Revert "block: remove __blkdev_driver_ioctl"
[platform/kernel/linux-rpi.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #define DM_MSG_PREFIX "integrity"
27
28 #define DEFAULT_INTERLEAVE_SECTORS      32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
31 #define DEFAULT_BUFFER_SECTORS          128
32 #define DEFAULT_JOURNAL_WATERMARK       50
33 #define DEFAULT_SYNC_MSEC               10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS     3
36 #define MAX_LOG2_INTERLEAVE_SECTORS     31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
38 #define RECALC_SECTORS                  32768
39 #define RECALC_WRITE_SUPER              16
40 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
42 #define DISCARD_FILLER                  0xf6
43 #define SALT_SIZE                       16
44
45 /*
46  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
47  * so it should not be enabled in the official kernel
48  */
49 //#define DEBUG_PRINT
50 //#define INTERNAL_VERIFY
51
52 /*
53  * On disk structures
54  */
55
56 #define SB_MAGIC                        "integrt"
57 #define SB_VERSION_1                    1
58 #define SB_VERSION_2                    2
59 #define SB_VERSION_3                    3
60 #define SB_VERSION_4                    4
61 #define SB_VERSION_5                    5
62 #define SB_SECTORS                      8
63 #define MAX_SECTORS_PER_BLOCK           8
64
65 struct superblock {
66         __u8 magic[8];
67         __u8 version;
68         __u8 log2_interleave_sectors;
69         __le16 integrity_tag_size;
70         __le32 journal_sections;
71         __le64 provided_data_sectors;   /* userspace uses this value */
72         __le32 flags;
73         __u8 log2_sectors_per_block;
74         __u8 log2_blocks_per_bitmap_bit;
75         __u8 pad[2];
76         __le64 recalc_sector;
77         __u8 pad2[8];
78         __u8 salt[SALT_SIZE];
79 };
80
81 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
82 #define SB_FLAG_RECALCULATING           0x2
83 #define SB_FLAG_DIRTY_BITMAP            0x4
84 #define SB_FLAG_FIXED_PADDING           0x8
85 #define SB_FLAG_FIXED_HMAC              0x10
86
87 #define JOURNAL_ENTRY_ROUNDUP           8
88
89 typedef __le64 commit_id_t;
90 #define JOURNAL_MAC_PER_SECTOR          8
91
92 struct journal_entry {
93         union {
94                 struct {
95                         __le32 sector_lo;
96                         __le32 sector_hi;
97                 } s;
98                 __le64 sector;
99         } u;
100         commit_id_t last_bytes[];
101         /* __u8 tag[0]; */
102 };
103
104 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
105
106 #if BITS_PER_LONG == 64
107 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
108 #else
109 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
110 #endif
111 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
112 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
113 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
114 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
115 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
116
117 #define JOURNAL_BLOCK_SECTORS           8
118 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
119 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
120
121 struct journal_sector {
122         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
123         __u8 mac[JOURNAL_MAC_PER_SECTOR];
124         commit_id_t commit_id;
125 };
126
127 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
128
129 #define METADATA_PADDING_SECTORS        8
130
131 #define N_COMMIT_IDS                    4
132
133 static unsigned char prev_commit_seq(unsigned char seq)
134 {
135         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
136 }
137
138 static unsigned char next_commit_seq(unsigned char seq)
139 {
140         return (seq + 1) % N_COMMIT_IDS;
141 }
142
143 /*
144  * In-memory structures
145  */
146
147 struct journal_node {
148         struct rb_node node;
149         sector_t sector;
150 };
151
152 struct alg_spec {
153         char *alg_string;
154         char *key_string;
155         __u8 *key;
156         unsigned key_size;
157 };
158
159 struct dm_integrity_c {
160         struct dm_dev *dev;
161         struct dm_dev *meta_dev;
162         unsigned tag_size;
163         __s8 log2_tag_size;
164         sector_t start;
165         mempool_t journal_io_mempool;
166         struct dm_io_client *io;
167         struct dm_bufio_client *bufio;
168         struct workqueue_struct *metadata_wq;
169         struct superblock *sb;
170         unsigned journal_pages;
171         unsigned n_bitmap_blocks;
172
173         struct page_list *journal;
174         struct page_list *journal_io;
175         struct page_list *journal_xor;
176         struct page_list *recalc_bitmap;
177         struct page_list *may_write_bitmap;
178         struct bitmap_block_status *bbs;
179         unsigned bitmap_flush_interval;
180         int synchronous_mode;
181         struct bio_list synchronous_bios;
182         struct delayed_work bitmap_flush_work;
183
184         struct crypto_skcipher *journal_crypt;
185         struct scatterlist **journal_scatterlist;
186         struct scatterlist **journal_io_scatterlist;
187         struct skcipher_request **sk_requests;
188
189         struct crypto_shash *journal_mac;
190
191         struct journal_node *journal_tree;
192         struct rb_root journal_tree_root;
193
194         sector_t provided_data_sectors;
195
196         unsigned short journal_entry_size;
197         unsigned char journal_entries_per_sector;
198         unsigned char journal_section_entries;
199         unsigned short journal_section_sectors;
200         unsigned journal_sections;
201         unsigned journal_entries;
202         sector_t data_device_sectors;
203         sector_t meta_device_sectors;
204         unsigned initial_sectors;
205         unsigned metadata_run;
206         __s8 log2_metadata_run;
207         __u8 log2_buffer_sectors;
208         __u8 sectors_per_block;
209         __u8 log2_blocks_per_bitmap_bit;
210
211         unsigned char mode;
212
213         int failed;
214
215         struct crypto_shash *internal_hash;
216
217         struct dm_target *ti;
218
219         /* these variables are locked with endio_wait.lock */
220         struct rb_root in_progress;
221         struct list_head wait_list;
222         wait_queue_head_t endio_wait;
223         struct workqueue_struct *wait_wq;
224         struct workqueue_struct *offload_wq;
225
226         unsigned char commit_seq;
227         commit_id_t commit_ids[N_COMMIT_IDS];
228
229         unsigned committed_section;
230         unsigned n_committed_sections;
231
232         unsigned uncommitted_section;
233         unsigned n_uncommitted_sections;
234
235         unsigned free_section;
236         unsigned char free_section_entry;
237         unsigned free_sectors;
238
239         unsigned free_sectors_threshold;
240
241         struct workqueue_struct *commit_wq;
242         struct work_struct commit_work;
243
244         struct workqueue_struct *writer_wq;
245         struct work_struct writer_work;
246
247         struct workqueue_struct *recalc_wq;
248         struct work_struct recalc_work;
249         u8 *recalc_buffer;
250         u8 *recalc_tags;
251
252         struct bio_list flush_bio_list;
253
254         unsigned long autocommit_jiffies;
255         struct timer_list autocommit_timer;
256         unsigned autocommit_msec;
257
258         wait_queue_head_t copy_to_journal_wait;
259
260         struct completion crypto_backoff;
261
262         bool wrote_to_journal;
263         bool journal_uptodate;
264         bool just_formatted;
265         bool recalculate_flag;
266         bool reset_recalculate_flag;
267         bool discard;
268         bool fix_padding;
269         bool fix_hmac;
270         bool legacy_recalculate;
271
272         struct alg_spec internal_hash_alg;
273         struct alg_spec journal_crypt_alg;
274         struct alg_spec journal_mac_alg;
275
276         atomic64_t number_of_mismatches;
277
278         struct notifier_block reboot_notifier;
279 };
280
281 struct dm_integrity_range {
282         sector_t logical_sector;
283         sector_t n_sectors;
284         bool waiting;
285         union {
286                 struct rb_node node;
287                 struct {
288                         struct task_struct *task;
289                         struct list_head wait_entry;
290                 };
291         };
292 };
293
294 struct dm_integrity_io {
295         struct work_struct work;
296
297         struct dm_integrity_c *ic;
298         enum req_opf op;
299         bool fua;
300
301         struct dm_integrity_range range;
302
303         sector_t metadata_block;
304         unsigned metadata_offset;
305
306         atomic_t in_flight;
307         blk_status_t bi_status;
308
309         struct completion *completion;
310
311         struct dm_bio_details bio_details;
312 };
313
314 struct journal_completion {
315         struct dm_integrity_c *ic;
316         atomic_t in_flight;
317         struct completion comp;
318 };
319
320 struct journal_io {
321         struct dm_integrity_range range;
322         struct journal_completion *comp;
323 };
324
325 struct bitmap_block_status {
326         struct work_struct work;
327         struct dm_integrity_c *ic;
328         unsigned idx;
329         unsigned long *bitmap;
330         struct bio_list bio_queue;
331         spinlock_t bio_queue_lock;
332
333 };
334
335 static struct kmem_cache *journal_io_cache;
336
337 #define JOURNAL_IO_MEMPOOL      32
338
339 #ifdef DEBUG_PRINT
340 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
341 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
342 {
343         va_list args;
344         va_start(args, msg);
345         vprintk(msg, args);
346         va_end(args);
347         if (len)
348                 pr_cont(":");
349         while (len) {
350                 pr_cont(" %02x", *bytes);
351                 bytes++;
352                 len--;
353         }
354         pr_cont("\n");
355 }
356 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
357 #else
358 #define DEBUG_print(x, ...)                     do { } while (0)
359 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
360 #endif
361
362 static void dm_integrity_prepare(struct request *rq)
363 {
364 }
365
366 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
367 {
368 }
369
370 /*
371  * DM Integrity profile, protection is performed layer above (dm-crypt)
372  */
373 static const struct blk_integrity_profile dm_integrity_profile = {
374         .name                   = "DM-DIF-EXT-TAG",
375         .generate_fn            = NULL,
376         .verify_fn              = NULL,
377         .prepare_fn             = dm_integrity_prepare,
378         .complete_fn            = dm_integrity_complete,
379 };
380
381 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
382 static void integrity_bio_wait(struct work_struct *w);
383 static void dm_integrity_dtr(struct dm_target *ti);
384
385 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
386 {
387         if (err == -EILSEQ)
388                 atomic64_inc(&ic->number_of_mismatches);
389         if (!cmpxchg(&ic->failed, 0, err))
390                 DMERR("Error on %s: %d", msg, err);
391 }
392
393 static int dm_integrity_failed(struct dm_integrity_c *ic)
394 {
395         return READ_ONCE(ic->failed);
396 }
397
398 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
399 {
400         if (ic->legacy_recalculate)
401                 return false;
402         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
403             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
404             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
405                 return true;
406         return false;
407 }
408
409 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
410                                           unsigned j, unsigned char seq)
411 {
412         /*
413          * Xor the number with section and sector, so that if a piece of
414          * journal is written at wrong place, it is detected.
