dm integrity: flush the journal on suspend
[platform/kernel/linux-rpi.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #define DM_MSG_PREFIX "integrity"
27
28 #define DEFAULT_INTERLEAVE_SECTORS      32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
31 #define DEFAULT_BUFFER_SECTORS          128
32 #define DEFAULT_JOURNAL_WATERMARK       50
33 #define DEFAULT_SYNC_MSEC               10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS     3
36 #define MAX_LOG2_INTERLEAVE_SECTORS     31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
38 #define RECALC_SECTORS                  32768
39 #define RECALC_WRITE_SUPER              16
40 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
42 #define DISCARD_FILLER                  0xf6
43 #define SALT_SIZE                       16
44
45 /*
46  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
47  * so it should not be enabled in the official kernel
48  */
49 //#define DEBUG_PRINT
50 //#define INTERNAL_VERIFY
51
52 /*
53  * On disk structures
54  */
55
56 #define SB_MAGIC                        "integrt"
57 #define SB_VERSION_1                    1
58 #define SB_VERSION_2                    2
59 #define SB_VERSION_3                    3
60 #define SB_VERSION_4                    4
61 #define SB_VERSION_5                    5
62 #define SB_SECTORS                      8
63 #define MAX_SECTORS_PER_BLOCK           8
64
65 struct superblock {
66         __u8 magic[8];
67         __u8 version;
68         __u8 log2_interleave_sectors;
69         __le16 integrity_tag_size;
70         __le32 journal_sections;
71         __le64 provided_data_sectors;   /* userspace uses this value */
72         __le32 flags;
73         __u8 log2_sectors_per_block;
74         __u8 log2_blocks_per_bitmap_bit;
75         __u8 pad[2];
76         __le64 recalc_sector;
77         __u8 pad2[8];
78         __u8 salt[SALT_SIZE];
79 };
80
81 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
82 #define SB_FLAG_RECALCULATING           0x2
83 #define SB_FLAG_DIRTY_BITMAP            0x4
84 #define SB_FLAG_FIXED_PADDING           0x8
85 #define SB_FLAG_FIXED_HMAC              0x10
86
87 #define JOURNAL_ENTRY_ROUNDUP           8
88
89 typedef __le64 commit_id_t;
90 #define JOURNAL_MAC_PER_SECTOR          8
91
92 struct journal_entry {
93         union {
94                 struct {
95                         __le32 sector_lo;
96                         __le32 sector_hi;
97                 } s;
98                 __le64 sector;
99         } u;
100         commit_id_t last_bytes[];
101         /* __u8 tag[0]; */
102 };
103
104 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
105
106 #if BITS_PER_LONG == 64
107 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
108 #else
109 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
110 #endif
111 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
112 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
113 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
114 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
115 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
116
117 #define JOURNAL_BLOCK_SECTORS           8
118 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
119 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
120
121 struct journal_sector {
122         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
123         __u8 mac[JOURNAL_MAC_PER_SECTOR];
124         commit_id_t commit_id;
125 };
126
127 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
128
129 #define METADATA_PADDING_SECTORS        8
130
131 #define N_COMMIT_IDS                    4
132
133 static unsigned char prev_commit_seq(unsigned char seq)
134 {
135         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
136 }
137
138 static unsigned char next_commit_seq(unsigned char seq)
139 {
140         return (seq + 1) % N_COMMIT_IDS;
141 }
142
143 /*
144  * In-memory structures
145  */
146
147 struct journal_node {
148         struct rb_node node;
149         sector_t sector;
150 };
151
152 struct alg_spec {
153         char *alg_string;
154         char *key_string;
155         __u8 *key;
156         unsigned key_size;
157 };
158
159 struct dm_integrity_c {
160         struct dm_dev *dev;
161         struct dm_dev *meta_dev;
162         unsigned tag_size;
163         __s8 log2_tag_size;
164         sector_t start;
165         mempool_t journal_io_mempool;
166         struct dm_io_client *io;
167         struct dm_bufio_client *bufio;
168         struct workqueue_struct *metadata_wq;
169         struct superblock *sb;
170         unsigned journal_pages;
171         unsigned n_bitmap_blocks;
172
173         struct page_list *journal;
174         struct page_list *journal_io;
175         struct page_list *journal_xor;
176         struct page_list *recalc_bitmap;
177         struct page_list *may_write_bitmap;
178         struct bitmap_block_status *bbs;
179         unsigned bitmap_flush_interval;
180         int synchronous_mode;
181         struct bio_list synchronous_bios;
182         struct delayed_work bitmap_flush_work;
183
184         struct crypto_skcipher *journal_crypt;
185         struct scatterlist **journal_scatterlist;
186         struct scatterlist **journal_io_scatterlist;
187         struct skcipher_request **sk_requests;
188
189         struct crypto_shash *journal_mac;
190
191         struct journal_node *journal_tree;
192         struct rb_root journal_tree_root;
193
194         sector_t provided_data_sectors;
195
196         unsigned short journal_entry_size;
197         unsigned char journal_entries_per_sector;
198         unsigned char journal_section_entries;
199         unsigned short journal_section_sectors;
200         unsigned journal_sections;
201         unsigned journal_entries;
202         sector_t data_device_sectors;
203         sector_t meta_device_sectors;
204         unsigned initial_sectors;
205         unsigned metadata_run;
206         __s8 log2_metadata_run;
207         __u8 log2_buffer_sectors;
208         __u8 sectors_per_block;
209         __u8 log2_blocks_per_bitmap_bit;
210
211         unsigned char mode;
212
213         int failed;
214
215         struct crypto_shash *internal_hash;
216
217         struct dm_target *ti;
218
219         /* these variables are locked with endio_wait.lock */
220         struct rb_root in_progress;
221         struct list_head wait_list;
222         wait_queue_head_t endio_wait;
223         struct workqueue_struct *wait_wq;
224         struct workqueue_struct *offload_wq;
225
226         unsigned char commit_seq;
227         commit_id_t commit_ids[N_COMMIT_IDS];
228
229         unsigned committed_section;
230         unsigned n_committed_sections;
231
232         unsigned uncommitted_section;
233         unsigned n_uncommitted_sections;
234
235         unsigned free_section;
236         unsigned char free_section_entry;
237         unsigned free_sectors;
238
239         unsigned free_sectors_threshold;
240
241         struct workqueue_struct *commit_wq;
242         struct work_struct commit_work;
243
244         struct workqueue_struct *writer_wq;
245         struct work_struct writer_work;
246
247         struct workqueue_struct *recalc_wq;
248         struct work_struct recalc_work;
249         u8 *recalc_buffer;
250         u8 *recalc_tags;
251
252         struct bio_list flush_bio_list;
253
254         unsigned long autocommit_jiffies;
255         struct timer_list autocommit_timer;
256         unsigned autocommit_msec;
257
258         wait_queue_head_t copy_to_journal_wait;
259
260         struct completion crypto_backoff;
261
262         bool journal_uptodate;
263         bool just_formatted;
264         bool recalculate_flag;
265         bool reset_recalculate_flag;
266         bool discard;
267         bool fix_padding;
268         bool fix_hmac;
269         bool legacy_recalculate;
270
271         struct alg_spec internal_hash_alg;
272         struct alg_spec journal_crypt_alg;
273         struct alg_spec journal_mac_alg;
274
275         atomic64_t number_of_mismatches;
276
277         struct notifier_block reboot_notifier;
278 };
279
280 struct dm_integrity_range {
281         sector_t logical_sector;
282         sector_t n_sectors;
283         bool waiting;
284         union {
285                 struct rb_node node;
286                 struct {
287                         struct task_struct *task;
288                         struct list_head wait_entry;
289                 };
290         };
291 };
292
293 struct dm_integrity_io {
294         struct work_struct work;
295
296         struct dm_integrity_c *ic;
297         enum req_opf op;
298         bool fua;
299
300         struct dm_integrity_range range;
301
302         sector_t metadata_block;
303         unsigned metadata_offset;
304
305         atomic_t in_flight;
306         blk_status_t bi_status;
307
308         struct completion *completion;
309
310         struct dm_bio_details bio_details;
311 };
312
313 struct journal_completion {
314         struct dm_integrity_c *ic;
315         atomic_t in_flight;
316         struct completion comp;
317 };
318
319 struct journal_io {
320         struct dm_integrity_range range;
321         struct journal_completion *comp;
322 };
323
324 struct bitmap_block_status {
325         struct work_struct work;
326         struct dm_integrity_c *ic;
327         unsigned idx;
328         unsigned long *bitmap;
329         struct bio_list bio_queue;
330         spinlock_t bio_queue_lock;
331
332 };
333
334 static struct kmem_cache *journal_io_cache;
335
336 #define JOURNAL_IO_MEMPOOL      32
337
338 #ifdef DEBUG_PRINT
339 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
340 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
341 {
342         va_list args;
343         va_start(args, msg);
344         vprintk(msg, args);
345         va_end(args);
346         if (len)
347                 pr_cont(":");
348         while (len) {
349                 pr_cont(" %02x", *bytes);
350                 bytes++;
351                 len--;
352         }
353         pr_cont("\n");
354 }
355 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
356 #else
357 #define DEBUG_print(x, ...)                     do { } while (0)
358 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
359 #endif
360
361 static void dm_integrity_prepare(struct request *rq)
362 {
363 }
364
365 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
366 {
367 }
368
369 /*
370  * DM Integrity profile, protection is performed layer above (dm-crypt)
371  */
372 static const struct blk_integrity_profile dm_integrity_profile = {
373         .name                   = "DM-DIF-EXT-TAG",
374         .generate_fn            = NULL,
375         .verify_fn              = NULL,
376         .prepare_fn             = dm_integrity_prepare,
377         .complete_fn            = dm_integrity_complete,
378 };
379
380 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
381 static void integrity_bio_wait(struct work_struct *w);
382 static void dm_integrity_dtr(struct dm_target *ti);
383
384 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
385 {
386         if (err == -EILSEQ)
387                 atomic64_inc(&ic->number_of_mismatches);
388         if (!cmpxchg(&ic->failed, 0, err))
389                 DMERR("Error on %s: %d", msg, err);
390 }
391
392 static int dm_integrity_failed(struct dm_integrity_c *ic)
393 {
394         return READ_ONCE(ic->failed);
395 }
396
397 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
398 {
399         if (ic->legacy_recalculate)
400                 return false;
401         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
402             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
403             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
404                 return true;
405         return false;
406 }
407
408 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
409                                           unsigned j, unsigned char seq)
410 {
411         /*
412          * Xor the number with section and sector, so that if a piece of
413          * journal is written at wrong place, it is detected.
414          */
415         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
416 }
417
418 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
419                                 sector_t *area, sector_t *offset)
420 {
421         if (!ic->meta_dev) {
422                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
423                 *area = data_sector >> log2_interleave_sectors;
424                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
425         } else {
426                 *area = 0;
427                 *offset = data_sector;
428         }
429 }
430
431 #define sector_to_block(ic, n)                                          \
432 do {                                                                    \
433         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
434         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
435 } while (0)
436
437 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
438                                             sector_t offset, unsigned *metadata_offset)
439 {
440         __u64 ms;
441         unsigned mo;
442
443         ms = area << ic->sb->log2_interleave_sectors;
444         if (likely(ic->log2_metadata_run >= 0))
445                 ms += area << ic->log2_metadata_run;
446         else
447                 ms += area * ic->metadata_run;
448         ms >>= ic->log2_buffer_sectors;
449
450         sector_to_block(ic, offset);
451
452         if (likely(ic->log2_tag_size >= 0)) {
453                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
454                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
455         } else {
456                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
457                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
458         }
459         *metadata_offset = mo;
460         return ms;
461 }
462
463 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
464 {
465         sector_t result;
466
467         if (ic->meta_dev)
468                 return offset;
469
470         result = area << ic->sb->log2_interleave_sectors;
471         if (likely(ic->log2_metadata_run >= 0))
472                 result += (area + 1) << ic->log2_metadata_run;
473         else
474                 result += (area + 1) * ic->metadata_run;
475
476         result += (sector_t)ic->initial_sectors + offset;
477         result += ic->start;
478
479         return result;
480 }
481
482 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
483 {
484         if (unlikely(*sec_ptr >= ic->journal_sections))
485                 *sec_ptr -= ic->journal_sections;
486 }
487
488 static void sb_set_version(struct dm_integrity_c *ic)
489 {
490         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
491                 ic->sb->version = SB_VERSION_5;
492         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
493                 ic->sb->version = SB_VERSION_4;
494         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
495                 ic->sb->version = SB_VERSION_3;
496         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
497                 ic->sb->version = SB_VERSION_2;
498         else
499                 ic->sb->version = SB_VERSION_1;
500 }
501
502 static int sb_mac(struct dm_integrity_c *ic, bool wr)
503 {
504         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
505         int r;
506         unsigned size = crypto_shash_digestsize(ic->journal_mac);
507
508         if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
509                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
510                 return -EINVAL;
511         }
512
513         desc->tfm = ic->journal_mac;
514
515         r = crypto_shash_init(desc);
516         if (unlikely(r < 0)) {
517                 dm_integrity_io_error(ic, "crypto_shash_init", r);
518                 return r;
519         }
520
521         r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
522         if (unlikely(r < 0)) {
523                 dm_integrity_io_error(ic, "crypto_shash_update", r);
524                 return r;
525         }
526
527         if (likely(wr)) {
528                 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
529                 if (unlikely(r < 0)) {
530                         dm_integrity_io_error(ic, "crypto_shash_final", r);
531                         return r;
532                 }
533         } else {
534                 __u8 result[HASH_MAX_DIGESTSIZE];
535                 r = crypto_shash_final(desc, result);
536                 if (unlikely(r < 0)) {
537                         dm_integrity_io_error(ic, "crypto_shash_final", r);
538                         return r;
539                 }
540                 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
541                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
542                         return -EILSEQ;
543                 }
544         }
545
546         return 0;
547 }
548
549 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
550 {
551         struct dm_io_request io_req;
552         struct dm_io_region io_loc;
553         int r;
554
555         io_req.bi_op = op;
556         io_req.bi_op_flags = op_flags;
557         io_req.mem.type = DM_IO_KMEM;
558         io_req.mem.ptr.addr = ic->sb;
559         io_req.notify.fn = NULL;
560         io_req.client = ic->io;
561         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
562         io_loc.sector = ic->start;
563         io_loc.count = SB_SECTORS;
564
565         if (op == REQ_OP_WRITE) {
566                 sb_set_version(ic);
567                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
568                         r = sb_mac(ic, true);
569                         if (unlikely(r))
570                                 return r;
571                 }
572         }
573
574         r = dm_io(&io_req, 1, &io_loc, NULL);
575         if (unlikely(r))
576                 return r;
577
578         if (op == REQ_OP_READ) {
579                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
580                         r = sb_mac(ic, false);
581                         if (unlikely(r))
582                                 return r;
583                 }
584         }
585
586         return 0;
587 }
588
589 #define BITMAP_OP_TEST_ALL_SET          0
590 #define BITMAP_OP_TEST_ALL_CLEAR        1
591 #define BITMAP_OP_SET                   2
592 #define BITMAP_OP_CLEAR                 3
593
594 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
595                             sector_t sector, sector_t n_sectors, int mode)
596 {
597         unsigned long bit, end_bit, this_end_bit, page, end_page;
598         unsigned long *data;
599
600         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
601                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
602                         sector,
603                         n_sectors,
604                         ic->sb->log2_sectors_per_block,
605                         ic->log2_blocks_per_bitmap_bit,
606                         mode);
607                 BUG();
608         }
609
610         if (unlikely(!n_sectors))
611                 return true;
612
613         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
614         end_bit = (sector + n_sectors - 1) >>
615                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
616
617         page = bit / (PAGE_SIZE * 8);
618         bit %= PAGE_SIZE * 8;
619
620         end_page = end_bit / (PAGE_SIZE * 8);
621         end_bit %= PAGE_SIZE * 8;
622
623 repeat:
624         if (page < end_page) {
625                 this_end_bit = PAGE_SIZE * 8 - 1;
626         } else {
627                 this_end_bit = end_bit;
628         }
629
630         data = lowmem_page_address(bitmap[page].page);
631
632         if (mode == BITMAP_OP_TEST_ALL_SET) {
633                 while (bit <= this_end_bit) {
634                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
635                                 do {
636                                         if (data[bit / BITS_PER_LONG] != -1)
637                                                 return false;
638                                         bit += BITS_PER_LONG;
639                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
640                                 continue;
641                         }
642                         if (!test_bit(bit, data))
643                                 return false;
644                         bit++;
645                 }
646         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
647                 while (bit <= this_end_bit) {
648                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
649                                 do {
650                                         if (data[bit / BITS_PER_LONG] != 0)
651                                                 return false;
652                                         bit += BITS_PER_LONG;
653                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
654                                 continue;
655                         }
656                         if (test_bit(bit, data))
657                                 return false;
658                         bit++;
659                 }
660         } else if (mode == BITMAP_OP_SET) {
661                 while (bit <= this_end_bit) {
662                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
663                                 do {
664                                         data[bit / BITS_PER_LONG] = -1;
665                                         bit += BITS_PER_LONG;
666                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
667                                 continue;
668                         }
669                         __set_bit(bit, data);
670                         bit++;
671                 }
672         } else if (mode == BITMAP_OP_CLEAR) {
673                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
674                         clear_page(data);
675                 else while (bit <= this_end_bit) {
676                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
677                                 do {
678                                         data[bit / BITS_PER_LONG] = 0;
679                                         bit += BITS_PER_LONG;
680                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
681                                 continue;
682                         }
683                         __clear_bit(bit, data);
684                         bit++;
685                 }
686         } else {
687                 BUG();
688         }
689
690         if (unlikely(page < end_page)) {
691                 bit = 0;
692                 page++;
693                 goto repeat;
694         }
695
696         return true;
697 }
698
699 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
700 {
701         unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
702         unsigned i;
703
704         for (i = 0; i < n_bitmap_pages; i++) {
705                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
