2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
6 * This file is released under the GPL.
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <linux/reboot.h>
19 #include <crypto/hash.h>
20 #include <crypto/skcipher.h>
21 #include <linux/async_tx.h>
22 #include <linux/dm-bufio.h>
24 #define DM_MSG_PREFIX "integrity"
26 #define DEFAULT_INTERLEAVE_SECTORS 32768
27 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
28 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
29 #define DEFAULT_BUFFER_SECTORS 128
30 #define DEFAULT_JOURNAL_WATERMARK 50
31 #define DEFAULT_SYNC_MSEC 10000
32 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
33 #define MIN_LOG2_INTERLEAVE_SECTORS 3
34 #define MAX_LOG2_INTERLEAVE_SECTORS 31
35 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
36 #define RECALC_SECTORS 8192
37 #define RECALC_WRITE_SUPER 16
38 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
39 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
42 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
43 * so it should not be enabled in the official kernel
46 //#define INTERNAL_VERIFY
52 #define SB_MAGIC "integrt"
53 #define SB_VERSION_1 1
54 #define SB_VERSION_2 2
55 #define SB_VERSION_3 3
57 #define MAX_SECTORS_PER_BLOCK 8
62 __u8 log2_interleave_sectors;
63 __u16 integrity_tag_size;
64 __u32 journal_sections;
65 __u64 provided_data_sectors; /* userspace uses this value */
67 __u8 log2_sectors_per_block;
68 __u8 log2_blocks_per_bitmap_bit;
73 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
74 #define SB_FLAG_RECALCULATING 0x2
75 #define SB_FLAG_DIRTY_BITMAP 0x4
77 #define JOURNAL_ENTRY_ROUNDUP 8
79 typedef __u64 commit_id_t;
80 #define JOURNAL_MAC_PER_SECTOR 8
82 struct journal_entry {
90 commit_id_t last_bytes[0];
94 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
96 #if BITS_PER_LONG == 64
97 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
99 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
101 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
102 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
103 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
104 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
105 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
107 #define JOURNAL_BLOCK_SECTORS 8
108 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
109 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
111 struct journal_sector {
112 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
113 __u8 mac[JOURNAL_MAC_PER_SECTOR];
114 commit_id_t commit_id;
117 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
119 #define METADATA_PADDING_SECTORS 8
121 #define N_COMMIT_IDS 4
123 static unsigned char prev_commit_seq(unsigned char seq)
125 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
128 static unsigned char next_commit_seq(unsigned char seq)
130 return (seq + 1) % N_COMMIT_IDS;
134 * In-memory structures
137 struct journal_node {
149 struct dm_integrity_c {
151 struct dm_dev *meta_dev;
155 mempool_t journal_io_mempool;
156 struct dm_io_client *io;
157 struct dm_bufio_client *bufio;
158 struct workqueue_struct *metadata_wq;
159 struct superblock *sb;
160 unsigned journal_pages;
161 unsigned n_bitmap_blocks;
163 struct page_list *journal;
164 struct page_list *journal_io;
165 struct page_list *journal_xor;
166 struct page_list *recalc_bitmap;
167 struct page_list *may_write_bitmap;
168 struct bitmap_block_status *bbs;
169 unsigned bitmap_flush_interval;
170 int synchronous_mode;
171 struct bio_list synchronous_bios;
172 struct delayed_work bitmap_flush_work;
174 struct crypto_skcipher *journal_crypt;
175 struct scatterlist **journal_scatterlist;
176 struct scatterlist **journal_io_scatterlist;
177 struct skcipher_request **sk_requests;
179 struct crypto_shash *journal_mac;
181 struct journal_node *journal_tree;
182 struct rb_root journal_tree_root;
184 sector_t provided_data_sectors;
186 unsigned short journal_entry_size;
187 unsigned char journal_entries_per_sector;
188 unsigned char journal_section_entries;
189 unsigned short journal_section_sectors;
190 unsigned journal_sections;
191 unsigned journal_entries;
192 sector_t data_device_sectors;
193 sector_t meta_device_sectors;
194 unsigned initial_sectors;
195 unsigned metadata_run;
196 __s8 log2_metadata_run;
197 __u8 log2_buffer_sectors;
198 __u8 sectors_per_block;
199 __u8 log2_blocks_per_bitmap_bit;
206 struct crypto_shash *internal_hash;
208 /* these variables are locked with endio_wait.lock */
209 struct rb_root in_progress;
210 struct list_head wait_list;
211 wait_queue_head_t endio_wait;
212 struct workqueue_struct *wait_wq;
213 struct workqueue_struct *offload_wq;
215 unsigned char commit_seq;
216 commit_id_t commit_ids[N_COMMIT_IDS];
218 unsigned committed_section;
219 unsigned n_committed_sections;
221 unsigned uncommitted_section;
222 unsigned n_uncommitted_sections;
224 unsigned free_section;
225 unsigned char free_section_entry;
226 unsigned free_sectors;
228 unsigned free_sectors_threshold;
230 struct workqueue_struct *commit_wq;
231 struct work_struct commit_work;
233 struct workqueue_struct *writer_wq;
234 struct work_struct writer_work;
236 struct workqueue_struct *recalc_wq;
237 struct work_struct recalc_work;
241 struct bio_list flush_bio_list;
243 unsigned long autocommit_jiffies;
244 struct timer_list autocommit_timer;
245 unsigned autocommit_msec;
247 wait_queue_head_t copy_to_journal_wait;
249 struct completion crypto_backoff;
251 bool journal_uptodate;
253 bool recalculate_flag;
255 struct alg_spec internal_hash_alg;
256 struct alg_spec journal_crypt_alg;
257 struct alg_spec journal_mac_alg;
259 atomic64_t number_of_mismatches;
261 struct notifier_block reboot_notifier;
264 struct dm_integrity_range {
265 sector_t logical_sector;
271 struct task_struct *task;
272 struct list_head wait_entry;
277 struct dm_integrity_io {
278 struct work_struct work;
280 struct dm_integrity_c *ic;
284 struct dm_integrity_range range;
286 sector_t metadata_block;
287 unsigned metadata_offset;
290 blk_status_t bi_status;
292 struct completion *completion;
294 struct gendisk *orig_bi_disk;
296 bio_end_io_t *orig_bi_end_io;
297 struct bio_integrity_payload *orig_bi_integrity;
298 struct bvec_iter orig_bi_iter;
301 struct journal_completion {
302 struct dm_integrity_c *ic;
304 struct completion comp;
308 struct dm_integrity_range range;
309 struct journal_completion *comp;
312 struct bitmap_block_status {
313 struct work_struct work;
314 struct dm_integrity_c *ic;
316 unsigned long *bitmap;
317 struct bio_list bio_queue;
318 spinlock_t bio_queue_lock;
322 static struct kmem_cache *journal_io_cache;
324 #define JOURNAL_IO_MEMPOOL 32
327 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
328 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
337 pr_cont(" %02x", *bytes);
343 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
345 #define DEBUG_print(x, ...) do { } while (0)
346 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
349 static void dm_integrity_prepare(struct request *rq)
353 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358 * DM Integrity profile, protection is performed layer above (dm-crypt)
360 static const struct blk_integrity_profile dm_integrity_profile = {
361 .name = "DM-DIF-EXT-TAG",
364 .prepare_fn = dm_integrity_prepare,
365 .complete_fn = dm_integrity_complete,
368 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
369 static void integrity_bio_wait(struct work_struct *w);
370 static void dm_integrity_dtr(struct dm_target *ti);
372 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
375 atomic64_inc(&ic->number_of_mismatches);
376 if (!cmpxchg(&ic->failed, 0, err))
377 DMERR("Error on %s: %d", msg, err);
380 static int dm_integrity_failed(struct dm_integrity_c *ic)
382 return READ_ONCE(ic->failed);
385 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
386 unsigned j, unsigned char seq)
389 * Xor the number with section and sector, so that if a piece of
390 * journal is written at wrong place, it is detected.