415          */
416         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
417 }
418
419 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
420                                 sector_t *area, sector_t *offset)
421 {
422         if (!ic->meta_dev) {
423                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
424                 *area = data_sector >> log2_interleave_sectors;
425                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
426         } else {
427                 *area = 0;
428                 *offset = data_sector;
429         }
430 }
431
432 #define sector_to_block(ic, n)                                          \
433 do {                                                                    \
434         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
435         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
436 } while (0)
437
438 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
439                                             sector_t offset, unsigned *metadata_offset)
440 {
441         __u64 ms;
442         unsigned mo;
443
444         ms = area << ic->sb->log2_interleave_sectors;
445         if (likely(ic->log2_metadata_run >= 0))
446                 ms += area << ic->log2_metadata_run;
447         else
448                 ms += area * ic->metadata_run;
449         ms >>= ic->log2_buffer_sectors;
450
451         sector_to_block(ic, offset);
452
453         if (likely(ic->log2_tag_size >= 0)) {
454                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
455                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
456         } else {
457                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
458                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
459         }
460         *metadata_offset = mo;
461         return ms;
462 }
463
464 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
465 {
466         sector_t result;
467
468         if (ic->meta_dev)
469                 return offset;
470
471         result = area << ic->sb->log2_interleave_sectors;
472         if (likely(ic->log2_metadata_run >= 0))
473                 result += (area + 1) << ic->log2_metadata_run;
474         else
475                 result += (area + 1) * ic->metadata_run;
476
477         result += (sector_t)ic->initial_sectors + offset;
478         result += ic->start;
479
480         return result;
481 }
482
483 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
484 {
485         if (unlikely(*sec_ptr >= ic->journal_sections))
486                 *sec_ptr -= ic->journal_sections;
487 }
488
489 static void sb_set_version(struct dm_integrity_c *ic)
490 {
491         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
492                 ic->sb->version = SB_VERSION_5;
493         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
494                 ic->sb->version = SB_VERSION_4;
495         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
496                 ic->sb->version = SB_VERSION_3;
497         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
498                 ic->sb->version = SB_VERSION_2;
499         else
500                 ic->sb->version = SB_VERSION_1;
501 }
502
503 static int sb_mac(struct dm_integrity_c *ic, bool wr)
504 {
505         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
506         int r;
507         unsigned size = crypto_shash_digestsize(ic->journal_mac);
508
509         if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
510                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
511                 return -EINVAL;
512         }
513
514         desc->tfm = ic->journal_mac;
515
516         r = crypto_shash_init(desc);
517         if (unlikely(r < 0)) {
518                 dm_integrity_io_error(ic, "crypto_shash_init", r);
519                 return r;
520         }
521
522         r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
523         if (unlikely(r < 0)) {
524                 dm_integrity_io_error(ic, "crypto_shash_update", r);
525                 return r;
526         }
527
528         if (likely(wr)) {
529                 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
530                 if (unlikely(r < 0)) {
531                         dm_integrity_io_error(ic, "crypto_shash_final", r);
532                         return r;
533                 }
534         } else {
535                 __u8 result[HASH_MAX_DIGESTSIZE];
536                 r = crypto_shash_final(desc, result);
537                 if (unlikely(r < 0)) {
538                         dm_integrity_io_error(ic, "crypto_shash_final", r);
539                         return r;
540                 }
541                 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
542                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
543                         return -EILSEQ;
544                 }
545         }
546
547         return 0;
548 }
549
550 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
551 {
552         struct dm_io_request io_req;
553         struct dm_io_region io_loc;
554         int r;
555
556         io_req.bi_op = op;
557         io_req.bi_op_flags = op_flags;
558         io_req.mem.type = DM_IO_KMEM;
559         io_req.mem.ptr.addr = ic->sb;
560         io_req.notify.fn = NULL;
561         io_req.client = ic->io;
562         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
563         io_loc.sector = ic->start;
564         io_loc.count = SB_SECTORS;
565
566         if (op == REQ_OP_WRITE) {
567                 sb_set_version(ic);
568                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
569                         r = sb_mac(ic, true);
570                         if (unlikely(r))
571                                 return r;
572                 }
573         }
574
575         r = dm_io(&io_req, 1, &io_loc, NULL);
576         if (unlikely(r))
577                 return r;
578
579         if (op == REQ_OP_READ) {
580                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
581                         r = sb_mac(ic, false);
582                         if (unlikely(r))
583                                 return r;
584                 }
585         }
586
587         return 0;
588 }
589
590 #define BITMAP_OP_TEST_ALL_SET          0
591 #define BITMAP_OP_TEST_ALL_CLEAR        1
592 #define BITMAP_OP_SET                   2
593 #define BITMAP_OP_CLEAR                 3
594
595 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
596                             sector_t sector, sector_t n_sectors, int mode)
597 {
598         unsigned long bit, end_bit, this_end_bit, page, end_page;
599         unsigned long *data;
600
601         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
602                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
603                         sector,
604                         n_sectors,
605                         ic->sb->log2_sectors_per_block,
606                         ic->log2_blocks_per_bitmap_bit,
607                         mode);
608                 BUG();
609         }
610
611         if (unlikely(!n_sectors))
612                 return true;
613
614         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
615         end_bit = (sector + n_sectors - 1) >>
616                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
617
618         page = bit / (PAGE_SIZE * 8);
619         bit %= PAGE_SIZE * 8;
620
621         end_page = end_bit / (PAGE_SIZE * 8);
622         end_bit %= PAGE_SIZE * 8;
623
624 repeat:
625         if (page < end_page) {
626                 this_end_bit = PAGE_SIZE * 8 - 1;
627         } else {
628                 this_end_bit = end_bit;
629         }
630
631         data = lowmem_page_address(bitmap[page].page);
632
633         if (mode == BITMAP_OP_TEST_ALL_SET) {
634                 while (bit <= this_end_bit) {
635                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
636                                 do {
637                                         if (data[bit / BITS_PER_LONG] != -1)
638                                                 return false;
639                                         bit += BITS_PER_LONG;
640                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
641                                 continue;
642                         }
643                         if (!test_bit(bit, data))
644                                 return false;
645                         bit++;
646                 }
647         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
648                 while (bit <= this_end_bit) {
649                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
650                                 do {
651                                         if (data[bit / BITS_PER_LONG] != 0)
652                                                 return false;
653                                         bit += BITS_PER_LONG;
654                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
655                                 continue;
656                         }
657                         if (test_bit(bit, data))
658                                 return false;
659                         bit++;
660                 }
661         } else if (mode == BITMAP_OP_SET) {
662                 while (bit <= this_end_bit) {
663                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
664                                 do {
665                                         data[bit / BITS_PER_LONG] = -1;
666                                         bit += BITS_PER_LONG;
667                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
668                                 continue;
669                         }
670                         __set_bit(bit, data);
671                         bit++;
672                 }
673         } else if (mode == BITMAP_OP_CLEAR) {
674                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
675                         clear_page(data);
676                 else while (bit <= this_end_bit) {
677                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
678                                 do {
679                                         data[bit / BITS_PER_LONG] = 0;
680                                         bit += BITS_PER_LONG;
681                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
682                                 continue;
683                         }
684                         __clear_bit(bit, data);
685                         bit++;
686                 }
687         } else {
688                 BUG();
689         }
690
691         if (unlikely(page < end_page)) {
692                 bit = 0;
693                 page++;
694                 goto repeat;
695         }
696
697         return true;
698 }
699
700 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
701 {
702         unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
703         unsigned i;
704
705         for (i = 0; i < n_bitmap_pages; i++) {
706                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
707                 unsigned long *src_data = lowmem_page_address(src[i].page);
708                 copy_page(dst_data, src_data);
709         }
710 }
711
712 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
713 {
714         unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
715         unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
716
717         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
718         return &ic->bbs[bitmap_block];
719 }
720
721 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
722                                  bool e, const char *function)
723 {
724 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
725         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
726
727         if (unlikely(section >= ic->journal_sections) ||
728             unlikely(offset >= limit)) {
729                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
730                        function, section, offset, ic->journal_sections, limit);
731                 BUG();
732         }
733 #endif
734 }
735
736 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
737                                unsigned *pl_index, unsigned *pl_offset)
738 {
739         unsigned sector;
740
741         access_journal_check(ic, section, offset, false, "page_list_location");
742
743         sector = section * ic->journal_section_sectors + offset;
744
745         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
746         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
747 }
748
749 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
750                                                unsigned section, unsigned offset, unsigned *n_sectors)
751 {
752         unsigned pl_index, pl_offset;
753         char *va;
754
755         page_list_location(ic, section, offset, &pl_index, &pl_offset);
756
757         if (n_sectors)
758                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
759
760         va = lowmem_page_address(pl[pl_index].page);
761
762         return (struct journal_sector *)(va + pl_offset);
763 }
764
765 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
766 {
767         return access_page_list(ic, ic->journal, section, offset, NULL);
768 }
769
770 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
771 {
772         unsigned rel_sector, offset;
773         struct journal_sector *js;
774
775         access_journal_check(ic, section, n, true, "access_journal_entry");
776
777         rel_sector = n % JOURNAL_BLOCK_SECTORS;
778         offset = n / JOURNAL_BLOCK_SECTORS;
779
780         js = access_journal(ic, section, rel_sector);
781         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
782 }
783
784 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
785 {
786         n <<= ic->sb->log2_sectors_per_block;
787
788         n += JOURNAL_BLOCK_SECTORS;
789
790         access_journal_check(ic, section, n, false, "access_journal_data");
791
792         return access_journal(ic, section, n);
793 }
794
795 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
796 {
797         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
798         int r;
799         unsigned j, size;
800
801         desc->tfm = ic->journal_mac;
802
803         r = crypto_shash_init(desc);
804         if (unlikely(r < 0)) {
805                 dm_integrity_io_error(ic, "crypto_shash_init", r);
806                 goto err;
807         }
808
809         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
810                 __le64 section_le;
811
812                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
813                 if (unlikely(r < 0)) {
814                         dm_integrity_io_error(ic, "crypto_shash_update", r);
815                         goto err;
816                 }
817
818                 section_le = cpu_to_le64(section);
819                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
820                 if (unlikely(r < 0)) {
821                         dm_integrity_io_error(ic, "crypto_shash_update", r);
822                         goto err;
823                 }
824         }
825
826         for (j = 0; j < ic->journal_section_entries; j++) {
827                 struct journal_entry *je = access_journal_entry(ic, section, j);
828                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
829                 if (unlikely(r < 0)) {
830                         dm_integrity_io_error(ic, "crypto_shash_update", r);
831                         goto err;
832                 }
833         }
834
835         size = crypto_shash_digestsize(ic->journal_mac);
836
837         if (likely(size <= JOURNAL_MAC_SIZE)) {
838                 r = crypto_shash_final(desc, result);
839                 if (unlikely(r < 0)) {
840                         dm_integrity_io_error(ic, "crypto_shash_final", r);
841                         goto err;
842                 }
843                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
844         } else {
845                 __u8 digest[HASH_MAX_DIGESTSIZE];
846
847                 if (WARN_ON(size > sizeof(digest))) {
848                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
849                         goto err;
850                 }
851                 r = crypto_shash_final(desc, digest);
852                 if (unlikely(r < 0)) {
853                         dm_integrity_io_error(ic, "crypto_shash_final", r);
854                         goto err;
855                 }
856                 memcpy(result, digest, JOURNAL_MAC_SIZE);
857         }
858
859         return;
860 err:
861         memset(result, 0, JOURNAL_MAC_SIZE);
862 }
863
864 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
865 {
866         __u8 result[JOURNAL_MAC_SIZE];
867         unsigned j;
868
869         if (!ic->journal_mac)
870                 return;
871
872         section_mac(ic, section, result);
873
874         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
875                 struct journal_sector *js = access_journal(ic, section, j);
876
877                 if (likely(wr))
878                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
879                 else {
880                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
881                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
882                 }
883         }
884 }
885
886 static void complete_journal_op(void *context)
887 {
888         struct journal_completion *comp = context;
889         BUG_ON(!atomic_read(&comp->in_flight));
890         if (likely(atomic_dec_and_test(&comp->in_flight)))
891                 complete(&comp->comp);
892 }
893
894 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
895                         unsigned n_sections, struct journal_completion *comp)
896 {
897         struct async_submit_ctl submit;
898         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
899         unsigned pl_index, pl_offset, section_index;
900         struct page_list *source_pl, *target_pl;
901
902         if (likely(encrypt)) {
903                 source_pl = ic->journal;
904                 target_pl = ic->journal_io;