706                 unsigned long *src_data = lowmem_page_address(src[i].page);
707                 copy_page(dst_data, src_data);
708         }
709 }
710
711 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
712 {
713         unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
714         unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
715
716         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
717         return &ic->bbs[bitmap_block];
718 }
719
720 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
721                                  bool e, const char *function)
722 {
723 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
724         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
725
726         if (unlikely(section >= ic->journal_sections) ||
727             unlikely(offset >= limit)) {
728                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
729                        function, section, offset, ic->journal_sections, limit);
730                 BUG();
731         }
732 #endif
733 }
734
735 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
736                                unsigned *pl_index, unsigned *pl_offset)
737 {
738         unsigned sector;
739
740         access_journal_check(ic, section, offset, false, "page_list_location");
741
742         sector = section * ic->journal_section_sectors + offset;
743
744         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
745         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
746 }
747
748 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
749                                                unsigned section, unsigned offset, unsigned *n_sectors)
750 {
751         unsigned pl_index, pl_offset;
752         char *va;
753
754         page_list_location(ic, section, offset, &pl_index, &pl_offset);
755
756         if (n_sectors)
757                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
758
759         va = lowmem_page_address(pl[pl_index].page);
760
761         return (struct journal_sector *)(va + pl_offset);
762 }
763
764 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
765 {
766         return access_page_list(ic, ic->journal, section, offset, NULL);
767 }
768
769 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
770 {
771         unsigned rel_sector, offset;
772         struct journal_sector *js;
773
774         access_journal_check(ic, section, n, true, "access_journal_entry");
775
776         rel_sector = n % JOURNAL_BLOCK_SECTORS;
777         offset = n / JOURNAL_BLOCK_SECTORS;
778
779         js = access_journal(ic, section, rel_sector);
780         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
781 }
782
783 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
784 {
785         n <<= ic->sb->log2_sectors_per_block;
786
787         n += JOURNAL_BLOCK_SECTORS;
788
789         access_journal_check(ic, section, n, false, "access_journal_data");
790
791         return access_journal(ic, section, n);
792 }
793
794 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
795 {
796         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
797         int r;
798         unsigned j, size;
799
800         desc->tfm = ic->journal_mac;
801
802         r = crypto_shash_init(desc);
803         if (unlikely(r < 0)) {
804                 dm_integrity_io_error(ic, "crypto_shash_init", r);
805                 goto err;
806         }
807
808         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
809                 __le64 section_le;
810
811                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
812                 if (unlikely(r < 0)) {
813                         dm_integrity_io_error(ic, "crypto_shash_update", r);
814                         goto err;
815                 }
816
817                 section_le = cpu_to_le64(section);
818                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
819                 if (unlikely(r < 0)) {
820                         dm_integrity_io_error(ic, "crypto_shash_update", r);
821                         goto err;
822                 }
823         }
824
825         for (j = 0; j < ic->journal_section_entries; j++) {
826                 struct journal_entry *je = access_journal_entry(ic, section, j);
827                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
828                 if (unlikely(r < 0)) {
829                         dm_integrity_io_error(ic, "crypto_shash_update", r);
830                         goto err;
831                 }
832         }
833
834         size = crypto_shash_digestsize(ic->journal_mac);
835
836         if (likely(size <= JOURNAL_MAC_SIZE)) {
837                 r = crypto_shash_final(desc, result);
838                 if (unlikely(r < 0)) {
839                         dm_integrity_io_error(ic, "crypto_shash_final", r);
840                         goto err;
841                 }
842                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
843         } else {
844                 __u8 digest[HASH_MAX_DIGESTSIZE];
845
846                 if (WARN_ON(size > sizeof(digest))) {
847                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
848                         goto err;
849                 }
850                 r = crypto_shash_final(desc, digest);
851                 if (unlikely(r < 0)) {
852                         dm_integrity_io_error(ic, "crypto_shash_final", r);
853                         goto err;
854                 }
855                 memcpy(result, digest, JOURNAL_MAC_SIZE);
856         }
857
858         return;
859 err:
860         memset(result, 0, JOURNAL_MAC_SIZE);
861 }
862
863 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
864 {
865         __u8 result[JOURNAL_MAC_SIZE];
866         unsigned j;
867
868         if (!ic->journal_mac)
869                 return;
870
871         section_mac(ic, section, result);
872
873         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
874                 struct journal_sector *js = access_journal(ic, section, j);
875
876                 if (likely(wr))
877                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
878                 else {
879                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
880                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
881                 }
882         }
883 }
884
885 static void complete_journal_op(void *context)
886 {
887         struct journal_completion *comp = context;
888         BUG_ON(!atomic_read(&comp->in_flight));
889         if (likely(atomic_dec_and_test(&comp->in_flight)))
890                 complete(&comp->comp);
891 }
892
893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
894                         unsigned n_sections, struct journal_completion *comp)
895 {
896         struct async_submit_ctl submit;
897         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
898         unsigned pl_index, pl_offset, section_index;
899         struct page_list *source_pl, *target_pl;
900
901         if (likely(encrypt)) {
902                 source_pl = ic->journal;
903                 target_pl = ic->journal_io;
904         } else {
905                 source_pl = ic->journal_io;
906                 target_pl = ic->journal;
907         }
908
909         page_list_location(ic, section, 0, &pl_index, &pl_offset);
910
911         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
912
913         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
914
915         section_index = pl_index;
916
917         do {
918                 size_t this_step;
919                 struct page *src_pages[2];
920                 struct page *dst_page;
921
922                 while (unlikely(pl_index == section_index)) {
923                         unsigned dummy;
924                         if (likely(encrypt))
925                                 rw_section_mac(ic, section, true);
926                         section++;
927                         n_sections--;
928                         if (!n_sections)
929                                 break;
930                         page_list_location(ic, section, 0, &section_index, &dummy);
931                 }
932
933                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
934                 dst_page = target_pl[pl_index].page;
935                 src_pages[0] = source_pl[pl_index].page;
936                 src_pages[1] = ic->journal_xor[pl_index].page;
937
938                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
939
940                 pl_index++;
941                 pl_offset = 0;
942                 n_bytes -= this_step;
943         } while (n_bytes);
944
945         BUG_ON(n_sections);
946
947         async_tx_issue_pending_all();
948 }
949
950 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
951 {
952         struct journal_completion *comp = req->data;
953         if (unlikely(err)) {
954                 if (likely(err == -EINPROGRESS)) {
955                         complete(&comp->ic->crypto_backoff);
956                         return;
957                 }
958                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
959         }
960         complete_journal_op(comp);
961 }
962
963 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
964 {
965         int r;
966         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
967                                       complete_journal_encrypt, comp);
968         if (likely(encrypt))
969                 r = crypto_skcipher_encrypt(req);
970         else
971                 r = crypto_skcipher_decrypt(req);
972         if (likely(!r))
973                 return false;
974         if (likely(r == -EINPROGRESS))
975                 return true;
976         if (likely(r == -EBUSY)) {
977                 wait_for_completion(&comp->ic->crypto_backoff);
978                 reinit_completion(&comp->ic->crypto_backoff);
979                 return true;
980         }
981         dm_integrity_io_error(comp->ic, "encrypt", r);
982         return false;
983 }
984
985 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
986                           unsigned n_sections, struct journal_completion *comp)
987 {
988         struct scatterlist **source_sg;
989         struct scatterlist **target_sg;
990
991         atomic_add(2, &comp->in_flight);
992
993         if (likely(encrypt)) {
994                 source_sg = ic->journal_scatterlist;
995                 target_sg = ic->journal_io_scatterlist;
996         } else {
997                 source_sg = ic->journal_io_scatterlist;
998                 target_sg = ic->journal_scatterlist;
999         }
1000
1001         do {
1002                 struct skcipher_request *req;
1003                 unsigned ivsize;
1004                 char *iv;
1005
1006                 if (likely(encrypt))
1007                         rw_section_mac(ic, section, true);
1008
1009                 req = ic->sk_requests[section];
1010                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1011                 iv = req->iv;
1012
1013                 memcpy(iv, iv + ivsize, ivsize);
1014
1015                 req->src = source_sg[section];
1016                 req->dst = target_sg[section];
1017
1018                 if (unlikely(do_crypt(encrypt, req, comp)))
1019                         atomic_inc(&comp->in_flight);
1020
1021                 section++;
1022                 n_sections--;
1023         } while (n_sections);
1024
1025         atomic_dec(&comp->in_flight);
1026         complete_journal_op(comp);
1027 }
1028
1029 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1030                             unsigned n_sections, struct journal_completion *comp)
1031 {
1032         if (ic->journal_xor)
1033                 return xor_journal(ic, encrypt, section, n_sections, comp);
1034         else
1035                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1036 }
1037
1038 static void complete_journal_io(unsigned long error, void *context)
1039 {
1040         struct journal_completion *comp = context;
1041         if (unlikely(error != 0))
1042                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1043         complete_journal_op(comp);
1044 }
1045
1046 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1047                                unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1048 {
1049         struct dm_io_request io_req;
1050         struct dm_io_region io_loc;
1051         unsigned pl_index, pl_offset;
1052         int r;
1053
1054         if (unlikely(dm_integrity_failed(ic))) {
1055                 if (comp)
1056                         complete_journal_io(-1UL, comp);
1057                 return;
1058         }
1059
1060         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1061         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1062
1063         io_req.bi_op = op;
1064         io_req.bi_op_flags = op_flags;
1065         io_req.mem.type = DM_IO_PAGE_LIST;
1066         if (ic->journal_io)
1067                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1068         else
1069                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1070         io_req.mem.offset = pl_offset;
1071         if (likely(comp != NULL)) {
1072                 io_req.notify.fn = complete_journal_io;
1073                 io_req.notify.context = comp;
1074         } else {
1075                 io_req.notify.fn = NULL;
1076         }
1077         io_req.client = ic->io;
1078         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1079         io_loc.sector = ic->start + SB_SECTORS + sector;
1080         io_loc.count = n_sectors;
1081
1082         r = dm_io(&io_req, 1, &io_loc, NULL);
1083         if (unlikely(r)) {
1084                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1085                 if (comp) {
1086                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1087                         complete_journal_io(-1UL, comp);
1088                 }
1089         }
1090 }
1091
1092 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1093                        unsigned n_sections, struct journal_completion *comp)
1094 {
1095         unsigned sector, n_sectors;
1096
1097         sector = section * ic->journal_section_sectors;
1098         n_sectors = n_sections * ic->journal_section_sectors;
1099
1100         rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1101 }
1102
1103 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1104 {
1105         struct journal_completion io_comp;
1106         struct journal_completion crypt_comp_1;
1107         struct journal_completion crypt_comp_2;
1108         unsigned i;
1109
1110         io_comp.ic = ic;
1111         init_completion(&io_comp.comp);
1112
1113         if (commit_start + commit_sections <= ic->journal_sections) {
1114                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1115                 if (ic->journal_io) {
1116                         crypt_comp_1.ic = ic;
1117                         init_completion(&crypt_comp_1.comp);
1118                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1119                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1120                         wait_for_completion_io(&crypt_comp_1.comp);
1121                 } else {
1122                         for (i = 0; i < commit_sections; i++)
1123                                 rw_section_mac(ic, commit_start + i, true);
1124                 }
1125                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1126                            commit_sections, &io_comp);
1127         } else {
1128                 unsigned to_end;
1129                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1130                 to_end = ic->journal_sections - commit_start;
1131                 if (ic->journal_io) {
1132                         crypt_comp_1.ic = ic;
1133                         init_completion(&crypt_comp_1.comp);
1134                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1135                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1136                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1137                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1138                                 reinit_completion(&crypt_comp_1.comp);
1139                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1141                                 wait_for_completion_io(&crypt_comp_1.comp);
1142                         } else {
1143                                 crypt_comp_2.ic = ic;
1144                                 init_completion(&crypt_comp_2.comp);
1145                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1146                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1147                                 wait_for_completion_io(&crypt_comp_1.comp);
1148                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1149                                 wait_for_completion_io(&crypt_comp_2.comp);
1150                         }
1151                 } else {
1152                         for (i = 0; i < to_end; i++)
1153                                 rw_section_mac(ic, commit_start + i, true);
1154                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1155                         for (i = 0; i < commit_sections - to_end; i++)
1156                                 rw_section_mac(ic, i, true);
1157                 }
1158                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1159         }
1160
1161         wait_for_completion_io(&io_comp.comp);
1162 }
1163
1164 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1165                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1166 {
1167         struct dm_io_request io_req;
1168         struct dm_io_region io_loc;
1169         int r;
1170         unsigned sector, pl_index, pl_offset;
1171
1172         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1173
1174         if (unlikely(dm_integrity_failed(ic))) {
1175                 fn(-1UL, data);
1176                 return;
1177         }
1178
1179         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1180
1181         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1182         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1183
1184         io_req.bi_op = REQ_OP_WRITE;
1185         io_req.bi_op_flags = 0;
1186         io_req.mem.type = DM_IO_PAGE_LIST;
1187         io_req.mem.ptr.pl = &ic->journal[pl_index];
1188         io_req.mem.offset = pl_offset;
1189         io_req.notify.fn = fn;
1190         io_req.notify.context = data;
1191         io_req.client = ic->io;
1192         io_loc.bdev = ic->dev->bdev;
1193         io_loc.sector = target;
1194         io_loc.count = n_sectors;
1195
1196         r = dm_io(&io_req, 1, &io_loc, NULL);
1197         if (unlikely(r)) {
1198                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1199                 fn(-1UL, data);
1200         }
1201 }
1202
1203 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1204 {
1205         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1206                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1207 }
1208
1209 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1210 {
1211         struct rb_node **n = &ic->in_progress.rb_node;
1212         struct rb_node *parent;
1213
1214         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1215
1216         if (likely(check_waiting)) {
1217                 struct dm_integrity_range *range;
1218                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1219                         if (unlikely(ranges_overlap(range, new_range)))
1220                                 return false;
1221                 }
1222         }
1223
1224         parent = NULL;
1225
1226         while (*n) {
1227                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1228
1229                 parent = *n;
1230                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1231                         n = &range->node.rb_left;
1232                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1233                         n = &range->node.rb_right;
1234                 } else {
1235                         return false;
1236                 }
1237         }
1238
1239         rb_link_node(&new_range->node, parent, n);
1240         rb_insert_color(&new_range->node, &ic->in_progress);
1241
1242         return true;
1243 }
1244
1245 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1246 {
1247         rb_erase(&range->node, &ic->in_progress);
1248         while (unlikely(!list_empty(&ic->wait_list))) {
1249                 struct dm_integrity_range *last_range =
1250                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1251                 struct task_struct *last_range_task;
1252                 last_range_task = last_range->task;
1253                 list_del(&last_range->wait_entry);
1254                 if (!add_new_range(ic, last_range, false)) {
1255                         last_range->task = last_range_task;
1256                         list_add(&last_range->wait_entry, &ic->wait_list);
1257                         break;
1258                 }
1259                 last_range->waiting = false;
1260                 wake_up_process(last_range_task);
1261         }
1262 }
1263
1264 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1265 {
1266         unsigned long flags;
1267
1268         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1269         remove_range_unlocked(ic, range);
1270         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1271 }
1272
1273 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1274 {
1275         new_range->waiting = true;
1276         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1277         new_range->task = current;
1278         do {
1279                 __set_current_state(TASK_UNINTERRUPTIBLE);
1280                 spin_unlock_irq(&ic->endio_wait.lock);
1281                 io_schedule();
1282                 spin_lock_irq(&ic->endio_wait.lock);
1283         } while (unlikely(new_range->waiting));
1284 }
1285
1286 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1287 {
1288         if (unlikely(!add_new_range(ic, new_range, true)))
1289                 wait_and_add_new_range(ic, new_range);
1290 }
1291
1292 static void init_journal_node(struct journal_node *node)
1293 {
1294         RB_CLEAR_NODE(&node->node);
1295         node->sector = (sector_t)-1;
1296 }
1297
1298 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1299 {
1300         struct rb_node **link;
1301         struct rb_node *parent;
1302
1303         node->sector = sector;
1304         BUG_ON(!RB_EMPTY_NODE(&node->node));
1305
1306         link = &ic->journal_tree_root.rb_node;
1307         parent = NULL;
1308
1309         while (*link) {
1310                 struct journal_node *j;
1311                 parent = *link;
1312                 j = container_of(parent, struct journal_node, node);
1313                 if (sector < j->sector)
1314                         link = &j->node.rb_left;
1315                 else
