->completion);
1666 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1667 const char *data, char *result)
1669 __le64 sector_le = cpu_to_le64(sector);
1670 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1672 unsigned int digest_size;
1674 req->tfm = ic->internal_hash;
1676 r = crypto_shash_init(req);
1677 if (unlikely(r < 0)) {
1678 dm_integrity_io_error(ic, "crypto_shash_init", r);
1682 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1683 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1684 if (unlikely(r < 0)) {
1685 dm_integrity_io_error(ic, "crypto_shash_update", r);
1690 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le));
1691 if (unlikely(r < 0)) {
1692 dm_integrity_io_error(ic, "crypto_shash_update", r);
1696 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1697 if (unlikely(r < 0)) {
1698 dm_integrity_io_error(ic, "crypto_shash_update", r);
1702 r = crypto_shash_final(req, result);
1703 if (unlikely(r < 0)) {
1704 dm_integrity_io_error(ic, "crypto_shash_final", r);
1708 digest_size = crypto_shash_digestsize(ic->internal_hash);
1709 if (unlikely(digest_size < ic->tag_size))
1710 memset(result + digest_size, 0, ic->tag_size - digest_size);
1715 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1716 get_random_bytes(result, ic->tag_size);
1719 static void integrity_metadata(struct work_struct *w)
1721 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1722 struct dm_integrity_c *ic = dio->ic;
1726 if (ic->internal_hash) {
1727 struct bvec_iter iter;
1729 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1730 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1732 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1733 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1735 unsigned int sectors_to_process;
1737 if (unlikely(ic->mode == 'R'))
1740 if (likely(dio->op != REQ_OP_DISCARD))
1741 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1742 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1744 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1746 checksums = checksums_onstack;
1747 if (WARN_ON(extra_space &&
1748 digest_size > sizeof(checksums_onstack))) {
1754 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1755 unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1756 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1757 unsigned int max_blocks = max_size / ic->tag_size;
1759 memset(checksums, DISCARD_FILLER, max_size);
1762 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1764 this_step_blocks = min(this_step_blocks, max_blocks);
1765 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1766 this_step_blocks * ic->tag_size, TAG_WRITE);
1768 if (likely(checksums != checksums_onstack))
1773 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1776 if (likely(checksums != checksums_onstack))
1781 sector = dio->range.logical_sector;
1782 sectors_to_process = dio->range.n_sectors;
1784 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1786 char *mem, *checksums_ptr;
1789 mem = bvec_kmap_local(&bv);
1791 checksums_ptr = checksums;
1793 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1794 checksums_ptr += ic->tag_size;
1795 sectors_to_process -= ic->sectors_per_block;
1796 pos += ic->sectors_per_block << SECTOR_SHIFT;
1797 sector += ic->sectors_per_block;
1798 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1801 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1802 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1807 s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1808 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1811 atomic64_inc(&ic->number_of_mismatches);
1812 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1815 if (likely(checksums != checksums_onstack))
1820 if (!sectors_to_process)
1823 if (unlikely(pos < bv.bv_len)) {
1824 bv.bv_offset += pos;
1830 if (likely(checksums != checksums_onstack))
1833 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1837 struct bvec_iter iter;
1838 unsigned int data_to_process = dio->range.n_sectors;
1840 sector_to_block(ic, data_to_process);
1841 data_to_process *= ic->tag_size;
1843 bip_for_each_vec(biv, bip, iter) {
1845 unsigned int this_len;
1847 BUG_ON(PageHighMem(biv.bv_page));
1848 tag = bvec_virt(&biv);
1849 this_len = min(biv.bv_len, data_to_process);
1850 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1851 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1854 data_to_process -= this_len;
1855 if (!data_to_process)
1864 dio->bi_status = errno_to_blk_status(r);
1868 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1870 struct dm_integrity_c *ic = ti->private;
1871 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1872 struct bio_integrity_payload *bip;
1874 sector_t area, offset;
1878 dio->op = bio_op(bio);
1880 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1881 if (ti->max_io_len) {
1882 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1883 unsigned int log2_max_io_len = __fls(ti->max_io_len);
1884 sector_t start_boundary = sec >> log2_max_io_len;
1885 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1887 if (start_boundary < end_boundary) {
1888 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1890 dm_accept_partial_bio(bio, len);
1895 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1896 submit_flush_bio(ic, dio);
1897 return DM_MAPIO_SUBMITTED;
1900 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1901 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1902 if (unlikely(dio->fua)) {
1904 * Don't pass down the FUA flag because we have to flush
1905 * disk cache anyway.
1907 bio->bi_opf &= ~REQ_FUA;
1909 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1910 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1911 dio->range.logical_sector, bio_sectors(bio),
1912 ic->provided_data_sectors);
1913 return DM_MAPIO_KILL;
1915 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1916 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1917 ic->sectors_per_block,
1918 dio->range.logical_sector, bio_sectors(bio));
1919 return DM_MAPIO_KILL;
1922 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1923 struct bvec_iter iter;
1926 bio_for_each_segment(bv, bio, iter) {
1927 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1928 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1929 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1930 return DM_MAPIO_KILL;
1935 bip = bio_integrity(bio);
1936 if (!ic->internal_hash) {
1938 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1940 if (ic->log2_tag_size >= 0)
1941 wanted_tag_size <<= ic->log2_tag_size;
1943 wanted_tag_size *= ic->tag_size;
1944 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1945 DMERR("Invalid integrity data size %u, expected %u",
1946 bip->bip_iter.bi_size, wanted_tag_size);
1947 return DM_MAPIO_KILL;
1951 if (unlikely(bip != NULL)) {
1952 DMERR("Unexpected integrity data when using internal hash");
1953 return DM_MAPIO_KILL;
1957 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1958 return DM_MAPIO_KILL;
1960 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1961 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1962 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1964 dm_integrity_map_continue(dio, true);
1965 return DM_MAPIO_SUBMITTED;
1968 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1969 unsigned int journal_section, unsigned int journal_entry)
1971 struct dm_integrity_c *ic = dio->ic;
1972 sector_t logical_sector;
1973 unsigned int n_sectors;
1975 logical_sector = dio->range.logical_sector;
1976 n_sectors = dio->range.n_sectors;
1978 struct bio_vec bv = bio_iovec(bio);
1981 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1982 bv.bv_len = n_sectors << SECTOR_SHIFT;
1983 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1984 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1986 mem = kmap_local_page(bv.bv_page);
1987 if (likely(dio->op == REQ_OP_WRITE))
1988 flush_dcache_page(bv.bv_page);
1991 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1993 if (unlikely(dio->op == REQ_OP_READ)) {
1994 struct journal_sector *js;
1998 if (unlikely(journal_entry_is_inprogress(je))) {
1999 flush_dcache_page(bv.bv_page);
2002 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2006 BUG_ON(journal_entry_get_sector(je) != logical_sector);
2007 js = access_journal_data(ic, journal_section, journal_entry);
2008 mem_ptr = mem + bv.bv_offset;
2011 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2012 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2014 mem_ptr += 1 << SECTOR_SHIFT;
2015 } while (++s < ic->sectors_per_block);
2016 #ifdef INTERNAL_VERIFY
2017 if (ic->internal_hash) {
2018 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2020 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2021 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2022 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2024 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2025 bio, logical_sector, 0);