392 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
395 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
396 sector_t *area, sector_t *offset)
399 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
400 *area = data_sector >> log2_interleave_sectors;
401 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
404 *offset = data_sector;
408 #define sector_to_block(ic, n) \
410 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
411 (n) >>= (ic)->sb->log2_sectors_per_block; \
414 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
415 sector_t offset, unsigned *metadata_offset)
420 ms = area << ic->sb->log2_interleave_sectors;
421 if (likely(ic->log2_metadata_run >= 0))
422 ms += area << ic->log2_metadata_run;
424 ms += area * ic->metadata_run;
425 ms >>= ic->log2_buffer_sectors;
427 sector_to_block(ic, offset);
429 if (likely(ic->log2_tag_size >= 0)) {
430 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
431 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
433 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
434 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
436 *metadata_offset = mo;
440 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
447 result = area << ic->sb->log2_interleave_sectors;
448 if (likely(ic->log2_metadata_run >= 0))
449 result += (area + 1) << ic->log2_metadata_run;
451 result += (area + 1) * ic->metadata_run;
453 result += (sector_t)ic->initial_sectors + offset;
459 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
461 if (unlikely(*sec_ptr >= ic->journal_sections))
462 *sec_ptr -= ic->journal_sections;
465 static void sb_set_version(struct dm_integrity_c *ic)
467 if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
468 ic->sb->version = SB_VERSION_3;
469 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
470 ic->sb->version = SB_VERSION_2;
472 ic->sb->version = SB_VERSION_1;
475 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
477 struct dm_io_request io_req;
478 struct dm_io_region io_loc;
481 io_req.bi_op_flags = op_flags;
482 io_req.mem.type = DM_IO_KMEM;
483 io_req.mem.ptr.addr = ic->sb;
484 io_req.notify.fn = NULL;
485 io_req.client = ic->io;
486 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
487 io_loc.sector = ic->start;
488 io_loc.count = SB_SECTORS;
490 if (op == REQ_OP_WRITE)
493 return dm_io(&io_req, 1, &io_loc, NULL);
496 #define BITMAP_OP_TEST_ALL_SET 0
497 #define BITMAP_OP_TEST_ALL_CLEAR 1
498 #define BITMAP_OP_SET 2
499 #define BITMAP_OP_CLEAR 3
501 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
502 sector_t sector, sector_t n_sectors, int mode)
504 unsigned long bit, end_bit, this_end_bit, page, end_page;
507 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
508 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
509 (unsigned long long)sector,
510 (unsigned long long)n_sectors,
511 ic->sb->log2_sectors_per_block,
512 ic->log2_blocks_per_bitmap_bit,
517 if (unlikely(!n_sectors))
520 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
521 end_bit = (sector + n_sectors - 1) >>
522 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
524 page = bit / (PAGE_SIZE * 8);
525 bit %= PAGE_SIZE * 8;
527 end_page = end_bit / (PAGE_SIZE * 8);
528 end_bit %= PAGE_SIZE * 8;
531 if (page < end_page) {
532 this_end_bit = PAGE_SIZE * 8 - 1;
534 this_end_bit = end_bit;
537 data = lowmem_page_address(bitmap[page].page);
539 if (mode == BITMAP_OP_TEST_ALL_SET) {
540 while (bit <= this_end_bit) {
541 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
543 if (data[bit / BITS_PER_LONG] != -1)
545 bit += BITS_PER_LONG;
546 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
549 if (!test_bit(bit, data))
553 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
554 while (bit <= this_end_bit) {
555 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
557 if (data[bit / BITS_PER_LONG] != 0)
559 bit += BITS_PER_LONG;
560 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
563 if (test_bit(bit, data))
567 } else if (mode == BITMAP_OP_SET) {
568 while (bit <= this_end_bit) {
569 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
571 data[bit / BITS_PER_LONG] = -1;
572 bit += BITS_PER_LONG;
573 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
576 __set_bit(bit, data);
579 } else if (mode == BITMAP_OP_CLEAR) {
580 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
582 else while (bit <= this_end_bit) {
583 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
585 data[bit / BITS_PER_LONG] = 0;
586 bit += BITS_PER_LONG;
587 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
590 __clear_bit(bit, data);
597 if (unlikely(page < end_page)) {
606 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
608 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
611 for (i = 0; i < n_bitmap_pages; i++) {
612 unsigned long *dst_data = lowmem_page_address(dst[i].page);
613 unsigned long *src_data = lowmem_page_address(src[i].page);
614 copy_page(dst_data, src_data);
618 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
620 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
621 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
623 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
624 return &ic->bbs[bitmap_block];
627 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
628 bool e, const char *function)
630 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
631 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
633 if (unlikely(section >= ic->journal_sections) ||
634 unlikely(offset >= limit)) {
635 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
636 function, section, offset, ic->journal_sections, limit);
642 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
643 unsigned *pl_index, unsigned *pl_offset)
647 access_journal_check(ic, section, offset, false, "page_list_location");
649 sector = section * ic->journal_section_sectors + offset;
651 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
652 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
655 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
656 unsigned section, unsigned offset, unsigned *n_sectors)
658 unsigned pl_index, pl_offset;
661 page_list_location(ic, section, offset, &pl_index, &pl_offset);
664 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
666 va = lowmem_page_address(pl[pl_index].page);
668 return (struct journal_sector *)(va + pl_offset);
671 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
673 return access_page_list(ic, ic->journal, section, offset, NULL);
676 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
678 unsigned rel_sector, offset;
679 struct journal_sector *js;
681 access_journal_check(ic, section, n, true, "access_journal_entry");
683 rel_sector = n % JOURNAL_BLOCK_SECTORS;
684 offset = n / JOURNAL_BLOCK_SECTORS;
686 js = access_journal(ic, section, rel_sector);
687 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
690 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
692 n <<= ic->sb->log2_sectors_per_block;
694 n += JOURNAL_BLOCK_SECTORS;
696 access_journal_check(ic, section, n, false, "access_journal_data");
698 return access_journal(ic, section, n);
701 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
703 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
707 desc->tfm = ic->journal_mac;
709 r = crypto_shash_init(desc);
711 dm_integrity_io_error(ic, "crypto_shash_init", r);
715 for (j = 0; j < ic->journal_section_entries; j++) {
716 struct journal_entry *je = access_journal_entry(ic, section, j);
717 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
719 dm_integrity_io_error(ic, "crypto_shash_update", r);
724 size = crypto_shash_digestsize(ic->journal_mac);
726 if (likely(size <= JOURNAL_MAC_SIZE)) {
727 r = crypto_shash_final(desc, result);
729 dm_integrity_io_error(ic, "crypto_shash_final", r);
732 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
734 __u8 digest[HASH_MAX_DIGESTSIZE];
736 if (WARN_ON(size > sizeof(digest))) {
737 dm_integrity_io_error(ic, "digest_size", -EINVAL);
740 r = crypto_shash_final(desc, digest);
742 dm_integrity_io_error(ic, "crypto_shash_final", r);
745 memcpy(result, digest, JOURNAL_MAC_SIZE);
750 memset(result, 0, JOURNAL_MAC_SIZE);
753 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
755 __u8 result[JOURNAL_MAC_SIZE];
758 if (!ic->journal_mac)
761 section_mac(ic, section, result);
763 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
764 struct journal_sector *js = access_journal(ic, section, j);
767 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
769 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
770 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
775 static void complete_journal_op(void *context)
777 struct journal_completion *comp = context;
778 BUG_ON(!atomic_read(&comp->in_flight));
779 if (likely(atomic_dec_and_test(&comp->in_flight)))
780 complete(&comp->comp);
783 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
784 unsigned n_sections, struct journal_completion *comp)
786 struct async_submit_ctl submit;
787 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
788 unsigned pl_index, pl_offset, section_index;
789 struct page_list *source_pl, *target_pl;
791 if (likely(encrypt)) {
792 source_pl = ic->journal;
793 target_pl = ic->journal_io;
795 source_pl = ic->journal_io;
796 target_pl = ic->journal;
799 page_list_location(ic, section, 0, &pl_index, &pl_offset);
801 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
803 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
805 section_index = pl_index;
809 struct page *src_pages[2];
810 struct page *dst_page;
812 while (unlikely(pl_index == section_index)) {
815 rw_section_mac(ic, section, true);
820 page_list_location(ic, section, 0, §ion_index, &dummy);
823 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
824 dst_page = target_pl[pl_index].page;
825 src_pages[0] = source_pl[pl_index].page;
826 src_pages[1] = ic->journal_xor[pl_index].page;
828 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
832 n_bytes -= this_step;
837 async_tx_issue_pending_all();
840 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
842 struct journal_completion *comp = req->data;
844 if (likely(err == -EINPROGRESS)) {
845 complete(&comp->ic->crypto_backoff);
848 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
850 complete_journal_op(comp);
853 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
856 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
857 complete_journal_encrypt, comp);
859 r = crypto_skcipher_encrypt(req);
861 r = crypto_skcipher_decrypt(req);
864 if (likely(r == -EINPROGRESS))
866 if (likely(r == -EBUSY)) {
867 wait_for_completion(&comp->ic->crypto_backoff);
868 reinit_completion(&comp->ic->crypto_backoff);
871 dm_integrity_io_error(comp->ic, "encrypt", r);
875 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
876 unsigned n_sections, struct journal_completion *comp)
878 struct scatterlist **source_sg;
879 struct scatterlist **target_sg;
881 atomic_add(2, &comp->in_flight);
883 if (likely(encrypt)) {
884 source_sg = ic->journal_scatterlist;
885 target_sg = ic->journal_io_scatterlist;
887 source_sg = ic->journal_io_scatterlist;
888 target_sg = ic->journal_scatterlist;
892 struct skcipher_request *req;
897 rw_section_mac(ic, section, true);
899 req = ic->sk_requests[section];
900 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
903 memcpy(iv, iv + ivsize, ivsize);
905 req->src = source_sg[section];
906 req->dst = target_sg[section];
908 if (unlikely(do_crypt(encrypt, req, comp)))
909 atomic_inc(&comp->in_flight);
913 } while (n_sections);
915 atomic_dec(&comp->in_flight);
916 complete_journal_op(comp);
919 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
920 unsigned n_sections, struct journal_completion *comp)
923 return xor_journal(ic, encrypt, section, n_sections, comp);
925 return crypt_journal(ic, encrypt, section, n_sections, comp);
928 static void complete_journal_io(unsigned long error, void *context)
930 struct journal_completion *comp = context;
931 if (unlikely(error != 0))
932 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
933 complete_journal_op(comp);
936 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
937 unsigned sector, unsigned n_sectors, struct journal_completion *comp)
939 struct dm_io_request io_req;
940 struct dm_io_region io_loc;
941 unsigned pl_index, pl_offset;
944 if (unlikely(dm_integrity_failed(ic))) {
946 complete_journal_io(-1UL, comp);
950 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
951 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
954 io_req.bi_op_flags = op_flags;
955 io_req.mem.type = DM_IO_PAGE_LIST;
957 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
959 io_req.mem.ptr.pl = &ic->journal[pl_index];
960 io_req.mem.offset = pl_offset;
961 if (likely(comp != NULL)) {
962 io_req.notify.fn = complete_journal_io;
963 io_req.notify.context = comp;
965 io_req.notify.fn = NULL;
967 io_req.client = ic->io;
968 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
969 io_loc.sector = ic->start + SB_SECTORS + sector;
970 io_loc.count = n_sectors;
972 r = dm_io(&io_req, 1, &io_loc, NULL);
974 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
976 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
977 complete_journal_io(-1UL, comp);
982 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
983 unsigned n_sections, struct journal_completion *comp)
985 unsigned sector, n_sectors;
987 sector = section * ic->journal_section_sectors;
988 n_sectors = n_sections * ic->journal_section_sectors;
990 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
993 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
995 struct journal_completion io_comp;
996 struct journal_completion crypt_comp_1;
997 struct journal_completion crypt_comp_2;
1001 init_completion(&io_comp.comp);
1003 if (commit_start + commit_sections <= ic->journal_sections) {
1004 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1005 if (ic->journal_io) {
1006 crypt_comp_1.ic = ic;
1007 init_completion(&crypt_comp_1.comp);
1008 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1009 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1010 wait_for_completion_io(&crypt_comp_1.comp);
1012 for (i = 0; i < commit_sections; i++)
1013 rw_section_mac(ic, commit_start + i, true);
1015 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1016 commit_sections, &io_comp);
1019 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1020 to_end = ic->journal_sections - commit_start;
1021 if (ic->journal_io) {
1022 crypt_comp_1.ic = ic;
1023 init_completion(&crypt_comp_1.comp);