1316                         link = &j->node.rb_right;
1317         }
1318
1319         rb_link_node(&node->node, parent, link);
1320         rb_insert_color(&node->node, &ic->journal_tree_root);
1321 }
1322
1323 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1324 {
1325         BUG_ON(RB_EMPTY_NODE(&node->node));
1326         rb_erase(&node->node, &ic->journal_tree_root);
1327         init_journal_node(node);
1328 }
1329
1330 #define NOT_FOUND       (-1U)
1331
1332 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1333 {
1334         struct rb_node *n = ic->journal_tree_root.rb_node;
1335         unsigned found = NOT_FOUND;
1336         *next_sector = (sector_t)-1;
1337         while (n) {
1338                 struct journal_node *j = container_of(n, struct journal_node, node);
1339                 if (sector == j->sector) {
1340                         found = j - ic->journal_tree;
1341                 }
1342                 if (sector < j->sector) {
1343                         *next_sector = j->sector;
1344                         n = j->node.rb_left;
1345                 } else {
1346                         n = j->node.rb_right;
1347                 }
1348         }
1349
1350         return found;
1351 }
1352
1353 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1354 {
1355         struct journal_node *node, *next_node;
1356         struct rb_node *next;
1357
1358         if (unlikely(pos >= ic->journal_entries))
1359                 return false;
1360         node = &ic->journal_tree[pos];
1361         if (unlikely(RB_EMPTY_NODE(&node->node)))
1362                 return false;
1363         if (unlikely(node->sector != sector))
1364                 return false;
1365
1366         next = rb_next(&node->node);
1367         if (unlikely(!next))
1368                 return true;
1369
1370         next_node = container_of(next, struct journal_node, node);
1371         return next_node->sector != sector;
1372 }
1373
1374 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375 {
1376         struct rb_node *next;
1377         struct journal_node *next_node;
1378         unsigned next_section;
1379
1380         BUG_ON(RB_EMPTY_NODE(&node->node));
1381
1382         next = rb_next(&node->node);
1383         if (unlikely(!next))
1384                 return false;
1385
1386         next_node = container_of(next, struct journal_node, node);
1387
1388         if (next_node->sector != node->sector)
1389                 return false;
1390
1391         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392         if (next_section >= ic->committed_section &&
1393             next_section < ic->committed_section + ic->n_committed_sections)
1394                 return true;
1395         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396                 return true;
1397
1398         return false;
1399 }
1400
1401 #define TAG_READ        0
1402 #define TAG_WRITE       1
1403 #define TAG_CMP         2
1404
1405 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406                                unsigned *metadata_offset, unsigned total_size, int op)
1407 {
1408 #define MAY_BE_FILLER           1
1409 #define MAY_BE_HASH             2
1410         unsigned hash_offset = 0;
1411         unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412
1413         do {
1414                 unsigned char *data, *dp;
1415                 struct dm_buffer *b;
1416                 unsigned to_copy;
1417                 int r;
1418
1419                 r = dm_integrity_failed(ic);
1420                 if (unlikely(r))
1421                         return r;
1422
1423                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424                 if (IS_ERR(data))
1425                         return PTR_ERR(data);
1426
1427                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428                 dp = data + *metadata_offset;
1429                 if (op == TAG_READ) {
1430                         memcpy(tag, dp, to_copy);
1431                 } else if (op == TAG_WRITE) {
1432                         if (memcmp(dp, tag, to_copy)) {
1433                                 memcpy(dp, tag, to_copy);
1434                                 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435                         }
1436                 } else {
1437                         /* e.g.: op == TAG_CMP */
1438
1439                         if (likely(is_power_of_2(ic->tag_size))) {
1440                                 if (unlikely(memcmp(dp, tag, to_copy)))
1441                                         if (unlikely(!ic->discard) ||
1442                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443                                                 goto thorough_test;
1444                                 }
1445                         } else {
1446                                 unsigned i, ts;
1447 thorough_test:
1448                                 ts = total_size;
1449
1450                                 for (i = 0; i < to_copy; i++, ts--) {
1451                                         if (unlikely(dp[i] != tag[i]))
1452                                                 may_be &= ~MAY_BE_HASH;
1453                                         if (likely(dp[i] != DISCARD_FILLER))
1454                                                 may_be &= ~MAY_BE_FILLER;
1455                                         hash_offset++;
1456                                         if (unlikely(hash_offset == ic->tag_size)) {
1457                                                 if (unlikely(!may_be)) {
1458                                                         dm_bufio_release(b);
1459                                                         return ts;
1460                                                 }
1461                                                 hash_offset = 0;
1462                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463                                         }
1464                                 }
1465                         }
1466                 }
1467                 dm_bufio_release(b);
1468
1469                 tag += to_copy;
1470                 *metadata_offset += to_copy;
1471                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472                         (*metadata_block)++;
1473                         *metadata_offset = 0;
1474                 }
1475
1476                 if (unlikely(!is_power_of_2(ic->tag_size))) {
1477                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1478                 }
1479
1480                 total_size -= to_copy;
1481         } while (unlikely(total_size));
1482
1483         return 0;
1484 #undef MAY_BE_FILLER
1485 #undef MAY_BE_HASH
1486 }
1487
1488 struct flush_request {
1489         struct dm_io_request io_req;
1490         struct dm_io_region io_reg;
1491         struct dm_integrity_c *ic;
1492         struct completion comp;
1493 };
1494
1495 static void flush_notify(unsigned long error, void *fr_)
1496 {
1497         struct flush_request *fr = fr_;
1498         if (unlikely(error != 0))
1499                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500         complete(&fr->comp);
1501 }
1502
1503 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504 {
1505         int r;
1506
1507         struct flush_request fr;
1508
1509         if (!ic->meta_dev)
1510                 flush_data = false;
1511         if (flush_data) {
1512                 fr.io_req.bi_op = REQ_OP_WRITE,
1513                 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1514                 fr.io_req.mem.type = DM_IO_KMEM,
1515                 fr.io_req.mem.ptr.addr = NULL,
1516                 fr.io_req.notify.fn = flush_notify,
1517                 fr.io_req.notify.context = &fr;
1518                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1519                 fr.io_reg.bdev = ic->dev->bdev,
1520                 fr.io_reg.sector = 0,
1521                 fr.io_reg.count = 0,
1522                 fr.ic = ic;
1523                 init_completion(&fr.comp);
1524                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1525                 BUG_ON(r);
1526         }
1527
1528         r = dm_bufio_write_dirty_buffers(ic->bufio);
1529         if (unlikely(r))
1530                 dm_integrity_io_error(ic, "writing tags", r);
1531
1532         if (flush_data)
1533                 wait_for_completion(&fr.comp);
1534 }
1535
1536 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1537 {
1538         DECLARE_WAITQUEUE(wait, current);
1539         __add_wait_queue(&ic->endio_wait, &wait);
1540         __set_current_state(TASK_UNINTERRUPTIBLE);
1541         spin_unlock_irq(&ic->endio_wait.lock);
1542         io_schedule();
1543         spin_lock_irq(&ic->endio_wait.lock);
1544         __remove_wait_queue(&ic->endio_wait, &wait);
1545 }
1546
1547 static void autocommit_fn(struct timer_list *t)
1548 {
1549         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1550
1551         if (likely(!dm_integrity_failed(ic)))
1552                 queue_work(ic->commit_wq, &ic->commit_work);
1553 }
1554
1555 static void schedule_autocommit(struct dm_integrity_c *ic)
1556 {
1557         if (!timer_pending(&ic->autocommit_timer))
1558                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1559 }
1560
1561 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1562 {
1563         struct bio *bio;
1564         unsigned long flags;
1565
1566         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1567         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1568         bio_list_add(&ic->flush_bio_list, bio);
1569         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1570
1571         queue_work(ic->commit_wq, &ic->commit_work);
1572 }
1573
1574 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1575 {
1576         int r = dm_integrity_failed(ic);
1577         if (unlikely(r) && !bio->bi_status)
1578                 bio->bi_status = errno_to_blk_status(r);
1579         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1580                 unsigned long flags;
1581                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1582                 bio_list_add(&ic->synchronous_bios, bio);
1583                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1584                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1585                 return;
1586         }
1587         bio_endio(bio);
1588 }
1589
1590 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1591 {
1592         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1593
1594         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1595                 submit_flush_bio(ic, dio);
1596         else
1597                 do_endio(ic, bio);
1598 }
1599
1600 static void dec_in_flight(struct dm_integrity_io *dio)
1601 {
1602         if (atomic_dec_and_test(&dio->in_flight)) {
1603                 struct dm_integrity_c *ic = dio->ic;
1604                 struct bio *bio;
1605
1606                 remove_range(ic, &dio->range);
1607
1608                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1609                         schedule_autocommit(ic);
1610
1611                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1612
1613                 if (unlikely(dio->bi_status) && !bio->bi_status)
1614                         bio->bi_status = dio->bi_status;
1615                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1616                         dio->range.logical_sector += dio->range.n_sectors;
1617                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1618                         INIT_WORK(&dio->work, integrity_bio_wait);
1619                         queue_work(ic->offload_wq, &dio->work);
1620                         return;
1621                 }
1622                 do_endio_flush(ic, dio);
1623         }
1624 }
1625
1626 static void integrity_end_io(struct bio *bio)
1627 {
1628         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1629
1630         dm_bio_restore(&dio->bio_details, bio);
1631         if (bio->bi_integrity)
1632                 bio->bi_opf |= REQ_INTEGRITY;
1633
1634         if (dio->completion)
1635                 complete(dio->completion);
1636
1637         dec_in_flight(dio);
1638 }
1639
1640 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1641                                       const char *data, char *result)
1642 {
1643         __le64 sector_le = cpu_to_le64(sector);
1644         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1645         int r;
1646         unsigned digest_size;
1647
1648         req->tfm = ic->internal_hash;
1649
1650         r = crypto_shash_init(req);
1651         if (unlikely(r < 0)) {
1652                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1653                 goto failed;
1654         }
1655
1656         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1657                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1658                 if (unlikely(r < 0)) {
1659                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1660                         goto failed;
1661                 }
1662         }
1663
1664         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1665         if (unlikely(r < 0)) {
1666                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1667                 goto failed;
1668         }
1669
1670         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1671         if (unlikely(r < 0)) {
1672                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1673                 goto failed;
1674         }
1675
1676         r = crypto_shash_final(req, result);
1677         if (unlikely(r < 0)) {
1678                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1679                 goto failed;
1680         }
1681
1682         digest_size = crypto_shash_digestsize(ic->internal_hash);
1683         if (unlikely(digest_size < ic->tag_size))
1684                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1685
1686         return;
1687
1688 failed:
1689         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1690         get_random_bytes(result, ic->tag_size);
1691 }
1692
1693 static void integrity_metadata(struct work_struct *w)
1694 {
1695         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1696         struct dm_integrity_c *ic = dio->ic;
1697
1698         int r;
1699
1700         if (ic->internal_hash) {
1701                 struct bvec_iter iter;
1702                 struct bio_vec bv;
1703                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1704                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1705                 char *checksums;
1706                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1707                 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1708                 sector_t sector;
1709                 unsigned sectors_to_process;
1710
1711                 if (unlikely(ic->mode == 'R'))
1712                         goto skip_io;
1713
1714                 if (likely(dio->op != REQ_OP_DISCARD))
1715                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1716                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1717                 else
1718                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1719                 if (!checksums) {
1720                         checksums = checksums_onstack;
1721                         if (WARN_ON(extra_space &&
1722                                     digest_size > sizeof(checksums_onstack))) {
1723                                 r = -EINVAL;
1724                                 goto error;
1725                         }
1726                 }
1727
1728                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1729                         sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1730                         unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1731                         unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1732                         unsigned max_blocks = max_size / ic->tag_size;
1733                         memset(checksums, DISCARD_FILLER, max_size);
1734
1735                         while (bi_size) {
1736                                 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1737                                 this_step_blocks = min(this_step_blocks, max_blocks);
1738                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1739                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1740                                 if (unlikely(r)) {
1741                                         if (likely(checksums != checksums_onstack))
1742                                                 kfree(checksums);
1743                                         goto error;
1744                                 }
1745
1746                                 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1747                                         printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1748                                         printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1749                                         BUG();
1750                                 }*/
1751                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1752                                 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1753                         }
1754
1755                         if (likely(checksums != checksums_onstack))
1756                                 kfree(checksums);
1757                         goto skip_io;
1758                 }
1759
1760                 sector = dio->range.logical_sector;
1761                 sectors_to_process = dio->range.n_sectors;
1762
1763                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1764                         unsigned pos;
1765                         char *mem, *checksums_ptr;
1766
1767 again:
1768                         mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1769                         pos = 0;
1770                         checksums_ptr = checksums;
1771                         do {
1772                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1773                                 checksums_ptr += ic->tag_size;
1774                                 sectors_to_process -= ic->sectors_per_block;
1775                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1776                                 sector += ic->sectors_per_block;
1777                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1778                         kunmap_atomic(mem);
1779
1780                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1781                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1782                         if (unlikely(r)) {
1783                                 if (r > 0) {
1784                                         char b[BDEVNAME_SIZE];
1785                                         DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1786                                                     (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1787                                         r = -EILSEQ;
1788                                         atomic64_inc(&ic->number_of_mismatches);
1789                                 }
1790                                 if (likely(checksums != checksums_onstack))
1791                                         kfree(checksums);
1792                                 goto error;
1793                         }
1794
1795                         if (!sectors_to_process)
1796                                 break;
1797
1798                         if (unlikely(pos < bv.bv_len)) {
1799                                 bv.bv_offset += pos;
1800                                 bv.bv_len -= pos;
1801                                 goto again;
1802                         }
1803                 }
1804
1805                 if (likely(checksums != checksums_onstack))
1806                         kfree(checksums);
1807         } else {
1808                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1809
1810                 if (bip) {
1811                         struct bio_vec biv;
1812                         struct bvec_iter iter;
1813                         unsigned data_to_process = dio->range.n_sectors;
1814                         sector_to_block(ic, data_to_process);
1815                         data_to_process *= ic->tag_size;
1816
1817                         bip_for_each_vec(biv, bip, iter) {
1818                                 unsigned char *tag;
1819                                 unsigned this_len;
1820
1821                                 BUG_ON(PageHighMem(biv.bv_page));
1822                                 tag = bvec_virt(&biv);
1823                                 this_len = min(biv.bv_len, data_to_process);
1824                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1825                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1826                                 if (unlikely(r))
1827                                         goto error;
1828                                 data_to_process -= this_len;
1829                                 if (!data_to_process)
1830                                         break;
1831                         }
1832                 }
1833         }
1834 skip_io:
1835         dec_in_flight(dio);
1836         return;
1837 error:
1838         dio->bi_status = errno_to_blk_status(r);
1839         dec_in_flight(dio);
1840 }
1841
1842 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1843 {
1844         struct dm_integrity_c *ic = ti->private;
1845         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1846         struct bio_integrity_payload *bip;
1847
1848         sector_t area, offset;
1849
1850         dio->ic = ic;
1851         dio->bi_status = 0;
1852         dio->op = bio_op(bio);
1853
1854         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1855                 if (ti->max_io_len) {
1856                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1857                         unsigned log2_max_io_len = __fls(ti->max_io_len);
1858                         sector_t start_boundary = sec >> log2_max_io_len;
1859                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1860                         if (start_boundary < end_boundary) {
1861                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1862                                 dm_accept_partial_bio(bio, len);
1863                         }
1864                 }
1865         }
1866
1867         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1868                 submit_flush_bio(ic, dio);
1869                 return DM_MAPIO_SUBMITTED;
1870         }
1871
1872         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1873         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1874         if (unlikely(dio->fua)) {
1875                 /*
1876                  * Don't pass down the FUA flag because we have to flush
1877                  * disk cache anyway.