2031 if (!ic->internal_hash) {
2032 struct bio_integrity_payload *bip = bio_integrity(bio);
2033 unsigned int tag_todo = ic->tag_size;
2034 char *tag_ptr = journal_entry_tag(ic, je);
2038 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2039 unsigned int tag_now = min(biv.bv_len, tag_todo);
2042 BUG_ON(PageHighMem(biv.bv_page));
2043 tag_addr = bvec_virt(&biv);
2044 if (likely(dio->op == REQ_OP_WRITE))
2045 memcpy(tag_ptr, tag_addr, tag_now);
2047 memcpy(tag_addr, tag_ptr, tag_now);
2048 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2050 tag_todo -= tag_now;
2051 } while (unlikely(tag_todo));
2052 } else if (likely(dio->op == REQ_OP_WRITE))
2053 memset(tag_ptr, 0, tag_todo);
2056 if (likely(dio->op == REQ_OP_WRITE)) {
2057 struct journal_sector *js;
2060 js = access_journal_data(ic, journal_section, journal_entry);
2061 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2065 je->last_bytes[s] = js[s].commit_id;
2066 } while (++s < ic->sectors_per_block);
2068 if (ic->internal_hash) {
2069 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2071 if (unlikely(digest_size > ic->tag_size)) {
2072 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2074 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2075 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2077 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2080 journal_entry_set_sector(je, logical_sector);
2082 logical_sector += ic->sectors_per_block;
2085 if (unlikely(journal_entry == ic->journal_section_entries)) {
2088 wraparound_section(ic, &journal_section);
2091 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2092 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2094 if (unlikely(dio->op == REQ_OP_READ))
2095 flush_dcache_page(bv.bv_page);
2097 } while (n_sectors);
2099 if (likely(dio->op == REQ_OP_WRITE)) {
2101 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2102 wake_up(&ic->copy_to_journal_wait);
2103 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2104 queue_work(ic->commit_wq, &ic->commit_work);
2106 schedule_autocommit(ic);
2108 remove_range(ic, &dio->range);
2110 if (unlikely(bio->bi_iter.bi_size)) {
2111 sector_t area, offset;
2113 dio->range.logical_sector = logical_sector;
2114 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2115 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2122 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2124 struct dm_integrity_c *ic = dio->ic;
2125 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2126 unsigned int journal_section, journal_entry;
2127 unsigned int journal_read_pos;
2128 struct completion read_comp;
2129 bool discard_retried = false;
2130 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2132 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2133 need_sync_io = true;
2135 if (need_sync_io && from_map) {
2136 INIT_WORK(&dio->work, integrity_bio_wait);
2137 queue_work(ic->offload_wq, &dio->work);
2142 spin_lock_irq(&ic->endio_wait.lock);
2144 if (unlikely(dm_integrity_failed(ic))) {
2145 spin_unlock_irq(&ic->endio_wait.lock);
2149 dio->range.n_sectors = bio_sectors(bio);
2150 journal_read_pos = NOT_FOUND;
2151 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2152 if (dio->op == REQ_OP_WRITE) {
2153 unsigned int next_entry, i, pos;
2154 unsigned int ws, we, range_sectors;
2156 dio->range.n_sectors = min(dio->range.n_sectors,
2157 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2158 if (unlikely(!dio->range.n_sectors)) {
2160 goto offload_to_thread;
2161 sleep_on_endio_wait(ic);
2164 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2165 ic->free_sectors -= range_sectors;
2166 journal_section = ic->free_section;
2167 journal_entry = ic->free_section_entry;
2169 next_entry = ic->free_section_entry + range_sectors;
2170 ic->free_section_entry = next_entry % ic->journal_section_entries;
2171 ic->free_section += next_entry / ic->journal_section_entries;
2172 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2173 wraparound_section(ic, &ic->free_section);
2175 pos = journal_section * ic->journal_section_entries + journal_entry;
2176 ws = journal_section;
2180 struct journal_entry *je;
2182 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2184 if (unlikely(pos >= ic->journal_entries))
2187 je = access_journal_entry(ic, ws, we);
2188 BUG_ON(!journal_entry_is_unused(je));
2189 journal_entry_set_inprogress(je);
2191 if (unlikely(we == ic->journal_section_entries)) {
2194 wraparound_section(ic, &ws);
2196 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2198 spin_unlock_irq(&ic->endio_wait.lock);
2199 goto journal_read_write;
2201 sector_t next_sector;
2203 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2204 if (likely(journal_read_pos == NOT_FOUND)) {
2205 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2206 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2209 unsigned int jp = journal_read_pos + 1;
2211 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2212 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2215 dio->range.n_sectors = i;
2219 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2221 * We must not sleep in the request routine because it could
2222 * stall bios on current->bio_list.
2223 * So, we offload the bio to a workqueue if we have to sleep.
2227 spin_unlock_irq(&ic->endio_wait.lock);
2228 INIT_WORK(&dio->work, integrity_bio_wait);
2229 queue_work(ic->wait_wq, &dio->work);
2232 if (journal_read_pos != NOT_FOUND)
2233 dio->range.n_sectors = ic->sectors_per_block;
2234 wait_and_add_new_range(ic, &dio->range);
2236 * wait_and_add_new_range drops the spinlock, so the journal
2237 * may have been changed arbitrarily. We need to recheck.
2238 * To simplify the code, we restrict I/O size to just one block.
2240 if (journal_read_pos != NOT_FOUND) {
2241 sector_t next_sector;
2242 unsigned int new_pos;
2244 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2245 if (unlikely(new_pos != journal_read_pos)) {
2246 remove_range_unlocked(ic, &dio->range);
2251 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2252 sector_t next_sector;
2253 unsigned int new_pos;
2255 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2256 if (unlikely(new_pos != NOT_FOUND) ||
2257 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2258 remove_range_unlocked(ic, &dio->range);
2259 spin_unlock_irq(&ic->endio_wait.lock);
2260 queue_work(ic->commit_wq, &ic->commit_work);
2261 flush_workqueue(ic->commit_wq);
2262 queue_work(ic->writer_wq, &ic->writer_work);
2263 flush_workqueue(ic->writer_wq);
2264 discard_retried = true;
2268 spin_unlock_irq(&ic->endio_wait.lock);
2270 if (unlikely(journal_read_pos != NOT_FOUND)) {
2271 journal_section = journal_read_pos / ic->journal_section_entries;
2272 journal_entry = journal_read_pos % ic->journal_section_entries;
2273 goto journal_read_write;
2276 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2277 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2278 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2279 struct bitmap_block_status *bbs;
2281 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2282 spin_lock(&bbs->bio_queue_lock);
2283 bio_list_add(&bbs->bio_queue, bio);
2284 spin_unlock(&bbs->bio_queue_lock);
2285 queue_work(ic->writer_wq, &bbs->work);
2290 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2293 init_completion(&read_comp);
2294 dio->completion = &read_comp;
2296 dio->completion = NULL;
2298 dm_bio_record(&dio->bio_details, bio);
2299 bio_set_dev(bio, ic->dev->bdev);
2300 bio->bi_integrity = NULL;
2301 bio->bi_opf &= ~REQ_INTEGRITY;
2302 bio->bi_end_io = integrity_end_io;
2303 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2305 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2306 integrity_metadata(&dio->work);
2307 dm_integrity_flush_buffers(ic, false);
2309 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2310 dio->completion = NULL;
2312 submit_bio_noacct(bio);
2317 submit_bio_noacct(bio);
2320 wait_for_completion_io(&read_comp);
2321 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2322 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2324 if (ic->mode == 'B') {
2325 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2326 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2330 if (likely(!bio->bi_status))
2331 integrity_metadata(&dio->work);
2336 INIT_WORK(&dio->work, integrity_metadata);
2337 queue_work(ic->metadata_wq, &dio->work);
2343 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2346 do_endio_flush(ic, dio);
2350 static void integrity_bio_wait(struct work_struct *w)
2352 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2354 dm_integrity_map_continue(dio, false);
2357 static void pad_uncommitted(struct dm_integrity_c *ic)
2359 if (ic->free_section_entry) {
2360 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2361 ic->free_section_entry = 0;
2363 wraparound_section(ic, &ic->free_section);
2364 ic->n_uncommitted_sections++;