1024 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1025 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1026 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1027 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1028 reinit_completion(&crypt_comp_1.comp);
1029 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1030 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1031 wait_for_completion_io(&crypt_comp_1.comp);
1033 crypt_comp_2.ic = ic;
1034 init_completion(&crypt_comp_2.comp);
1035 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1036 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1037 wait_for_completion_io(&crypt_comp_1.comp);
1038 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1039 wait_for_completion_io(&crypt_comp_2.comp);
1042 for (i = 0; i < to_end; i++)
1043 rw_section_mac(ic, commit_start + i, true);
1044 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1045 for (i = 0; i < commit_sections - to_end; i++)
1046 rw_section_mac(ic, i, true);
1048 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1051 wait_for_completion_io(&io_comp.comp);
1054 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1055 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1057 struct dm_io_request io_req;
1058 struct dm_io_region io_loc;
1060 unsigned sector, pl_index, pl_offset;
1062 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1064 if (unlikely(dm_integrity_failed(ic))) {
1069 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1071 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1072 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1074 io_req.bi_op = REQ_OP_WRITE;
1075 io_req.bi_op_flags = 0;
1076 io_req.mem.type = DM_IO_PAGE_LIST;
1077 io_req.mem.ptr.pl = &ic->journal[pl_index];
1078 io_req.mem.offset = pl_offset;
1079 io_req.notify.fn = fn;
1080 io_req.notify.context = data;
1081 io_req.client = ic->io;
1082 io_loc.bdev = ic->dev->bdev;
1083 io_loc.sector = target;
1084 io_loc.count = n_sectors;
1086 r = dm_io(&io_req, 1, &io_loc, NULL);
1088 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1093 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1095 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1096 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1099 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1101 struct rb_node **n = &ic->in_progress.rb_node;
1102 struct rb_node *parent;
1104 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1106 if (likely(check_waiting)) {
1107 struct dm_integrity_range *range;
1108 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1109 if (unlikely(ranges_overlap(range, new_range)))
1117 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1120 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1121 n = &range->node.rb_left;
1122 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1123 n = &range->node.rb_right;
1129 rb_link_node(&new_range->node, parent, n);
1130 rb_insert_color(&new_range->node, &ic->in_progress);
1135 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1137 rb_erase(&range->node, &ic->in_progress);
1138 while (unlikely(!list_empty(&ic->wait_list))) {
1139 struct dm_integrity_range *last_range =
1140 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1141 struct task_struct *last_range_task;
1142 last_range_task = last_range->task;
1143 list_del(&last_range->wait_entry);
1144 if (!add_new_range(ic, last_range, false)) {
1145 last_range->task = last_range_task;
1146 list_add(&last_range->wait_entry, &ic->wait_list);
1149 last_range->waiting = false;
1150 wake_up_process(last_range_task);
1154 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1156 unsigned long flags;
1158 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1159 remove_range_unlocked(ic, range);
1160 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1163 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1165 new_range->waiting = true;
1166 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1167 new_range->task = current;
1169 __set_current_state(TASK_UNINTERRUPTIBLE);
1170 spin_unlock_irq(&ic->endio_wait.lock);
1172 spin_lock_irq(&ic->endio_wait.lock);
1173 } while (unlikely(new_range->waiting));
1176 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1178 if (unlikely(!add_new_range(ic, new_range, true)))
1179 wait_and_add_new_range(ic, new_range);
1182 static void init_journal_node(struct journal_node *node)
1184 RB_CLEAR_NODE(&node->node);
1185 node->sector = (sector_t)-1;
1188 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1190 struct rb_node **link;
1191 struct rb_node *parent;
1193 node->sector = sector;
1194 BUG_ON(!RB_EMPTY_NODE(&node->node));
1196 link = &ic->journal_tree_root.rb_node;
1200 struct journal_node *j;
1202 j = container_of(parent, struct journal_node, node);
1203 if (sector < j->sector)
1204 link = &j->node.rb_left;
1206 link = &j->node.rb_right;
1209 rb_link_node(&node->node, parent, link);
1210 rb_insert_color(&node->node, &ic->journal_tree_root);
1213 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1215 BUG_ON(RB_EMPTY_NODE(&node->node));
1216 rb_erase(&node->node, &ic->journal_tree_root);
1217 init_journal_node(node);
1220 #define NOT_FOUND (-1U)
1222 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1224 struct rb_node *n = ic->journal_tree_root.rb_node;
1225 unsigned found = NOT_FOUND;
1226 *next_sector = (sector_t)-1;
1228 struct journal_node *j = container_of(n, struct journal_node, node);
1229 if (sector == j->sector) {
1230 found = j - ic->journal_tree;
1232 if (sector < j->sector) {
1233 *next_sector = j->sector;
1234 n = j->node.rb_left;
1236 n = j->node.rb_right;
1243 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1245 struct journal_node *node, *next_node;
1246 struct rb_node *next;
1248 if (unlikely(pos >= ic->journal_entries))
1250 node = &ic->journal_tree[pos];
1251 if (unlikely(RB_EMPTY_NODE(&node->node)))
1253 if (unlikely(node->sector != sector))
1256 next = rb_next(&node->node);
1257 if (unlikely(!next))
1260 next_node = container_of(next, struct journal_node, node);
1261 return next_node->sector != sector;
1264 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1266 struct rb_node *next;
1267 struct journal_node *next_node;
1268 unsigned next_section;
1270 BUG_ON(RB_EMPTY_NODE(&node->node));
1272 next = rb_next(&node->node);
1273 if (unlikely(!next))
1276 next_node = container_of(next, struct journal_node, node);
1278 if (next_node->sector != node->sector)
1281 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1282 if (next_section >= ic->committed_section &&
1283 next_section < ic->committed_section + ic->n_committed_sections)
1285 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1295 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1296 unsigned *metadata_offset, unsigned total_size, int op)
1299 unsigned char *data, *dp;
1300 struct dm_buffer *b;
1304 r = dm_integrity_failed(ic);
1308 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1310 return PTR_ERR(data);
1312 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1313 dp = data + *metadata_offset;
1314 if (op == TAG_READ) {
1315 memcpy(tag, dp, to_copy);
1316 } else if (op == TAG_WRITE) {
1317 memcpy(dp, tag, to_copy);
1318 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1320 /* e.g.: op == TAG_CMP */
1321 if (unlikely(memcmp(dp, tag, to_copy))) {
1324 for (i = 0; i < to_copy; i++) {
1325 if (dp[i] != tag[i])
1329 dm_bufio_release(b);
1333 dm_bufio_release(b);
1336 *metadata_offset += to_copy;
1337 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1338 (*metadata_block)++;
1339 *metadata_offset = 0;
1341 total_size -= to_copy;
1342 } while (unlikely(total_size));
1347 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1350 r = dm_bufio_write_dirty_buffers(ic->bufio);
1352 dm_integrity_io_error(ic, "writing tags", r);
1355 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1357 DECLARE_WAITQUEUE(wait, current);
1358 __add_wait_queue(&ic->endio_wait, &wait);
1359 __set_current_state(TASK_UNINTERRUPTIBLE);
1360 spin_unlock_irq(&ic->endio_wait.lock);
1362 spin_lock_irq(&ic->endio_wait.lock);
1363 __remove_wait_queue(&ic->endio_wait, &wait);
1366 static void autocommit_fn(struct timer_list *t)
1368 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1370 if (likely(!dm_integrity_failed(ic)))
1371 queue_work(ic->commit_wq, &ic->commit_work);
1374 static void schedule_autocommit(struct dm_integrity_c *ic)
1376 if (!timer_pending(&ic->autocommit_timer))
1377 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1380 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1383 unsigned long flags;
1385 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1386 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1387 bio_list_add(&ic->flush_bio_list, bio);
1388 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1390 queue_work(ic->commit_wq, &ic->commit_work);
1393 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1395 int r = dm_integrity_failed(ic);
1396 if (unlikely(r) && !bio->bi_status)
1397 bio->bi_status = errno_to_blk_status(r);
1398 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1399 unsigned long flags;
1400 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1401 bio_list_add(&ic->synchronous_bios, bio);
1402 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1403 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1409 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1411 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1413 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1414 submit_flush_bio(ic, dio);
1419 static void dec_in_flight(struct dm_integrity_io *dio)
1421 if (atomic_dec_and_test(&dio->in_flight)) {
1422 struct dm_integrity_c *ic = dio->ic;
1425 remove_range(ic, &dio->range);
1427 if (unlikely(dio->write))
1428 schedule_autocommit(ic);
1430 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1432 if (unlikely(dio->bi_status) && !bio->bi_status)
1433 bio->bi_status = dio->bi_status;
1434 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1435 dio->range.logical_sector += dio->range.n_sectors;
1436 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1437 INIT_WORK(&dio->work, integrity_bio_wait);
1438 queue_work(ic->offload_wq, &dio->work);
1441 do_endio_flush(ic, dio);
1445 static void integrity_end_io(struct bio *bio)
1447 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1449 bio->bi_iter = dio->orig_bi_iter;
1450 bio->bi_disk = dio->orig_bi_disk;
1451 bio->bi_partno = dio->orig_bi_partno;
1452 if (dio->orig_bi_integrity) {
1453 bio->bi_integrity = dio->orig_bi_integrity;
1454 bio->bi_opf |= REQ_INTEGRITY;
1456 bio->bi_end_io = dio->orig_bi_end_io;
1458 if (dio->completion)
1459 complete(dio->completion);
1464 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1465 const char *data, char *result)
1467 __u64 sector_le = cpu_to_le64(sector);
1468 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1470 unsigned digest_size;
1472 req->tfm = ic->internal_hash;
1474 r = crypto_shash_init(req);
1475 if (unlikely(r < 0)) {
1476 dm_integrity_io_error(ic, "crypto_shash_init", r);
1480 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le);
1481 if (unlikely(r < 0)) {
1482 dm_integrity_io_error(ic, "crypto_shash_update", r);
1486 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1487 if (unlikely(r < 0)) {
1488 dm_integrity_io_error(ic, "crypto_shash_update", r);
1492 r = crypto_shash_final(req, result);
1493 if (unlikely(r < 0)) {
1494 dm_integrity_io_error(ic, "crypto_shash_final", r);
1498 digest_size = crypto_shash_digestsize(ic->internal_hash);
1499 if (unlikely(digest_size < ic->tag_size))
1500 memset(result + digest_size, 0, ic->tag_size - digest_size);
1505 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1506 get_random_bytes(result, ic->tag_size);
1509 static void integrity_metadata(struct work_struct *w)
1511 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1512 struct dm_integrity_c *ic = dio->ic;
1516 if (ic->internal_hash) {
1517 struct bvec_iter iter;
1519 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1520 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1522 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1523 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1524 unsigned sectors_to_process = dio->range.n_sectors;
1525 sector_t sector = dio->range.logical_sector;
1527 if (unlikely(ic->mode == 'R'))
1530 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1531 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1533 checksums = checksums_onstack;
1534 if (WARN_ON(extra_space &&
1535 digest_size > sizeof(checksums_onstack))) {
1541 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1543 char *mem, *checksums_ptr;
1546 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1548 checksums_ptr = checksums;
1550 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1551 checksums_ptr += ic->tag_size;
1552 sectors_to_process -= ic->sectors_per_block;
1553 pos += ic->sectors_per_block << SECTOR_SHIFT;
1554 sector += ic->sectors_per_block;
1555 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1558 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1559 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1562 DMERR_LIMIT("Checksum failed at sector 0x%llx",
1563 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1565 atomic64_inc(&ic->number_of_mismatches);
1567 if (likely(checksums != checksums_onstack))
1572 if (!sectors_to_process)
1575 if (unlikely(pos < bv.bv_len)) {
1576 bv.bv_offset += pos;
1582 if (likely(checksums != checksums_onstack))
1585 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1589 struct bvec_iter iter;
1590 unsigned data_to_process = dio->range.n_sectors;
1591 sector_to_block(ic, data_to_process);
1592 data_to_process *= ic->tag_size;
1594 bip_for_each_vec(biv, bip, iter) {
1598 BUG_ON(PageHighMem(biv.bv_page));
1599 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1600 this_len = min(biv.bv_len, data_to_process);
1601 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1602 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1605 data_to_process -= this_len;
1606 if (!data_to_process)
1615 dio->bi_status = errno_to_blk_status(r);
1619 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1621 struct dm_integrity_c *ic = ti->private;
1622 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1623 struct bio_integrity_payload *bip;
1625 sector_t area, offset;
1630 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1631 submit_flush_bio(ic, dio);
1632 return DM_MAPIO_SUBMITTED;
1635 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1636 dio->write = bio_op(bio) == REQ_OP_WRITE;
1637 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1638 if (unlikely(dio->fua)) {
1640 * Don't pass down the FUA flag because we have to flush
1641 * disk cache anyway.