905         } else {
906                 source_pl = ic->journal_io;
907                 target_pl = ic->journal;
908         }
909
910         page_list_location(ic, section, 0, &pl_index, &pl_offset);
911
912         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
913
914         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
915
916         section_index = pl_index;
917
918         do {
919                 size_t this_step;
920                 struct page *src_pages[2];
921                 struct page *dst_page;
922
923                 while (unlikely(pl_index == section_index)) {
924                         unsigned dummy;
925                         if (likely(encrypt))
926                                 rw_section_mac(ic, section, true);
927                         section++;
928                         n_sections--;
929                         if (!n_sections)
930                                 break;
931                         page_list_location(ic, section, 0, &section_index, &dummy);
932                 }
933
934                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
935                 dst_page = target_pl[pl_index].page;
936                 src_pages[0] = source_pl[pl_index].page;
937                 src_pages[1] = ic->journal_xor[pl_index].page;
938
939                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
940
941                 pl_index++;
942                 pl_offset = 0;
943                 n_bytes -= this_step;
944         } while (n_bytes);
945
946         BUG_ON(n_sections);
947
948         async_tx_issue_pending_all();
949 }
950
951 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
952 {
953         struct journal_completion *comp = req->data;
954         if (unlikely(err)) {
955                 if (likely(err == -EINPROGRESS)) {
956                         complete(&comp->ic->crypto_backoff);
957                         return;
958                 }
959                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
960         }
961         complete_journal_op(comp);
962 }
963
964 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
965 {
966         int r;
967         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
968                                       complete_journal_encrypt, comp);
969         if (likely(encrypt))
970                 r = crypto_skcipher_encrypt(req);
971         else
972                 r = crypto_skcipher_decrypt(req);
973         if (likely(!r))
974                 return false;
975         if (likely(r == -EINPROGRESS))
976                 return true;
977         if (likely(r == -EBUSY)) {
978                 wait_for_completion(&comp->ic->crypto_backoff);
979                 reinit_completion(&comp->ic->crypto_backoff);
980                 return true;
981         }
982         dm_integrity_io_error(comp->ic, "encrypt", r);
983         return false;
984 }
985
986 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
987                           unsigned n_sections, struct journal_completion *comp)
988 {
989         struct scatterlist **source_sg;
990         struct scatterlist **target_sg;
991
992         atomic_add(2, &comp->in_flight);
993
994         if (likely(encrypt)) {
995                 source_sg = ic->journal_scatterlist;
996                 target_sg = ic->journal_io_scatterlist;
997         } else {
998                 source_sg = ic->journal_io_scatterlist;
999                 target_sg = ic->journal_scatterlist;
1000         }
1001
1002         do {
1003                 struct skcipher_request *req;
1004                 unsigned ivsize;
1005                 char *iv;
1006
1007                 if (likely(encrypt))
1008                         rw_section_mac(ic, section, true);
1009
1010                 req = ic->sk_requests[section];
1011                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1012                 iv = req->iv;
1013
1014                 memcpy(iv, iv + ivsize, ivsize);
1015
1016                 req->src = source_sg[section];
1017                 req->dst = target_sg[section];
1018
1019                 if (unlikely(do_crypt(encrypt, req, comp)))
1020                         atomic_inc(&comp->in_flight);
1021
1022                 section++;
1023                 n_sections--;
1024         } while (n_sections);
1025
1026         atomic_dec(&comp->in_flight);
1027         complete_journal_op(comp);
1028 }
1029
1030 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1031                             unsigned n_sections, struct journal_completion *comp)
1032 {
1033         if (ic->journal_xor)
1034                 return xor_journal(ic, encrypt, section, n_sections, comp);
1035         else
1036                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1037 }
1038
1039 static void complete_journal_io(unsigned long error, void *context)
1040 {
1041         struct journal_completion *comp = context;
1042         if (unlikely(error != 0))
1043                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1044         complete_journal_op(comp);
1045 }
1046
1047 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1048                                unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1049 {
1050         struct dm_io_request io_req;
1051         struct dm_io_region io_loc;
1052         unsigned pl_index, pl_offset;
1053         int r;
1054
1055         if (unlikely(dm_integrity_failed(ic))) {
1056                 if (comp)
1057                         complete_journal_io(-1UL, comp);
1058                 return;
1059         }
1060
1061         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1062         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1063
1064         io_req.bi_op = op;
1065         io_req.bi_op_flags = op_flags;
1066         io_req.mem.type = DM_IO_PAGE_LIST;
1067         if (ic->journal_io)
1068                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1069         else
1070                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1071         io_req.mem.offset = pl_offset;
1072         if (likely(comp != NULL)) {
1073                 io_req.notify.fn = complete_journal_io;
1074                 io_req.notify.context = comp;
1075         } else {
1076                 io_req.notify.fn = NULL;
1077         }
1078         io_req.client = ic->io;
1079         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1080         io_loc.sector = ic->start + SB_SECTORS + sector;
1081         io_loc.count = n_sectors;
1082
1083         r = dm_io(&io_req, 1, &io_loc, NULL);
1084         if (unlikely(r)) {
1085                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1086                 if (comp) {
1087                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1088                         complete_journal_io(-1UL, comp);
1089                 }
1090         }
1091 }
1092
1093 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1094                        unsigned n_sections, struct journal_completion *comp)
1095 {
1096         unsigned sector, n_sectors;
1097
1098         sector = section * ic->journal_section_sectors;
1099         n_sectors = n_sections * ic->journal_section_sectors;
1100
1101         rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1102 }
1103
1104 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1105 {
1106         struct journal_completion io_comp;
1107         struct journal_completion crypt_comp_1;
1108         struct journal_completion crypt_comp_2;
1109         unsigned i;
1110
1111         io_comp.ic = ic;
1112         init_completion(&io_comp.comp);
1113
1114         if (commit_start + commit_sections <= ic->journal_sections) {
1115                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1116                 if (ic->journal_io) {
1117                         crypt_comp_1.ic = ic;
1118                         init_completion(&crypt_comp_1.comp);
1119                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1120                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1121                         wait_for_completion_io(&crypt_comp_1.comp);
1122                 } else {
1123                         for (i = 0; i < commit_sections; i++)
1124                                 rw_section_mac(ic, commit_start + i, true);
1125                 }
1126                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1127                            commit_sections, &io_comp);
1128         } else {
1129                 unsigned to_end;
1130                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1131                 to_end = ic->journal_sections - commit_start;
1132                 if (ic->journal_io) {
1133                         crypt_comp_1.ic = ic;
1134                         init_completion(&crypt_comp_1.comp);
1135                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1136                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1137                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1138                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1139                                 reinit_completion(&crypt_comp_1.comp);
1140                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1141                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1142                                 wait_for_completion_io(&crypt_comp_1.comp);
1143                         } else {
1144                                 crypt_comp_2.ic = ic;
1145                                 init_completion(&crypt_comp_2.comp);
1146                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1147                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1148                                 wait_for_completion_io(&crypt_comp_1.comp);
1149                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1150                                 wait_for_completion_io(&crypt_comp_2.comp);
1151                         }
1152                 } else {
1153                         for (i = 0; i < to_end; i++)
1154                                 rw_section_mac(ic, commit_start + i, true);
1155                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1156                         for (i = 0; i < commit_sections - to_end; i++)
1157                                 rw_section_mac(ic, i, true);
1158                 }
1159                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1160         }
1161
1162         wait_for_completion_io(&io_comp.comp);
1163 }
1164
1165 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1166                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1167 {
1168         struct dm_io_request io_req;
1169         struct dm_io_region io_loc;
1170         int r;
1171         unsigned sector, pl_index, pl_offset;
1172
1173         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1174
1175         if (unlikely(dm_integrity_failed(ic))) {
1176                 fn(-1UL, data);
1177                 return;
1178         }
1179
1180         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1181
1182         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1183         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1184
1185         io_req.bi_op = REQ_OP_WRITE;
1186         io_req.bi_op_flags = 0;
1187         io_req.mem.type = DM_IO_PAGE_LIST;
1188         io_req.mem.ptr.pl = &ic->journal[pl_index];
1189         io_req.mem.offset = pl_offset;
1190         io_req.notify.fn = fn;
1191         io_req.notify.context = data;
1192         io_req.client = ic->io;
1193         io_loc.bdev = ic->dev->bdev;
1194         io_loc.sector = target;
1195         io_loc.count = n_sectors;
1196
1197         r = dm_io(&io_req, 1, &io_loc, NULL);
1198         if (unlikely(r)) {
1199                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1200                 fn(-1UL, data);
1201         }
1202 }
1203
1204 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1205 {
1206         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1207                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1208 }
1209
1210 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1211 {
1212         struct rb_node **n = &ic->in_progress.rb_node;
1213         struct rb_node *parent;
1214
1215         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1216
1217         if (likely(check_waiting)) {
1218                 struct dm_integrity_range *range;
1219                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1220                         if (unlikely(ranges_overlap(range, new_range)))
1221                                 return false;
1222                 }
1223         }
1224
1225         parent = NULL;
1226
1227         while (*n) {
1228                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1229
1230                 parent = *n;
1231                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1232                         n = &range->node.rb_left;
1233                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1234                         n = &range->node.rb_right;
1235                 } else {
1236                         return false;
1237                 }
1238         }
1239
1240         rb_link_node(&new_range->node, parent, n);
1241         rb_insert_color(&new_range->node, &ic->in_progress);
1242
1243         return true;
1244 }
1245
1246 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1247 {
1248         rb_erase(&range->node, &ic->in_progress);
1249         while (unlikely(!list_empty(&ic->wait_list))) {
1250                 struct dm_integrity_range *last_range =
1251                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1252                 struct task_struct *last_range_task;
1253                 last_range_task = last_range->task;
1254                 list_del(&last_range->wait_entry);
1255                 if (!add_new_range(ic, last_range, false)) {
1256                         last_range->task = last_range_task;
1257                         list_add(&last_range->wait_entry, &ic->wait_list);
1258                         break;
1259                 }
1260                 last_range->waiting = false;
1261                 wake_up_process(last_range_task);
1262         }
1263 }
1264
1265 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1266 {
1267         unsigned long flags;
1268
1269         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1270         remove_range_unlocked(ic, range);
1271         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1272 }
1273
1274 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1275 {
1276         new_range->waiting = true;
1277         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1278         new_range->task = current;
1279         do {
1280                 __set_current_state(TASK_UNINTERRUPTIBLE);
1281                 spin_unlock_irq(&ic->endio_wait.lock);
1282                 io_schedule();
1283                 spin_lock_irq(&ic->endio_wait.lock);
1284         } while (unlikely(new_range->waiting));
1285 }
1286
1287 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1288 {
1289         if (unlikely(!add_new_range(ic, new_range, true)))
1290                 wait_and_add_new_range(ic, new_range);
1291 }
1292
1293 static void init_journal_node(struct journal_node *node)
1294 {
1295         RB_CLEAR_NODE(&node->node);
1296         node->sector = (sector_t)-1;
1297 }
1298
1299 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1300 {
1301         struct rb_node **link;
1302         struct rb_node *parent;
1303
1304         node->sector = sector;
1305         BUG_ON(!RB_EMPTY_NODE(&node->node));
1306
1307         link = &ic->journal_tree_root.rb_node;
1308         parent = NULL;
1309
1310         while (*link) {
1311                 struct journal_node *j;
1312                 parent = *link;
1313                 j = container_of(parent, struct journal_node, node);
1314                 if (sector < j->sector)
1315                         link = &j->node.rb_left;
1316                 else
1317                         link = &j->node.rb_right;
1318         }
1319
1320         rb_link_node(&node->node, parent, link);
1321         rb_insert_color(&node->node, &ic->journal_tree_root);
1322 }
1323
1324 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1325 {
1326         BUG_ON(RB_EMPTY_NODE(&node->node));
1327         rb_erase(&node->node, &ic->journal_tree_root);
1328         init_journal_node(node);
1329 }
1330
1331 #define NOT_FOUND       (-1U)
1332
1333 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1334 {
1335         struct rb_node *n = ic->journal_tree_root.rb_node;
1336         unsigned found = NOT_FOUND;
1337         *next_sector = (sector_t)-1;
1338         while (n) {
1339                 struct journal_node *j = container_of(n, struct journal_node, node);
1340                 if (sector == j->sector) {
1341                         found = j - ic->journal_tree;
1342                 }
1343                 if (sector < j->sector) {
1344                         *next_sector = j->sector;
1345                         n = j->node.rb_left;
1346                 } else {
1347                         n = j->node.rb_right;
1348                 }
1349         }
1350
1351         return found;
1352 }
1353
1354 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1355 {
1356         struct journal_node *node, *next_node;
1357         struct rb_node *next;
1358
1359         if (unlikely(pos >= ic->journal_entries))
1360                 return false;
1361         node = &ic->journal_tree[pos];
1362         if (unlikely(RB_EMPTY_NODE(&node->node)))
1363                 return false;
1364         if (unlikely(node->sector != sector))
1365                 return false;
1366
1367         next = rb_next(&node->node);
1368         if (unlikely(!next))
1369                 return true;
1370
1371         next_node = container_of(next, struct journal_node, node);
1372         return next_node->sector != sector;
1373 }
1374
1375 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1376 {
1377         struct rb_node *next;
1378         struct journal_node *next_node;
1379         unsigned next_section;