2366 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2367 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2368 ic->journal_section_entries + ic->free_sectors)) {
2369 DMCRIT("journal_sections %u, journal_section_entries %u, "
2370 "n_uncommitted_sections %u, n_committed_sections %u, "
2371 "journal_section_entries %u, free_sectors %u",
2372 ic->journal_sections, ic->journal_section_entries,
2373 ic->n_uncommitted_sections, ic->n_committed_sections,
2374 ic->journal_section_entries, ic->free_sectors);
2378 static void integrity_commit(struct work_struct *w)
2380 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2381 unsigned int commit_start, commit_sections;
2382 unsigned int i, j, n;
2383 struct bio *flushes;
2385 del_timer(&ic->autocommit_timer);
2387 spin_lock_irq(&ic->endio_wait.lock);
2388 flushes = bio_list_get(&ic->flush_bio_list);
2389 if (unlikely(ic->mode != 'J')) {
2390 spin_unlock_irq(&ic->endio_wait.lock);
2391 dm_integrity_flush_buffers(ic, true);
2392 goto release_flush_bios;
2395 pad_uncommitted(ic);
2396 commit_start = ic->uncommitted_section;
2397 commit_sections = ic->n_uncommitted_sections;
2398 spin_unlock_irq(&ic->endio_wait.lock);
2400 if (!commit_sections)
2401 goto release_flush_bios;
2403 ic->wrote_to_journal = true;
2406 for (n = 0; n < commit_sections; n++) {
2407 for (j = 0; j < ic->journal_section_entries; j++) {
2408 struct journal_entry *je;
2410 je = access_journal_entry(ic, i, j);
2411 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2413 for (j = 0; j < ic->journal_section_sectors; j++) {
2414 struct journal_sector *js;
2416 js = access_journal(ic, i, j);
2417 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2420 if (unlikely(i >= ic->journal_sections))
2421 ic->commit_seq = next_commit_seq(ic->commit_seq);
2422 wraparound_section(ic, &i);
2426 write_journal(ic, commit_start, commit_sections);
2428 spin_lock_irq(&ic->endio_wait.lock);
2429 ic->uncommitted_section += commit_sections;
2430 wraparound_section(ic, &ic->uncommitted_section);
2431 ic->n_uncommitted_sections -= commit_sections;
2432 ic->n_committed_sections += commit_sections;
2433 spin_unlock_irq(&ic->endio_wait.lock);
2435 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2436 queue_work(ic->writer_wq, &ic->writer_work);
2440 struct bio *next = flushes->bi_next;
2442 flushes->bi_next = NULL;
2443 do_endio(ic, flushes);
2448 static void complete_copy_from_journal(unsigned long error, void *context)
2450 struct journal_io *io = context;
2451 struct journal_completion *comp = io->comp;
2452 struct dm_integrity_c *ic = comp->ic;
2454 remove_range(ic, &io->range);
2455 mempool_free(io, &ic->journal_io_mempool);
2456 if (unlikely(error != 0))
2457 dm_integrity_io_error(ic, "copying from journal", -EIO);
2458 complete_journal_op(comp);
2461 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2462 struct journal_entry *je)
2467 js->commit_id = je->last_bytes[s];
2469 } while (++s < ic->sectors_per_block);
2472 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2473 unsigned int write_sections, bool from_replay)
2475 unsigned int i, j, n;
2476 struct journal_completion comp;
2477 struct blk_plug plug;
2479 blk_start_plug(&plug);
2482 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2483 init_completion(&comp.comp);
2486 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2487 #ifndef INTERNAL_VERIFY
2488 if (unlikely(from_replay))
2490 rw_section_mac(ic, i, false);
2491 for (j = 0; j < ic->journal_section_entries; j++) {
2492 struct journal_entry *je = access_journal_entry(ic, i, j);
2493 sector_t sec, area, offset;
2494 unsigned int k, l, next_loop;
2495 sector_t metadata_block;
2496 unsigned int metadata_offset;
2497 struct journal_io *io;
2499 if (journal_entry_is_unused(je))
2501 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2502 sec = journal_entry_get_sector(je);
2503 if (unlikely(from_replay)) {
2504 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2505 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2506 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2508 if (unlikely(sec >= ic->provided_data_sectors)) {
2509 journal_entry_set_unused(je);
2513 get_area_and_offset(ic, sec, &area, &offset);
2514 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2515 for (k = j + 1; k < ic->journal_section_entries; k++) {
2516 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2517 sector_t sec2, area2, offset2;
2519 if (journal_entry_is_unused(je2))
2521 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2522 sec2 = journal_entry_get_sector(je2);
2523 if (unlikely(sec2 >= ic->provided_data_sectors))
2525 get_area_and_offset(ic, sec2, &area2, &offset2);
2526 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2528 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2532 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2534 io->range.logical_sector = sec;
2535 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2537 spin_lock_irq(&ic->endio_wait.lock);
2538 add_new_range_and_wait(ic, &io->range);
2540 if (likely(!from_replay)) {
2541 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2543 /* don't write if there is newer committed sector */
2544 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2545 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2547 journal_entry_set_unused(je2);
2548 remove_journal_node(ic, §ion_node[j]);
2550 sec += ic->sectors_per_block;
2551 offset += ic->sectors_per_block;
2553 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2554 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2556 journal_entry_set_unused(je2);
2557 remove_journal_node(ic, §ion_node[k - 1]);
2561 remove_range_unlocked(ic, &io->range);
2562 spin_unlock_irq(&ic->endio_wait.lock);
2563 mempool_free(io, &ic->journal_io_mempool);
2566 for (l = j; l < k; l++)
2567 remove_journal_node(ic, §ion_node[l]);
2569 spin_unlock_irq(&ic->endio_wait.lock);
2571 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2572 for (l = j; l < k; l++) {
2574 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2577 #ifndef INTERNAL_VERIFY
2578 unlikely(from_replay) &&
2580 ic->internal_hash) {
2581 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2583 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2584 (char *)access_journal_data(ic, i, l), test_tag);
2585 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2586 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2587 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2591 journal_entry_set_unused(je2);
2592 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2593 ic->tag_size, TAG_WRITE);
2595 dm_integrity_io_error(ic, "reading tags", r);
2598 atomic_inc(&comp.in_flight);
2599 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2600 (k - j) << ic->sb->log2_sectors_per_block,
2601 get_data_sector(ic, area, offset),
2602 complete_copy_from_journal, io);
2608 dm_bufio_write_dirty_buffers_async(ic->bufio);
2610 blk_finish_plug(&plug);
2612 complete_journal_op(&comp);
2613 wait_for_completion_io(&comp.comp);
2615 dm_integrity_flush_buffers(ic, true);
2618 static void integrity_writer(struct work_struct *w)
2620 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2621 unsigned int write_start, write_sections;
2622 unsigned int prev_free_sectors;
2624 spin_lock_irq(&ic->endio_wait.lock);
2625 write_start = ic->committed_section;
2626 write_sections = ic->n_committed_sections;
2627 spin_unlock_irq(&ic->endio_wait.lock);
2629 if (!write_sections)
2632 do_journal_write(ic, write_start, write_sections, false);
2634 spin_lock_irq(&ic->endio_wait.lock);
2636 ic->committed_section += write_sections;
2637 wraparound_section(ic, &ic->committed_section);
2638 ic->n_committed_sections -= write_sections;
2640 prev_free_sectors = ic->free_sectors;
2641 ic->free_sectors += write_sections * ic->journal_section_entries;
2642 if (unlikely(!prev_free_sectors))
2643 wake_up_locked(&ic->endio_wait);
2645 spin_unlock_irq(&ic->endio_wait.lock);
2648 static void recalc_write_super(struct dm_integrity_c *ic)
2652 dm_integrity_flush_buffers(ic, false);
2653 if (dm_integrity_failed(ic))
2656 r = sync_rw_sb(ic, REQ_OP_WRITE);
2658 dm_integrity_io_error(ic, "writing superblock", r);
2661 static void integrity_recalc(struct work_struct *w)
2663 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2664 struct dm_integrity_range range;
2665 struct dm_io_request io_req;
2666 struct dm_io_region io_loc;
2667 sector_t area, offset;
2668 sector_t metadata_block;
2669 unsigned int metadata_offset;
2670 sector_t logical_sector, n_sectors;
2674 unsigned int super_counter = 0;
2676 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2678 spin_lock_irq(&ic->endio_wait.lock);
2682 if (unlikely(dm_post_suspending(ic->ti)))
2685 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2686 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2687 if (ic->mode == 'B') {