1643 bio->bi_opf &= ~REQ_FUA;
1645 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1646 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1647 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1648 (unsigned long long)ic->provided_data_sectors);
1649 return DM_MAPIO_KILL;
1651 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1652 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1653 ic->sectors_per_block,
1654 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1655 return DM_MAPIO_KILL;
1658 if (ic->sectors_per_block > 1) {
1659 struct bvec_iter iter;
1661 bio_for_each_segment(bv, bio, iter) {
1662 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1663 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1664 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1665 return DM_MAPIO_KILL;
1670 bip = bio_integrity(bio);
1671 if (!ic->internal_hash) {
1673 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1674 if (ic->log2_tag_size >= 0)
1675 wanted_tag_size <<= ic->log2_tag_size;
1677 wanted_tag_size *= ic->tag_size;
1678 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1679 DMERR("Invalid integrity data size %u, expected %u",
1680 bip->bip_iter.bi_size, wanted_tag_size);
1681 return DM_MAPIO_KILL;
1685 if (unlikely(bip != NULL)) {
1686 DMERR("Unexpected integrity data when using internal hash");
1687 return DM_MAPIO_KILL;
1691 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1692 return DM_MAPIO_KILL;
1694 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1695 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1696 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1698 dm_integrity_map_continue(dio, true);
1699 return DM_MAPIO_SUBMITTED;
1702 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1703 unsigned journal_section, unsigned journal_entry)
1705 struct dm_integrity_c *ic = dio->ic;
1706 sector_t logical_sector;
1709 logical_sector = dio->range.logical_sector;
1710 n_sectors = dio->range.n_sectors;
1712 struct bio_vec bv = bio_iovec(bio);
1715 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1716 bv.bv_len = n_sectors << SECTOR_SHIFT;
1717 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1718 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1720 mem = kmap_atomic(bv.bv_page);
1721 if (likely(dio->write))
1722 flush_dcache_page(bv.bv_page);
1725 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1727 if (unlikely(!dio->write)) {
1728 struct journal_sector *js;
1732 if (unlikely(journal_entry_is_inprogress(je))) {
1733 flush_dcache_page(bv.bv_page);
1736 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1740 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1741 js = access_journal_data(ic, journal_section, journal_entry);
1742 mem_ptr = mem + bv.bv_offset;
1745 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1746 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1748 mem_ptr += 1 << SECTOR_SHIFT;
1749 } while (++s < ic->sectors_per_block);
1750 #ifdef INTERNAL_VERIFY
1751 if (ic->internal_hash) {
1752 char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1754 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1755 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1756 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1757 (unsigned long long)logical_sector);
1763 if (!ic->internal_hash) {
1764 struct bio_integrity_payload *bip = bio_integrity(bio);
1765 unsigned tag_todo = ic->tag_size;
1766 char *tag_ptr = journal_entry_tag(ic, je);
1769 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1770 unsigned tag_now = min(biv.bv_len, tag_todo);
1772 BUG_ON(PageHighMem(biv.bv_page));
1773 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1774 if (likely(dio->write))
1775 memcpy(tag_ptr, tag_addr, tag_now);
1777 memcpy(tag_addr, tag_ptr, tag_now);
1778 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1780 tag_todo -= tag_now;
1781 } while (unlikely(tag_todo)); else {
1782 if (likely(dio->write))
1783 memset(tag_ptr, 0, tag_todo);
1787 if (likely(dio->write)) {
1788 struct journal_sector *js;
1791 js = access_journal_data(ic, journal_section, journal_entry);
1792 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1796 je->last_bytes[s] = js[s].commit_id;
1797 } while (++s < ic->sectors_per_block);
1799 if (ic->internal_hash) {
1800 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1801 if (unlikely(digest_size > ic->tag_size)) {
1802 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1803 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1804 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1806 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1809 journal_entry_set_sector(je, logical_sector);
1811 logical_sector += ic->sectors_per_block;
1814 if (unlikely(journal_entry == ic->journal_section_entries)) {
1817 wraparound_section(ic, &journal_section);
1820 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1821 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1823 if (unlikely(!dio->write))
1824 flush_dcache_page(bv.bv_page);
1826 } while (n_sectors);
1828 if (likely(dio->write)) {
1830 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1831 wake_up(&ic->copy_to_journal_wait);
1832 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1833 queue_work(ic->commit_wq, &ic->commit_work);
1835 schedule_autocommit(ic);
1838 remove_range(ic, &dio->range);
1841 if (unlikely(bio->bi_iter.bi_size)) {
1842 sector_t area, offset;
1844 dio->range.logical_sector = logical_sector;
1845 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1846 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1853 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1855 struct dm_integrity_c *ic = dio->ic;
1856 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1857 unsigned journal_section, journal_entry;
1858 unsigned journal_read_pos;
1859 struct completion read_comp;
1860 bool need_sync_io = ic->internal_hash && !dio->write;
1862 if (need_sync_io && from_map) {
1863 INIT_WORK(&dio->work, integrity_bio_wait);
1864 queue_work(ic->offload_wq, &dio->work);
1869 spin_lock_irq(&ic->endio_wait.lock);
1871 if (unlikely(dm_integrity_failed(ic))) {
1872 spin_unlock_irq(&ic->endio_wait.lock);
1876 dio->range.n_sectors = bio_sectors(bio);
1877 journal_read_pos = NOT_FOUND;
1878 if (likely(ic->mode == 'J')) {
1880 unsigned next_entry, i, pos;
1881 unsigned ws, we, range_sectors;
1883 dio->range.n_sectors = min(dio->range.n_sectors,
1884 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1885 if (unlikely(!dio->range.n_sectors)) {
1887 goto offload_to_thread;
1888 sleep_on_endio_wait(ic);
1891 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1892 ic->free_sectors -= range_sectors;
1893 journal_section = ic->free_section;
1894 journal_entry = ic->free_section_entry;
1896 next_entry = ic->free_section_entry + range_sectors;
1897 ic->free_section_entry = next_entry % ic->journal_section_entries;
1898 ic->free_section += next_entry / ic->journal_section_entries;
1899 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1900 wraparound_section(ic, &ic->free_section);
1902 pos = journal_section * ic->journal_section_entries + journal_entry;
1903 ws = journal_section;
1907 struct journal_entry *je;
1909 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1911 if (unlikely(pos >= ic->journal_entries))
1914 je = access_journal_entry(ic, ws, we);
1915 BUG_ON(!journal_entry_is_unused(je));
1916 journal_entry_set_inprogress(je);
1918 if (unlikely(we == ic->journal_section_entries)) {
1921 wraparound_section(ic, &ws);
1923 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1925 spin_unlock_irq(&ic->endio_wait.lock);
1926 goto journal_read_write;
1928 sector_t next_sector;
1929 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1930 if (likely(journal_read_pos == NOT_FOUND)) {
1931 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1932 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1935 unsigned jp = journal_read_pos + 1;
1936 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1937 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1940 dio->range.n_sectors = i;
1944 if (unlikely(!add_new_range(ic, &dio->range, true))) {
1946 * We must not sleep in the request routine because it could
1947 * stall bios on current->bio_list.
1948 * So, we offload the bio to a workqueue if we have to sleep.
1952 spin_unlock_irq(&ic->endio_wait.lock);
1953 INIT_WORK(&dio->work, integrity_bio_wait);
1954 queue_work(ic->wait_wq, &dio->work);
1957 if (journal_read_pos != NOT_FOUND)
1958 dio->range.n_sectors = ic->sectors_per_block;
1959 wait_and_add_new_range(ic, &dio->range);
1961 * wait_and_add_new_range drops the spinlock, so the journal
1962 * may have been changed arbitrarily. We need to recheck.
1963 * To simplify the code, we restrict I/O size to just one block.
1965 if (journal_read_pos != NOT_FOUND) {
1966 sector_t next_sector;
1967 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1968 if (unlikely(new_pos != journal_read_pos)) {
1969 remove_range_unlocked(ic, &dio->range);
1974 spin_unlock_irq(&ic->endio_wait.lock);
1976 if (unlikely(journal_read_pos != NOT_FOUND)) {
1977 journal_section = journal_read_pos / ic->journal_section_entries;
1978 journal_entry = journal_read_pos % ic->journal_section_entries;
1979 goto journal_read_write;
1982 if (ic->mode == 'B' && dio->write) {
1983 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
1984 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
1985 struct bitmap_block_status *bbs;
1987 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
1988 spin_lock(&bbs->bio_queue_lock);
1989 bio_list_add(&bbs->bio_queue, bio);
1990 spin_unlock(&bbs->bio_queue_lock);
1991 queue_work(ic->writer_wq, &bbs->work);
1996 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1999 init_completion(&read_comp);
2000 dio->completion = &read_comp;
2002 dio->completion = NULL;
2004 dio->orig_bi_iter = bio->bi_iter;
2006 dio->orig_bi_disk = bio->bi_disk;
2007 dio->orig_bi_partno = bio->bi_partno;
2008 bio_set_dev(bio, ic->dev->bdev);
2010 dio->orig_bi_integrity = bio_integrity(bio);
2011 bio->bi_integrity = NULL;
2012 bio->bi_opf &= ~REQ_INTEGRITY;
2014 dio->orig_bi_end_io = bio->bi_end_io;
2015 bio->bi_end_io = integrity_end_io;
2017 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2018 generic_make_request(bio);
2021 wait_for_completion_io(&read_comp);
2022 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2023 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2025 if (ic->mode == 'B') {
2026 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2027 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2031 if (likely(!bio->bi_status))
2032 integrity_metadata(&dio->work);
2038 INIT_WORK(&dio->work, integrity_metadata);
2039 queue_work(ic->metadata_wq, &dio->work);
2045 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2048 do_endio_flush(ic, dio);
2052 static void integrity_bio_wait(struct work_struct *w)
2054 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2056 dm_integrity_map_continue(dio, false);
2059 static void pad_uncommitted(struct dm_integrity_c *ic)
2061 if (ic->free_section_entry) {
2062 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2063 ic->free_section_entry = 0;
2065 wraparound_section(ic, &ic->free_section);
2066 ic->n_uncommitted_sections++;
2068 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2069 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2070 ic->journal_section_entries + ic->free_sectors)) {
2071 DMCRIT("journal_sections %u, journal_section_entries %u, "
2072 "n_uncommitted_sections %u, n_committed_sections %u, "
2073 "journal_section_entries %u, free_sectors %u",
2074 ic->journal_sections, ic->journal_section_entries,
2075 ic->n_uncommitted_sections, ic->n_committed_sections,
2076 ic->journal_section_entries, ic->free_sectors);
2080 static void integrity_commit(struct work_struct *w)
2082 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2083 unsigned commit_start, commit_sections;
2085 struct bio *flushes;
2087 del_timer(&ic->autocommit_timer);
2089 spin_lock_irq(&ic->endio_wait.lock);
2090 flushes = bio_list_get(&ic->flush_bio_list);
2091 if (unlikely(ic->mode != 'J')) {
2092 spin_unlock_irq(&ic->endio_wait.lock);
2093 dm_integrity_flush_buffers(ic);
2094 goto release_flush_bios;
2097 pad_uncommitted(ic);
2098 commit_start = ic->uncommitted_section;
2099 commit_sections = ic->n_uncommitted_sections;
2100 spin_unlock_irq(&ic->endio_wait.lock);
2102 if (!commit_sections)
2103 goto release_flush_bios;
2106 for (n = 0; n < commit_sections; n++) {
2107 for (j = 0; j < ic->journal_section_entries; j++) {
2108 struct journal_entry *je;
2109 je = access_journal_entry(ic, i, j);
2110 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2112 for (j = 0; j < ic->journal_section_sectors; j++) {
2113 struct journal_sector *js;
2114 js = access_journal(ic, i, j);
2115 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2118 if (unlikely(i >= ic->journal_sections))
2119 ic->commit_seq = next_commit_seq(ic->commit_seq);
2120 wraparound_section(ic, &i);
2124 write_journal(ic, commit_start, commit_sections);
2126 spin_lock_irq(&ic->endio_wait.lock);
2127 ic->uncommitted_section += commit_sections;
2128 wraparound_section(ic, &ic->uncommitted_section);
2129 ic->n_uncommitted_sections -= commit_sections;
2130 ic->n_committed_sections += commit_sections;
2131 spin_unlock_irq(&ic->endio_wait.lock);
2133 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2134 queue_work(ic->writer_wq, &ic->writer_work);
2138 struct bio *next = flushes->bi_next;
2139 flushes->bi_next = NULL;
2140 do_endio(ic, flushes);
2145 static void complete_copy_from_journal(unsigned long error, void *context)
2147 struct journal_io *io = context;
2148 struct journal_completion *comp = io->comp;
2149 struct dm_integrity_c *ic = comp->ic;
2150 remove_range(ic, &io->range);
2151 mempool_free(io, &ic->journal_io_mempool);
2152 if (unlikely(error != 0))
2153 dm_integrity_io_error(ic, "copying from journal", -EIO);
2154 complete_journal_op(comp);
2157 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2158 struct journal_entry *je)
2162 js->commit_id = je->last_bytes[s];
2164 } while (++s < ic->sectors_per_block);