1878                  */
1879                 bio->bi_opf &= ~REQ_FUA;
1880         }
1881         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1882                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1883                       dio->range.logical_sector, bio_sectors(bio),
1884                       ic->provided_data_sectors);
1885                 return DM_MAPIO_KILL;
1886         }
1887         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1888                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1889                       ic->sectors_per_block,
1890                       dio->range.logical_sector, bio_sectors(bio));
1891                 return DM_MAPIO_KILL;
1892         }
1893
1894         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1895                 struct bvec_iter iter;
1896                 struct bio_vec bv;
1897                 bio_for_each_segment(bv, bio, iter) {
1898                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1899                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1900                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1901                                 return DM_MAPIO_KILL;
1902                         }
1903                 }
1904         }
1905
1906         bip = bio_integrity(bio);
1907         if (!ic->internal_hash) {
1908                 if (bip) {
1909                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1910                         if (ic->log2_tag_size >= 0)
1911                                 wanted_tag_size <<= ic->log2_tag_size;
1912                         else
1913                                 wanted_tag_size *= ic->tag_size;
1914                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1915                                 DMERR("Invalid integrity data size %u, expected %u",
1916                                       bip->bip_iter.bi_size, wanted_tag_size);
1917                                 return DM_MAPIO_KILL;
1918                         }
1919                 }
1920         } else {
1921                 if (unlikely(bip != NULL)) {
1922                         DMERR("Unexpected integrity data when using internal hash");
1923                         return DM_MAPIO_KILL;
1924                 }
1925         }
1926
1927         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1928                 return DM_MAPIO_KILL;
1929
1930         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1931         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1932         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1933
1934         dm_integrity_map_continue(dio, true);
1935         return DM_MAPIO_SUBMITTED;
1936 }
1937
1938 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1939                                  unsigned journal_section, unsigned journal_entry)
1940 {
1941         struct dm_integrity_c *ic = dio->ic;
1942         sector_t logical_sector;
1943         unsigned n_sectors;
1944
1945         logical_sector = dio->range.logical_sector;
1946         n_sectors = dio->range.n_sectors;
1947         do {
1948                 struct bio_vec bv = bio_iovec(bio);
1949                 char *mem;
1950
1951                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1952                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1953                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1954                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1955 retry_kmap:
1956                 mem = kmap_atomic(bv.bv_page);
1957                 if (likely(dio->op == REQ_OP_WRITE))
1958                         flush_dcache_page(bv.bv_page);
1959
1960                 do {
1961                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1962
1963                         if (unlikely(dio->op == REQ_OP_READ)) {
1964                                 struct journal_sector *js;
1965                                 char *mem_ptr;
1966                                 unsigned s;
1967
1968                                 if (unlikely(journal_entry_is_inprogress(je))) {
1969                                         flush_dcache_page(bv.bv_page);
1970                                         kunmap_atomic(mem);
1971
1972                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1973                                         goto retry_kmap;
1974                                 }
1975                                 smp_rmb();
1976                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1977                                 js = access_journal_data(ic, journal_section, journal_entry);
1978                                 mem_ptr = mem + bv.bv_offset;
1979                                 s = 0;
1980                                 do {
1981                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1982                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1983                                         js++;
1984                                         mem_ptr += 1 << SECTOR_SHIFT;
1985                                 } while (++s < ic->sectors_per_block);
1986 #ifdef INTERNAL_VERIFY
1987                                 if (ic->internal_hash) {
1988                                         char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1989
1990                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1991                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1992                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1993                                                             logical_sector);
1994                                         }
1995                                 }
1996 #endif
1997                         }
1998
1999                         if (!ic->internal_hash) {
2000                                 struct bio_integrity_payload *bip = bio_integrity(bio);
2001                                 unsigned tag_todo = ic->tag_size;
2002                                 char *tag_ptr = journal_entry_tag(ic, je);
2003
2004                                 if (bip) do {
2005                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2006                                         unsigned tag_now = min(biv.bv_len, tag_todo);
2007                                         char *tag_addr;
2008                                         BUG_ON(PageHighMem(biv.bv_page));
2009                                         tag_addr = bvec_virt(&biv);
2010                                         if (likely(dio->op == REQ_OP_WRITE))
2011                                                 memcpy(tag_ptr, tag_addr, tag_now);
2012                                         else
2013                                                 memcpy(tag_addr, tag_ptr, tag_now);
2014                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2015                                         tag_ptr += tag_now;
2016                                         tag_todo -= tag_now;
2017                                 } while (unlikely(tag_todo)); else {
2018                                         if (likely(dio->op == REQ_OP_WRITE))
2019                                                 memset(tag_ptr, 0, tag_todo);
2020                                 }
2021                         }
2022
2023                         if (likely(dio->op == REQ_OP_WRITE)) {
2024                                 struct journal_sector *js;
2025                                 unsigned s;
2026
2027                                 js = access_journal_data(ic, journal_section, journal_entry);
2028                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2029
2030                                 s = 0;
2031                                 do {
2032                                         je->last_bytes[s] = js[s].commit_id;
2033                                 } while (++s < ic->sectors_per_block);
2034
2035                                 if (ic->internal_hash) {
2036                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2037                                         if (unlikely(digest_size > ic->tag_size)) {
2038                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2039                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2040                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2041                                         } else
2042                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2043                                 }
2044
2045                                 journal_entry_set_sector(je, logical_sector);
2046                         }
2047                         logical_sector += ic->sectors_per_block;
2048
2049                         journal_entry++;
2050                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2051                                 journal_entry = 0;
2052                                 journal_section++;
2053                                 wraparound_section(ic, &journal_section);
2054                         }
2055
2056                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2057                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2058
2059                 if (unlikely(dio->op == REQ_OP_READ))
2060                         flush_dcache_page(bv.bv_page);
2061                 kunmap_atomic(mem);
2062         } while (n_sectors);
2063
2064         if (likely(dio->op == REQ_OP_WRITE)) {
2065                 smp_mb();
2066                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2067                         wake_up(&ic->copy_to_journal_wait);
2068                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2069                         queue_work(ic->commit_wq, &ic->commit_work);
2070                 } else {
2071                         schedule_autocommit(ic);
2072                 }
2073         } else {
2074                 remove_range(ic, &dio->range);
2075         }
2076
2077         if (unlikely(bio->bi_iter.bi_size)) {
2078                 sector_t area, offset;
2079
2080                 dio->range.logical_sector = logical_sector;
2081                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2082                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2083                 return true;
2084         }
2085
2086         return false;
2087 }
2088
2089 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2090 {
2091         struct dm_integrity_c *ic = dio->ic;
2092         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2093         unsigned journal_section, journal_entry;
2094         unsigned journal_read_pos;
2095         struct completion read_comp;
2096         bool discard_retried = false;
2097         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2098         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2099                 need_sync_io = true;
2100
2101         if (need_sync_io && from_map) {
2102                 INIT_WORK(&dio->work, integrity_bio_wait);
2103                 queue_work(ic->offload_wq, &dio->work);
2104                 return;
2105         }
2106
2107 lock_retry:
2108         spin_lock_irq(&ic->endio_wait.lock);
2109 retry:
2110         if (unlikely(dm_integrity_failed(ic))) {
2111                 spin_unlock_irq(&ic->endio_wait.lock);
2112                 do_endio(ic, bio);
2113                 return;
2114         }
2115         dio->range.n_sectors = bio_sectors(bio);
2116         journal_read_pos = NOT_FOUND;
2117         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2118                 if (dio->op == REQ_OP_WRITE) {
2119                         unsigned next_entry, i, pos;
2120                         unsigned ws, we, range_sectors;
2121
2122                         dio->range.n_sectors = min(dio->range.n_sectors,
2123                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2124                         if (unlikely(!dio->range.n_sectors)) {
2125                                 if (from_map)
2126                                         goto offload_to_thread;
2127                                 sleep_on_endio_wait(ic);
2128                                 goto retry;
2129                         }
2130                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2131                         ic->free_sectors -= range_sectors;
2132                         journal_section = ic->free_section;
2133                         journal_entry = ic->free_section_entry;
2134
2135                         next_entry = ic->free_section_entry + range_sectors;
2136                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2137                         ic->free_section += next_entry / ic->journal_section_entries;
2138                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2139                         wraparound_section(ic, &ic->free_section);
2140
2141                         pos = journal_section * ic->journal_section_entries + journal_entry;
2142                         ws = journal_section;
2143                         we = journal_entry;
2144                         i = 0;
2145                         do {
2146                                 struct journal_entry *je;
2147
2148                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2149                                 pos++;
2150                                 if (unlikely(pos >= ic->journal_entries))
2151                                         pos = 0;
2152
2153                                 je = access_journal_entry(ic, ws, we);
2154                                 BUG_ON(!journal_entry_is_unused(je));
2155                                 journal_entry_set_inprogress(je);
2156                                 we++;
2157                                 if (unlikely(we == ic->journal_section_entries)) {
2158                                         we = 0;
2159                                         ws++;
2160                                         wraparound_section(ic, &ws);
2161                                 }
2162                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2163
2164                         spin_unlock_irq(&ic->endio_wait.lock);
2165                         goto journal_read_write;
2166                 } else {
2167                         sector_t next_sector;
2168                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2169                         if (likely(journal_read_pos == NOT_FOUND)) {
2170                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2171                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2172                         } else {
2173                                 unsigned i;
2174                                 unsigned jp = journal_read_pos + 1;
2175                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2176                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2177                                                 break;
2178                                 }
2179                                 dio->range.n_sectors = i;
2180                         }
2181                 }
2182         }
2183         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2184                 /*
2185                  * We must not sleep in the request routine because it could
2186                  * stall bios on current->bio_list.
2187                  * So, we offload the bio to a workqueue if we have to sleep.
2188                  */
2189                 if (from_map) {
2190 offload_to_thread:
2191                         spin_unlock_irq(&ic->endio_wait.lock);
2192                         INIT_WORK(&dio->work, integrity_bio_wait);
2193                         queue_work(ic->wait_wq, &dio->work);
2194                         return;
2195                 }
2196                 if (journal_read_pos != NOT_FOUND)
2197                         dio->range.n_sectors = ic->sectors_per_block;
2198                 wait_and_add_new_range(ic, &dio->range);
2199                 /*
2200                  * wait_and_add_new_range drops the spinlock, so the journal
2201                  * may have been changed arbitrarily. We need to recheck.
2202                  * To simplify the code, we restrict I/O size to just one block.