2688 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2689 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2690 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2695 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2696 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2698 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2700 add_new_range_and_wait(ic, &range);
2701 spin_unlock_irq(&ic->endio_wait.lock);
2702 logical_sector = range.logical_sector;
2703 n_sectors = range.n_sectors;
2705 if (ic->mode == 'B') {
2706 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2707 goto advance_and_next;
2709 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2710 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2711 logical_sector += ic->sectors_per_block;
2712 n_sectors -= ic->sectors_per_block;
2715 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2716 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2717 n_sectors -= ic->sectors_per_block;
2720 get_area_and_offset(ic, logical_sector, &area, &offset);
2723 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2725 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2726 recalc_write_super(ic);
2727 if (ic->mode == 'B')
2728 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2733 if (unlikely(dm_integrity_failed(ic)))
2736 io_req.bi_opf = REQ_OP_READ;
2737 io_req.mem.type = DM_IO_VMA;
2738 io_req.mem.ptr.addr = ic->recalc_buffer;
2739 io_req.notify.fn = NULL;
2740 io_req.client = ic->io;
2741 io_loc.bdev = ic->dev->bdev;
2742 io_loc.sector = get_data_sector(ic, area, offset);
2743 io_loc.count = n_sectors;
2745 r = dm_io(&io_req, 1, &io_loc, NULL);
2747 dm_integrity_io_error(ic, "reading data", r);
2751 t = ic->recalc_tags;
2752 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2753 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2757 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2759 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2761 dm_integrity_io_error(ic, "writing tags", r);
2765 if (ic->mode == 'B') {
2766 sector_t start, end;
2768 start = (range.logical_sector >>
2769 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2770 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2771 end = ((range.logical_sector + range.n_sectors) >>
2772 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2773 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2774 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2780 spin_lock_irq(&ic->endio_wait.lock);
2781 remove_range_unlocked(ic, &range);
2782 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2786 remove_range(ic, &range);
2790 spin_unlock_irq(&ic->endio_wait.lock);
2792 recalc_write_super(ic);
2795 static void bitmap_block_work(struct work_struct *w)
2797 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2798 struct dm_integrity_c *ic = bbs->ic;
2800 struct bio_list bio_queue;
2801 struct bio_list waiting;
2803 bio_list_init(&waiting);
2805 spin_lock(&bbs->bio_queue_lock);
2806 bio_queue = bbs->bio_queue;
2807 bio_list_init(&bbs->bio_queue);
2808 spin_unlock(&bbs->bio_queue_lock);
2810 while ((bio = bio_list_pop(&bio_queue))) {
2811 struct dm_integrity_io *dio;
2813 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2815 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2816 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2817 remove_range(ic, &dio->range);
2818 INIT_WORK(&dio->work, integrity_bio_wait);
2819 queue_work(ic->offload_wq, &dio->work);
2821 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2822 dio->range.n_sectors, BITMAP_OP_SET);
2823 bio_list_add(&waiting, bio);
2827 if (bio_list_empty(&waiting))
2830 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2831 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2832 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2834 while ((bio = bio_list_pop(&waiting))) {
2835 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2837 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2838 dio->range.n_sectors, BITMAP_OP_SET);
2840 remove_range(ic, &dio->range);
2841 INIT_WORK(&dio->work, integrity_bio_wait);
2842 queue_work(ic->offload_wq, &dio->work);
2845 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2848 static void bitmap_flush_work(struct work_struct *work)
2850 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2851 struct dm_integrity_range range;
2852 unsigned long limit;
2855 dm_integrity_flush_buffers(ic, false);
2857 range.logical_sector = 0;
2858 range.n_sectors = ic->provided_data_sectors;
2860 spin_lock_irq(&ic->endio_wait.lock);
2861 add_new_range_and_wait(ic, &range);
2862 spin_unlock_irq(&ic->endio_wait.lock);
2864 dm_integrity_flush_buffers(ic, true);
2866 limit = ic->provided_data_sectors;
2867 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2868 limit = le64_to_cpu(ic->sb->recalc_sector)
2869 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2870 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2872 /*DEBUG_print("zeroing journal\n");*/
2873 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2874 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2876 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2877 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2879 spin_lock_irq(&ic->endio_wait.lock);
2880 remove_range_unlocked(ic, &range);
2881 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2883 spin_unlock_irq(&ic->endio_wait.lock);
2884 spin_lock_irq(&ic->endio_wait.lock);
2886 spin_unlock_irq(&ic->endio_wait.lock);
2890 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2891 unsigned int n_sections, unsigned char commit_seq)
2893 unsigned int i, j, n;
2898 for (n = 0; n < n_sections; n++) {
2899 i = start_section + n;
2900 wraparound_section(ic, &i);
2901 for (j = 0; j < ic->journal_section_sectors; j++) {
2902 struct journal_sector *js = access_journal(ic, i, j);
2904 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2905 memset(&js->sectors, 0, sizeof(js->sectors));
2906 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2908 for (j = 0; j < ic->journal_section_entries; j++) {
2909 struct journal_entry *je = access_journal_entry(ic, i, j);
2911 journal_entry_set_unused(je);
2915 write_journal(ic, start_section, n_sections);
2918 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2922 for (k = 0; k < N_COMMIT_IDS; k++) {
2923 if (dm_integrity_commit_id(ic, i, j, k) == id)
2926 dm_integrity_io_error(ic, "journal commit id", -EIO);
2930 static void replay_journal(struct dm_integrity_c *ic)
2933 bool used_commit_ids[N_COMMIT_IDS];
2934 unsigned int max_commit_id_sections[N_COMMIT_IDS];
2935 unsigned int write_start, write_sections;
2936 unsigned int continue_section;
2938 unsigned char unused, last_used, want_commit_seq;
2940 if (ic->mode == 'R')
2943 if (ic->journal_uptodate)
2949 if (!ic->just_formatted) {
2950 DEBUG_print("reading journal\n");
2951 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2953 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2954 if (ic->journal_io) {
2955 struct journal_completion crypt_comp;
2958 init_completion(&crypt_comp.comp);
2959 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2960 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2961 wait_for_completion(&crypt_comp.comp);
2963 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2966 if (dm_integrity_failed(ic))
2969 journal_empty = true;
2970 memset(used_commit_ids, 0, sizeof(used_commit_ids));
2971 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2972 for (i = 0; i < ic->journal_sections; i++) {
2973 for (j = 0; j < ic->journal_section_sectors; j++) {
2975 struct journal_sector *js = access_journal(ic, i, j);
2977 k = find_commit_seq(ic, i, j, js->commit_id);
2980 used_commit_ids[k] = true;
2981 max_commit_id_sections[k] = i;
2983 if (journal_empty) {
2984 for (j = 0; j < ic->journal_section_entries; j++) {
2985 struct journal_entry *je = access_journal_entry(ic, i, j);
2987 if (!journal_entry_is_unused(je)) {
2988 journal_empty = false;
2995 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2996 unused = N_COMMIT_IDS - 1;
2997 while (unused && !used_commit_ids[unused - 1])
3000 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3001 if (!used_commit_ids[unused])
3003 if (unused == N_COMMIT_IDS) {
3004 dm_integrity_io_error(ic, "journal commit ids", -EIO);
3008 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3009 unused, used_commit_ids[0], used_commit_ids[1],
3010 used_commit_ids[2], used_commit_ids[3]);
3012 last_used = prev_commit_seq(unused);
3013 want_commit_seq = prev_commit_seq(last_used);
3015 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3016 journal_empty = true;
3018 write_start = max_commit_id_sections[last_used] + 1;
3019 if (unlikely(write_start >= ic->journal_sections))
3020 want_commit_seq = next_commit_seq(want_commit_seq);
3021 wraparound_section(ic, &write_start);
3024 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3025 for (j = 0; j < ic->journal_section_sectors; j++) {
3026 struct journal_sector *js = access_journal(ic, i, j);
3028 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3030 * This could be caused by crash during writing.