1380
1381         BUG_ON(RB_EMPTY_NODE(&node->node));
1382
1383         next = rb_next(&node->node);
1384         if (unlikely(!next))
1385                 return false;
1386
1387         next_node = container_of(next, struct journal_node, node);
1388
1389         if (next_node->sector != node->sector)
1390                 return false;
1391
1392         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1393         if (next_section >= ic->committed_section &&
1394             next_section < ic->committed_section + ic->n_committed_sections)
1395                 return true;
1396         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1397                 return true;
1398
1399         return false;
1400 }
1401
1402 #define TAG_READ        0
1403 #define TAG_WRITE       1
1404 #define TAG_CMP         2
1405
1406 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1407                                unsigned *metadata_offset, unsigned total_size, int op)
1408 {
1409 #define MAY_BE_FILLER           1
1410 #define MAY_BE_HASH             2
1411         unsigned hash_offset = 0;
1412         unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1413
1414         do {
1415                 unsigned char *data, *dp;
1416                 struct dm_buffer *b;
1417                 unsigned to_copy;
1418                 int r;
1419
1420                 r = dm_integrity_failed(ic);
1421                 if (unlikely(r))
1422                         return r;
1423
1424                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1425                 if (IS_ERR(data))
1426                         return PTR_ERR(data);
1427
1428                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1429                 dp = data + *metadata_offset;
1430                 if (op == TAG_READ) {
1431                         memcpy(tag, dp, to_copy);
1432                 } else if (op == TAG_WRITE) {
1433                         if (memcmp(dp, tag, to_copy)) {
1434                                 memcpy(dp, tag, to_copy);
1435                                 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1436                         }
1437                 } else {
1438                         /* e.g.: op == TAG_CMP */
1439
1440                         if (likely(is_power_of_2(ic->tag_size))) {
1441                                 if (unlikely(memcmp(dp, tag, to_copy)))
1442                                         if (unlikely(!ic->discard) ||
1443                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1444                                                 goto thorough_test;
1445                                 }
1446                         } else {
1447                                 unsigned i, ts;
1448 thorough_test:
1449                                 ts = total_size;
1450
1451                                 for (i = 0; i < to_copy; i++, ts--) {
1452                                         if (unlikely(dp[i] != tag[i]))
1453                                                 may_be &= ~MAY_BE_HASH;
1454                                         if (likely(dp[i] != DISCARD_FILLER))
1455                                                 may_be &= ~MAY_BE_FILLER;
1456                                         hash_offset++;
1457                                         if (unlikely(hash_offset == ic->tag_size)) {
1458                                                 if (unlikely(!may_be)) {
1459                                                         dm_bufio_release(b);
1460                                                         return ts;
1461                                                 }
1462                                                 hash_offset = 0;
1463                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1464                                         }
1465                                 }
1466                         }
1467                 }
1468                 dm_bufio_release(b);
1469
1470                 tag += to_copy;
1471                 *metadata_offset += to_copy;
1472                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1473                         (*metadata_block)++;
1474                         *metadata_offset = 0;
1475                 }
1476
1477                 if (unlikely(!is_power_of_2(ic->tag_size))) {
1478                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1479                 }
1480
1481                 total_size -= to_copy;
1482         } while (unlikely(total_size));
1483
1484         return 0;
1485 #undef MAY_BE_FILLER
1486 #undef MAY_BE_HASH
1487 }
1488
1489 struct flush_request {
1490         struct dm_io_request io_req;
1491         struct dm_io_region io_reg;
1492         struct dm_integrity_c *ic;
1493         struct completion comp;
1494 };
1495
1496 static void flush_notify(unsigned long error, void *fr_)
1497 {
1498         struct flush_request *fr = fr_;
1499         if (unlikely(error != 0))
1500                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1501         complete(&fr->comp);
1502 }
1503
1504 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1505 {
1506         int r;
1507
1508         struct flush_request fr;
1509
1510         if (!ic->meta_dev)
1511                 flush_data = false;
1512         if (flush_data) {
1513                 fr.io_req.bi_op = REQ_OP_WRITE,
1514                 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1515                 fr.io_req.mem.type = DM_IO_KMEM,
1516                 fr.io_req.mem.ptr.addr = NULL,
1517                 fr.io_req.notify.fn = flush_notify,
1518                 fr.io_req.notify.context = &fr;
1519                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1520                 fr.io_reg.bdev = ic->dev->bdev,
1521                 fr.io_reg.sector = 0,
1522                 fr.io_reg.count = 0,
1523                 fr.ic = ic;
1524                 init_completion(&fr.comp);
1525                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1526                 BUG_ON(r);
1527         }
1528
1529         r = dm_bufio_write_dirty_buffers(ic->bufio);
1530         if (unlikely(r))
1531                 dm_integrity_io_error(ic, "writing tags", r);
1532
1533         if (flush_data)
1534                 wait_for_completion(&fr.comp);
1535 }
1536
1537 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1538 {
1539         DECLARE_WAITQUEUE(wait, current);
1540         __add_wait_queue(&ic->endio_wait, &wait);
1541         __set_current_state(TASK_UNINTERRUPTIBLE);
1542         spin_unlock_irq(&ic->endio_wait.lock);
1543         io_schedule();
1544         spin_lock_irq(&ic->endio_wait.lock);
1545         __remove_wait_queue(&ic->endio_wait, &wait);
1546 }
1547
1548 static void autocommit_fn(struct timer_list *t)
1549 {
1550         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1551
1552         if (likely(!dm_integrity_failed(ic)))
1553                 queue_work(ic->commit_wq, &ic->commit_work);
1554 }
1555
1556 static void schedule_autocommit(struct dm_integrity_c *ic)
1557 {
1558         if (!timer_pending(&ic->autocommit_timer))
1559                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1560 }
1561
1562 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1563 {
1564         struct bio *bio;
1565         unsigned long flags;
1566
1567         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1568         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1569         bio_list_add(&ic->flush_bio_list, bio);
1570         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1571
1572         queue_work(ic->commit_wq, &ic->commit_work);
1573 }
1574
1575 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1576 {
1577         int r = dm_integrity_failed(ic);
1578         if (unlikely(r) && !bio->bi_status)
1579                 bio->bi_status = errno_to_blk_status(r);
1580         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1581                 unsigned long flags;
1582                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1583                 bio_list_add(&ic->synchronous_bios, bio);
1584                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1585                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1586                 return;
1587         }
1588         bio_endio(bio);
1589 }
1590
1591 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1592 {
1593         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1594
1595         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1596                 submit_flush_bio(ic, dio);
1597         else
1598                 do_endio(ic, bio);
1599 }
1600
1601 static void dec_in_flight(struct dm_integrity_io *dio)
1602 {
1603         if (atomic_dec_and_test(&dio->in_flight)) {
1604                 struct dm_integrity_c *ic = dio->ic;
1605                 struct bio *bio;
1606
1607                 remove_range(ic, &dio->range);
1608
1609                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1610                         schedule_autocommit(ic);
1611
1612                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1613
1614                 if (unlikely(dio->bi_status) && !bio->bi_status)
1615                         bio->bi_status = dio->bi_status;
1616                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1617                         dio->range.logical_sector += dio->range.n_sectors;
1618                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1619                         INIT_WORK(&dio->work, integrity_bio_wait);
1620                         queue_work(ic->offload_wq, &dio->work);
1621                         return;
1622                 }
1623                 do_endio_flush(ic, dio);
1624         }
1625 }
1626
1627 static void integrity_end_io(struct bio *bio)
1628 {
1629         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1630
1631         dm_bio_restore(&dio->bio_details, bio);
1632         if (bio->bi_integrity)
1633                 bio->bi_opf |= REQ_INTEGRITY;
1634
1635         if (dio->completion)
1636                 complete(dio->completion);
1637
1638         dec_in_flight(dio);
1639 }
1640
1641 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1642                                       const char *data, char *result)
1643 {
1644         __le64 sector_le = cpu_to_le64(sector);
1645         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1646         int r;
1647         unsigned digest_size;
1648
1649         req->tfm = ic->internal_hash;
1650
1651         r = crypto_shash_init(req);
1652         if (unlikely(r < 0)) {
1653                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1654                 goto failed;
1655         }
1656
1657         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1658                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1659                 if (unlikely(r < 0)) {
1660                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1661                         goto failed;
1662                 }
1663         }
1664
1665         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1666         if (unlikely(r < 0)) {
1667                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1668                 goto failed;
1669         }
1670
1671         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1672         if (unlikely(r < 0)) {
1673                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1674                 goto failed;
1675         }
1676
1677         r = crypto_shash_final(req, result);
1678         if (unlikely(r < 0)) {
1679                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1680                 goto failed;
1681         }
1682
1683         digest_size = crypto_shash_digestsize(ic->internal_hash);
1684         if (unlikely(digest_size < ic->tag_size))
1685                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1686
1687         return;
1688
1689 failed:
1690         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1691         get_random_bytes(result, ic->tag_size);
1692 }
1693
1694 static void integrity_metadata(struct work_struct *w)
1695 {
1696         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1697         struct dm_integrity_c *ic = dio->ic;
1698
1699         int r;
1700
1701         if (ic->internal_hash) {
1702                 struct bvec_iter iter;
1703                 struct bio_vec bv;
1704                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1705                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1706                 char *checksums;
1707                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1708                 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1709                 sector_t sector;
1710                 unsigned sectors_to_process;
1711
1712                 if (unlikely(ic->mode == 'R'))
1713                         goto skip_io;
1714
1715                 if (likely(dio->op != REQ_OP_DISCARD))
1716                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1717                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1718                 else
1719                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1720                 if (!checksums) {
1721                         checksums = checksums_onstack;
1722                         if (WARN_ON(extra_space &&
1723                                     digest_size > sizeof(checksums_onstack))) {
1724                                 r = -EINVAL;
1725                                 goto error;
1726                         }
1727                 }
1728
1729                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1730                         sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1731                         unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1732                         unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1733                         unsigned max_blocks = max_size / ic->tag_size;
1734                         memset(checksums, DISCARD_FILLER, max_size);
1735
1736                         while (bi_size) {
1737                                 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1738                                 this_step_blocks = min(this_step_blocks, max_blocks);
1739                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1740                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1741                                 if (unlikely(r)) {
1742                                         if (likely(checksums != checksums_onstack))
1743                                                 kfree(checksums);
1744                                         goto error;
1745                                 }
1746
1747                                 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1748                                         printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1749                                         printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1750                                         BUG();
1751                                 }*/
1752                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1753                                 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1754                         }
1755
1756                         if (likely(checksums != checksums_onstack))
1757                                 kfree(checksums);
1758                         goto skip_io;
1759                 }
1760
1761                 sector = dio->range.logical_sector;
1762                 sectors_to_process = dio->range.n_sectors;
1763
1764                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1765                         unsigned pos;
1766                         char *mem, *checksums_ptr;
1767
1768 again:
1769                         mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1770                         pos = 0;
1771                         checksums_ptr = checksums;
1772                         do {
1773                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1774                                 checksums_ptr += ic->tag_size;
1775                                 sectors_to_process -= ic->sectors_per_block;
1776                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1777                                 sector += ic->sectors_per_block;
1778                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1779                         kunmap_atomic(mem);
1780
1781                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1782                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1783                         if (unlikely(r)) {
1784                                 if (r > 0) {
1785                                         char b[BDEVNAME_SIZE];
1786                                         DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1787                                                     (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1788                                         r = -EILSEQ;
1789                                         atomic64_inc(&ic->number_of_mismatches);
1790                                 }
1791                                 if (likely(checksums != checksums_onstack))
1792                                         kfree(checksums);
1793                                 goto error;
1794                         }
1795
1796                         if (!sectors_to_process)
1797                                 break;
1798
1799                         if (unlikely(pos < bv.bv_len)) {
1800                                 bv.bv_offset += pos;
1801                                 bv.bv_len -= pos;
1802                                 goto again;
1803                         }
1804                 }
1805
1806                 if (likely(checksums != checksums_onstack))
1807                         kfree(checksums);
1808         } else {
1809                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1810
1811                 if (bip) {
1812                         struct bio_vec biv;
1813                         struct bvec_iter iter;