2167 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2168 unsigned write_sections, bool from_replay)
2171 struct journal_completion comp;
2172 struct blk_plug plug;
2174 blk_start_plug(&plug);
2177 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2178 init_completion(&comp.comp);
2181 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2182 #ifndef INTERNAL_VERIFY
2183 if (unlikely(from_replay))
2185 rw_section_mac(ic, i, false);
2186 for (j = 0; j < ic->journal_section_entries; j++) {
2187 struct journal_entry *je = access_journal_entry(ic, i, j);
2188 sector_t sec, area, offset;
2189 unsigned k, l, next_loop;
2190 sector_t metadata_block;
2191 unsigned metadata_offset;
2192 struct journal_io *io;
2194 if (journal_entry_is_unused(je))
2196 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2197 sec = journal_entry_get_sector(je);
2198 if (unlikely(from_replay)) {
2199 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2200 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2201 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2204 get_area_and_offset(ic, sec, &area, &offset);
2205 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2206 for (k = j + 1; k < ic->journal_section_entries; k++) {
2207 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2208 sector_t sec2, area2, offset2;
2209 if (journal_entry_is_unused(je2))
2211 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2212 sec2 = journal_entry_get_sector(je2);
2213 get_area_and_offset(ic, sec2, &area2, &offset2);
2214 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2216 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2220 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2222 io->range.logical_sector = sec;
2223 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2225 spin_lock_irq(&ic->endio_wait.lock);
2226 add_new_range_and_wait(ic, &io->range);
2228 if (likely(!from_replay)) {
2229 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2231 /* don't write if there is newer committed sector */
2232 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2233 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2235 journal_entry_set_unused(je2);
2236 remove_journal_node(ic, §ion_node[j]);
2238 sec += ic->sectors_per_block;
2239 offset += ic->sectors_per_block;
2241 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2242 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2244 journal_entry_set_unused(je2);
2245 remove_journal_node(ic, §ion_node[k - 1]);
2249 remove_range_unlocked(ic, &io->range);
2250 spin_unlock_irq(&ic->endio_wait.lock);
2251 mempool_free(io, &ic->journal_io_mempool);
2254 for (l = j; l < k; l++) {
2255 remove_journal_node(ic, §ion_node[l]);
2258 spin_unlock_irq(&ic->endio_wait.lock);
2260 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2261 for (l = j; l < k; l++) {
2263 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2266 #ifndef INTERNAL_VERIFY
2267 unlikely(from_replay) &&
2269 ic->internal_hash) {
2270 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2272 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2273 (char *)access_journal_data(ic, i, l), test_tag);
2274 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2275 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2278 journal_entry_set_unused(je2);
2279 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2280 ic->tag_size, TAG_WRITE);
2282 dm_integrity_io_error(ic, "reading tags", r);
2286 atomic_inc(&comp.in_flight);
2287 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2288 (k - j) << ic->sb->log2_sectors_per_block,
2289 get_data_sector(ic, area, offset),
2290 complete_copy_from_journal, io);
2296 dm_bufio_write_dirty_buffers_async(ic->bufio);
2298 blk_finish_plug(&plug);
2300 complete_journal_op(&comp);
2301 wait_for_completion_io(&comp.comp);
2303 dm_integrity_flush_buffers(ic);
2306 static void integrity_writer(struct work_struct *w)
2308 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2309 unsigned write_start, write_sections;
2311 unsigned prev_free_sectors;
2313 /* the following test is not needed, but it tests the replay code */
2314 if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2317 spin_lock_irq(&ic->endio_wait.lock);
2318 write_start = ic->committed_section;
2319 write_sections = ic->n_committed_sections;
2320 spin_unlock_irq(&ic->endio_wait.lock);
2322 if (!write_sections)
2325 do_journal_write(ic, write_start, write_sections, false);
2327 spin_lock_irq(&ic->endio_wait.lock);
2329 ic->committed_section += write_sections;
2330 wraparound_section(ic, &ic->committed_section);
2331 ic->n_committed_sections -= write_sections;
2333 prev_free_sectors = ic->free_sectors;
2334 ic->free_sectors += write_sections * ic->journal_section_entries;
2335 if (unlikely(!prev_free_sectors))
2336 wake_up_locked(&ic->endio_wait);
2338 spin_unlock_irq(&ic->endio_wait.lock);
2341 static void recalc_write_super(struct dm_integrity_c *ic)
2345 dm_integrity_flush_buffers(ic);
2346 if (dm_integrity_failed(ic))
2349 r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2351 dm_integrity_io_error(ic, "writing superblock", r);
2354 static void integrity_recalc(struct work_struct *w)
2356 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2357 struct dm_integrity_range range;
2358 struct dm_io_request io_req;
2359 struct dm_io_region io_loc;
2360 sector_t area, offset;
2361 sector_t metadata_block;
2362 unsigned metadata_offset;
2363 sector_t logical_sector, n_sectors;
2367 unsigned super_counter = 0;
2369 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2371 spin_lock_irq(&ic->endio_wait.lock);
2375 if (unlikely(READ_ONCE(ic->suspending)))
2378 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2379 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2380 if (ic->mode == 'B') {
2381 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2382 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2387 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2388 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2390 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2392 add_new_range_and_wait(ic, &range);
2393 spin_unlock_irq(&ic->endio_wait.lock);
2394 logical_sector = range.logical_sector;
2395 n_sectors = range.n_sectors;
2397 if (ic->mode == 'B') {
2398 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2399 goto advance_and_next;
2401 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2402 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2403 logical_sector += ic->sectors_per_block;
2404 n_sectors -= ic->sectors_per_block;
2407 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2408 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2409 n_sectors -= ic->sectors_per_block;
2412 get_area_and_offset(ic, logical_sector, &area, &offset);
2415 DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors);
2417 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2418 recalc_write_super(ic);
2419 if (ic->mode == 'B') {
2420 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2425 if (unlikely(dm_integrity_failed(ic)))
2428 io_req.bi_op = REQ_OP_READ;
2429 io_req.bi_op_flags = 0;
2430 io_req.mem.type = DM_IO_VMA;
2431 io_req.mem.ptr.addr = ic->recalc_buffer;
2432 io_req.notify.fn = NULL;
2433 io_req.client = ic->io;
2434 io_loc.bdev = ic->dev->bdev;
2435 io_loc.sector = get_data_sector(ic, area, offset);
2436 io_loc.count = n_sectors;
2438 r = dm_io(&io_req, 1, &io_loc, NULL);
2440 dm_integrity_io_error(ic, "reading data", r);
2444 t = ic->recalc_tags;
2445 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2446 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2450 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2452 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2454 dm_integrity_io_error(ic, "writing tags", r);
2461 spin_lock_irq(&ic->endio_wait.lock);
2462 remove_range_unlocked(ic, &range);
2463 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2467 remove_range(ic, &range);
2471 spin_unlock_irq(&ic->endio_wait.lock);
2473 recalc_write_super(ic);
2476 static void bitmap_block_work(struct work_struct *w)
2478 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2479 struct dm_integrity_c *ic = bbs->ic;
2481 struct bio_list bio_queue;
2482 struct bio_list waiting;
2484 bio_list_init(&waiting);
2486 spin_lock(&bbs->bio_queue_lock);
2487 bio_queue = bbs->bio_queue;
2488 bio_list_init(&bbs->bio_queue);
2489 spin_unlock(&bbs->bio_queue_lock);
2491 while ((bio = bio_list_pop(&bio_queue))) {
2492 struct dm_integrity_io *dio;
2494 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2496 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2497 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2498 remove_range(ic, &dio->range);
2499 INIT_WORK(&dio->work, integrity_bio_wait);
2500 queue_work(ic->offload_wq, &dio->work);
2502 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2503 dio->range.n_sectors, BITMAP_OP_SET);
2504 bio_list_add(&waiting, bio);
2508 if (bio_list_empty(&waiting))
2511 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2512 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2513 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2515 while ((bio = bio_list_pop(&waiting))) {
2516 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2518 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2519 dio->range.n_sectors, BITMAP_OP_SET);
2521 remove_range(ic, &dio->range);
2522 INIT_WORK(&dio->work, integrity_bio_wait);
2523 queue_work(ic->offload_wq, &dio->work);
2526 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2529 static void bitmap_flush_work(struct work_struct *work)
2531 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2532 struct dm_integrity_range range;
2533 unsigned long limit;
2536 dm_integrity_flush_buffers(ic);
2538 range.logical_sector = 0;
2539 range.n_sectors = ic->provided_data_sectors;
2541 spin_lock_irq(&ic->endio_wait.lock);
2542 add_new_range_and_wait(ic, &range);
2543 spin_unlock_irq(&ic->endio_wait.lock);
2545 dm_integrity_flush_buffers(ic);
2547 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL);
2549 limit = ic->provided_data_sectors;
2550 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2551 limit = le64_to_cpu(ic->sb->recalc_sector)
2552 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2553 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2555 /*DEBUG_print("zeroing journal\n");*/
2556 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2557 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2559 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2560 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2562 spin_lock_irq(&ic->endio_wait.lock);
2563 remove_range_unlocked(ic, &range);
2564 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2566 spin_unlock_irq(&ic->endio_wait.lock);
2567 spin_lock_irq(&ic->endio_wait.lock);
2569 spin_unlock_irq(&ic->endio_wait.lock);
2573 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2574 unsigned n_sections, unsigned char commit_seq)
2581 for (n = 0; n < n_sections; n++) {
2582 i = start_section + n;
2583 wraparound_section(ic, &i);
2584 for (j = 0; j < ic->journal_section_sectors; j++) {
2585 struct journal_sector *js = access_journal(ic, i, j);
2586 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2587 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2589 for (j = 0; j < ic->journal_section_entries; j++) {
2590 struct journal_entry *je = access_journal_entry(ic, i, j);
2591 journal_entry_set_unused(je);
2595 write_journal(ic, start_section, n_sections);
2598 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2601 for (k = 0; k < N_COMMIT_IDS; k++) {
2602 if (dm_integrity_commit_id(ic, i, j, k) == id)
2605 dm_integrity_io_error(ic, "journal commit id", -EIO);
2609 static void replay_journal(struct dm_integrity_c *ic)
2612 bool used_commit_ids[N_COMMIT_IDS];
2613 unsigned max_commit_id_sections[N_COMMIT_IDS];
2614 unsigned write_start, write_sections;
2615 unsigned continue_section;
2617 unsigned char unused, last_used, want_commit_seq;
2619 if (ic->mode == 'R')
2622 if (ic->journal_uptodate)
2628 if (!ic->just_formatted) {
2629 DEBUG_print("reading journal\n");
2630 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2632 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2633 if (ic->journal_io) {
2634 struct journal_completion crypt_comp;
2636 init_completion(&crypt_comp.comp);
2637 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2638 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2639 wait_for_completion(&crypt_comp.comp);
2641 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2644 if (dm_integrity_failed(ic))
2647 journal_empty = true;
2648 memset(used_commit_ids, 0, sizeof used_commit_ids);
2649 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2650 for (i = 0; i < ic->journal_sections; i++) {
2651 for (j = 0; j < ic->journal_section_sectors; j++) {
2653 struct journal_sector *js = access_journal(ic, i, j);
2654 k = find_commit_seq(ic, i, j, js->commit_id);
2657 used_commit_ids[k] = true;
2658 max_commit_id_sections[k] = i;
2660 if (journal_empty) {
2661 for (j = 0; j < ic->journal_section_entries; j++) {
2662 struct journal_entry *je = access_journal_entry(ic, i, j);
2663 if (!journal_entry_is_unused(je)) {
2664 journal_empty = false;
2671 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2672 unused = N_COMMIT_IDS - 1;
2673 while (unused && !used_commit_ids[unused - 1])
2676 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2677 if (!used_commit_ids[unused])
2679 if (unused == N_COMMIT_IDS) {
2680 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2684 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2685 unused, used_commit_ids[0], used_commit_ids[1],
2686 used_commit_ids[2], used_commit_ids[3]);
2688 last_used = prev_commit_seq(unused);
2689 want_commit_seq = prev_commit_seq(last_used);
2691 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2692 journal_empty = true;
2694 write_start = max_commit_id_sections[last_used] + 1;
2695 if (unlikely(write_start >= ic->journal_sections))
2696 want_commit_seq = next_commit_seq(want_commit_seq);
2697 wraparound_section(ic, &write_start);
2700 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2701 for (j = 0; j < ic->journal_section_sectors; j++) {