2203                  */
2204                 if (journal_read_pos != NOT_FOUND) {
2205                         sector_t next_sector;
2206                         unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2207                         if (unlikely(new_pos != journal_read_pos)) {
2208                                 remove_range_unlocked(ic, &dio->range);
2209                                 goto retry;
2210                         }
2211                 }
2212         }
2213         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2214                 sector_t next_sector;
2215                 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2216                 if (unlikely(new_pos != NOT_FOUND) ||
2217                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2218                         remove_range_unlocked(ic, &dio->range);
2219                         spin_unlock_irq(&ic->endio_wait.lock);
2220                         queue_work(ic->commit_wq, &ic->commit_work);
2221                         flush_workqueue(ic->commit_wq);
2222                         queue_work(ic->writer_wq, &ic->writer_work);
2223                         flush_workqueue(ic->writer_wq);
2224                         discard_retried = true;
2225                         goto lock_retry;
2226                 }
2227         }
2228         spin_unlock_irq(&ic->endio_wait.lock);
2229
2230         if (unlikely(journal_read_pos != NOT_FOUND)) {
2231                 journal_section = journal_read_pos / ic->journal_section_entries;
2232                 journal_entry = journal_read_pos % ic->journal_section_entries;
2233                 goto journal_read_write;
2234         }
2235
2236         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2237                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2238                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2239                         struct bitmap_block_status *bbs;
2240
2241                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2242                         spin_lock(&bbs->bio_queue_lock);
2243                         bio_list_add(&bbs->bio_queue, bio);
2244                         spin_unlock(&bbs->bio_queue_lock);
2245                         queue_work(ic->writer_wq, &bbs->work);
2246                         return;
2247                 }
2248         }
2249
2250         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2251
2252         if (need_sync_io) {
2253                 init_completion(&read_comp);
2254                 dio->completion = &read_comp;
2255         } else
2256                 dio->completion = NULL;
2257
2258         dm_bio_record(&dio->bio_details, bio);
2259         bio_set_dev(bio, ic->dev->bdev);
2260         bio->bi_integrity = NULL;
2261         bio->bi_opf &= ~REQ_INTEGRITY;
2262         bio->bi_end_io = integrity_end_io;
2263         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2264
2265         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2266                 integrity_metadata(&dio->work);
2267                 dm_integrity_flush_buffers(ic, false);
2268
2269                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2270                 dio->completion = NULL;
2271
2272                 submit_bio_noacct(bio);
2273
2274                 return;
2275         }
2276
2277         submit_bio_noacct(bio);
2278
2279         if (need_sync_io) {
2280                 wait_for_completion_io(&read_comp);
2281                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2282                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2283                         goto skip_check;
2284                 if (ic->mode == 'B') {
2285                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2286                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2287                                 goto skip_check;
2288                 }
2289
2290                 if (likely(!bio->bi_status))
2291                         integrity_metadata(&dio->work);
2292                 else
2293 skip_check:
2294                         dec_in_flight(dio);
2295
2296         } else {
2297                 INIT_WORK(&dio->work, integrity_metadata);
2298                 queue_work(ic->metadata_wq, &dio->work);
2299         }
2300
2301         return;
2302
2303 journal_read_write:
2304         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2305                 goto lock_retry;
2306
2307         do_endio_flush(ic, dio);
2308 }
2309
2310
2311 static void integrity_bio_wait(struct work_struct *w)
2312 {
2313         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2314
2315         dm_integrity_map_continue(dio, false);
2316 }
2317
2318 static void pad_uncommitted(struct dm_integrity_c *ic)
2319 {
2320         if (ic->free_section_entry) {
2321                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2322                 ic->free_section_entry = 0;
2323                 ic->free_section++;
2324                 wraparound_section(ic, &ic->free_section);
2325                 ic->n_uncommitted_sections++;
2326         }
2327         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2328                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2329                     ic->journal_section_entries + ic->free_sectors)) {
2330                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2331                        "n_uncommitted_sections %u, n_committed_sections %u, "
2332                        "journal_section_entries %u, free_sectors %u",
2333                        ic->journal_sections, ic->journal_section_entries,
2334                        ic->n_uncommitted_sections, ic->n_committed_sections,
2335                        ic->journal_section_entries, ic->free_sectors);
2336         }
2337 }
2338
2339 static void integrity_commit(struct work_struct *w)
2340 {
2341         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2342         unsigned commit_start, commit_sections;
2343         unsigned i, j, n;
2344         struct bio *flushes;
2345
2346         del_timer(&ic->autocommit_timer);
2347
2348         spin_lock_irq(&ic->endio_wait.lock);
2349         flushes = bio_list_get(&ic->flush_bio_list);
2350         if (unlikely(ic->mode != 'J')) {
2351                 spin_unlock_irq(&ic->endio_wait.lock);
2352                 dm_integrity_flush_buffers(ic, true);
2353                 goto release_flush_bios;
2354         }
2355
2356         pad_uncommitted(ic);
2357         commit_start = ic->uncommitted_section;
2358         commit_sections = ic->n_uncommitted_sections;
2359         spin_unlock_irq(&ic->endio_wait.lock);
2360
2361         if (!commit_sections)
2362                 goto release_flush_bios;
2363
2364         i = commit_start;
2365         for (n = 0; n < commit_sections; n++) {
2366                 for (j = 0; j < ic->journal_section_entries; j++) {
2367                         struct journal_entry *je;
2368                         je = access_journal_entry(ic, i, j);
2369                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2370                 }
2371                 for (j = 0; j < ic->journal_section_sectors; j++) {
2372                         struct journal_sector *js;
2373                         js = access_journal(ic, i, j);
2374                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2375                 }
2376                 i++;
2377                 if (unlikely(i >= ic->journal_sections))
2378                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2379                 wraparound_section(ic, &i);
2380         }
2381         smp_rmb();
2382
2383         write_journal(ic, commit_start, commit_sections);
2384
2385         spin_lock_irq(&ic->endio_wait.lock);
2386         ic->uncommitted_section += commit_sections;
2387         wraparound_section(ic, &ic->uncommitted_section);
2388         ic->n_uncommitted_sections -= commit_sections;
2389         ic->n_committed_sections += commit_sections;
2390         spin_unlock_irq(&ic->endio_wait.lock);
2391
2392         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2393                 queue_work(ic->writer_wq, &ic->writer_work);
2394
2395 release_flush_bios:
2396         while (flushes) {
2397                 struct bio *next = flushes->bi_next;
2398                 flushes->bi_next = NULL;
2399                 do_endio(ic, flushes);
2400                 flushes = next;
2401         }
2402 }
2403
2404 static void complete_copy_from_journal(unsigned long error, void *context)
2405 {
2406         struct journal_io *io = context;
2407         struct journal_completion *comp = io->comp;
2408         struct dm_integrity_c *ic = comp->ic;
2409         remove_range(ic, &io->range);
2410         mempool_free(io, &ic->journal_io_mempool);
2411         if (unlikely(error != 0))
2412                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2413         complete_journal_op(comp);
2414 }
2415
2416 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2417                                struct journal_entry *je)
2418 {
2419         unsigned s = 0;
2420         do {
2421                 js->commit_id = je->last_bytes[s];
2422                 js++;
2423         } while (++s < ic->sectors_per_block);
2424 }
2425
2426 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2427                              unsigned write_sections, bool from_replay)
2428 {
2429         unsigned i, j, n;
2430         struct journal_completion comp;
2431         struct blk_plug plug;
2432
2433         blk_start_plug(&plug);
2434
2435         comp.ic = ic;
2436         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2437         init_completion(&comp.comp);
2438
2439         i = write_start;
2440         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2441 #ifndef INTERNAL_VERIFY
2442                 if (unlikely(from_replay))
2443 #endif
2444                         rw_section_mac(ic, i, false);
2445                 for (j = 0; j < ic->journal_section_entries; j++) {
2446                         struct journal_entry *je = access_journal_entry(ic, i, j);
2447                         sector_t sec, area, offset;
2448                         unsigned k, l, next_loop;
2449                         sector_t metadata_block;
2450                         unsigned metadata_offset;
2451                         struct journal_io *io;
2452
2453                         if (journal_entry_is_unused(je))
2454                                 continue;
2455                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2456                         sec = journal_entry_get_sector(je);
2457                         if (unlikely(from_replay)) {
2458                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2459                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2460                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2461                                 }
2462                                 if (unlikely(sec >= ic->provided_data_sectors)) {
2463                                         journal_entry_set_unused(je);
2464                                         continue;
2465                                 }
2466                         }
2467                         get_area_and_offset(ic, sec, &area, &offset);
2468                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2469                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2470                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2471                                 sector_t sec2, area2, offset2;
2472                                 if (journal_entry_is_unused(je2))
2473                                         break;
2474                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2475                                 sec2 = journal_entry_get_sector(je2);
2476                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2477                                         break;
2478                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2479                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2480                                         break;
2481                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2482                         }
2483                         next_loop = k - 1;
2484
2485                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2486                         io->comp = &comp;
2487                         io->range.logical_sector = sec;
2488                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2489
2490                         spin_lock_irq(&ic->endio_wait.lock);
2491                         add_new_range_and_wait(ic, &io->range);
2492
2493                         if (likely(!from_replay)) {
2494                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2495
2496                                 /* don't write if there is newer committed sector */
2497                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2498                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2499
2500                                         journal_entry_set_unused(je2);
2501                                         remove_journal_node(ic, &section_node[j]);
2502                                         j++;
2503                                         sec += ic->sectors_per_block;
2504                                         offset += ic->sectors_per_block;
2505                                 }
2506                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2507                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2508
2509                                         journal_entry_set_unused(je2);
2510                                         remove_journal_node(ic, &section_node[k - 1]);
2511                                         k--;
2512                                 }
2513                                 if (j == k) {
2514                                         remove_range_unlocked(ic, &io->range);
2515                                         spin_unlock_irq(&ic->endio_wait.lock);
2516                                         mempool_free(io, &ic->journal_io_mempool);
2517                                         goto skip_io;
2518                                 }
2519                                 for (l = j; l < k; l++) {
2520                                         remove_journal_node(ic, &section_node[l]);
2521                                 }
2522                         }
2523                         spin_unlock_irq(&ic->endio_wait.lock);
2524
2525                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2526                         for (l = j; l < k; l++) {
2527                                 int r;
2528                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2529
2530                                 if (
2531 #ifndef INTERNAL_VERIFY
2532                                     unlikely(from_replay) &&
2533 #endif
2534                                     ic->internal_hash) {
2535                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2536
2537                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2538                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2539                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2540                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2541                                 }
2542
2543                                 journal_entry_set_unused(je2);
2544                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2545                                                         ic->tag_size, TAG_WRITE);
2546                                 if (unlikely(r)) {
2547                                         dm_integrity_io_error(ic, "reading tags", r);
2548                                 }
2549                         }
2550
2551                         atomic_inc(&comp.in_flight);
2552                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2553                                           (k - j) << ic->sb->log2_sectors_per_block,
2554                                           get_data_sector(ic, area, offset),
2555                                           complete_copy_from_journal, io);
2556 skip_io:
2557                         j = next_loop;
2558                 }
2559         }
2560
2561         dm_bufio_write_dirty_buffers_async(ic->bufio);
2562
2563         blk_finish_plug(&plug);
2564
2565         complete_journal_op(&comp);
2566         wait_for_completion_io(&comp.comp);
2567
2568         dm_integrity_flush_buffers(ic, true);
2569 }
2570
2571 static void integrity_writer(struct work_struct *w)
2572 {
2573         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2574         unsigned write_start, write_sections;
2575
2576         unsigned prev_free_sectors;
2577
2578         spin_lock_irq(&ic->endio_wait.lock);
2579         write_start = ic->committed_section;
2580         write_sections = ic->n_committed_sections;
2581         spin_unlock_irq(&ic->endio_wait.lock);
2582
2583         if (!write_sections)
2584                 return;
2585
2586         do_journal_write(ic, write_start, write_sections, false);
2587
2588         spin_lock_irq(&ic->endio_wait.lock);
2589
2590         ic->committed_section += write_sections;
2591         wraparound_section(ic, &ic->committed_section);
2592         ic->n_committed_sections -= write_sections;
2593
2594         prev_free_sectors = ic->free_sectors;
2595         ic->free_sectors += write_sections * ic->journal_section_entries;
2596         if (unlikely(!prev_free_sectors))
2597                 wake_up_locked(&ic->endio_wait);
2598
2599         spin_unlock_irq(&ic->endio_wait.lock);
2600 }
2601
2602 static void recalc_write_super(struct dm_integrity_c *ic)
2603 {
2604         int r;
2605
2606         dm_integrity_flush_buffers(ic, false);
2607         if (dm_integrity_failed(ic))
2608                 return;
2609
2610         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2611         if (unlikely(r))
2612                 dm_integrity_io_error(ic, "writing superblock", r);
2613 }
2614
2615 static void integrity_recalc(struct work_struct *w)
2616 {
2617         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2618         struct dm_integrity_range range;
2619         struct dm_io_request io_req;
2620         struct dm_io_region io_loc;
2621         sector_t area, offset;
2622         sector_t metadata_block;
2623         unsigned metadata_offset;
2624         sector_t logical_sector, n_sectors;
2625         __u8 *t;
2626         unsigned i;
2627         int r;
2628         unsigned super_counter = 0;
2629
2630         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2631
2632         spin_lock_irq(&ic->endio_wait.lock);
2633
2634 next_chunk:
2635
2636         if (unlikely(dm_post_suspending(ic->ti)))
2637                 goto unlock_ret;
2638
2639         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2640         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2641                 if (ic->mode == 'B') {
2642                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2643                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2644                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2645                 }
2646                 goto unlock_ret;
2647         }
2648
2649         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2650         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2651         if (!ic->meta_dev)
2652                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2653
2654         add_new_range_and_wait(ic, &range);
2655         spin_unlock_irq(&ic->endio_wait.lock);
2656         logical_sector = range.logical_sector;
2657         n_sectors = range.n_sectors;
2658
2659         if (ic->mode == 'B') {
2660                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2661                         goto advance_and_next;
2662                 }
2663                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2664                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2665                         logical_sector += ic->sectors_per_block;
2666                         n_sectors -= ic->sectors_per_block;
2667                         cond_resched();
2668                 }
2669                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2670                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2671                         n_sectors -= ic->sectors_per_block;
2672                         cond_resched();
2673                 }
2674                 get_area_and_offset(ic, logical_sector, &area, &offset);
2675         }
2676
2677         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2678
2679         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2680                 recalc_write_super(ic);
2681                 if (ic->mode == 'B') {
2682                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2683                 }
2684                 super_counter = 0;
2685         }
2686
2687         if (unlikely(dm_integrity_failed(ic)))
2688                 goto err;
2689
2690         io_req.bi_op = REQ_OP_READ;
2691         io_req.bi_op_flags = 0;
2692         io_req.mem.type = DM_IO_VMA;
2693         io_req.mem.ptr.addr = ic->recalc_buffer;
2694         io_req.notify.fn = NULL;
2695         io_req.client = ic->io;
2696         io_loc.bdev = ic->dev->bdev;
2697         io_loc.sector = get_data_sector(ic, area, offset);
2698         io_loc.count = n_sectors;
2699
2700         r = dm_io(&io_req, 1, &io_loc, NULL);
2701         if (unlikely(r)) {
2702                 dm_integrity_io_error(ic, "reading data", r);
2703                 goto err;
2704         }
2705
2706         t = ic->recalc_tags;
2707         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2708                 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2709                 t += ic->tag_size;
2710         }
2711
2712         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2713
2714         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2715         if (unlikely(r)) {
2716                 dm_integrity_io_error(ic, "writing tags", r);
2717                 goto err;
2718         }
2719
2720         if (ic->mode == 'B') {
2721                 sector_t start, end;
2722                 start = (range.logical_sector >>
2723                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2724                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2725                 end = ((range.logical_sector + range.n_sectors) >>
2726                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2727                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2728                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2729         }
2730
2731 advance_and_next:
2732         cond_resched();
2733
2734         spin_lock_irq(&ic->endio_wait.lock);
2735         remove_range_unlocked(ic, &range);
2736         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2737         goto next_chunk;
2738
2739 err:
2740         remove_range(ic, &range);
2741         return;
2742
2743 unlock_ret:
2744         spin_unlock_irq(&ic->endio_wait.lock);
2745
2746         recalc_write_super(ic);
2747 }
2748
2749 static void bitmap_block_work(struct work_struct *w)
2750 {
2751         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2752         struct dm_integrity_c *ic = bbs->ic;
2753         struct bio *bio;
2754         struct bio_list bio_queue;
2755         struct bio_list waiting;
2756
2757         bio_list_init(&waiting);
2758
2759         spin_lock(&bbs->bio_queue_lock);
2760         bio_queue = bbs->bio_queue;
2761         bio_list_init(&bbs->bio_queue);
2762         spin_unlock(&bbs->bio_queue_lock);
2763
2764         while ((bio = bio_list_pop(&bio_queue))) {
2765                 struct dm_integrity_io *dio;
2766
2767                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2768
2769                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2770                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2771                         remove_range(ic, &dio->range);
2772                         INIT_WORK(&dio->work, integrity_bio_wait);
2773                         queue_work(ic->offload_wq, &dio->work);
2774                 } else {
2775                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2776                                         dio->range.n_sectors, BITMAP_OP_SET);
2777                         bio_list_add(&waiting, bio);
2778                 }
2779         }
2780
2781         if (bio_list_empty(&waiting))
2782                 return;
2783
2784         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2785                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2786                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2787
2788         while ((bio = bio_list_pop(&waiting))) {
2789                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2790
2791                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2792                                 dio->range.n_sectors, BITMAP_OP_SET);
2793
2794                 remove_range(ic, &dio->range);
2795                 INIT_WORK(&dio->work, integrity_bio_wait);
2796                 queue_work(ic->offload_wq, &dio->work);
2797         }
2798
2799         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2800 }
2801
2802 static void bitmap_flush_work(struct work_struct *work)
2803 {
2804         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2805         struct dm_integrity_range range;
2806         unsigned long limit;
2807         struct bio *bio;
2808
2809         dm_integrity_flush_buffers(ic, false);
2810
2811         range.logical_sector = 0;
2812         range.n_sectors = ic->provided_data_sectors;
2813
2814         spin_lock_irq(&ic->endio_wait.lock);
2815         add_new_range_and_wait(ic, &range);
2816         spin_unlock_irq(&ic->endio_wait.lock);
2817
2818         dm_integrity_flush_buffers(ic, true);
2819
2820         limit = ic->provided_data_sectors;
2821         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2822                 limit = le64_to_cpu(ic->sb->recalc_sector)
2823                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2824                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2825         }
2826         /*DEBUG_print("zeroing journal\n");*/
2827         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2828         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2829
2830         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2831                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2832
2833         spin_lock_irq(&ic->endio_wait.lock);
2834         remove_range_unlocked(ic, &range);
2835         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2836                 bio_endio(bio);
2837                 spin_unlock_irq(&ic->endio_wait.lock);
2838                 spin_lock_irq(&ic->endio_wait.lock);
2839         }
2840         spin_unlock_irq(&ic->endio_wait.lock);
2841 }
2842
2843
2844 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2845                          unsigned n_sections, unsigned char commit_seq)
2846 {
2847         unsigned i, j, n;
2848
2849         if (!n_sections)
2850                 return;
2851
2852         for (n = 0; n < n_sections; n++) {
2853                 i = start_section + n;
2854                 wraparound_section(ic, &i);
2855                 for (j = 0; j < ic->journal_section_sectors; j++) {
2856                         struct journal_sector *js = access_journal(ic, i, j);
2857                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2858                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2859                 }
2860                 for (j = 0; j < ic->journal_section_entries; j++) {
2861                         struct journal_entry *je = access_journal_entry(ic, i, j);
2862                         journal_entry_set_unused(je);
2863                 }
2864         }
2865
2866         write_journal(ic, start_section, n_sections);
2867 }
2868
2869 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2870 {
2871         unsigned char k;
2872         for (k = 0; k < N_COMMIT_IDS; k++) {
2873                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2874                         return k;
2875         }
2876         dm_integrity_io_error(ic, "journal commit id", -EIO);
2877         return -EIO;
2878 }
2879
2880 static void replay_journal(struct dm_integrity_c *ic)
2881 {
2882         unsigned i, j;
2883         bool used_commit_ids[N_COMMIT_IDS];
2884         unsigned max_commit_id_sections[N_COMMIT_IDS];
2885         unsigned write_start, write_sections;
2886         unsigned continue_section;
2887         bool journal_empty;
2888         unsigned char unused, last_used, want_commit_seq;
2889
2890         if (ic->mode == 'R')
2891                 return;
2892
2893         if (ic->journal_uptodate)
2894                 return;
2895
2896         last_used = 0;
2897         write_start = 0;
2898
2899         if (!ic->just_formatted) {
2900                 DEBUG_print("reading journal\n");
2901                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2902                 if (ic->journal_io)
2903                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2904                 if (ic->journal_io) {
2905                         struct journal_completion crypt_comp;
2906                         crypt_comp.ic = ic;
2907                         init_completion(&crypt_comp.comp);
2908                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2909                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2910                         wait_for_completion(&crypt_comp.comp);
2911                 }
2912                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2913         }
2914
2915         if (dm_integrity_failed(ic))
2916                 goto clear_journal;
2917
2918         journal_empty = true;
2919         memset(used_commit_ids, 0, sizeof used_commit_ids);
2920         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2921         for (i = 0; i < ic->journal_sections; i++) {
2922                 for (j = 0; j < ic->journal_section_sectors; j++) {
2923                         int k;
2924                         struct journal_sector *js = access_journal(ic, i, j);
2925                         k = find_commit_seq(ic, i, j, js->commit_id);
2926                         if (k < 0)
2927                                 goto clear_journal;
2928                         used_commit_ids[k] = true;
2929                         max_commit_id_sections[k] = i;
2930                 }
2931                 if (journal_empty) {
2932                         for (j = 0; j < ic->journal_section_entries; j++) {
2933                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2934                                 if (!journal_entry_is_unused(je)) {
2935                                         journal_empty = false;
2936                                         break;
2937                                 }
2938                         }
2939                 }
2940         }
2941
2942         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2943                 unused = N_COMMIT_IDS - 1;
2944                 while (unused && !used_commit_ids[unused - 1])
2945                         unused--;
2946         } else {
2947                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2948                         if (!used_commit_ids[unused])
2949                                 break;
2950                 if (unused == N_COMMIT_IDS) {
2951                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2952                         goto clear_journal;
2953                 }
2954         }
2955         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2956                     unused, used_commit_ids[0], used_commit_ids[1],
2957                     used_commit_ids[2], used_commit_ids[3]);
2958
2959         last_used = prev_commit_seq(unused);
2960         want_commit_seq = prev_commit_seq(last_used);
2961
2962         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2963                 journal_empty = true;
2964
2965         write_start = max_commit_id_sections[last_used] + 1;
2966         if (unlikely(write_start >= ic->journal_sections))
2967                 want_commit_seq = next_commit_seq(want_commit_seq);
2968         wraparound_section(ic, &write_start);
2969
2970         i = write_start;
2971         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2972                 for (j = 0; j < ic->journal_section_sectors; j++) {
2973                         struct journal_sector *js = access_journal(ic, i, j);
2974
2975                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2976                                 /*
2977                                  * This could be caused by crash during writing.