1814                         unsigned data_to_process = dio->range.n_sectors;
1815                         sector_to_block(ic, data_to_process);
1816                         data_to_process *= ic->tag_size;
1817
1818                         bip_for_each_vec(biv, bip, iter) {
1819                                 unsigned char *tag;
1820                                 unsigned this_len;
1821
1822                                 BUG_ON(PageHighMem(biv.bv_page));
1823                                 tag = bvec_virt(&biv);
1824                                 this_len = min(biv.bv_len, data_to_process);
1825                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1826                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1827                                 if (unlikely(r))
1828                                         goto error;
1829                                 data_to_process -= this_len;
1830                                 if (!data_to_process)
1831                                         break;
1832                         }
1833                 }
1834         }
1835 skip_io:
1836         dec_in_flight(dio);
1837         return;
1838 error:
1839         dio->bi_status = errno_to_blk_status(r);
1840         dec_in_flight(dio);
1841 }
1842
1843 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1844 {
1845         struct dm_integrity_c *ic = ti->private;
1846         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1847         struct bio_integrity_payload *bip;
1848
1849         sector_t area, offset;
1850
1851         dio->ic = ic;
1852         dio->bi_status = 0;
1853         dio->op = bio_op(bio);
1854
1855         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1856                 if (ti->max_io_len) {
1857                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1858                         unsigned log2_max_io_len = __fls(ti->max_io_len);
1859                         sector_t start_boundary = sec >> log2_max_io_len;
1860                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1861                         if (start_boundary < end_boundary) {
1862                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1863                                 dm_accept_partial_bio(bio, len);
1864                         }
1865                 }
1866         }
1867
1868         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1869                 submit_flush_bio(ic, dio);
1870                 return DM_MAPIO_SUBMITTED;
1871         }
1872
1873         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1874         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1875         if (unlikely(dio->fua)) {
1876                 /*
1877                  * Don't pass down the FUA flag because we have to flush
1878                  * disk cache anyway.
1879                  */
1880                 bio->bi_opf &= ~REQ_FUA;
1881         }
1882         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1883                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1884                       dio->range.logical_sector, bio_sectors(bio),
1885                       ic->provided_data_sectors);
1886                 return DM_MAPIO_KILL;
1887         }
1888         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1889                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1890                       ic->sectors_per_block,
1891                       dio->range.logical_sector, bio_sectors(bio));
1892                 return DM_MAPIO_KILL;
1893         }
1894
1895         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1896                 struct bvec_iter iter;
1897                 struct bio_vec bv;
1898                 bio_for_each_segment(bv, bio, iter) {
1899                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1900                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1901                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1902                                 return DM_MAPIO_KILL;
1903                         }
1904                 }
1905         }
1906
1907         bip = bio_integrity(bio);
1908         if (!ic->internal_hash) {
1909                 if (bip) {
1910                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1911                         if (ic->log2_tag_size >= 0)
1912                                 wanted_tag_size <<= ic->log2_tag_size;
1913                         else
1914                                 wanted_tag_size *= ic->tag_size;
1915                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1916                                 DMERR("Invalid integrity data size %u, expected %u",
1917                                       bip->bip_iter.bi_size, wanted_tag_size);
1918                                 return DM_MAPIO_KILL;
1919                         }
1920                 }
1921         } else {
1922                 if (unlikely(bip != NULL)) {
1923                         DMERR("Unexpected integrity data when using internal hash");
1924                         return DM_MAPIO_KILL;
1925                 }
1926         }
1927
1928         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1929                 return DM_MAPIO_KILL;
1930
1931         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1932         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1933         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1934
1935         dm_integrity_map_continue(dio, true);
1936         return DM_MAPIO_SUBMITTED;
1937 }
1938
1939 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1940                                  unsigned journal_section, unsigned journal_entry)
1941 {
1942         struct dm_integrity_c *ic = dio->ic;
1943         sector_t logical_sector;
1944         unsigned n_sectors;
1945
1946         logical_sector = dio->range.logical_sector;
1947         n_sectors = dio->range.n_sectors;
1948         do {
1949                 struct bio_vec bv = bio_iovec(bio);
1950                 char *mem;
1951
1952                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1953                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1954                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1955                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1956 retry_kmap:
1957                 mem = kmap_atomic(bv.bv_page);
1958                 if (likely(dio->op == REQ_OP_WRITE))
1959                         flush_dcache_page(bv.bv_page);
1960
1961                 do {
1962                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1963
1964                         if (unlikely(dio->op == REQ_OP_READ)) {
1965                                 struct journal_sector *js;
1966                                 char *mem_ptr;
1967                                 unsigned s;
1968
1969                                 if (unlikely(journal_entry_is_inprogress(je))) {
1970                                         flush_dcache_page(bv.bv_page);
1971                                         kunmap_atomic(mem);
1972
1973                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1974                                         goto retry_kmap;
1975                                 }
1976                                 smp_rmb();
1977                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1978                                 js = access_journal_data(ic, journal_section, journal_entry);
1979                                 mem_ptr = mem + bv.bv_offset;
1980                                 s = 0;
1981                                 do {
1982                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1983                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1984                                         js++;
1985                                         mem_ptr += 1 << SECTOR_SHIFT;
1986                                 } while (++s < ic->sectors_per_block);
1987 #ifdef INTERNAL_VERIFY
1988                                 if (ic->internal_hash) {
1989                                         char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1990
1991                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1992                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1993                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1994                                                             logical_sector);
1995                                         }
1996                                 }
1997 #endif
1998                         }
1999
2000                         if (!ic->internal_hash) {
2001                                 struct bio_integrity_payload *bip = bio_integrity(bio);
2002                                 unsigned tag_todo = ic->tag_size;
2003                                 char *tag_ptr = journal_entry_tag(ic, je);
2004
2005                                 if (bip) do {
2006                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2007                                         unsigned tag_now = min(biv.bv_len, tag_todo);
2008                                         char *tag_addr;
2009                                         BUG_ON(PageHighMem(biv.bv_page));
2010                                         tag_addr = bvec_virt(&biv);
2011                                         if (likely(dio->op == REQ_OP_WRITE))
2012                                                 memcpy(tag_ptr, tag_addr, tag_now);
2013                                         else
2014                                                 memcpy(tag_addr, tag_ptr, tag_now);
2015                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2016                                         tag_ptr += tag_now;
2017                                         tag_todo -= tag_now;
2018                                 } while (unlikely(tag_todo)); else {
2019                                         if (likely(dio->op == REQ_OP_WRITE))
2020                                                 memset(tag_ptr, 0, tag_todo);
2021                                 }
2022                         }
2023
2024                         if (likely(dio->op == REQ_OP_WRITE)) {
2025                                 struct journal_sector *js;
2026                                 unsigned s;
2027
2028                                 js = access_journal_data(ic, journal_section, journal_entry);
2029                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2030
2031                                 s = 0;
2032                                 do {
2033                                         je->last_bytes[s] = js[s].commit_id;
2034                                 } while (++s < ic->sectors_per_block);
2035
2036                                 if (ic->internal_hash) {
2037                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2038                                         if (unlikely(digest_size > ic->tag_size)) {
2039                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2040                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2041                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2042                                         } else
2043                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2044                                 }
2045
2046                                 journal_entry_set_sector(je, logical_sector);
2047                         }
2048                         logical_sector += ic->sectors_per_block;
2049
2050                         journal_entry++;
2051                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2052                                 journal_entry = 0;
2053                                 journal_section++;
2054                                 wraparound_section(ic, &journal_section);
2055                         }
2056
2057                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2058                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2059
2060                 if (unlikely(dio->op == REQ_OP_READ))
2061                         flush_dcache_page(bv.bv_page);
2062                 kunmap_atomic(mem);
2063         } while (n_sectors);
2064
2065         if (likely(dio->op == REQ_OP_WRITE)) {
2066                 smp_mb();
2067                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2068                         wake_up(&ic->copy_to_journal_wait);
2069                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2070                         queue_work(ic->commit_wq, &ic->commit_work);
2071                 } else {
2072                         schedule_autocommit(ic);
2073                 }
2074         } else {
2075                 remove_range(ic, &dio->range);
2076         }
2077
2078         if (unlikely(bio->bi_iter.bi_size)) {
2079                 sector_t area, offset;
2080
2081                 dio->range.logical_sector = logical_sector;
2082                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2083                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2084                 return true;
2085         }
2086
2087         return false;
2088 }
2089
2090 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2091 {
2092         struct dm_integrity_c *ic = dio->ic;
2093         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2094         unsigned journal_section, journal_entry;
2095         unsigned journal_read_pos;
2096         struct completion read_comp;
2097         bool discard_retried = false;
2098         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2099         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2100                 need_sync_io = true;
2101
2102         if (need_sync_io && from_map) {
2103                 INIT_WORK(&dio->work, integrity_bio_wait);
2104                 queue_work(ic->offload_wq, &dio->work);
2105                 return;
2106         }
2107
2108 lock_retry:
2109         spin_lock_irq(&ic->endio_wait.lock);
2110 retry:
2111         if (unlikely(dm_integrity_failed(ic))) {
2112                 spin_unlock_irq(&ic->endio_wait.lock);
2113                 do_endio(ic, bio);
2114                 return;
2115         }
2116         dio->range.n_sectors = bio_sectors(bio);
2117         journal_read_pos = NOT_FOUND;
2118         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2119                 if (dio->op == REQ_OP_WRITE) {
2120                         unsigned next_entry, i, pos;
2121                         unsigned ws, we, range_sectors;
2122
2123                         dio->range.n_sectors = min(dio->range.n_sectors,
2124                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2125                         if (unlikely(!dio->range.n_sectors)) {
2126                                 if (from_map)
2127                                         goto offload_to_thread;
2128                                 sleep_on_endio_wait(ic);
2129                                 goto retry;
2130                         }
2131                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2132                         ic->free_sectors -= range_sectors;
2133                         journal_section = ic->free_section;
2134                         journal_entry = ic->free_section_entry;
2135
2136                         next_entry = ic->free_section_entry + range_sectors;
2137                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2138                         ic->free_section += next_entry / ic->journal_section_entries;
2139                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2140                         wraparound_section(ic, &ic->free_section);
2141
2142                         pos = journal_section * ic->journal_section_entries + journal_entry;
2143                         ws = journal_section;
2144                         we = journal_entry;
2145                         i = 0;
2146                         do {
2147                                 struct journal_entry *je;
2148
2149                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2150                                 pos++;
2151                                 if (unlikely(pos >= ic->journal_entries))
2152                                         pos = 0;
2153
2154                                 je = access_journal_entry(ic, ws, we);
2155                                 BUG_ON(!journal_entry_is_unused(je));
2156                                 journal_entry_set_inprogress(je);
2157                                 we++;
2158                                 if (unlikely(we == ic->journal_section_entries)) {
2159                                         we = 0;
2160                                         ws++;
2161                                         wraparound_section(ic, &ws);
2162                                 }
2163                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2164
2165                         spin_unlock_irq(&ic->endio_wait.lock);
2166                         goto journal_read_write;
2167                 } else {
2168                         sector_t next_sector;
2169                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2170                         if (likely(journal_read_pos == NOT_FOUND)) {
2171                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2172                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2173                         } else {
2174                                 unsigned i;
2175                                 unsigned jp = journal_read_pos + 1;
2176                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2177                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2178                                                 break;
2179                                 }
2180                                 dio->range.n_sectors = i;
2181                         }
2182                 }
2183         }
2184         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2185                 /*
2186                  * We must not sleep in the request routine because it could
2187                  * stall bios on current->bio_list.