3031 * We won't replay the inconsistent part of the
3034 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3035 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3040 if (unlikely(i >= ic->journal_sections))
3041 want_commit_seq = next_commit_seq(want_commit_seq);
3042 wraparound_section(ic, &i);
3046 if (!journal_empty) {
3047 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3048 write_sections, write_start, want_commit_seq);
3049 do_journal_write(ic, write_start, write_sections, true);
3052 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3053 continue_section = write_start;
3054 ic->commit_seq = want_commit_seq;
3055 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3058 unsigned char erase_seq;
3061 DEBUG_print("clearing journal\n");
3063 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3065 init_journal(ic, s, 1, erase_seq);
3067 wraparound_section(ic, &s);
3068 if (ic->journal_sections >= 2) {
3069 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3070 s += ic->journal_sections - 2;
3071 wraparound_section(ic, &s);
3072 init_journal(ic, s, 1, erase_seq);
3075 continue_section = 0;
3076 ic->commit_seq = next_commit_seq(erase_seq);
3079 ic->committed_section = continue_section;
3080 ic->n_committed_sections = 0;
3082 ic->uncommitted_section = continue_section;
3083 ic->n_uncommitted_sections = 0;
3085 ic->free_section = continue_section;
3086 ic->free_section_entry = 0;
3087 ic->free_sectors = ic->journal_entries;
3089 ic->journal_tree_root = RB_ROOT;
3090 for (i = 0; i < ic->journal_entries; i++)
3091 init_journal_node(&ic->journal_tree[i]);
3094 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3096 DEBUG_print("%s\n", __func__);
3098 if (ic->mode == 'B') {
3099 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3100 ic->synchronous_mode = 1;
3102 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3103 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3104 flush_workqueue(ic->commit_wq);
3108 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3110 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3112 DEBUG_print("%s\n", __func__);
3114 dm_integrity_enter_synchronous_mode(ic);
3119 static void dm_integrity_postsuspend(struct dm_target *ti)
3121 struct dm_integrity_c *ic = ti->private;
3124 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3126 del_timer_sync(&ic->autocommit_timer);
3129 drain_workqueue(ic->recalc_wq);
3131 if (ic->mode == 'B')
3132 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3134 queue_work(ic->commit_wq, &ic->commit_work);
3135 drain_workqueue(ic->commit_wq);
3137 if (ic->mode == 'J') {
3138 queue_work(ic->writer_wq, &ic->writer_work);
3139 drain_workqueue(ic->writer_wq);
3140 dm_integrity_flush_buffers(ic, true);
3141 if (ic->wrote_to_journal) {
3142 init_journal(ic, ic->free_section,
3143 ic->journal_sections - ic->free_section, ic->commit_seq);
3144 if (ic->free_section) {
3145 init_journal(ic, 0, ic->free_section,
3146 next_commit_seq(ic->commit_seq));
3151 if (ic->mode == 'B') {
3152 dm_integrity_flush_buffers(ic, true);
3154 /* set to 0 to test bitmap replay code */
3155 init_journal(ic, 0, ic->journal_sections, 0);
3156 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3157 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3159 dm_integrity_io_error(ic, "writing superblock", r);
3163 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3165 ic->journal_uptodate = true;
3168 static void dm_integrity_resume(struct dm_target *ti)
3170 struct dm_integrity_c *ic = ti->private;
3171 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3174 DEBUG_print("resume\n");
3176 ic->wrote_to_journal = false;
3178 if (ic->provided_data_sectors != old_provided_data_sectors) {
3179 if (ic->provided_data_sectors > old_provided_data_sectors &&
3181 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3182 rw_journal_sectors(ic, REQ_OP_READ, 0,
3183 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3184 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3185 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3186 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3187 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3190 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3191 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3193 dm_integrity_io_error(ic, "writing superblock", r);
3196 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3197 DEBUG_print("resume dirty_bitmap\n");
3198 rw_journal_sectors(ic, REQ_OP_READ, 0,
3199 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3200 if (ic->mode == 'B') {
3201 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3202 !ic->reset_recalculate_flag) {
3203 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3204 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3205 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3206 BITMAP_OP_TEST_ALL_CLEAR)) {
3207 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3208 ic->sb->recalc_sector = cpu_to_le64(0);
3211 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3212 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3213 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3214 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3215 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3216 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3217 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3218 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3219 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3220 ic->sb->recalc_sector = cpu_to_le64(0);
3223 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3224 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3225 ic->reset_recalculate_flag) {
3226 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3227 ic->sb->recalc_sector = cpu_to_le64(0);
3229 init_journal(ic, 0, ic->journal_sections, 0);
3231 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3233 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3235 dm_integrity_io_error(ic, "writing superblock", r);
3238 if (ic->reset_recalculate_flag) {
3239 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3240 ic->sb->recalc_sector = cpu_to_le64(0);
3242 if (ic->mode == 'B') {
3243 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3244 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3245 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3247 dm_integrity_io_error(ic, "writing superblock", r);
3249 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3250 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3251 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3252 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3253 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3254 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3255 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3256 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3257 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3258 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3259 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3261 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3262 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3266 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3267 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3268 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3270 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3271 if (recalc_pos < ic->provided_data_sectors) {
3272 queue_work(ic->recalc_wq, &ic->recalc_work);
3273 } else if (recalc_pos > ic->provided_data_sectors) {
3274 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3275 recalc_write_super(ic);
3279 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3280 ic->reboot_notifier.next = NULL;
3281 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3282 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3285 /* set to 1 to stress test synchronous mode */
3286 dm_integrity_enter_synchronous_mode(ic);
3290 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3291 unsigned int status_flags, char *result, unsigned int maxlen)
3293 struct dm_integrity_c *ic = ti->private;
3294 unsigned int arg_count;
3298 case STATUSTYPE_INFO:
3300 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3301 ic->provided_data_sectors);
3302 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3303 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3308 case STATUSTYPE_TABLE: {
3309 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3311 watermark_percentage += ic->journal_entries / 2;
3312 do_div(watermark_percentage, ic->journal_entries);
3314 arg_count += !!ic->meta_dev;
3315 arg_count += ic->sectors_per_block != 1;
3316 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3317 arg_count += ic->reset_recalculate_flag;
3318 arg_count += ic->discard;
3319 arg_count += ic->mode == 'J';
3320 arg_count += ic->mode == 'J';
3321 arg_count += ic->mode == 'B';
3322 arg_count += ic->mode == 'B';
3323 arg_count += !!ic->internal_hash_alg.alg_string;
3324 arg_count += !!ic->journal_crypt_alg.alg_string;
3325 arg_count += !!ic->journal_mac_alg.alg_string;
3326 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3327 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3328 arg_count += ic->legacy_recalculate;
3329 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3330 ic->tag_size, ic->mode, arg_count);
3332 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3333 if (ic->sectors_per_block != 1)
3334 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3335 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3336 DMEMIT(" recalculate");
3337 if (ic->reset_recalculate_flag)
3338 DMEMIT(" reset_recalculate");
3340 DMEMIT(" allow_discards");
3341 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3342 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3343 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3344 if (ic->mode == 'J') {
3345 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3346 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3348 if (ic->mode == 'B') {
3349 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3350 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3352 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3353 DMEMIT(" fix_padding");
3354 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3355 DMEMIT(" fix_hmac");
3356 if (ic->legacy_recalculate)
3357 DMEMIT(" legacy_recalculate");
3359 #define EMIT_ALG(a, n) \
3361 if (ic->a.alg_string) { \
3362 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3363 if (ic->a.key_string) \
3364 DMEMIT(":%s", ic->a.key_string);\
3367 EMIT_ALG(internal_hash_alg, "internal_hash");
3368 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3369 EMIT_ALG(journal_mac_alg, "journal_mac");