2702 struct journal_sector *js = access_journal(ic, i, j);
2704 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2706 * This could be caused by crash during writing.
2707 * We won't replay the inconsistent part of the
2710 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2711 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2716 if (unlikely(i >= ic->journal_sections))
2717 want_commit_seq = next_commit_seq(want_commit_seq);
2718 wraparound_section(ic, &i);
2722 if (!journal_empty) {
2723 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2724 write_sections, write_start, want_commit_seq);
2725 do_journal_write(ic, write_start, write_sections, true);
2728 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2729 continue_section = write_start;
2730 ic->commit_seq = want_commit_seq;
2731 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2734 unsigned char erase_seq;
2736 DEBUG_print("clearing journal\n");
2738 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2740 init_journal(ic, s, 1, erase_seq);
2742 wraparound_section(ic, &s);
2743 if (ic->journal_sections >= 2) {
2744 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2745 s += ic->journal_sections - 2;
2746 wraparound_section(ic, &s);
2747 init_journal(ic, s, 1, erase_seq);
2750 continue_section = 0;
2751 ic->commit_seq = next_commit_seq(erase_seq);
2754 ic->committed_section = continue_section;
2755 ic->n_committed_sections = 0;
2757 ic->uncommitted_section = continue_section;
2758 ic->n_uncommitted_sections = 0;
2760 ic->free_section = continue_section;
2761 ic->free_section_entry = 0;
2762 ic->free_sectors = ic->journal_entries;
2764 ic->journal_tree_root = RB_ROOT;
2765 for (i = 0; i < ic->journal_entries; i++)
2766 init_journal_node(&ic->journal_tree[i]);
2769 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2771 DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2773 if (ic->mode == 'B') {
2774 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2775 ic->synchronous_mode = 1;
2777 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2778 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2779 flush_workqueue(ic->commit_wq);
2783 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2785 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2787 DEBUG_print("dm_integrity_reboot\n");
2789 dm_integrity_enter_synchronous_mode(ic);
2794 static void dm_integrity_postsuspend(struct dm_target *ti)
2796 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2799 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2801 del_timer_sync(&ic->autocommit_timer);
2803 WRITE_ONCE(ic->suspending, 1);
2806 drain_workqueue(ic->recalc_wq);
2808 if (ic->mode == 'B')
2809 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2811 queue_work(ic->commit_wq, &ic->commit_work);
2812 drain_workqueue(ic->commit_wq);
2814 if (ic->mode == 'J') {
2816 queue_work(ic->writer_wq, &ic->writer_work);
2817 drain_workqueue(ic->writer_wq);
2818 dm_integrity_flush_buffers(ic);
2821 if (ic->mode == 'B') {
2822 dm_integrity_flush_buffers(ic);
2824 /* set to 0 to test bitmap replay code */
2825 init_journal(ic, 0, ic->journal_sections, 0);
2826 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2827 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2829 dm_integrity_io_error(ic, "writing superblock", r);
2833 WRITE_ONCE(ic->suspending, 0);
2835 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2837 ic->journal_uptodate = true;
2840 static void dm_integrity_resume(struct dm_target *ti)
2842 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2844 DEBUG_print("resume\n");
2846 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2847 DEBUG_print("resume dirty_bitmap\n");
2848 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2849 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2850 if (ic->mode == 'B') {
2851 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2852 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2853 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2854 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2855 BITMAP_OP_TEST_ALL_CLEAR)) {
2856 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2857 ic->sb->recalc_sector = cpu_to_le64(0);
2860 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2861 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2862 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2863 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2864 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2865 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2866 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2867 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2868 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2869 ic->sb->recalc_sector = cpu_to_le64(0);
2872 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
2873 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
2874 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2875 ic->sb->recalc_sector = cpu_to_le64(0);
2877 init_journal(ic, 0, ic->journal_sections, 0);
2879 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2881 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2883 dm_integrity_io_error(ic, "writing superblock", r);
2886 if (ic->mode == 'B') {
2887 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2888 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2889 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2891 dm_integrity_io_error(ic, "writing superblock", r);
2893 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2894 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2895 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2896 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2897 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
2898 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
2899 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2900 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
2901 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2902 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
2903 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2905 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2906 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2910 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
2911 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2912 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2913 DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors);
2914 if (recalc_pos < ic->provided_data_sectors) {
2915 queue_work(ic->recalc_wq, &ic->recalc_work);
2916 } else if (recalc_pos > ic->provided_data_sectors) {
2917 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2918 recalc_write_super(ic);
2922 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
2923 ic->reboot_notifier.next = NULL;
2924 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
2925 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
2928 /* set to 1 to stress test synchronous mode */
2929 dm_integrity_enter_synchronous_mode(ic);
2933 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2934 unsigned status_flags, char *result, unsigned maxlen)
2936 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2941 case STATUSTYPE_INFO:
2943 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
2944 (unsigned long long)ic->provided_data_sectors);
2945 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2946 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2951 case STATUSTYPE_TABLE: {
2952 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2953 watermark_percentage += ic->journal_entries / 2;
2954 do_div(watermark_percentage, ic->journal_entries);
2956 arg_count += !!ic->meta_dev;
2957 arg_count += ic->sectors_per_block != 1;
2958 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2959 arg_count += ic->mode == 'J';
2960 arg_count += ic->mode == 'J';
2961 arg_count += ic->mode == 'B';
2962 arg_count += ic->mode == 'B';
2963 arg_count += !!ic->internal_hash_alg.alg_string;
2964 arg_count += !!ic->journal_crypt_alg.alg_string;
2965 arg_count += !!ic->journal_mac_alg.alg_string;
2966 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2967 ic->tag_size, ic->mode, arg_count);
2969 DMEMIT(" meta_device:%s", ic->meta_dev->name);
2970 if (ic->sectors_per_block != 1)
2971 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2972 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2973 DMEMIT(" recalculate");
2974 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2975 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2976 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2977 if (ic->mode == 'J') {
2978 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2979 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2981 if (ic->mode == 'B') {
2982 DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
2983 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
2986 #define EMIT_ALG(a, n) \
2988 if (ic->a.alg_string) { \
2989 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2990 if (ic->a.key_string) \
2991 DMEMIT(":%s", ic->a.key_string);\
2994 EMIT_ALG(internal_hash_alg, "internal_hash");
2995 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2996 EMIT_ALG(journal_mac_alg, "journal_mac");
3002 static int dm_integrity_iterate_devices(struct dm_target *ti,
3003 iterate_devices_callout_fn fn, void *data)
3005 struct dm_integrity_c *ic = ti->private;
3008 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3010 return fn(ti, ic->dev, 0, ti->len, data);
3013 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3015 struct dm_integrity_c *ic = ti->private;
3017 if (ic->sectors_per_block > 1) {
3018 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3019 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3020 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3024 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3026 unsigned sector_space = JOURNAL_SECTOR_DATA;
3028 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3029 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3030 JOURNAL_ENTRY_ROUNDUP);
3032 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3033 sector_space -= JOURNAL_MAC_PER_SECTOR;
3034 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3035 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3036 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3037 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3040 static int calculate_device_limits(struct dm_integrity_c *ic)
3042 __u64 initial_sectors;
3044 calculate_journal_section_size(ic);
3045 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3046 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3048 ic->initial_sectors = initial_sectors;
3050 if (!ic->meta_dev) {
3051 sector_t last_sector, last_area, last_offset;
3053 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3054 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
3055 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3056 ic->log2_metadata_run = __ffs(ic->metadata_run);
3058 ic->log2_metadata_run = -1;
3060 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3061 last_sector = get_data_sector(ic, last_area, last_offset);
3062 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3065 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3066 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3067 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3068 meta_size <<= ic->log2_buffer_sectors;
3069 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3070 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3072 ic->metadata_run = 1;
3073 ic->log2_metadata_run = 0;
3079 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3081 unsigned journal_sections;
3084 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3085 memcpy(ic->sb->magic, SB_MAGIC, 8);
3086 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3087 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3088 if (ic->journal_mac_alg.alg_string)
3089 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3091 calculate_journal_section_size(ic);
3092 journal_sections = journal_sectors / ic->journal_section_sectors;
3093 if (!journal_sections)
3094 journal_sections = 1;
3096 if (!ic->meta_dev) {
3097 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3098 if (!interleave_sectors)
3099 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3100 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3101 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3102 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3104 ic->provided_data_sectors = 0;
3105 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3106 __u64 prev_data_sectors = ic->provided_data_sectors;
3108 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3109 if (calculate_device_limits(ic))
3110 ic->provided_data_sectors = prev_data_sectors;
3112 if (!ic->provided_data_sectors)
3115 ic->sb->log2_interleave_sectors = 0;
3116 ic->provided_data_sectors = ic->data_device_sectors;
3117 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3120 ic->sb->journal_sections = cpu_to_le32(0);
3121 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3122 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3123 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3124 if (test_journal_sections > journal_sections)
3126 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3127 if (calculate_device_limits(ic))
3128 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3131 if (!le32_to_cpu(ic->sb->journal_sections)) {
3132 if (ic->log2_buffer_sectors > 3) {
3133 ic->log2_buffer_sectors--;
3134 goto try_smaller_buffer;
3140 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3147 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3149 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3150 struct blk_integrity bi;
3152 memset(&bi, 0, sizeof(bi));
3153 bi.profile = &dm_integrity_profile;
3154 bi.tuple_size = ic->tag_size;
3155 bi.tag_size = bi.tuple_size;
3156 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3158 blk_integrity_register(disk, &bi);
3159 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3162 static void dm_integrity_free_page_list(struct page_list *pl)