2978                                  * We won't replay the inconsistent part of the
2979                                  * journal.
2980                                  */
2981                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2982                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2983                                 goto brk;
2984                         }
2985                 }
2986                 i++;
2987                 if (unlikely(i >= ic->journal_sections))
2988                         want_commit_seq = next_commit_seq(want_commit_seq);
2989                 wraparound_section(ic, &i);
2990         }
2991 brk:
2992
2993         if (!journal_empty) {
2994                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2995                             write_sections, write_start, want_commit_seq);
2996                 do_journal_write(ic, write_start, write_sections, true);
2997         }
2998
2999         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3000                 continue_section = write_start;
3001                 ic->commit_seq = want_commit_seq;
3002                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3003         } else {
3004                 unsigned s;
3005                 unsigned char erase_seq;
3006 clear_journal:
3007                 DEBUG_print("clearing journal\n");
3008
3009                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3010                 s = write_start;
3011                 init_journal(ic, s, 1, erase_seq);
3012                 s++;
3013                 wraparound_section(ic, &s);
3014                 if (ic->journal_sections >= 2) {
3015                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3016                         s += ic->journal_sections - 2;
3017                         wraparound_section(ic, &s);
3018                         init_journal(ic, s, 1, erase_seq);
3019                 }
3020
3021                 continue_section = 0;
3022                 ic->commit_seq = next_commit_seq(erase_seq);
3023         }
3024
3025         ic->committed_section = continue_section;
3026         ic->n_committed_sections = 0;
3027
3028         ic->uncommitted_section = continue_section;
3029         ic->n_uncommitted_sections = 0;
3030
3031         ic->free_section = continue_section;
3032         ic->free_section_entry = 0;
3033         ic->free_sectors = ic->journal_entries;
3034
3035         ic->journal_tree_root = RB_ROOT;
3036         for (i = 0; i < ic->journal_entries; i++)
3037                 init_journal_node(&ic->journal_tree[i]);
3038 }
3039
3040 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3041 {
3042         DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3043
3044         if (ic->mode == 'B') {
3045                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3046                 ic->synchronous_mode = 1;
3047
3048                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3049                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3050                 flush_workqueue(ic->commit_wq);
3051         }
3052 }
3053
3054 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3055 {
3056         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3057
3058         DEBUG_print("dm_integrity_reboot\n");
3059
3060         dm_integrity_enter_synchronous_mode(ic);
3061
3062         return NOTIFY_DONE;
3063 }
3064
3065 static void dm_integrity_postsuspend(struct dm_target *ti)
3066 {
3067         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3068         int r;
3069
3070         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3071
3072         del_timer_sync(&ic->autocommit_timer);
3073
3074         if (ic->recalc_wq)
3075                 drain_workqueue(ic->recalc_wq);
3076
3077         if (ic->mode == 'B')
3078                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3079
3080         queue_work(ic->commit_wq, &ic->commit_work);
3081         drain_workqueue(ic->commit_wq);
3082
3083         if (ic->mode == 'J') {
3084                 queue_work(ic->writer_wq, &ic->writer_work);
3085                 drain_workqueue(ic->writer_wq);
3086                 dm_integrity_flush_buffers(ic, true);
3087         }
3088
3089         if (ic->mode == 'B') {
3090                 dm_integrity_flush_buffers(ic, true);
3091 #if 1
3092                 /* set to 0 to test bitmap replay code */
3093                 init_journal(ic, 0, ic->journal_sections, 0);
3094                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3095                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3096                 if (unlikely(r))
3097                         dm_integrity_io_error(ic, "writing superblock", r);
3098 #endif
3099         }
3100
3101         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3102
3103         ic->journal_uptodate = true;
3104 }
3105
3106 static void dm_integrity_resume(struct dm_target *ti)
3107 {
3108         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3109         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3110         int r;
3111
3112         DEBUG_print("resume\n");
3113
3114         if (ic->provided_data_sectors != old_provided_data_sectors) {
3115                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3116                     ic->mode == 'B' &&
3117                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3118                         rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3119                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3120                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3121                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3122                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3123                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3124                 }
3125
3126                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3127                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3128                 if (unlikely(r))
3129                         dm_integrity_io_error(ic, "writing superblock", r);
3130         }
3131
3132         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3133                 DEBUG_print("resume dirty_bitmap\n");
3134                 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3135                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3136                 if (ic->mode == 'B') {
3137                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3138                             !ic->reset_recalculate_flag) {
3139                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3140                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3141                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3142                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3143                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3144                                         ic->sb->recalc_sector = cpu_to_le64(0);
3145                                 }
3146                         } else {
3147                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3148                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3149                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3150                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3151                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3152                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3153                                 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3154                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3155                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3156                                 ic->sb->recalc_sector = cpu_to_le64(0);
3157                         }
3158                 } else {
3159                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3160                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3161                             ic->reset_recalculate_flag) {
3162                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3163                                 ic->sb->recalc_sector = cpu_to_le64(0);
3164                         }
3165                         init_journal(ic, 0, ic->journal_sections, 0);
3166                         replay_journal(ic);
3167                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3168                 }
3169                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3170                 if (unlikely(r))
3171                         dm_integrity_io_error(ic, "writing superblock", r);
3172         } else {
3173                 replay_journal(ic);
3174                 if (ic->reset_recalculate_flag) {
3175                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3176                         ic->sb->recalc_sector = cpu_to_le64(0);
3177                 }
3178                 if (ic->mode == 'B') {
3179                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3180                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3181                         r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3182                         if (unlikely(r))
3183                                 dm_integrity_io_error(ic, "writing superblock", r);
3184
3185                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3186                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3187                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3188                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3189                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3190                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3191                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3192                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3193                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3194                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3195                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3196                         }
3197                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3198                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3199                 }
3200         }
3201
3202         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3203         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3204                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3205                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3206                 if (recalc_pos < ic->provided_data_sectors) {
3207                         queue_work(ic->recalc_wq, &ic->recalc_work);
3208                 } else if (recalc_pos > ic->provided_data_sectors) {
3209                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3210                         recalc_write_super(ic);
3211                 }
3212         }
3213
3214         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3215         ic->reboot_notifier.next = NULL;
3216         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3217         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3218
3219 #if 0
3220         /* set to 1 to stress test synchronous mode */
3221         dm_integrity_enter_synchronous_mode(ic);
3222 #endif
3223 }
3224
3225 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3226                                 unsigned status_flags, char *result, unsigned maxlen)
3227 {
3228         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3229         unsigned arg_count;
3230         size_t sz = 0;
3231
3232         switch (type) {
3233         case STATUSTYPE_INFO:
3234                 DMEMIT("%llu %llu",
3235                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3236                         ic->provided_data_sectors);
3237                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3238                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3239                 else
3240                         DMEMIT(" -");
3241                 break;
3242
3243         case STATUSTYPE_TABLE: {
3244                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3245                 watermark_percentage += ic->journal_entries / 2;
3246                 do_div(watermark_percentage, ic->journal_entries);
3247                 arg_count = 3;
3248                 arg_count += !!ic->meta_dev;
3249                 arg_count += ic->sectors_per_block != 1;
3250                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3251                 arg_count += ic->reset_recalculate_flag;
3252                 arg_count += ic->discard;
3253                 arg_count += ic->mode == 'J';
3254                 arg_count += ic->mode == 'J';
3255                 arg_count += ic->mode == 'B';
3256                 arg_count += ic->mode == 'B';
3257                 arg_count += !!ic->internal_hash_alg.alg_string;
3258                 arg_count += !!ic->journal_crypt_alg.alg_string;
3259                 arg_count += !!ic->journal_mac_alg.alg_string;
3260                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3261                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3262                 arg_count += ic->legacy_recalculate;
3263                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3264                        ic->tag_size, ic->mode, arg_count);
3265                 if (ic->meta_dev)
3266                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3267                 if (ic->sectors_per_block != 1)
3268                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3269                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3270                         DMEMIT(" recalculate");
3271                 if (ic->reset_recalculate_flag)
3272                         DMEMIT(" reset_recalculate");
3273                 if (ic->discard)
3274                         DMEMIT(" allow_discards");
3275                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3276                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3277                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3278                 if (ic->mode == 'J') {
3279                         DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3280                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3281                 }
3282                 if (ic->mode == 'B') {
3283                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3284                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3285                 }
3286                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3287                         DMEMIT(" fix_padding");
3288                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3289                         DMEMIT(" fix_hmac");
3290                 if (ic->legacy_recalculate)
3291                         DMEMIT(" legacy_recalculate");
3292
3293 #define EMIT_ALG(a, n)                                                  \
3294                 do {                                                    \
3295                         if (ic->a.alg_string) {                         \
3296                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3297                                 if (ic->a.key_string)                   \
3298                                         DMEMIT(":%s", ic->a.key_string);\
3299                         }                                               \
3300                 } while (0)
3301                 EMIT_ALG(internal_hash_alg, "internal_hash");
3302                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3303                 EMIT_ALG(journal_mac_alg, "journal_mac");
3304                 break;
3305         }
3306         case STATUSTYPE_IMA:
3307                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3308                 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3309                         ic->dev->name, ic->start, ic->tag_size, ic->mode);
3310
3311                 if (ic->meta_dev)
3312                         DMEMIT(",meta_device=%s", ic->meta_dev->name);
3313                 if (ic->sectors_per_block != 1)
3314                         DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3315
3316                 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3317                        'y' : 'n');
3318                 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3319                 DMEMIT(",fix_padding=%c",
3320                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3321                 DMEMIT(",fix_hmac=%c",
3322                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3323                 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3324
3325                 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3326                 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3327                 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3328                 DMEMIT(";");
3329                 break;
3330         }
3331 }
3332
3333 static int dm_integrity_iterate_devices(struct dm_target *ti,
3334                                         iterate_devices_callout_fn fn, void *data)
3335 {
3336         struct dm_integrity_c *ic = ti->private;
3337
3338         if (!ic->meta_dev)
3339                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3340         else
3341                 return fn(ti, ic->dev, 0, ti->len, data);
3342 }
3343
3344 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3345 {
3346         struct dm_integrity_c *ic = ti->private;
3347
3348         if (ic->sectors_per_block > 1) {
3349                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3350                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3351                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3352         }
3353 }
3354
3355 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3356 {
3357         unsigned sector_space = JOURNAL_SECTOR_DATA;
3358
3359         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3360         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3361                                          JOURNAL_ENTRY_ROUNDUP);
3362
3363         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3364                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3365         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3366         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3367         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3368         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3369 }
3370
3371 static int calculate_device_limits(struct dm_integrity_c *ic)
3372 {
3373         __u64 initial_sectors;
3374
3375         calculate_journal_section_size(ic);
3376         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3377         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3378                 return -EINVAL;
3379         ic->initial_sectors = initial_sectors;
3380
3381         if (!ic->meta_dev) {
3382                 sector_t last_sector, last_area, last_offset;
3383
3384                 /* we have to maintain excessive padding for compatibility with existing volumes */
3385                 __u64 metadata_run_padding =
3386                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3387                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3388                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3389
3390                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3391                                             metadata_run_padding) >> SECTOR_SHIFT;
3392                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3393                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3394                 else
3395                         ic->log2_metadata_run = -1;
3396
3397                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3398                 last_sector = get_data_sector(ic, last_area, last_offset);
3399                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3400                         return -EINVAL;
3401         } else {
3402                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3403                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3404                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3405                 meta_size <<= ic->log2_buffer_sectors;
3406                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3407                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3408                         return -EINVAL;
3409                 ic->metadata_run = 1;
3410                 ic->log2_metadata_run = 0;
3411         }
3412
3413         return 0;
3414 }
3415
3416 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3417 {
3418         if (!ic->meta_dev) {
3419                 int test_bit;
3420                 ic->provided_data_sectors = 0;
3421                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3422                         __u64 prev_data_sectors = ic->provided_data_sectors;
3423
3424                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3425                         if (calculate_device_limits(ic))
3426                                 ic->provided_data_sectors = prev_data_sectors;
3427                 }
3428         } else {
3429                 ic->provided_data_sectors = ic->data_device_sectors;
3430                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3431         }
3432 }
3433
3434 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3435 {
3436         unsigned journal_sections;
3437         int test_bit;
3438
3439         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3440         memcpy(ic->sb->magic, SB_MAGIC, 8);
3441         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3442         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3443         if (ic->journal_mac_alg.alg_string)
3444                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3445
3446         calculate_journal_section_size(ic);
3447         journal_sections = journal_sectors / ic->journal_section_sectors;
3448         if (!journal_sections)
3449                 journal_sections = 1;
3450
3451         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3452                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3453                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3454         }
3455
3456         if (!ic->meta_dev) {
3457                 if (ic->fix_padding)
3458                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3459                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3460                 if (!interleave_sectors)
3461                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3462                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3463                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3464                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3465
3466                 get_provided_data_sectors(ic);
3467                 if (!ic->provided_data_sectors)
3468                         return -EINVAL;
3469         } else {
3470                 ic->sb->log2_interleave_sectors = 0;
3471
3472                 get_provided_data_sectors(ic);
3473                 if (!ic->provided_data_sectors)
3474                         return -EINVAL;
3475
3476 try_smaller_buffer:
3477                 ic->sb->journal_sections = cpu_to_le32(0);
3478                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3479                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3480                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3481                         if (test_journal_sections > journal_sections)
3482                                 continue;
3483                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3484                         if (calculate_device_limits(ic))
3485                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3486
3487                 }
3488                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3489                         if (ic->log2_buffer_sectors > 3) {
3490                                 ic->log2_buffer_sectors--;
3491                                 goto try_smaller_buffer;
3492                         }
3493                         return -EINVAL;
3494                 }
3495         }
3496
3497         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3498
3499         sb_set_version(ic);
3500
3501         return 0;
3502 }
3503
3504 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3505 {
3506         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3507         struct blk_integrity bi;
3508
3509         memset(&bi, 0, sizeof(bi));
3510         bi.profile = &dm_integrity_profile;
3511         bi.tuple_size = ic->tag_size;
3512         bi.tag_size = bi.tuple_size;
3513         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3514
3515         blk_integrity_register(disk, &bi);
3516         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3517 }
3518
3519 static void dm_integrity_free_page_list(struct page_list *pl)
3520 {
3521         unsigned i;
3522
3523         if (!pl)
3524                 return;
3525         for (i = 0; pl[i].page; i++)
3526                 __free_page(pl[i].page);
3527         kvfree(pl);
3528 }
3529
3530 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3531 {
3532         struct page_list *pl;
3533         unsigned i;
3534
3535         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3536         if (!pl)
3537                 return NULL;
3538
3539         for (i = 0; i < n_pages; i++) {
3540                 pl[i].page = alloc_page(GFP_KERNEL);
3541                 if (!pl[i].page) {
3542                         dm_integrity_free_page_list(pl);
3543                         return NULL;
3544                 }
3545                 if (i)
3546                         pl[i - 1].next = &pl[i];
3547         }
3548         pl[i].page = NULL;
3549         pl[i].next = NULL;
3550
3551         return pl;
3552 }
3553
3554 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3555 {
3556         unsigned i;
3557         for (i = 0; i < ic->journal_sections; i++)
3558                 kvfree(sl[i]);
3559         kvfree(sl);
3560 }
3561
3562 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3563                                                                    struct page_list *pl)
3564 {
3565         struct scatterlist **sl;
3566         unsigned i;
3567
3568         sl = kvmalloc_array(ic->journal_sections,
3569                             sizeof(struct scatterlist *),
3570                             GFP_KERNEL | __GFP_ZERO);
3571         if (!sl)
3572                 return NULL;
3573
3574         for (i = 0; i < ic->journal_sections; i++) {
3575                 struct scatterlist *s;
3576                 unsigned start_index, start_offset;
3577                 unsigned end_index, end_offset;