3372 case STATUSTYPE_IMA:
3373 DMEMIT_TARGET_NAME_VERSION(ti->type);
3374 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3375 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3378 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3379 if (ic->sectors_per_block != 1)
3380 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3382 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3384 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3385 DMEMIT(",fix_padding=%c",
3386 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3387 DMEMIT(",fix_hmac=%c",
3388 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3389 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3391 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3392 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3393 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3399 static int dm_integrity_iterate_devices(struct dm_target *ti,
3400 iterate_devices_callout_fn fn, void *data)
3402 struct dm_integrity_c *ic = ti->private;
3405 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3407 return fn(ti, ic->dev, 0, ti->len, data);
3410 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3412 struct dm_integrity_c *ic = ti->private;
3414 if (ic->sectors_per_block > 1) {
3415 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3416 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3417 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3418 limits->dma_alignment = limits->logical_block_size - 1;
3422 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3424 unsigned int sector_space = JOURNAL_SECTOR_DATA;
3426 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3427 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3428 JOURNAL_ENTRY_ROUNDUP);
3430 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3431 sector_space -= JOURNAL_MAC_PER_SECTOR;
3432 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3433 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3434 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3435 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3438 static int calculate_device_limits(struct dm_integrity_c *ic)
3440 __u64 initial_sectors;
3442 calculate_journal_section_size(ic);
3443 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3444 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3446 ic->initial_sectors = initial_sectors;
3448 if (!ic->meta_dev) {
3449 sector_t last_sector, last_area, last_offset;
3451 /* we have to maintain excessive padding for compatibility with existing volumes */
3452 __u64 metadata_run_padding =
3453 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3454 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3455 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3457 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3458 metadata_run_padding) >> SECTOR_SHIFT;
3459 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3460 ic->log2_metadata_run = __ffs(ic->metadata_run);
3462 ic->log2_metadata_run = -1;
3464 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3465 last_sector = get_data_sector(ic, last_area, last_offset);
3466 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3469 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3471 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3472 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3473 meta_size <<= ic->log2_buffer_sectors;
3474 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3475 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3477 ic->metadata_run = 1;
3478 ic->log2_metadata_run = 0;
3484 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3486 if (!ic->meta_dev) {
3489 ic->provided_data_sectors = 0;
3490 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3491 __u64 prev_data_sectors = ic->provided_data_sectors;
3493 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3494 if (calculate_device_limits(ic))
3495 ic->provided_data_sectors = prev_data_sectors;
3498 ic->provided_data_sectors = ic->data_device_sectors;
3499 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3503 static int initialize_superblock(struct dm_integrity_c *ic,
3504 unsigned int journal_sectors, unsigned int interleave_sectors)
3506 unsigned int journal_sections;
3509 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3510 memcpy(ic->sb->magic, SB_MAGIC, 8);
3511 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3512 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3513 if (ic->journal_mac_alg.alg_string)
3514 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3516 calculate_journal_section_size(ic);
3517 journal_sections = journal_sectors / ic->journal_section_sectors;
3518 if (!journal_sections)
3519 journal_sections = 1;
3521 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3522 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3523 get_random_bytes(ic->sb->salt, SALT_SIZE);
3526 if (!ic->meta_dev) {
3527 if (ic->fix_padding)
3528 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3529 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3530 if (!interleave_sectors)
3531 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3532 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3533 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3534 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3536 get_provided_data_sectors(ic);
3537 if (!ic->provided_data_sectors)
3540 ic->sb->log2_interleave_sectors = 0;
3542 get_provided_data_sectors(ic);
3543 if (!ic->provided_data_sectors)
3547 ic->sb->journal_sections = cpu_to_le32(0);
3548 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3549 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3550 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3552 if (test_journal_sections > journal_sections)
3554 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3555 if (calculate_device_limits(ic))
3556 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3559 if (!le32_to_cpu(ic->sb->journal_sections)) {
3560 if (ic->log2_buffer_sectors > 3) {
3561 ic->log2_buffer_sectors--;
3562 goto try_smaller_buffer;
3568 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3575 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3577 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3578 struct blk_integrity bi;
3580 memset(&bi, 0, sizeof(bi));
3581 bi.profile = &dm_integrity_profile;
3582 bi.tuple_size = ic->tag_size;
3583 bi.tag_size = bi.tuple_size;
3584 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3586 blk_integrity_register(disk, &bi);
3587 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3590 static void dm_integrity_free_page_list(struct page_list *pl)
3596 for (i = 0; pl[i].page; i++)
3597 __free_page(pl[i].page);
3601 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3603 struct page_list *pl;
3606 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3610 for (i = 0; i < n_pages; i++) {
3611 pl[i].page = alloc_page(GFP_KERNEL);
3613 dm_integrity_free_page_list(pl);
3617 pl[i - 1].next = &pl[i];
3625 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3629 for (i = 0; i < ic->journal_sections; i++)
3634 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3635 struct page_list *pl)
3637 struct scatterlist **sl;
3640 sl = kvmalloc_array(ic->journal_sections,
3641 sizeof(struct scatterlist *),
3642 GFP_KERNEL | __GFP_ZERO);
3646 for (i = 0; i < ic->journal_sections; i++) {
3647 struct scatterlist *s;
3648 unsigned int start_index, start_offset;
3649 unsigned int end_index, end_offset;
3650 unsigned int n_pages;
3653 page_list_location(ic, i, 0, &start_index, &start_offset);
3654 page_list_location(ic, i, ic->journal_section_sectors - 1,
3655 &end_index, &end_offset);
3657 n_pages = (end_index - start_index + 1);
3659 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3662 dm_integrity_free_journal_scatterlist(ic, sl);
3666 sg_init_table(s, n_pages);
3667 for (idx = start_index; idx <= end_index; idx++) {
3668 char *va = lowmem_page_address(pl[idx].page);
3669 unsigned int start = 0, end = PAGE_SIZE;
3671 if (idx == start_index)
3672 start = start_offset;
3673 if (idx == end_index)
3674 end = end_offset + (1 << SECTOR_SHIFT);
3675 sg_set_buf(&s[idx - start_index], va + start, end - start);
3684 static void free_alg(struct alg_spec *a)
3686 kfree_sensitive(a->alg_string);
3687 kfree_sensitive(a->key);
3688 memset(a, 0, sizeof(*a));
3691 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3697 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3701 k = strchr(a->alg_string, ':');
3704 a->key_string = k + 1;
3705 if (strlen(a->key_string) & 1)
3708 a->key_size = strlen(a->key_string) / 2;
3709 a->key = kmalloc(a->key_size, GFP_KERNEL);
3712 if (hex2bin(a->key, a->key_string, a->key_size))
3718 *error = error_inval;
3721 *error = "Out of memory for an argument";
3725 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3726 char *error_alg, char *error_key)
3730 if (a->alg_string) {
3731 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3732 if (IS_ERR(*hash)) {
3740 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3745 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3754 static int create_journal(struct dm_integrity_c *ic, char **error)
3758 __u64 journal_pages, journal_desc_size, journal_tree_size;
3759 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3760 struct skcipher_request *req = NULL;
3762 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3763 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3764 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3765 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3767 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3768 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3769 journal_desc_size = journal_pages * sizeof(struct page_list);
3770 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3771 *error = "Journal doesn't fit into memory";
3775 ic->journal_pages = journal_pages;
3777 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3779 *error = "Could not allocate memory for journal";
3783 if (ic->journal_crypt_alg.alg_string) {
3784 unsigned int ivsize, blocksize;
3785 struct journal_completion comp;
3788 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3789 if (IS_ERR(ic->journal_crypt)) {
3790 *error = "Invalid journal cipher";
3791 r = PTR_ERR(ic->journal_crypt);
3792 ic->journal_crypt = NULL;
3795 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3796 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3798 if (ic->journal_crypt_alg.key) {
3799 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3800 ic->journal_crypt_alg.key_size);
3802 *error = "Error setting encryption key";
3806 DEBUG_print("cipher %s, block size %u iv size %u\n",