2188                  * So, we offload the bio to a workqueue if we have to sleep.
2189                  */
2190                 if (from_map) {
2191 offload_to_thread:
2192                         spin_unlock_irq(&ic->endio_wait.lock);
2193                         INIT_WORK(&dio->work, integrity_bio_wait);
2194                         queue_work(ic->wait_wq, &dio->work);
2195                         return;
2196                 }
2197                 if (journal_read_pos != NOT_FOUND)
2198                         dio->range.n_sectors = ic->sectors_per_block;
2199                 wait_and_add_new_range(ic, &dio->range);
2200                 /*
2201                  * wait_and_add_new_range drops the spinlock, so the journal
2202                  * may have been changed arbitrarily. We need to recheck.
2203                  * To simplify the code, we restrict I/O size to just one block.
2204                  */
2205                 if (journal_read_pos != NOT_FOUND) {
2206                         sector_t next_sector;
2207                         unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2208                         if (unlikely(new_pos != journal_read_pos)) {
2209                                 remove_range_unlocked(ic, &dio->range);
2210                                 goto retry;
2211                         }
2212                 }
2213         }
2214         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2215                 sector_t next_sector;
2216                 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2217                 if (unlikely(new_pos != NOT_FOUND) ||
2218                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2219                         remove_range_unlocked(ic, &dio->range);
2220                         spin_unlock_irq(&ic->endio_wait.lock);
2221                         queue_work(ic->commit_wq, &ic->commit_work);
2222                         flush_workqueue(ic->commit_wq);
2223                         queue_work(ic->writer_wq, &ic->writer_work);
2224                         flush_workqueue(ic->writer_wq);
2225                         discard_retried = true;
2226                         goto lock_retry;
2227                 }
2228         }
2229         spin_unlock_irq(&ic->endio_wait.lock);
2230
2231         if (unlikely(journal_read_pos != NOT_FOUND)) {
2232                 journal_section = journal_read_pos / ic->journal_section_entries;
2233                 journal_entry = journal_read_pos % ic->journal_section_entries;
2234                 goto journal_read_write;
2235         }
2236
2237         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2238                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2239                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2240                         struct bitmap_block_status *bbs;
2241
2242                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2243                         spin_lock(&bbs->bio_queue_lock);
2244                         bio_list_add(&bbs->bio_queue, bio);
2245                         spin_unlock(&bbs->bio_queue_lock);
2246                         queue_work(ic->writer_wq, &bbs->work);
2247                         return;
2248                 }
2249         }
2250
2251         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2252
2253         if (need_sync_io) {
2254                 init_completion(&read_comp);
2255                 dio->completion = &read_comp;
2256         } else
2257                 dio->completion = NULL;
2258
2259         dm_bio_record(&dio->bio_details, bio);
2260         bio_set_dev(bio, ic->dev->bdev);
2261         bio->bi_integrity = NULL;
2262         bio->bi_opf &= ~REQ_INTEGRITY;
2263         bio->bi_end_io = integrity_end_io;
2264         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2265
2266         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2267                 integrity_metadata(&dio->work);
2268                 dm_integrity_flush_buffers(ic, false);
2269
2270                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2271                 dio->completion = NULL;
2272
2273                 submit_bio_noacct(bio);
2274
2275                 return;
2276         }
2277
2278         submit_bio_noacct(bio);
2279
2280         if (need_sync_io) {
2281                 wait_for_completion_io(&read_comp);
2282                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2283                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2284                         goto skip_check;
2285                 if (ic->mode == 'B') {
2286                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2287                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2288                                 goto skip_check;
2289                 }
2290
2291                 if (likely(!bio->bi_status))
2292                         integrity_metadata(&dio->work);
2293                 else
2294 skip_check:
2295                         dec_in_flight(dio);
2296
2297         } else {
2298                 INIT_WORK(&dio->work, integrity_metadata);
2299                 queue_work(ic->metadata_wq, &dio->work);
2300         }
2301
2302         return;
2303
2304 journal_read_write:
2305         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2306                 goto lock_retry;
2307
2308         do_endio_flush(ic, dio);
2309 }
2310
2311
2312 static void integrity_bio_wait(struct work_struct *w)
2313 {
2314         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2315
2316         dm_integrity_map_continue(dio, false);
2317 }
2318
2319 static void pad_uncommitted(struct dm_integrity_c *ic)
2320 {
2321         if (ic->free_section_entry) {
2322                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2323                 ic->free_section_entry = 0;
2324                 ic->free_section++;
2325                 wraparound_section(ic, &ic->free_section);
2326                 ic->n_uncommitted_sections++;
2327         }
2328         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2329                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2330                     ic->journal_section_entries + ic->free_sectors)) {
2331                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2332                        "n_uncommitted_sections %u, n_committed_sections %u, "
2333                        "journal_section_entries %u, free_sectors %u",
2334                        ic->journal_sections, ic->journal_section_entries,
2335                        ic->n_uncommitted_sections, ic->n_committed_sections,
2336                        ic->journal_section_entries, ic->free_sectors);
2337         }
2338 }
2339
2340 static void integrity_commit(struct work_struct *w)
2341 {
2342         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2343         unsigned commit_start, commit_sections;
2344         unsigned i, j, n;
2345         struct bio *flushes;
2346
2347         del_timer(&ic->autocommit_timer);
2348
2349         spin_lock_irq(&ic->endio_wait.lock);
2350         flushes = bio_list_get(&ic->flush_bio_list);
2351         if (unlikely(ic->mode != 'J')) {
2352                 spin_unlock_irq(&ic->endio_wait.lock);
2353                 dm_integrity_flush_buffers(ic, true);
2354                 goto release_flush_bios;
2355         }
2356
2357         pad_uncommitted(ic);
2358         commit_start = ic->uncommitted_section;
2359         commit_sections = ic->n_uncommitted_sections;
2360         spin_unlock_irq(&ic->endio_wait.lock);
2361
2362         if (!commit_sections)
2363                 goto release_flush_bios;
2364
2365         ic->wrote_to_journal = true;
2366
2367         i = commit_start;
2368         for (n = 0; n < commit_sections; n++) {
2369                 for (j = 0; j < ic->journal_section_entries; j++) {
2370                         struct journal_entry *je;
2371                         je = access_journal_entry(ic, i, j);
2372                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2373                 }
2374                 for (j = 0; j < ic->journal_section_sectors; j++) {
2375                         struct journal_sector *js;
2376                         js = access_journal(ic, i, j);
2377                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2378                 }
2379                 i++;
2380                 if (unlikely(i >= ic->journal_sections))
2381                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2382                 wraparound_section(ic, &i);
2383         }
2384         smp_rmb();
2385
2386         write_journal(ic, commit_start, commit_sections);
2387
2388         spin_lock_irq(&ic->endio_wait.lock);
2389         ic->uncommitted_section += commit_sections;
2390         wraparound_section(ic, &ic->uncommitted_section);
2391         ic->n_uncommitted_sections -= commit_sections;
2392         ic->n_committed_sections += commit_sections;
2393         spin_unlock_irq(&ic->endio_wait.lock);
2394
2395         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2396                 queue_work(ic->writer_wq, &ic->writer_work);
2397
2398 release_flush_bios:
2399         while (flushes) {
2400                 struct bio *next = flushes->bi_next;
2401                 flushes->bi_next = NULL;
2402                 do_endio(ic, flushes);
2403                 flushes = next;
2404         }
2405 }
2406
2407 static void complete_copy_from_journal(unsigned long error, void *context)
2408 {
2409         struct journal_io *io = context;
2410         struct journal_completion *comp = io->comp;
2411         struct dm_integrity_c *ic = comp->ic;
2412         remove_range(ic, &io->range);
2413         mempool_free(io, &ic->journal_io_mempool);
2414         if (unlikely(error != 0))
2415                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2416         complete_journal_op(comp);
2417 }
2418
2419 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2420                                struct journal_entry *je)
2421 {
2422         unsigned s = 0;
2423         do {
2424                 js->commit_id = je->last_bytes[s];
2425                 js++;
2426         } while (++s < ic->sectors_per_block);
2427 }
2428
2429 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2430                              unsigned write_sections, bool from_replay)
2431 {
2432         unsigned i, j, n;
2433         struct journal_completion comp;
2434         struct blk_plug plug;
2435
2436         blk_start_plug(&plug);
2437
2438         comp.ic = ic;
2439         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2440         init_completion(&comp.comp);
2441
2442         i = write_start;
2443         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2444 #ifndef INTERNAL_VERIFY
2445                 if (unlikely(from_replay))
2446 #endif
2447                         rw_section_mac(ic, i, false);
2448                 for (j = 0; j < ic->journal_section_entries; j++) {
2449                         struct journal_entry *je = access_journal_entry(ic, i, j);
2450                         sector_t sec, area, offset;
2451                         unsigned k, l, next_loop;
2452                         sector_t metadata_block;
2453                         unsigned metadata_offset;
2454                         struct journal_io *io;
2455
2456                         if (journal_entry_is_unused(je))
2457                                 continue;
2458                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2459                         sec = journal_entry_get_sector(je);
2460                         if (unlikely(from_replay)) {
2461                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2462                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2463                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2464                                 }
2465                                 if (unlikely(sec >= ic->provided_data_sectors)) {
2466                                         journal_entry_set_unused(je);
2467                                         continue;
2468                                 }
2469                         }
2470                         get_area_and_offset(ic, sec, &area, &offset);
2471                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2472                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2473                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2474                                 sector_t sec2, area2, offset2;
2475                                 if (journal_entry_is_unused(je2))
2476                                         break;
2477                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2478                                 sec2 = journal_entry_get_sector(je2);
2479                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2480                                         break;
2481                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2482                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2483                                         break;
2484                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2485                         }
2486                         next_loop = k - 1;
2487
2488                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2489                         io->comp = &comp;
2490                         io->range.logical_sector = sec;
2491                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2492
2493                         spin_lock_irq(&ic->endio_wait.lock);
2494                         add_new_range_and_wait(ic, &io->range);
2495
2496                         if (likely(!from_replay)) {
2497                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2498
2499                                 /* don't write if there is newer committed sector */
2500                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2501                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2502
2503                                         journal_entry_set_unused(je2);
2504                                         remove_journal_node(ic, &section_node[j]);
2505                                         j++;
2506                                         sec += ic->sectors_per_block;
2507                                         offset += ic->sectors_per_block;
2508                                 }
2509                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2510                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2511
2512                                         journal_entry_set_unused(je2);
2513                                         remove_journal_node(ic, &section_node[k - 1]);
2514                                         k--;
2515                                 }
2516                                 if (j == k) {
2517                                         remove_range_unlocked(ic, &io->range);
2518                                         spin_unlock_irq(&ic->endio_wait.lock);
2519                                         mempool_free(io, &ic->journal_io_mempool);
2520                                         goto skip_io;
2521                                 }
2522                                 for (l = j; l < k; l++) {