3168 for (i = 0; pl[i].page; i++)
3169 __free_page(pl[i].page);
3173 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3175 struct page_list *pl;
3178 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3182 for (i = 0; i < n_pages; i++) {
3183 pl[i].page = alloc_page(GFP_KERNEL);
3185 dm_integrity_free_page_list(pl);
3189 pl[i - 1].next = &pl[i];
3197 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3200 for (i = 0; i < ic->journal_sections; i++)
3205 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3206 struct page_list *pl)
3208 struct scatterlist **sl;
3211 sl = kvmalloc_array(ic->journal_sections,
3212 sizeof(struct scatterlist *),
3213 GFP_KERNEL | __GFP_ZERO);
3217 for (i = 0; i < ic->journal_sections; i++) {
3218 struct scatterlist *s;
3219 unsigned start_index, start_offset;
3220 unsigned end_index, end_offset;
3224 page_list_location(ic, i, 0, &start_index, &start_offset);
3225 page_list_location(ic, i, ic->journal_section_sectors - 1,
3226 &end_index, &end_offset);
3228 n_pages = (end_index - start_index + 1);
3230 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3233 dm_integrity_free_journal_scatterlist(ic, sl);
3237 sg_init_table(s, n_pages);
3238 for (idx = start_index; idx <= end_index; idx++) {
3239 char *va = lowmem_page_address(pl[idx].page);
3240 unsigned start = 0, end = PAGE_SIZE;
3241 if (idx == start_index)
3242 start = start_offset;
3243 if (idx == end_index)
3244 end = end_offset + (1 << SECTOR_SHIFT);
3245 sg_set_buf(&s[idx - start_index], va + start, end - start);
3254 static void free_alg(struct alg_spec *a)
3256 kzfree(a->alg_string);
3258 memset(a, 0, sizeof *a);
3261 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3267 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3271 k = strchr(a->alg_string, ':');
3274 a->key_string = k + 1;
3275 if (strlen(a->key_string) & 1)
3278 a->key_size = strlen(a->key_string) / 2;
3279 a->key = kmalloc(a->key_size, GFP_KERNEL);
3282 if (hex2bin(a->key, a->key_string, a->key_size))
3288 *error = error_inval;
3291 *error = "Out of memory for an argument";
3295 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3296 char *error_alg, char *error_key)
3300 if (a->alg_string) {
3301 *hash = crypto_alloc_shash(a->alg_string, 0, 0);
3302 if (IS_ERR(*hash)) {
3310 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3315 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3324 static int create_journal(struct dm_integrity_c *ic, char **error)
3328 __u64 journal_pages, journal_desc_size, journal_tree_size;
3329 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3330 struct skcipher_request *req = NULL;
3332 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3333 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3334 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3335 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3337 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3338 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3339 journal_desc_size = journal_pages * sizeof(struct page_list);
3340 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3341 *error = "Journal doesn't fit into memory";
3345 ic->journal_pages = journal_pages;
3347 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3349 *error = "Could not allocate memory for journal";
3353 if (ic->journal_crypt_alg.alg_string) {
3354 unsigned ivsize, blocksize;
3355 struct journal_completion comp;
3358 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
3359 if (IS_ERR(ic->journal_crypt)) {
3360 *error = "Invalid journal cipher";
3361 r = PTR_ERR(ic->journal_crypt);
3362 ic->journal_crypt = NULL;
3365 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3366 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3368 if (ic->journal_crypt_alg.key) {
3369 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3370 ic->journal_crypt_alg.key_size);
3372 *error = "Error setting encryption key";
3376 DEBUG_print("cipher %s, block size %u iv size %u\n",
3377 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3379 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3380 if (!ic->journal_io) {
3381 *error = "Could not allocate memory for journal io";
3386 if (blocksize == 1) {
3387 struct scatterlist *sg;
3389 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3391 *error = "Could not allocate crypt request";
3396 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3398 *error = "Could not allocate iv";
3403 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3404 if (!ic->journal_xor) {
3405 *error = "Could not allocate memory for journal xor";
3410 sg = kvmalloc_array(ic->journal_pages + 1,
3411 sizeof(struct scatterlist),
3414 *error = "Unable to allocate sg list";
3418 sg_init_table(sg, ic->journal_pages + 1);
3419 for (i = 0; i < ic->journal_pages; i++) {
3420 char *va = lowmem_page_address(ic->journal_xor[i].page);
3422 sg_set_buf(&sg[i], va, PAGE_SIZE);
3424 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3426 skcipher_request_set_crypt(req, sg, sg,
3427 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3428 init_completion(&comp.comp);
3429 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3430 if (do_crypt(true, req, &comp))
3431 wait_for_completion(&comp.comp);
3433 r = dm_integrity_failed(ic);
3435 *error = "Unable to encrypt journal";
3438 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3440 crypto_free_skcipher(ic->journal_crypt);
3441 ic->journal_crypt = NULL;
3443 unsigned crypt_len = roundup(ivsize, blocksize);
3445 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3447 *error = "Could not allocate crypt request";
3452 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3454 *error = "Could not allocate iv";
3459 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3461 *error = "Unable to allocate crypt data";
3466 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3467 if (!ic->journal_scatterlist) {
3468 *error = "Unable to allocate sg list";
3472 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3473 if (!ic->journal_io_scatterlist) {
3474 *error = "Unable to allocate sg list";
3478 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3479 sizeof(struct skcipher_request *),
3480 GFP_KERNEL | __GFP_ZERO);
3481 if (!ic->sk_requests) {
3482 *error = "Unable to allocate sk requests";
3486 for (i = 0; i < ic->journal_sections; i++) {
3487 struct scatterlist sg;
3488 struct skcipher_request *section_req;
3489 __u32 section_le = cpu_to_le32(i);
3491 memset(crypt_iv, 0x00, ivsize);
3492 memset(crypt_data, 0x00, crypt_len);
3493 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le)));
3495 sg_init_one(&sg, crypt_data, crypt_len);
3496 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3497 init_completion(&comp.comp);
3498 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3499 if (do_crypt(true, req, &comp))
3500 wait_for_completion(&comp.comp);
3502 r = dm_integrity_failed(ic);
3504 *error = "Unable to generate iv";
3508 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3510 *error = "Unable to allocate crypt request";
3514 section_req->iv = kmalloc_array(ivsize, 2,
3516 if (!section_req->iv) {
3517 skcipher_request_free(section_req);
3518 *error = "Unable to allocate iv";
3522 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3523 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3524 ic->sk_requests[i] = section_req;
3525 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3530 for (i = 0; i < N_COMMIT_IDS; i++) {
3533 for (j = 0; j < i; j++) {
3534 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3535 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3536 goto retest_commit_id;
3539 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3542 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3543 if (journal_tree_size > ULONG_MAX) {
3544 *error = "Journal doesn't fit into memory";
3548 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3549 if (!ic->journal_tree) {
3550 *error = "Could not allocate memory for journal tree";
3556 skcipher_request_free(req);
3562 * Construct a integrity mapping
3566 * offset from the start of the device
3568 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3569 * number of optional arguments
3570 * optional arguments:
3572 * interleave_sectors
3579 * bitmap_flush_interval
3585 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3587 struct dm_integrity_c *ic;
3590 unsigned extra_args;
3591 struct dm_arg_set as;
3592 static const struct dm_arg _args[] = {
3593 {0, 9, "Invalid number of feature args"},
3595 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3596 bool should_write_sb;
3598 unsigned long long start;
3599 __s8 log2_sectors_per_bitmap_bit = -1;
3600 __s8 log2_blocks_per_bitmap_bit;
3601 __u64 bits_in_journal;
3602 __u64 n_bitmap_bits;
3604 #define DIRECT_ARGUMENTS 4
3606 if (argc <= DIRECT_ARGUMENTS) {
3607 ti->error = "Invalid argument count";
3611 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3613 ti->error = "Cannot allocate integrity context";
3617 ti->per_io_data_size = sizeof(struct dm_integrity_io);
3619 ic->in_progress = RB_ROOT;
3620 INIT_LIST_HEAD(&ic->wait_list);
3621 init_waitqueue_head(&ic->endio_wait);
3622 bio_list_init(&ic->flush_bio_list);
3623 init_waitqueue_head(&ic->copy_to_journal_wait);
3624 init_completion(&ic->crypto_backoff);
3625 atomic64_set(&ic->number_of_mismatches, 0);
3626 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3628 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3630 ti->error = "Device lookup failed";
3634 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3635 ti->error = "Invalid starting offset";
3641 if (strcmp(argv[2], "-")) {
3642 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3643 ti->error = "Invalid tag size";
3649 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3650 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3651 ic->mode = argv[3][0];
3653 ti->error = "Invalid mode (expecting J, B, D, R)";
3658 journal_sectors = 0;
3659 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3660 buffer_sectors = DEFAULT_BUFFER_SECTORS;
3661 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3662 sync_msec = DEFAULT_SYNC_MSEC;
3663 ic->sectors_per_block = 1;
3665 as.argc = argc - DIRECT_ARGUMENTS;
3666 as.argv = argv + DIRECT_ARGUMENTS;
3667 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3671 while (extra_args--) {
3672 const char *opt_string;
3674 unsigned long long llval;
3675 opt_string = dm_shift_arg(&as);
3678 ti->error = "Not enough feature arguments";
3681 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3682 journal_sectors = val ? val : 1;
3683 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3684 interleave_sectors = val;
3685 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3686 buffer_sectors = val;
3687 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3688 journal_watermark = val;
3689 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3691 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3693 dm_put_device(ti, ic->meta_dev);
3694 ic->meta_dev = NULL;
3696 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3697 dm_table_get_mode(ti->table), &ic->meta_dev);
3699 ti->error = "Device lookup failed";
3702 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3703 if (val < 1 << SECTOR_SHIFT ||
3704 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3707 ti->error = "Invalid block_size argument";
3710 ic->sectors_per_block = val >> SECTOR_SHIFT;
3711 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3712 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3713 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3714 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3716 ti->error = "Invalid bitmap_flush_interval argument";
3718 ic->bitmap_flush_interval = msecs_to_jiffies(val);
3719 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3720 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3721 "Invalid internal_hash argument");
3724 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3725 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3726 "Invalid journal_crypt argument");
3729 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3730 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
3731 "Invalid journal_mac argument");
3734 } else if (!strcmp(opt_string, "recalculate")) {
3735 ic->recalculate_flag = true;
3738 ti->error = "Invalid argument";
3743 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3745 ic->meta_device_sectors = ic->data_device_sectors;
3747 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3749 if (!journal_sectors) {
3750 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3751 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3754 if (!buffer_sectors)
3756 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3758 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3759 "Invalid internal hash", "Error setting internal hash key");
3763 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3764 "Invalid journal mac", "Error setting journal mac key");
3768 if (!ic->tag_size) {
3769 if (!ic->internal_hash) {
3770 ti->error = "Unknown tag size";
3774 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3776 if (ic->tag_size > MAX_TAG_SIZE) {
3777 ti->error = "Too big tag size";
3781 if (!(ic->tag_size & (ic->tag_size - 1)))
3782 ic->log2_tag_size = __ffs(ic->tag_size);
3784 ic->log2_tag_size = -1;
3786 if (ic->mode == 'B' && !ic->internal_hash) {
3788 ti->error = "Bitmap mode can be only used with internal hash";
3792 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3793 ic->autocommit_msec = sync_msec;
3794 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3796 ic->io = dm_io_client_create();
3797 if (IS_ERR(ic->io)) {
3798 r = PTR_ERR(ic->io);
3800 ti->error = "Cannot allocate dm io";
3804 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3806 ti->error = "Cannot allocate mempool";
3810 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3811 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3812 if (!ic->metadata_wq) {
3813 ti->error = "Cannot allocate workqueue";
3819 * If this workqueue were percpu, it would cause bio reordering
3820 * and reduced performance.