3807 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3809 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3810 if (!ic->journal_io) {
3811 *error = "Could not allocate memory for journal io";
3816 if (blocksize == 1) {
3817 struct scatterlist *sg;
3819 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3821 *error = "Could not allocate crypt request";
3826 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3828 *error = "Could not allocate iv";
3833 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3834 if (!ic->journal_xor) {
3835 *error = "Could not allocate memory for journal xor";
3840 sg = kvmalloc_array(ic->journal_pages + 1,
3841 sizeof(struct scatterlist),
3844 *error = "Unable to allocate sg list";
3848 sg_init_table(sg, ic->journal_pages + 1);
3849 for (i = 0; i < ic->journal_pages; i++) {
3850 char *va = lowmem_page_address(ic->journal_xor[i].page);
3853 sg_set_buf(&sg[i], va, PAGE_SIZE);
3855 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3857 skcipher_request_set_crypt(req, sg, sg,
3858 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3859 init_completion(&comp.comp);
3860 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3861 if (do_crypt(true, req, &comp))
3862 wait_for_completion(&comp.comp);
3864 r = dm_integrity_failed(ic);
3866 *error = "Unable to encrypt journal";
3869 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3871 crypto_free_skcipher(ic->journal_crypt);
3872 ic->journal_crypt = NULL;
3874 unsigned int crypt_len = roundup(ivsize, blocksize);
3876 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3878 *error = "Could not allocate crypt request";
3883 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3885 *error = "Could not allocate iv";
3890 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3892 *error = "Unable to allocate crypt data";
3897 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3898 if (!ic->journal_scatterlist) {
3899 *error = "Unable to allocate sg list";
3903 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3904 if (!ic->journal_io_scatterlist) {
3905 *error = "Unable to allocate sg list";
3909 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3910 sizeof(struct skcipher_request *),
3911 GFP_KERNEL | __GFP_ZERO);
3912 if (!ic->sk_requests) {
3913 *error = "Unable to allocate sk requests";
3917 for (i = 0; i < ic->journal_sections; i++) {
3918 struct scatterlist sg;
3919 struct skcipher_request *section_req;
3920 __le32 section_le = cpu_to_le32(i);
3922 memset(crypt_iv, 0x00, ivsize);
3923 memset(crypt_data, 0x00, crypt_len);
3924 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le)));
3926 sg_init_one(&sg, crypt_data, crypt_len);
3927 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3928 init_completion(&comp.comp);
3929 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3930 if (do_crypt(true, req, &comp))
3931 wait_for_completion(&comp.comp);
3933 r = dm_integrity_failed(ic);
3935 *error = "Unable to generate iv";
3939 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3941 *error = "Unable to allocate crypt request";
3945 section_req->iv = kmalloc_array(ivsize, 2,
3947 if (!section_req->iv) {
3948 skcipher_request_free(section_req);
3949 *error = "Unable to allocate iv";
3953 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3954 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3955 ic->sk_requests[i] = section_req;
3956 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3961 for (i = 0; i < N_COMMIT_IDS; i++) {
3965 for (j = 0; j < i; j++) {
3966 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3967 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3968 goto retest_commit_id;
3971 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3974 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3975 if (journal_tree_size > ULONG_MAX) {
3976 *error = "Journal doesn't fit into memory";
3980 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3981 if (!ic->journal_tree) {
3982 *error = "Could not allocate memory for journal tree";
3988 skcipher_request_free(req);
3994 * Construct a integrity mapping
3998 * offset from the start of the device
4000 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4001 * number of optional arguments
4002 * optional arguments:
4004 * interleave_sectors
4011 * bitmap_flush_interval
4017 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4019 struct dm_integrity_c *ic;
4022 unsigned int extra_args;
4023 struct dm_arg_set as;
4024 static const struct dm_arg _args[] = {
4025 {0, 18, "Invalid number of feature args"},
4027 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4028 bool should_write_sb;
4030 unsigned long long start;
4031 __s8 log2_sectors_per_bitmap_bit = -1;
4032 __s8 log2_blocks_per_bitmap_bit;
4033 __u64 bits_in_journal;
4034 __u64 n_bitmap_bits;
4036 #define DIRECT_ARGUMENTS 4
4038 if (argc <= DIRECT_ARGUMENTS) {
4039 ti->error = "Invalid argument count";
4043 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4045 ti->error = "Cannot allocate integrity context";
4049 ti->per_io_data_size = sizeof(struct dm_integrity_io);
4052 ic->in_progress = RB_ROOT;
4053 INIT_LIST_HEAD(&ic->wait_list);
4054 init_waitqueue_head(&ic->endio_wait);
4055 bio_list_init(&ic->flush_bio_list);
4056 init_waitqueue_head(&ic->copy_to_journal_wait);
4057 init_completion(&ic->crypto_backoff);
4058 atomic64_set(&ic->number_of_mismatches, 0);
4059 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4061 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4063 ti->error = "Device lookup failed";
4067 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4068 ti->error = "Invalid starting offset";
4074 if (strcmp(argv[2], "-")) {
4075 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4076 ti->error = "Invalid tag size";
4082 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4083 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4084 ic->mode = argv[3][0];
4086 ti->error = "Invalid mode (expecting J, B, D, R)";
4091 journal_sectors = 0;
4092 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4093 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4094 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4095 sync_msec = DEFAULT_SYNC_MSEC;
4096 ic->sectors_per_block = 1;
4098 as.argc = argc - DIRECT_ARGUMENTS;
4099 as.argv = argv + DIRECT_ARGUMENTS;
4100 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4104 while (extra_args--) {
4105 const char *opt_string;
4107 unsigned long long llval;
4109 opt_string = dm_shift_arg(&as);
4112 ti->error = "Not enough feature arguments";
4115 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4116 journal_sectors = val ? val : 1;
4117 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4118 interleave_sectors = val;
4119 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4120 buffer_sectors = val;
4121 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4122 journal_watermark = val;
4123 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4125 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4127 dm_put_device(ti, ic->meta_dev);
4128 ic->meta_dev = NULL;
4130 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4131 dm_table_get_mode(ti->table), &ic->meta_dev);
4133 ti->error = "Device lookup failed";
4136 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4137 if (val < 1 << SECTOR_SHIFT ||
4138 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4139 (val & (val - 1))) {
4141 ti->error = "Invalid block_size argument";
4144 ic->sectors_per_block = val >> SECTOR_SHIFT;
4145 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4146 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4147 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4148 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4150 ti->error = "Invalid bitmap_flush_interval argument";
4153 ic->bitmap_flush_interval = msecs_to_jiffies(val);
4154 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4155 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4156 "Invalid internal_hash argument");
4159 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4160 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4161 "Invalid journal_crypt argument");
4164 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4165 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4166 "Invalid journal_mac argument");
4169 } else if (!strcmp(opt_string, "recalculate")) {
4170 ic->recalculate_flag = true;
4171 } else if (!strcmp(opt_string, "reset_recalculate")) {
4172 ic->recalculate_flag = true;
4173 ic->reset_recalculate_flag = true;
4174 } else if (!strcmp(opt_string, "allow_discards")) {
4176 } else if (!strcmp(opt_string, "fix_padding")) {
4177 ic->fix_padding = true;
4178 } else if (!strcmp(opt_string, "fix_hmac")) {
4179 ic->fix_hmac = true;
4180 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4181 ic->legacy_recalculate = true;
4184 ti->error = "Invalid argument";
4189 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4191 ic->meta_device_sectors = ic->data_device_sectors;
4193 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4195 if (!journal_sectors) {
4196 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4197 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4200 if (!buffer_sectors)
4202 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4204 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4205 "Invalid internal hash", "Error setting internal hash key");
4209 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4210 "Invalid journal mac", "Error setting journal mac key");
4214 if (!ic->tag_size) {
4215 if (!ic->internal_hash) {
4216 ti->error = "Unknown tag size";
4220 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4222 if (ic->tag_size > MAX_TAG_SIZE) {
4223 ti->error = "Too big tag size";
4227 if (!(ic->tag_size & (ic->tag_size - 1)))
4228 ic->log2_tag_size = __ffs(ic->tag_size);
4230 ic->log2_tag_size = -1;
4232 if (ic->mode == 'B' && !ic->internal_hash) {
4234 ti->error = "Bitmap mode can be only used with internal hash";
4238 if (ic->discard && !ic->internal_hash) {
4240 ti->error = "Discard can be only used with internal hash";
4244 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4245 ic->autocommit_msec = sync_msec;
4246 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4248 ic->io = dm_io_client_create();
4249 if (IS_ERR(ic->io)) {
4250 r = PTR_ERR(ic->io);
4252 ti->error = "Cannot allocate dm io";
4256 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4258 ti->error = "Cannot allocate mempool";
4262 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4263 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4264 if (!ic->metadata_wq) {
4265 ti->error = "Cannot allocate workqueue";
4271 * If this workqueue weren't ordered, it would cause bio reordering
4272 * and reduced performance.