2523                                         remove_journal_node(ic, &section_node[l]);
2524                                 }
2525                         }
2526                         spin_unlock_irq(&ic->endio_wait.lock);
2527
2528                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2529                         for (l = j; l < k; l++) {
2530                                 int r;
2531                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2532
2533                                 if (
2534 #ifndef INTERNAL_VERIFY
2535                                     unlikely(from_replay) &&
2536 #endif
2537                                     ic->internal_hash) {
2538                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2539
2540                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2541                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2542                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2543                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2544                                 }
2545
2546                                 journal_entry_set_unused(je2);
2547                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2548                                                         ic->tag_size, TAG_WRITE);
2549                                 if (unlikely(r)) {
2550                                         dm_integrity_io_error(ic, "reading tags", r);
2551                                 }
2552                         }
2553
2554                         atomic_inc(&comp.in_flight);
2555                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2556                                           (k - j) << ic->sb->log2_sectors_per_block,
2557                                           get_data_sector(ic, area, offset),
2558                                           complete_copy_from_journal, io);
2559 skip_io:
2560                         j = next_loop;
2561                 }
2562         }
2563
2564         dm_bufio_write_dirty_buffers_async(ic->bufio);
2565
2566         blk_finish_plug(&plug);
2567
2568         complete_journal_op(&comp);
2569         wait_for_completion_io(&comp.comp);
2570
2571         dm_integrity_flush_buffers(ic, true);
2572 }
2573
2574 static void integrity_writer(struct work_struct *w)
2575 {
2576         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2577         unsigned write_start, write_sections;
2578
2579         unsigned prev_free_sectors;
2580
2581         spin_lock_irq(&ic->endio_wait.lock);
2582         write_start = ic->committed_section;
2583         write_sections = ic->n_committed_sections;
2584         spin_unlock_irq(&ic->endio_wait.lock);
2585
2586         if (!write_sections)
2587                 return;
2588
2589         do_journal_write(ic, write_start, write_sections, false);
2590
2591         spin_lock_irq(&ic->endio_wait.lock);
2592
2593         ic->committed_section += write_sections;
2594         wraparound_section(ic, &ic->committed_section);
2595         ic->n_committed_sections -= write_sections;
2596
2597         prev_free_sectors = ic->free_sectors;
2598         ic->free_sectors += write_sections * ic->journal_section_entries;
2599         if (unlikely(!prev_free_sectors))
2600                 wake_up_locked(&ic->endio_wait);
2601
2602         spin_unlock_irq(&ic->endio_wait.lock);
2603 }
2604
2605 static void recalc_write_super(struct dm_integrity_c *ic)
2606 {
2607         int r;
2608
2609         dm_integrity_flush_buffers(ic, false);
2610         if (dm_integrity_failed(ic))
2611                 return;
2612
2613         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2614         if (unlikely(r))
2615                 dm_integrity_io_error(ic, "writing superblock", r);
2616 }
2617
2618 static void integrity_recalc(struct work_struct *w)
2619 {
2620         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2621         struct dm_integrity_range range;
2622         struct dm_io_request io_req;
2623         struct dm_io_region io_loc;
2624         sector_t area, offset;
2625         sector_t metadata_block;
2626         unsigned metadata_offset;
2627         sector_t logical_sector, n_sectors;
2628         __u8 *t;
2629         unsigned i;
2630         int r;
2631         unsigned super_counter = 0;
2632
2633         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2634
2635         spin_lock_irq(&ic->endio_wait.lock);
2636
2637 next_chunk:
2638
2639         if (unlikely(dm_post_suspending(ic->ti)))
2640                 goto unlock_ret;
2641
2642         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2643         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2644                 if (ic->mode == 'B') {
2645                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2646                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2647                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2648                 }
2649                 goto unlock_ret;
2650         }
2651
2652         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2653         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2654         if (!ic->meta_dev)
2655                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2656
2657         add_new_range_and_wait(ic, &range);
2658         spin_unlock_irq(&ic->endio_wait.lock);
2659         logical_sector = range.logical_sector;
2660         n_sectors = range.n_sectors;
2661
2662         if (ic->mode == 'B') {
2663                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2664                         goto advance_and_next;
2665                 }
2666                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2667                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2668                         logical_sector += ic->sectors_per_block;
2669                         n_sectors -= ic->sectors_per_block;
2670                         cond_resched();
2671                 }
2672                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2673                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2674                         n_sectors -= ic->sectors_per_block;
2675                         cond_resched();
2676                 }
2677                 get_area_and_offset(ic, logical_sector, &area, &offset);
2678         }
2679
2680         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2681
2682         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2683                 recalc_write_super(ic);
2684                 if (ic->mode == 'B') {
2685                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2686                 }
2687                 super_counter = 0;
2688         }
2689
2690         if (unlikely(dm_integrity_failed(ic)))
2691                 goto err;
2692
2693         io_req.bi_op = REQ_OP_READ;
2694         io_req.bi_op_flags = 0;
2695         io_req.mem.type = DM_IO_VMA;
2696         io_req.mem.ptr.addr = ic->recalc_buffer;
2697         io_req.notify.fn = NULL;
2698         io_req.client = ic->io;
2699         io_loc.bdev = ic->dev->bdev;
2700         io_loc.sector = get_data_sector(ic, area, offset);
2701         io_loc.count = n_sectors;
2702
2703         r = dm_io(&io_req, 1, &io_loc, NULL);
2704         if (unlikely(r)) {
2705                 dm_integrity_io_error(ic, "reading data", r);
2706                 goto err;
2707         }
2708
2709         t = ic->recalc_tags;
2710         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2711                 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2712                 t += ic->tag_size;
2713         }
2714
2715         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2716
2717         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2718         if (unlikely(r)) {
2719                 dm_integrity_io_error(ic, "writing tags", r);
2720                 goto err;
2721         }
2722
2723         if (ic->mode == 'B') {
2724                 sector_t start, end;
2725                 start = (range.logical_sector >>
2726                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2727                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2728                 end = ((range.logical_sector + range.n_sectors) >>
2729                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2730                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2731                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2732         }
2733
2734 advance_and_next:
2735         cond_resched();
2736
2737         spin_lock_irq(&ic->endio_wait.lock);
2738         remove_range_unlocked(ic, &range);
2739         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2740         goto next_chunk;
2741
2742 err:
2743         remove_range(ic, &range);
2744         return;
2745
2746 unlock_ret:
2747         spin_unlock_irq(&ic->endio_wait.lock);
2748
2749         recalc_write_super(ic);
2750 }
2751
2752 static void bitmap_block_work(struct work_struct *w)
2753 {
2754         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2755         struct dm_integrity_c *ic = bbs->ic;
2756         struct bio *bio;
2757         struct bio_list bio_queue;
2758         struct bio_list waiting;
2759
2760         bio_list_init(&waiting);
2761
2762         spin_lock(&bbs->bio_queue_lock);
2763         bio_queue = bbs->bio_queue;
2764         bio_list_init(&bbs->bio_queue);
2765         spin_unlock(&bbs->bio_queue_lock);
2766
2767         while ((bio = bio_list_pop(&bio_queue))) {
2768                 struct dm_integrity_io *dio;
2769
2770                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2771
2772                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2773                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2774                         remove_range(ic, &dio->range);
2775                         INIT_WORK(&dio->work, integrity_bio_wait);
2776                         queue_work(ic->offload_wq, &dio->work);
2777                 } else {
2778                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2779                                         dio->range.n_sectors, BITMAP_OP_SET);
2780                         bio_list_add(&waiting, bio);
2781                 }
2782         }
2783
2784         if (bio_list_empty(&waiting))
2785                 return;
2786
2787         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2788                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2789                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2790
2791         while ((bio = bio_list_pop(&waiting))) {
2792                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2793
2794                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2795                                 dio->range.n_sectors, BITMAP_OP_SET);
2796
2797                 remove_range(ic, &dio->range);
2798                 INIT_WORK(&dio->work, integrity_bio_wait);
2799                 queue_work(ic->offload_wq, &dio->work);
2800         }
2801
2802         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2803 }
2804
2805 static void bitmap_flush_work(struct work_struct *work)
2806 {
2807         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2808         struct dm_integrity_range range;
2809         unsigned long limit;
2810         struct bio *bio;
2811
2812         dm_integrity_flush_buffers(ic, false);
2813
2814         range.logical_sector = 0;
2815         range.n_sectors = ic->provided_data_sectors;
2816
2817         spin_lock_irq(&ic->endio_wait.lock);
2818         add_new_range_and_wait(ic, &range);
2819         spin_unlock_irq(&ic->endio_wait.lock);
2820
2821         dm_integrity_flush_buffers(ic, true);
2822
2823         limit = ic->provided_data_sectors;
2824         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2825                 limit = le64_to_cpu(ic->sb->recalc_sector)
2826                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2827                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2828         }
2829         /*DEBUG_print("zeroing journal\n");*/
2830         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2831         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2832
2833         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2834                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2835
2836         spin_lock_irq(&ic->endio_wait.lock);
2837         remove_range_unlocked(ic, &range);
2838         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2839                 bio_endio(bio);
2840                 spin_unlock_irq(&ic->endio_wait.lock);
2841                 spin_lock_irq(&ic->endio_wait.lock);
2842         }
2843         spin_unlock_irq(&ic->endio_wait.lock);
2844 }
2845
2846
2847 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2848                          unsigned n_sections, unsigned char commit_seq)
2849 {
2850         unsigned i, j, n;
2851
2852         if (!n_sections)
2853                 return;
2854
2855         for (n = 0; n < n_sections; n++) {
2856                 i = start_section + n;
2857                 wraparound_section(ic, &i);
2858                 for (j = 0; j < ic->journal_section_sectors; j++) {
2859                         struct journal_sector *js = access_journal(ic, i, j);
2860                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2861                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2862                 }
2863                 for (j = 0; j < ic->journal_section_entries; j++) {
2864                         struct journal_entry *je = access_journal_entry(ic, i, j);
2865                         journal_entry_set_unused(je);
2866                 }
2867         }
2868
2869         write_journal(ic, start_section, n_sections);
2870 }
2871
2872 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2873 {
2874         unsigned char k;
2875         for (k = 0; k < N_COMMIT_IDS; k++) {
2876                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2877                         return k;
2878         }
2879         dm_integrity_io_error(ic, "journal commit id", -EIO);
2880         return -EIO;
2881 }
2882
2883 static void replay_journal(struct dm_integrity_c *ic)
2884 {
2885         unsigned i, j;
2886         bool used_commit_ids[N_COMMIT_IDS];
2887         unsigned max_commit_id_sections[N_COMMIT_IDS];
2888         unsigned write_start, write_sections;
2889         unsigned continue_section;
2890         bool journal_empty;
2891         unsigned char unused, last_used, want_commit_seq;
2892
2893         if (ic->mode == 'R')
2894                 return;
2895
2896         if (ic->journal_uptodate)
2897                 return;
2898
2899         last_used = 0;
2900         write_start = 0;
2901
2902         if (!ic->just_formatted) {
2903                 DEBUG_print("reading journal\n");
2904                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2905                 if (ic->journal_io)
2906                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2907                 if (ic->journal_io) {
2908                         struct journal_completion crypt_comp;
2909                         crypt_comp.ic = ic;
2910                         init_completion(&crypt_comp.comp);