3822 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3824 ti->error = "Cannot allocate workqueue";
3829 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
3830 METADATA_WORKQUEUE_MAX_ACTIVE);
3831 if (!ic->offload_wq) {
3832 ti->error = "Cannot allocate workqueue";
3837 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3838 if (!ic->commit_wq) {
3839 ti->error = "Cannot allocate workqueue";
3843 INIT_WORK(&ic->commit_work, integrity_commit);
3845 if (ic->mode == 'J' || ic->mode == 'B') {
3846 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3847 if (!ic->writer_wq) {
3848 ti->error = "Cannot allocate workqueue";
3852 INIT_WORK(&ic->writer_work, integrity_writer);
3855 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3858 ti->error = "Cannot allocate superblock area";
3862 r = sync_rw_sb(ic, REQ_OP_READ, 0);
3864 ti->error = "Error reading superblock";
3867 should_write_sb = false;
3868 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3869 if (ic->mode != 'R') {
3870 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3872 ti->error = "The device is not initialized";
3877 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3879 ti->error = "Could not initialize superblock";
3882 if (ic->mode != 'R')
3883 should_write_sb = true;
3886 if (!ic->sb->version || ic->sb->version > SB_VERSION_3) {
3888 ti->error = "Unknown version";
3891 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3893 ti->error = "Tag size doesn't match the information in superblock";
3896 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3898 ti->error = "Block size doesn't match the information in superblock";
3901 if (!le32_to_cpu(ic->sb->journal_sections)) {
3903 ti->error = "Corrupted superblock, journal_sections is 0";
3906 /* make sure that ti->max_io_len doesn't overflow */
3907 if (!ic->meta_dev) {
3908 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3909 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3911 ti->error = "Invalid interleave_sectors in the superblock";
3915 if (ic->sb->log2_interleave_sectors) {
3917 ti->error = "Invalid interleave_sectors in the superblock";
3921 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3922 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3923 /* test for overflow */
3925 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3928 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3930 ti->error = "Journal mac mismatch";
3935 r = calculate_device_limits(ic);
3938 if (ic->log2_buffer_sectors > 3) {
3939 ic->log2_buffer_sectors--;
3940 goto try_smaller_buffer;
3943 ti->error = "The device is too small";
3947 if (log2_sectors_per_bitmap_bit < 0)
3948 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
3949 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
3950 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
3952 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
3953 if (bits_in_journal > UINT_MAX)
3954 bits_in_journal = UINT_MAX;
3955 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
3956 log2_sectors_per_bitmap_bit++;
3958 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
3959 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3960 if (should_write_sb) {
3961 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3963 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
3964 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
3965 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
3968 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3970 if (ti->len > ic->provided_data_sectors) {
3972 ti->error = "Not enough provided sectors for requested mapping size";
3977 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3979 do_div(threshold, 100);
3980 ic->free_sectors_threshold = threshold;
3982 DEBUG_print("initialized:\n");
3983 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3984 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
3985 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3986 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
3987 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
3988 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3989 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
3990 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3991 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
3992 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
3993 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
3994 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
3995 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3996 (unsigned long long)ic->provided_data_sectors);
3997 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3998 DEBUG_print(" bits_in_journal %llu\n", (unsigned long long)bits_in_journal);
4000 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4001 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4002 ic->sb->recalc_sector = cpu_to_le64(0);
4005 if (ic->internal_hash) {
4006 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4007 if (!ic->recalc_wq ) {
4008 ti->error = "Cannot allocate workqueue";
4012 INIT_WORK(&ic->recalc_work, integrity_recalc);
4013 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4014 if (!ic->recalc_buffer) {
4015 ti->error = "Cannot allocate buffer for recalculating";
4019 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4020 ic->tag_size, GFP_KERNEL);
4021 if (!ic->recalc_tags) {
4022 ti->error = "Cannot allocate tags for recalculating";
4028 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4029 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4030 if (IS_ERR(ic->bufio)) {
4031 r = PTR_ERR(ic->bufio);
4032 ti->error = "Cannot initialize dm-bufio";
4036 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4038 if (ic->mode != 'R') {
4039 r = create_journal(ic, &ti->error);
4045 if (ic->mode == 'B') {
4047 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4049 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4050 if (!ic->recalc_bitmap) {
4054 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4055 if (!ic->may_write_bitmap) {
4059 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4064 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4065 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4066 struct bitmap_block_status *bbs = &ic->bbs[i];
4067 unsigned sector, pl_index, pl_offset;
4069 INIT_WORK(&bbs->work, bitmap_block_work);
4072 bio_list_init(&bbs->bio_queue);
4073 spin_lock_init(&bbs->bio_queue_lock);
4075 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4076 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4077 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4079 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4083 if (should_write_sb) {
4086 init_journal(ic, 0, ic->journal_sections, 0);
4087 r = dm_integrity_failed(ic);
4089 ti->error = "Error initializing journal";
4092 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4094 ti->error = "Error initializing superblock";
4097 ic->just_formatted = true;
4100 if (!ic->meta_dev) {
4101 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4105 if (ic->mode == 'B') {
4106 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4108 max_io_len = 1U << 31;
4109 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4110 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4111 r = dm_set_target_max_io_len(ti, max_io_len);
4117 if (!ic->internal_hash)
4118 dm_integrity_set(ti, ic);
4120 ti->num_flush_bios = 1;
4121 ti->flush_supported = true;
4126 dm_integrity_dtr(ti);
4130 static void dm_integrity_dtr(struct dm_target *ti)
4132 struct dm_integrity_c *ic = ti->private;
4134 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4135 BUG_ON(!list_empty(&ic->wait_list));
4137 if (ic->metadata_wq)
4138 destroy_workqueue(ic->metadata_wq);
4140 destroy_workqueue(ic->wait_wq);
4142 destroy_workqueue(ic->offload_wq);
4144 destroy_workqueue(ic->commit_wq);
4146 destroy_workqueue(ic->writer_wq);
4148 destroy_workqueue(ic->recalc_wq);
4149 vfree(ic->recalc_buffer);
4150 kvfree(ic->recalc_tags);
4153 dm_bufio_client_destroy(ic->bufio);
4154 mempool_exit(&ic->journal_io_mempool);
4156 dm_io_client_destroy(ic->io);
4158 dm_put_device(ti, ic->dev);
4160 dm_put_device(ti, ic->meta_dev);
4161 dm_integrity_free_page_list(ic->journal);
4162 dm_integrity_free_page_list(ic->journal_io);
4163 dm_integrity_free_page_list(ic->journal_xor);
4164 dm_integrity_free_page_list(ic->recalc_bitmap);
4165 dm_integrity_free_page_list(ic->may_write_bitmap);
4166 if (ic->journal_scatterlist)
4167 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4168 if (ic->journal_io_scatterlist)
4169 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4170 if (ic->sk_requests) {
4173 for (i = 0; i < ic->journal_sections; i++) {
4174 struct skcipher_request *req = ic->sk_requests[i];
4177 skcipher_request_free(req);
4180 kvfree(ic->sk_requests);
4182 kvfree(ic->journal_tree);
4184 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4186 if (ic->internal_hash)
4187 crypto_free_shash(ic->internal_hash);
4188 free_alg(&ic->internal_hash_alg);
4190 if (ic->journal_crypt)
4191 crypto_free_skcipher(ic->journal_crypt);
4192 free_alg(&ic->journal_crypt_alg);
4194 if (ic->journal_mac)
4195 crypto_free_shash(ic->journal_mac);
4196 free_alg(&ic->journal_mac_alg);
4201 static struct target_type integrity_target = {
4202 .name = "integrity",
4203 .version = {1, 3, 0},
4204 .module = THIS_MODULE,
4205 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4206 .ctr = dm_integrity_ctr,
4207 .dtr = dm_integrity_dtr,
4208 .map = dm_integrity_map,
4209 .postsuspend = dm_integrity_postsuspend,
4210 .resume = dm_integrity_resume,
4211 .status = dm_integrity_status,
4212 .iterate_devices = dm_integrity_iterate_devices,
4213 .io_hints = dm_integrity_io_hints,
4216 static int __init dm_integrity_init(void)
4220 journal_io_cache = kmem_cache_create("integrity_journal_io",
4221 sizeof(struct journal_io), 0, 0, NULL);
4222 if (!journal_io_cache) {
4223 DMERR("can't allocate journal io cache");
4227 r = dm_register_target(&integrity_target);
4230 DMERR("register failed %d", r);
4235 static void __exit dm_integrity_exit(void)
4237 dm_unregister_target(&integrity_target);
4238 kmem_cache_destroy(journal_io_cache);
4241 module_init(dm_integrity_init);
4242 module_exit(dm_integrity_exit);
4244 MODULE_AUTHOR("Milan Broz");
4245 MODULE_AUTHOR("Mikulas Patocka");
4246 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4247 MODULE_LICENSE("GPL");