3578                 unsigned n_pages;
3579                 unsigned idx;
3580
3581                 page_list_location(ic, i, 0, &start_index, &start_offset);
3582                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3583                                    &end_index, &end_offset);
3584
3585                 n_pages = (end_index - start_index + 1);
3586
3587                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3588                                    GFP_KERNEL);
3589                 if (!s) {
3590                         dm_integrity_free_journal_scatterlist(ic, sl);
3591                         return NULL;
3592                 }
3593
3594                 sg_init_table(s, n_pages);
3595                 for (idx = start_index; idx <= end_index; idx++) {
3596                         char *va = lowmem_page_address(pl[idx].page);
3597                         unsigned start = 0, end = PAGE_SIZE;
3598                         if (idx == start_index)
3599                                 start = start_offset;
3600                         if (idx == end_index)
3601                                 end = end_offset + (1 << SECTOR_SHIFT);
3602                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3603                 }
3604
3605                 sl[i] = s;
3606         }
3607
3608         return sl;
3609 }
3610
3611 static void free_alg(struct alg_spec *a)
3612 {
3613         kfree_sensitive(a->alg_string);
3614         kfree_sensitive(a->key);
3615         memset(a, 0, sizeof *a);
3616 }
3617
3618 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3619 {
3620         char *k;
3621
3622         free_alg(a);
3623
3624         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3625         if (!a->alg_string)
3626                 goto nomem;
3627
3628         k = strchr(a->alg_string, ':');
3629         if (k) {
3630                 *k = 0;
3631                 a->key_string = k + 1;
3632                 if (strlen(a->key_string) & 1)
3633                         goto inval;
3634
3635                 a->key_size = strlen(a->key_string) / 2;
3636                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3637                 if (!a->key)
3638                         goto nomem;
3639                 if (hex2bin(a->key, a->key_string, a->key_size))
3640                         goto inval;
3641         }
3642
3643         return 0;
3644 inval:
3645         *error = error_inval;
3646         return -EINVAL;
3647 nomem:
3648         *error = "Out of memory for an argument";
3649         return -ENOMEM;
3650 }
3651
3652 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3653                    char *error_alg, char *error_key)
3654 {
3655         int r;
3656
3657         if (a->alg_string) {
3658                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3659                 if (IS_ERR(*hash)) {
3660                         *error = error_alg;
3661                         r = PTR_ERR(*hash);
3662                         *hash = NULL;
3663                         return r;
3664                 }
3665
3666                 if (a->key) {
3667                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3668                         if (r) {
3669                                 *error = error_key;
3670                                 return r;
3671                         }
3672                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3673                         *error = error_key;
3674                         return -ENOKEY;
3675                 }
3676         }
3677
3678         return 0;
3679 }
3680
3681 static int create_journal(struct dm_integrity_c *ic, char **error)
3682 {
3683         int r = 0;
3684         unsigned i;
3685         __u64 journal_pages, journal_desc_size, journal_tree_size;
3686         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3687         struct skcipher_request *req = NULL;
3688
3689         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3690         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3691         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3692         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3693
3694         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3695                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3696         journal_desc_size = journal_pages * sizeof(struct page_list);
3697         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3698                 *error = "Journal doesn't fit into memory";
3699                 r = -ENOMEM;
3700                 goto bad;
3701         }
3702         ic->journal_pages = journal_pages;
3703
3704         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3705         if (!ic->journal) {
3706                 *error = "Could not allocate memory for journal";
3707                 r = -ENOMEM;
3708                 goto bad;
3709         }
3710         if (ic->journal_crypt_alg.alg_string) {
3711                 unsigned ivsize, blocksize;
3712                 struct journal_completion comp;
3713
3714                 comp.ic = ic;
3715                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3716                 if (IS_ERR(ic->journal_crypt)) {
3717                         *error = "Invalid journal cipher";
3718                         r = PTR_ERR(ic->journal_crypt);
3719                         ic->journal_crypt = NULL;
3720                         goto bad;
3721                 }
3722                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3723                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3724
3725                 if (ic->journal_crypt_alg.key) {
3726                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3727                                                    ic->journal_crypt_alg.key_size);
3728                         if (r) {
3729                                 *error = "Error setting encryption key";
3730                                 goto bad;
3731                         }
3732                 }
3733                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3734                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3735
3736                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3737                 if (!ic->journal_io) {
3738                         *error = "Could not allocate memory for journal io";
3739                         r = -ENOMEM;
3740                         goto bad;
3741                 }
3742
3743                 if (blocksize == 1) {
3744                         struct scatterlist *sg;
3745
3746                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3747                         if (!req) {
3748                                 *error = "Could not allocate crypt request";
3749                                 r = -ENOMEM;
3750                                 goto bad;
3751                         }
3752
3753                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3754                         if (!crypt_iv) {
3755                                 *error = "Could not allocate iv";
3756                                 r = -ENOMEM;
3757                                 goto bad;
3758                         }
3759
3760                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3761                         if (!ic->journal_xor) {
3762                                 *error = "Could not allocate memory for journal xor";
3763                                 r = -ENOMEM;
3764                                 goto bad;
3765                         }
3766
3767                         sg = kvmalloc_array(ic->journal_pages + 1,
3768                                             sizeof(struct scatterlist),
3769                                             GFP_KERNEL);
3770                         if (!sg) {
3771                                 *error = "Unable to allocate sg list";
3772                                 r = -ENOMEM;
3773                                 goto bad;
3774                         }
3775                         sg_init_table(sg, ic->journal_pages + 1);
3776                         for (i = 0; i < ic->journal_pages; i++) {
3777                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3778                                 clear_page(va);
3779                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3780                         }
3781                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3782
3783                         skcipher_request_set_crypt(req, sg, sg,
3784                                                    PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3785                         init_completion(&comp.comp);
3786                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3787                         if (do_crypt(true, req, &comp))
3788                                 wait_for_completion(&comp.comp);
3789                         kvfree(sg);
3790                         r = dm_integrity_failed(ic);
3791                         if (r) {
3792                                 *error = "Unable to encrypt journal";
3793                                 goto bad;
3794                         }
3795                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3796
3797                         crypto_free_skcipher(ic->journal_crypt);
3798                         ic->journal_crypt = NULL;
3799                 } else {
3800                         unsigned crypt_len = roundup(ivsize, blocksize);
3801
3802                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3803                         if (!req) {
3804                                 *error = "Could not allocate crypt request";
3805                                 r = -ENOMEM;
3806                                 goto bad;
3807                         }
3808
3809                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3810                         if (!crypt_iv) {
3811                                 *error = "Could not allocate iv";
3812                                 r = -ENOMEM;
3813                                 goto bad;
3814                         }
3815
3816                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3817                         if (!crypt_data) {
3818                                 *error = "Unable to allocate crypt data";
3819                                 r = -ENOMEM;
3820                                 goto bad;
3821                         }
3822
3823                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3824                         if (!ic->journal_scatterlist) {
3825                                 *error = "Unable to allocate sg list";
3826                                 r = -ENOMEM;
3827                                 goto bad;
3828                         }
3829                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3830                         if (!ic->journal_io_scatterlist) {
3831                                 *error = "Unable to allocate sg list";
3832                                 r = -ENOMEM;
3833                                 goto bad;
3834                         }
3835                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3836                                                          sizeof(struct skcipher_request *),
3837                                                          GFP_KERNEL | __GFP_ZERO);
3838                         if (!ic->sk_requests) {
3839                                 *error = "Unable to allocate sk requests";
3840                                 r = -ENOMEM;
3841                                 goto bad;
3842                         }
3843                         for (i = 0; i < ic->journal_sections; i++) {
3844                                 struct scatterlist sg;
3845                                 struct skcipher_request *section_req;
3846                                 __le32 section_le = cpu_to_le32(i);
3847
3848                                 memset(crypt_iv, 0x00, ivsize);
3849                                 memset(crypt_data, 0x00, crypt_len);
3850                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3851
3852                                 sg_init_one(&sg, crypt_data, crypt_len);
3853                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3854                                 init_completion(&comp.comp);
3855                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3856                                 if (do_crypt(true, req, &comp))
3857                                         wait_for_completion(&comp.comp);
3858
3859                                 r = dm_integrity_failed(ic);
3860                                 if (r) {
3861                                         *error = "Unable to generate iv";
3862                                         goto bad;
3863                                 }
3864
3865                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3866                                 if (!section_req) {
3867                                         *error = "Unable to allocate crypt request";
3868                                         r = -ENOMEM;
3869                                         goto bad;
3870                                 }
3871                                 section_req->iv = kmalloc_array(ivsize, 2,
3872                                                                 GFP_KERNEL);
3873                                 if (!section_req->iv) {
3874                                         skcipher_request_free(section_req);
3875                                         *error = "Unable to allocate iv";
3876                                         r = -ENOMEM;
3877                                         goto bad;
3878                                 }
3879                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3880                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3881                                 ic->sk_requests[i] = section_req;
3882                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3883                         }
3884                 }
3885         }
3886
3887         for (i = 0; i < N_COMMIT_IDS; i++) {
3888                 unsigned j;
3889 retest_commit_id:
3890                 for (j = 0; j < i; j++) {
3891                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3892                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3893                                 goto retest_commit_id;
3894                         }
3895                 }
3896                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3897         }
3898
3899         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3900         if (journal_tree_size > ULONG_MAX) {
3901                 *error = "Journal doesn't fit into memory";
3902                 r = -ENOMEM;
3903                 goto bad;
3904         }
3905         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3906         if (!ic->journal_tree) {
3907                 *error = "Could not allocate memory for journal tree";
3908                 r = -ENOMEM;
3909         }
3910 bad:
3911         kfree(crypt_data);
3912         kfree(crypt_iv);
3913         skcipher_request_free(req);
3914
3915         return r;
3916 }
3917
3918 /*
3919  * Construct a integrity mapping
3920  *
3921  * Arguments:
3922  *      device
3923  *      offset from the start of the device
3924  *      tag size
3925  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3926  *      number of optional arguments
3927  *      optional arguments:
3928  *              journal_sectors
3929  *              interleave_sectors
3930  *              buffer_sectors
3931  *              journal_watermark
3932  *              commit_time
3933  *              meta_device
3934  *              block_size
3935  *              sectors_per_bit
3936  *              bitmap_flush_interval
3937  *              internal_hash
3938  *              journal_crypt
3939  *              journal_mac
3940  *              recalculate
3941  */
3942 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3943 {
3944         struct dm_integrity_c *ic;
3945         char dummy;
3946         int r;
3947         unsigned extra_args;
3948         struct dm_arg_set as;
3949         static const struct dm_arg _args[] = {
3950                 {0, 18, "Invalid number of feature args"},
3951         };
3952         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3953         bool should_write_sb;
3954         __u64 threshold;
3955         unsigned long long start;
3956         __s8 log2_sectors_per_bitmap_bit = -1;
3957         __s8 log2_blocks_per_bitmap_bit;
3958         __u64 bits_in_journal;
3959         __u64 n_bitmap_bits;
3960
3961 #define DIRECT_ARGUMENTS        4
3962
3963         if (argc <= DIRECT_ARGUMENTS) {
3964                 ti->error = "Invalid argument count";
3965                 return -EINVAL;
3966         }
3967
3968         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3969         if (!ic) {
3970                 ti->error = "Cannot allocate integrity context";
3971                 return -ENOMEM;
3972         }
3973         ti->private = ic;
3974         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3975         ic->ti = ti;
3976
3977         ic->in_progress = RB_ROOT;
3978         INIT_LIST_HEAD(&ic->wait_list);
3979         init_waitqueue_head(&ic->endio_wait);
3980         bio_list_init(&ic->flush_bio_list);
3981         init_waitqueue_head(&ic->copy_to_journal_wait);
3982         init_completion(&ic->crypto_backoff);
3983         atomic64_set(&ic->number_of_mismatches, 0);
3984         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3985
3986         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3987         if (r) {
3988                 ti->error = "Device lookup failed";
3989                 goto bad;
3990         }
3991
3992         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3993                 ti->error = "Invalid starting offset";
3994                 r = -EINVAL;
3995                 goto bad;
3996         }
3997         ic->start = start;
3998
3999         if (strcmp(argv[2], "-")) {
4000                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4001                         ti->error = "Invalid tag size";
4002                         r = -EINVAL;
4003                         goto bad;
4004                 }
4005         }
4006
4007         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4008             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4009                 ic->mode = argv[3][0];
4010         } else {
4011                 ti->error = "Invalid mode (expecting J, B, D, R)";
4012                 r = -EINVAL;
4013                 goto bad;
4014         }
4015
4016         journal_sectors = 0;
4017         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4018         buffer_sectors = DEFAULT_BUFFER_SECTORS;
4019         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4020         sync_msec = DEFAULT_SYNC_MSEC;
4021         ic->sectors_per_block = 1;
4022
4023         as.argc = argc - DIRECT_ARGUMENTS;
4024         as.argv = argv + DIRECT_ARGUMENTS;
4025         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4026         if (r)
4027                 goto bad;
4028
4029         while (extra_args--) {
4030                 const char *opt_string;
4031                 unsigned val;
4032                 unsigned long long llval;
4033                 opt_string = dm_shift_arg(&as);
4034                 if (!opt_string) {
4035                         r = -EINVAL;
4036                         ti->error = "Not enough feature arguments";
4037                         goto bad;
4038                 }
4039                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4040                         journal_sectors = val ? val : 1;
4041                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4042                         interleave_sectors = val;
4043                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4044                         buffer_sectors = val;
4045                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4046                         journal_watermark = val;
4047                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4048                         sync_msec = val;
4049                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4050                         if (ic->meta_dev) {
4051                                 dm_put_device(ti, ic->meta_dev);
4052                                 ic->meta_dev = NULL;
4053                         }
4054                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4055                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4056                         if (r) {
4057                                 ti->error = "Device lookup failed";
4058                                 goto bad;
4059                         }
4060                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4061                         if (val < 1 << SECTOR_SHIFT ||
4062                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4063                             (val & (val -1))) {
4064                                 r = -EINVAL;
4065                                 ti->error = "Invalid block_size argument";
4066                                 goto bad;
4067                         }
4068                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4069                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4070                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4071                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4072                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4073                                 r = -EINVAL;
4074                                 ti->error = "Invalid bitmap_flush_interval argument";
4075                                 goto bad;
4076                         }
4077                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4078                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4079                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4080                                             "Invalid internal_hash argument");
4081                         if (r)
4082                                 goto bad;
4083                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4084                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4085                                             "Invalid journal_crypt argument");
4086                         if (r)
4087                                 goto bad;
4088                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4089                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4090                                             "Invalid journal_mac argument");
4091                         if (r)
4092                                 goto bad;
4093                 } else if (!strcmp(opt_string, "recalculate")) {
4094                         ic->recalculate_flag = true;
4095                 } else if (!strcmp(opt_string, "reset_recalculate")) {
4096                         ic->recalculate_flag = true;
4097                         ic->reset_recalculate_flag = true;
4098                 } else if (!strcmp(opt_string, "allow_discards")) {
4099                         ic->discard = true;
4100                 } else if (!strcmp(opt_string, "fix_padding")) {
4101                         ic->fix_padding = true;
4102                 } else if (!strcmp(opt_string, "fix_hmac")) {
4103                         ic->fix_hmac = true;
4104                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4105                         ic->legacy_recalculate = true;
4106                 } else {
4107                         r = -EINVAL;
4108                         ti->error = "Invalid argument";
4109                         goto bad;
4110                 }
4111         }
4112
4113         ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
4114         if (!ic->meta_dev)
4115                 ic->meta_device_sectors = ic->data_device_sectors;
4116         else
4117                 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
4118
4119         if (!journal_sectors) {
4120                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4121                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4122         }
4123
4124         if (!buffer_sectors)
4125                 buffer_sectors = 1;
4126         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4127
4128         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4129                     "Invalid internal hash", "Error setting internal hash key");
4130         if (r)
4131                 goto bad;
4132
4133         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4134                     "Invalid journal mac", "Error setting journal mac key");
4135         if (r)
4136                 goto bad;
4137
4138         if (!ic->tag_size) {
4139                 if (!ic->internal_hash) {
4140                         ti->error = "Unknown tag size";
4141                         r = -EINVAL;
4142                         goto bad;
4143                 }
4144                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4145         }
4146         if (ic->tag_size > MAX_TAG_SIZE) {
4147                 ti->error = "Too big tag size";
4148                 r = -EINVAL;
4149                 goto bad;
4150         }
4151         if (!(ic->tag_size & (ic->tag_size - 1)))
4152                 ic->log2_tag_size = __ffs(ic->tag_size);
4153         else
4154                 ic->log2_tag_size = -1;
4155
4156         if (ic->mode == 'B' && !ic->internal_hash) {
4157                 r = -EINVAL;
4158                 ti->error = "Bitmap mode can be only used with internal hash";
4159                 goto bad;
4160         }
4161
4162         if (ic->discard && !ic->internal_hash) {
4163                 r = -EINVAL;
4164                 ti->error = "Discard can be only used with internal hash";
4165                 goto bad;
4166         }
4167
4168         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4169         ic->autocommit_msec = sync_msec;
4170         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4171
4172         ic->io = dm_io_client_create();
4173         if (IS_ERR(ic->io)) {
4174                 r = PTR_ERR(ic->io);
4175                 ic->io = NULL;
4176                 ti->error = "Cannot allocate dm io";
4177                 goto bad;
4178         }
4179
4180         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4181         if (r) {
4182                 ti->error = "Cannot allocate mempool";
4183                 goto bad;
4184         }
4185
4186         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4187                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4188         if (!ic->metadata_wq) {
4189                 ti->error = "Cannot allocate workqueue";
4190                 r = -ENOMEM;
4191                 goto bad;
4192         }
4193
4194         /*
4195          * If this workqueue were percpu, it would cause bio reordering
4196          * and reduced performance.