4274 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4276 ti->error = "Cannot allocate workqueue";
4281 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4282 METADATA_WORKQUEUE_MAX_ACTIVE);
4283 if (!ic->offload_wq) {
4284 ti->error = "Cannot allocate workqueue";
4289 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4290 if (!ic->commit_wq) {
4291 ti->error = "Cannot allocate workqueue";
4295 INIT_WORK(&ic->commit_work, integrity_commit);
4297 if (ic->mode == 'J' || ic->mode == 'B') {
4298 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4299 if (!ic->writer_wq) {
4300 ti->error = "Cannot allocate workqueue";
4304 INIT_WORK(&ic->writer_work, integrity_writer);
4307 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4310 ti->error = "Cannot allocate superblock area";
4314 r = sync_rw_sb(ic, REQ_OP_READ);
4316 ti->error = "Error reading superblock";
4319 should_write_sb = false;
4320 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4321 if (ic->mode != 'R') {
4322 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4324 ti->error = "The device is not initialized";
4329 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4331 ti->error = "Could not initialize superblock";
4334 if (ic->mode != 'R')
4335 should_write_sb = true;
4338 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4340 ti->error = "Unknown version";
4343 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4345 ti->error = "Tag size doesn't match the information in superblock";
4348 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4350 ti->error = "Block size doesn't match the information in superblock";
4353 if (!le32_to_cpu(ic->sb->journal_sections)) {
4355 ti->error = "Corrupted superblock, journal_sections is 0";
4358 /* make sure that ti->max_io_len doesn't overflow */
4359 if (!ic->meta_dev) {
4360 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4361 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4363 ti->error = "Invalid interleave_sectors in the superblock";
4367 if (ic->sb->log2_interleave_sectors) {
4369 ti->error = "Invalid interleave_sectors in the superblock";
4373 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4375 ti->error = "Journal mac mismatch";
4379 get_provided_data_sectors(ic);
4380 if (!ic->provided_data_sectors) {
4382 ti->error = "The device is too small";
4387 r = calculate_device_limits(ic);
4390 if (ic->log2_buffer_sectors > 3) {
4391 ic->log2_buffer_sectors--;
4392 goto try_smaller_buffer;
4395 ti->error = "The device is too small";
4399 if (log2_sectors_per_bitmap_bit < 0)
4400 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4401 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4402 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4404 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4405 if (bits_in_journal > UINT_MAX)
4406 bits_in_journal = UINT_MAX;
4407 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4408 log2_sectors_per_bitmap_bit++;
4410 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4411 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4412 if (should_write_sb)
4413 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4415 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4416 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4417 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4420 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4422 if (ti->len > ic->provided_data_sectors) {
4424 ti->error = "Not enough provided sectors for requested mapping size";
4429 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4431 do_div(threshold, 100);
4432 ic->free_sectors_threshold = threshold;
4434 DEBUG_print("initialized:\n");
4435 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4436 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4437 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4438 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4439 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4440 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4441 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4442 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4443 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4444 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4445 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4446 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4447 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4448 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4449 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4451 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4452 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4453 ic->sb->recalc_sector = cpu_to_le64(0);
4456 if (ic->internal_hash) {
4457 size_t recalc_tags_size;
4459 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4460 if (!ic->recalc_wq) {
4461 ti->error = "Cannot allocate workqueue";
4465 INIT_WORK(&ic->recalc_work, integrity_recalc);
4466 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4467 if (!ic->recalc_buffer) {
4468 ti->error = "Cannot allocate buffer for recalculating";
4472 recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4473 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4474 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4475 ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4476 if (!ic->recalc_tags) {
4477 ti->error = "Cannot allocate tags for recalculating";
4482 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4483 ti->error = "Recalculate can only be specified with internal_hash";
4489 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4490 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4491 dm_integrity_disable_recalculate(ic)) {
4492 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4497 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4498 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4499 if (IS_ERR(ic->bufio)) {
4500 r = PTR_ERR(ic->bufio);
4501 ti->error = "Cannot initialize dm-bufio";
4505 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4507 if (ic->mode != 'R') {
4508 r = create_journal(ic, &ti->error);
4514 if (ic->mode == 'B') {
4516 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4518 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4519 if (!ic->recalc_bitmap) {
4523 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4524 if (!ic->may_write_bitmap) {
4528 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4533 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4534 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4535 struct bitmap_block_status *bbs = &ic->bbs[i];
4536 unsigned int sector, pl_index, pl_offset;
4538 INIT_WORK(&bbs->work, bitmap_block_work);
4541 bio_list_init(&bbs->bio_queue);
4542 spin_lock_init(&bbs->bio_queue_lock);
4544 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4545 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4546 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4548 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4552 if (should_write_sb) {
4553 init_journal(ic, 0, ic->journal_sections, 0);
4554 r = dm_integrity_failed(ic);
4556 ti->error = "Error initializing journal";
4559 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4561 ti->error = "Error initializing superblock";
4564 ic->just_formatted = true;
4567 if (!ic->meta_dev) {
4568 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4572 if (ic->mode == 'B') {
4573 unsigned int max_io_len;
4575 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4577 max_io_len = 1U << 31;
4578 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4579 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4580 r = dm_set_target_max_io_len(ti, max_io_len);
4586 if (!ic->internal_hash)
4587 dm_integrity_set(ti, ic);
4589 ti->num_flush_bios = 1;
4590 ti->flush_supported = true;
4592 ti->num_discard_bios = 1;
4594 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4598 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4599 dm_integrity_dtr(ti);
4603 static void dm_integrity_dtr(struct dm_target *ti)
4605 struct dm_integrity_c *ic = ti->private;
4607 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4608 BUG_ON(!list_empty(&ic->wait_list));
4610 if (ic->mode == 'B')
4611 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4612 if (ic->metadata_wq)
4613 destroy_workqueue(ic->metadata_wq);
4615 destroy_workqueue(ic->wait_wq);
4617 destroy_workqueue(ic->offload_wq);
4619 destroy_workqueue(ic->commit_wq);
4621 destroy_workqueue(ic->writer_wq);
4623 destroy_workqueue(ic->recalc_wq);
4624 vfree(ic->recalc_buffer);
4625 kvfree(ic->recalc_tags);
4628 dm_bufio_client_destroy(ic->bufio);
4629 mempool_exit(&ic->journal_io_mempool);
4631 dm_io_client_destroy(ic->io);
4633 dm_put_device(ti, ic->dev);
4635 dm_put_device(ti, ic->meta_dev);
4636 dm_integrity_free_page_list(ic->journal);
4637 dm_integrity_free_page_list(ic->journal_io);
4638 dm_integrity_free_page_list(ic->journal_xor);
4639 dm_integrity_free_page_list(ic->recalc_bitmap);
4640 dm_integrity_free_page_list(ic->may_write_bitmap);
4641 if (ic->journal_scatterlist)
4642 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4643 if (ic->journal_io_scatterlist)
4644 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4645 if (ic->sk_requests) {
4648 for (i = 0; i < ic->journal_sections; i++) {
4649 struct skcipher_request *req;
4651 req = ic->sk_requests[i];
4653 kfree_sensitive(req->iv);
4654 skcipher_request_free(req);
4657 kvfree(ic->sk_requests);
4659 kvfree(ic->journal_tree);
4661 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4663 if (ic->internal_hash)
4664 crypto_free_shash(ic->internal_hash);
4665 free_alg(&ic->internal_hash_alg);
4667 if (ic->journal_crypt)
4668 crypto_free_skcipher(ic->journal_crypt);
4669 free_alg(&ic->journal_crypt_alg);
4671 if (ic->journal_mac)
4672 crypto_free_shash(ic->journal_mac);
4673 free_alg(&ic->journal_mac_alg);
4676 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4679 static struct target_type integrity_target = {
4680 .name = "integrity",
4681 .version = {1, 10, 0},
4682 .module = THIS_MODULE,
4683 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4684 .ctr = dm_integrity_ctr,
4685 .dtr = dm_integrity_dtr,
4686 .map = dm_integrity_map,
4687 .postsuspend = dm_integrity_postsuspend,
4688 .resume = dm_integrity_resume,
4689 .status = dm_integrity_status,
4690 .iterate_devices = dm_integrity_iterate_devices,
4691 .io_hints = dm_integrity_io_hints,
4694 static int __init dm_integrity_init(void)
4698 journal_io_cache = kmem_cache_create("integrity_journal_io",
4699 sizeof(struct journal_io), 0, 0, NULL);
4700 if (!journal_io_cache) {
4701 DMERR("can't allocate journal io cache");
4705 r = dm_register_target(&integrity_target);
4707 kmem_cache_destroy(journal_io_cache);
4714 static void __exit dm_integrity_exit(void)
4716 dm_unregister_target(&integrity_target);
4717 kmem_cache_destroy(journal_io_cache);
4720 module_init(dm_integrity_init);
4721 module_exit(dm_integrity_exit);
4723 MODULE_AUTHOR("Milan Broz");
4724 MODULE_AUTHOR("Mikulas Patocka");
4725 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4726 MODULE_LICENSE("GPL");