4197          */
4198         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4199         if (!ic->wait_wq) {
4200                 ti->error = "Cannot allocate workqueue";
4201                 r = -ENOMEM;
4202                 goto bad;
4203         }
4204
4205         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4206                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4207         if (!ic->offload_wq) {
4208                 ti->error = "Cannot allocate workqueue";
4209                 r = -ENOMEM;
4210                 goto bad;
4211         }
4212
4213         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4214         if (!ic->commit_wq) {
4215                 ti->error = "Cannot allocate workqueue";
4216                 r = -ENOMEM;
4217                 goto bad;
4218         }
4219         INIT_WORK(&ic->commit_work, integrity_commit);
4220
4221         if (ic->mode == 'J' || ic->mode == 'B') {
4222                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4223                 if (!ic->writer_wq) {
4224                         ti->error = "Cannot allocate workqueue";
4225                         r = -ENOMEM;
4226                         goto bad;
4227                 }
4228                 INIT_WORK(&ic->writer_work, integrity_writer);
4229         }
4230
4231         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4232         if (!ic->sb) {
4233                 r = -ENOMEM;
4234                 ti->error = "Cannot allocate superblock area";
4235                 goto bad;
4236         }
4237
4238         r = sync_rw_sb(ic, REQ_OP_READ, 0);
4239         if (r) {
4240                 ti->error = "Error reading superblock";
4241                 goto bad;
4242         }
4243         should_write_sb = false;
4244         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4245                 if (ic->mode != 'R') {
4246                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4247                                 r = -EINVAL;
4248                                 ti->error = "The device is not initialized";
4249                                 goto bad;
4250                         }
4251                 }
4252
4253                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4254                 if (r) {
4255                         ti->error = "Could not initialize superblock";
4256                         goto bad;
4257                 }
4258                 if (ic->mode != 'R')
4259                         should_write_sb = true;
4260         }
4261
4262         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4263                 r = -EINVAL;
4264                 ti->error = "Unknown version";
4265                 goto bad;
4266         }
4267         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4268                 r = -EINVAL;
4269                 ti->error = "Tag size doesn't match the information in superblock";
4270                 goto bad;
4271         }
4272         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4273                 r = -EINVAL;
4274                 ti->error = "Block size doesn't match the information in superblock";
4275                 goto bad;
4276         }
4277         if (!le32_to_cpu(ic->sb->journal_sections)) {
4278                 r = -EINVAL;
4279                 ti->error = "Corrupted superblock, journal_sections is 0";
4280                 goto bad;
4281         }
4282         /* make sure that ti->max_io_len doesn't overflow */
4283         if (!ic->meta_dev) {
4284                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4285                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4286                         r = -EINVAL;
4287                         ti->error = "Invalid interleave_sectors in the superblock";
4288                         goto bad;
4289                 }
4290         } else {
4291                 if (ic->sb->log2_interleave_sectors) {
4292                         r = -EINVAL;
4293                         ti->error = "Invalid interleave_sectors in the superblock";
4294                         goto bad;
4295                 }
4296         }
4297         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4298                 r = -EINVAL;
4299                 ti->error = "Journal mac mismatch";
4300                 goto bad;
4301         }
4302
4303         get_provided_data_sectors(ic);
4304         if (!ic->provided_data_sectors) {
4305                 r = -EINVAL;
4306                 ti->error = "The device is too small";
4307                 goto bad;
4308         }
4309
4310 try_smaller_buffer:
4311         r = calculate_device_limits(ic);
4312         if (r) {
4313                 if (ic->meta_dev) {
4314                         if (ic->log2_buffer_sectors > 3) {
4315                                 ic->log2_buffer_sectors--;
4316                                 goto try_smaller_buffer;
4317                         }
4318                 }
4319                 ti->error = "The device is too small";
4320                 goto bad;
4321         }
4322
4323         if (log2_sectors_per_bitmap_bit < 0)
4324                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4325         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4326                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4327
4328         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4329         if (bits_in_journal > UINT_MAX)
4330                 bits_in_journal = UINT_MAX;
4331         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4332                 log2_sectors_per_bitmap_bit++;
4333
4334         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4335         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4336         if (should_write_sb) {
4337                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4338         }
4339         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4340                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4341         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4342
4343         if (!ic->meta_dev)
4344                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4345
4346         if (ti->len > ic->provided_data_sectors) {
4347                 r = -EINVAL;
4348                 ti->error = "Not enough provided sectors for requested mapping size";
4349                 goto bad;
4350         }
4351
4352
4353         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4354         threshold += 50;
4355         do_div(threshold, 100);
4356         ic->free_sectors_threshold = threshold;
4357
4358         DEBUG_print("initialized:\n");
4359         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4360         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4361         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4362         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4363         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4364         DEBUG_print("   journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4365         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4366         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4367         DEBUG_print("   data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4368         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4369         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4370         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4371         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4372         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4373         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4374
4375         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4376                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4377                 ic->sb->recalc_sector = cpu_to_le64(0);
4378         }
4379
4380         if (ic->internal_hash) {
4381                 size_t recalc_tags_size;
4382                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4383                 if (!ic->recalc_wq ) {
4384                         ti->error = "Cannot allocate workqueue";
4385                         r = -ENOMEM;
4386                         goto bad;
4387                 }
4388                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4389                 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4390                 if (!ic->recalc_buffer) {
4391                         ti->error = "Cannot allocate buffer for recalculating";
4392                         r = -ENOMEM;
4393                         goto bad;
4394                 }
4395                 recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4396                 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4397                         recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4398                 ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4399                 if (!ic->recalc_tags) {
4400                         ti->error = "Cannot allocate tags for recalculating";
4401                         r = -ENOMEM;
4402                         goto bad;
4403                 }
4404         } else {
4405                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4406                         ti->error = "Recalculate can only be specified with internal_hash";
4407                         r = -EINVAL;
4408                         goto bad;
4409                 }
4410         }
4411
4412         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4413             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4414             dm_integrity_disable_recalculate(ic)) {
4415                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4416                 r = -EOPNOTSUPP;
4417                 goto bad;
4418         }
4419
4420         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4421                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4422         if (IS_ERR(ic->bufio)) {
4423                 r = PTR_ERR(ic->bufio);
4424                 ti->error = "Cannot initialize dm-bufio";
4425                 ic->bufio = NULL;
4426                 goto bad;
4427         }
4428         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4429
4430         if (ic->mode != 'R') {
4431                 r = create_journal(ic, &ti->error);
4432                 if (r)
4433                         goto bad;
4434
4435         }
4436
4437         if (ic->mode == 'B') {
4438                 unsigned i;
4439                 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4440
4441                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4442                 if (!ic->recalc_bitmap) {
4443                         r = -ENOMEM;
4444                         goto bad;
4445                 }
4446                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4447                 if (!ic->may_write_bitmap) {
4448                         r = -ENOMEM;
4449                         goto bad;
4450                 }
4451                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4452                 if (!ic->bbs) {
4453                         r = -ENOMEM;
4454                         goto bad;
4455                 }
4456                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4457                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4458                         struct bitmap_block_status *bbs = &ic->bbs[i];
4459                         unsigned sector, pl_index, pl_offset;
4460
4461                         INIT_WORK(&bbs->work, bitmap_block_work);
4462                         bbs->ic = ic;
4463                         bbs->idx = i;
4464                         bio_list_init(&bbs->bio_queue);
4465                         spin_lock_init(&bbs->bio_queue_lock);
4466
4467                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4468                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4469                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4470
4471                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4472                 }
4473         }
4474
4475         if (should_write_sb) {
4476                 init_journal(ic, 0, ic->journal_sections, 0);
4477                 r = dm_integrity_failed(ic);
4478                 if (unlikely(r)) {
4479                         ti->error = "Error initializing journal";
4480                         goto bad;
4481                 }
4482                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4483                 if (r) {
4484                         ti->error = "Error initializing superblock";
4485                         goto bad;
4486                 }
4487                 ic->just_formatted = true;
4488         }
4489
4490         if (!ic->meta_dev) {
4491                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4492                 if (r)
4493                         goto bad;
4494         }
4495         if (ic->mode == 'B') {
4496                 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4497                 if (!max_io_len)
4498                         max_io_len = 1U << 31;
4499                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4500                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4501                         r = dm_set_target_max_io_len(ti, max_io_len);
4502                         if (r)
4503                                 goto bad;
4504                 }
4505         }
4506
4507         if (!ic->internal_hash)
4508                 dm_integrity_set(ti, ic);
4509
4510         ti->num_flush_bios = 1;
4511         ti->flush_supported = true;
4512         if (ic->discard)
4513                 ti->num_discard_bios = 1;
4514
4515         return 0;
4516
4517 bad:
4518         dm_integrity_dtr(ti);
4519         return r;
4520 }
4521
4522 static void dm_integrity_dtr(struct dm_target *ti)
4523 {
4524         struct dm_integrity_c *ic = ti->private;
4525
4526         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4527         BUG_ON(!list_empty(&ic->wait_list));
4528
4529         if (ic->metadata_wq)
4530                 destroy_workqueue(ic->metadata_wq);
4531         if (ic->wait_wq)
4532                 destroy_workqueue(ic->wait_wq);
4533         if (ic->offload_wq)
4534                 destroy_workqueue(ic->offload_wq);
4535         if (ic->commit_wq)
4536                 destroy_workqueue(ic->commit_wq);
4537         if (ic->writer_wq)
4538                 destroy_workqueue(ic->writer_wq);
4539         if (ic->recalc_wq)
4540                 destroy_workqueue(ic->recalc_wq);
4541         vfree(ic->recalc_buffer);
4542         kvfree(ic->recalc_tags);
4543         kvfree(ic->bbs);
4544         if (ic->bufio)
4545                 dm_bufio_client_destroy(ic->bufio);
4546         mempool_exit(&ic->journal_io_mempool);
4547         if (ic->io)
4548                 dm_io_client_destroy(ic->io);
4549         if (ic->dev)
4550                 dm_put_device(ti, ic->dev);
4551         if (ic->meta_dev)
4552                 dm_put_device(ti, ic->meta_dev);
4553         dm_integrity_free_page_list(ic->journal);
4554         dm_integrity_free_page_list(ic->journal_io);
4555         dm_integrity_free_page_list(ic->journal_xor);
4556         dm_integrity_free_page_list(ic->recalc_bitmap);
4557         dm_integrity_free_page_list(ic->may_write_bitmap);
4558         if (ic->journal_scatterlist)
4559                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4560         if (ic->journal_io_scatterlist)
4561                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4562         if (ic->sk_requests) {
4563                 unsigned i;
4564
4565                 for (i = 0; i < ic->journal_sections; i++) {
4566                         struct skcipher_request *req = ic->sk_requests[i];
4567                         if (req) {
4568                                 kfree_sensitive(req->iv);
4569                                 skcipher_request_free(req);
4570                         }
4571                 }
4572                 kvfree(ic->sk_requests);
4573         }
4574         kvfree(ic->journal_tree);
4575         if (ic->sb)
4576                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4577
4578         if (ic->internal_hash)
4579                 crypto_free_shash(ic->internal_hash);
4580         free_alg(&ic->internal_hash_alg);
4581
4582         if (ic->journal_crypt)
4583                 crypto_free_skcipher(ic->journal_crypt);
4584         free_alg(&ic->journal_crypt_alg);
4585
4586         if (ic->journal_mac)
4587                 crypto_free_shash(ic->journal_mac);
4588         free_alg(&ic->journal_mac_alg);
4589
4590         kfree(ic);
4591 }
4592
4593 static struct target_type integrity_target = {
4594         .name                   = "integrity",
4595         .version                = {1, 10, 0},
4596         .module                 = THIS_MODULE,
4597         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4598         .ctr                    = dm_integrity_ctr,
4599         .dtr                    = dm_integrity_dtr,
4600         .map                    = dm_integrity_map,
4601         .postsuspend            = dm_integrity_postsuspend,
4602         .resume                 = dm_integrity_resume,
4603         .status                 = dm_integrity_status,
4604         .iterate_devices        = dm_integrity_iterate_devices,
4605         .io_hints               = dm_integrity_io_hints,
4606 };
4607
4608 static int __init dm_integrity_init(void)
4609 {
4610         int r;
4611
4612         journal_io_cache = kmem_cache_create("integrity_journal_io",
4613                                              sizeof(struct journal_io), 0, 0, NULL);
4614         if (!journal_io_cache) {
4615                 DMERR("can't allocate journal io cache");
4616                 return -ENOMEM;
4617         }
4618
4619         r = dm_register_target(&integrity_target);
4620
4621         if (r < 0)
4622                 DMERR("register failed %d", r);
4623
4624         return r;
4625 }
4626
4627 static void __exit dm_integrity_exit(void)
4628 {
4629         dm_unregister_target(&integrity_target);
4630         kmem_cache_destroy(journal_io_cache);
4631 }
4632
4633 module_init(dm_integrity_init);
4634 module_exit(dm_integrity_exit);
4635
4636 MODULE_AUTHOR("Milan Broz");
4637 MODULE_AUTHOR("Mikulas Patocka");
4638 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4639 MODULE_LICENSE("GPL");