2911                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2912                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2913                         wait_for_completion(&crypt_comp.comp);
2914                 }
2915                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2916         }
2917
2918         if (dm_integrity_failed(ic))
2919                 goto clear_journal;
2920
2921         journal_empty = true;
2922         memset(used_commit_ids, 0, sizeof used_commit_ids);
2923         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2924         for (i = 0; i < ic->journal_sections; i++) {
2925                 for (j = 0; j < ic->journal_section_sectors; j++) {
2926                         int k;
2927                         struct journal_sector *js = access_journal(ic, i, j);
2928                         k = find_commit_seq(ic, i, j, js->commit_id);
2929                         if (k < 0)
2930                                 goto clear_journal;
2931                         used_commit_ids[k] = true;
2932                         max_commit_id_sections[k] = i;
2933                 }
2934                 if (journal_empty) {
2935                         for (j = 0; j < ic->journal_section_entries; j++) {
2936                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2937                                 if (!journal_entry_is_unused(je)) {
2938                                         journal_empty = false;
2939                                         break;
2940                                 }
2941                         }
2942                 }
2943         }
2944
2945         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2946                 unused = N_COMMIT_IDS - 1;
2947                 while (unused && !used_commit_ids[unused - 1])
2948                         unused--;
2949         } else {
2950                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2951                         if (!used_commit_ids[unused])
2952                                 break;
2953                 if (unused == N_COMMIT_IDS) {
2954                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2955                         goto clear_journal;
2956                 }
2957         }
2958         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2959                     unused, used_commit_ids[0], used_commit_ids[1],
2960                     used_commit_ids[2], used_commit_ids[3]);
2961
2962         last_used = prev_commit_seq(unused);
2963         want_commit_seq = prev_commit_seq(last_used);
2964
2965         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2966                 journal_empty = true;
2967
2968         write_start = max_commit_id_sections[last_used] + 1;
2969         if (unlikely(write_start >= ic->journal_sections))
2970                 want_commit_seq = next_commit_seq(want_commit_seq);
2971         wraparound_section(ic, &write_start);
2972
2973         i = write_start;
2974         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2975                 for (j = 0; j < ic->journal_section_sectors; j++) {
2976                         struct journal_sector *js = access_journal(ic, i, j);
2977
2978                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2979                                 /*
2980                                  * This could be caused by crash during writing.
2981                                  * We won't replay the inconsistent part of the
2982                                  * journal.
2983                                  */
2984                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2985                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2986                                 goto brk;
2987                         }
2988                 }
2989                 i++;
2990                 if (unlikely(i >= ic->journal_sections))
2991                         want_commit_seq = next_commit_seq(want_commit_seq);
2992                 wraparound_section(ic, &i);
2993         }
2994 brk:
2995
2996         if (!journal_empty) {
2997                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2998                             write_sections, write_start, want_commit_seq);
2999                 do_journal_write(ic, write_start, write_sections, true);
3000         }
3001
3002         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3003                 continue_section = write_start;
3004                 ic->commit_seq = want_commit_seq;
3005                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3006         } else {
3007                 unsigned s;
3008                 unsigned char erase_seq;
3009 clear_journal:
3010                 DEBUG_print("clearing journal\n");
3011
3012                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3013                 s = write_start;
3014                 init_journal(ic, s, 1, erase_seq);
3015                 s++;
3016                 wraparound_section(ic, &s);
3017                 if (ic->journal_sections >= 2) {
3018                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3019                         s += ic->journal_sections - 2;
3020                         wraparound_section(ic, &s);
3021                         init_journal(ic, s, 1, erase_seq);
3022                 }
3023
3024                 continue_section = 0;
3025                 ic->commit_seq = next_commit_seq(erase_seq);
3026         }
3027
3028         ic->committed_section = continue_section;
3029         ic->n_committed_sections = 0;
3030
3031         ic->uncommitted_section = continue_section;
3032         ic->n_uncommitted_sections = 0;
3033
3034         ic->free_section = continue_section;
3035         ic->free_section_entry = 0;
3036         ic->free_sectors = ic->journal_entries;
3037
3038         ic->journal_tree_root = RB_ROOT;
3039         for (i = 0; i < ic->journal_entries; i++)
3040                 init_journal_node(&ic->journal_tree[i]);
3041 }
3042
3043 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3044 {
3045         DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3046
3047         if (ic->mode == 'B') {
3048                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3049                 ic->synchronous_mode = 1;
3050
3051                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3052                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3053                 flush_workqueue(ic->commit_wq);
3054         }
3055 }
3056
3057 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3058 {
3059         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3060
3061         DEBUG_print("dm_integrity_reboot\n");
3062
3063         dm_integrity_enter_synchronous_mode(ic);
3064
3065         return NOTIFY_DONE;
3066 }
3067
3068 static void dm_integrity_postsuspend(struct dm_target *ti)
3069 {
3070         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3071         int r;
3072
3073         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3074
3075         del_timer_sync(&ic->autocommit_timer);
3076
3077         if (ic->recalc_wq)
3078                 drain_workqueue(ic->recalc_wq);
3079
3080         if (ic->mode == 'B')
3081                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3082
3083         queue_work(ic->commit_wq, &ic->commit_work);
3084         drain_workqueue(ic->commit_wq);
3085
3086         if (ic->mode == 'J') {
3087                 queue_work(ic->writer_wq, &ic->writer_work);
3088                 drain_workqueue(ic->writer_wq);
3089                 dm_integrity_flush_buffers(ic, true);
3090                 if (ic->wrote_to_journal) {
3091                         init_journal(ic, ic->free_section,
3092                                      ic->journal_sections - ic->free_section, ic->commit_seq);
3093                         if (ic->free_section) {
3094                                 init_journal(ic, 0, ic->free_section,
3095                                              next_commit_seq(ic->commit_seq));
3096                         }
3097                 }
3098         }
3099
3100         if (ic->mode == 'B') {
3101                 dm_integrity_flush_buffers(ic, true);
3102 #if 1
3103                 /* set to 0 to test bitmap replay code */
3104                 init_journal(ic, 0, ic->journal_sections, 0);
3105                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3106                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3107                 if (unlikely(r))
3108                         dm_integrity_io_error(ic, "writing superblock", r);
3109 #endif
3110         }
3111
3112         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3113
3114         ic->journal_uptodate = true;
3115 }
3116
3117 static void dm_integrity_resume(struct dm_target *ti)
3118 {
3119         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3120         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3121         int r;
3122
3123         DEBUG_print("resume\n");
3124
3125         ic->wrote_to_journal = false;
3126
3127         if (ic->provided_data_sectors != old_provided_data_sectors) {
3128                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3129                     ic->mode == 'B' &&
3130                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3131                         rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3132                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3133                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3134                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3135                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3136                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3137                 }
3138
3139                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3140                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3141                 if (unlikely(r))
3142                         dm_integrity_io_error(ic, "writing superblock", r);
3143         }
3144
3145         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3146                 DEBUG_print("resume dirty_bitmap\n");
3147                 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3148                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3149                 if (ic->mode == 'B') {
3150                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3151                             !ic->reset_recalculate_flag) {
3152                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3153                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3154                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3155                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3156                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3157                                         ic->sb->recalc_sector = cpu_to_le64(0);
3158                                 }
3159                         } else {
3160                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3161                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3162                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3163                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3164                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3165                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3166                                 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3167                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3168                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3169                                 ic->sb->recalc_sector = cpu_to_le64(0);
3170                         }
3171                 } else {
3172                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3173                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3174                             ic->reset_recalculate_flag) {
3175                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3176                                 ic->sb->recalc_sector = cpu_to_le64(0);
3177                         }
3178                         init_journal(ic, 0, ic->journal_sections, 0);
3179                         replay_journal(ic);
3180                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3181                 }
3182                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3183                 if (unlikely(r))
3184                         dm_integrity_io_error(ic, "writing superblock", r);
3185         } else {
3186                 replay_journal(ic);
3187                 if (ic->reset_recalculate_flag) {
3188                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3189                         ic->sb->recalc_sector = cpu_to_le64(0);
3190                 }
3191                 if (ic->mode == 'B') {
3192                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3193                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3194                         r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3195                         if (unlikely(r))
3196                                 dm_integrity_io_error(ic, "writing superblock", r);
3197
3198                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3199                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3200                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3201                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3202                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3203                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3204                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3205                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3206                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3207                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3208                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3209                         }
3210                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3211                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3212                 }
3213         }
3214
3215         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3216         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3217                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3218                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3219                 if (recalc_pos < ic->provided_data_sectors) {
3220                         queue_work(ic->recalc_wq, &ic->recalc_work);
3221                 } else if (recalc_pos > ic->provided_data_sectors) {
3222                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3223                         recalc_write_super(ic);
3224                 }
3225         }
3226
3227         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3228         ic->reboot_notifier.next = NULL;
3229         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3230         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3231
3232 #if 0
3233         /* set to 1 to stress test synchronous mode */
3234         dm_integrity_enter_synchronous_mode(ic);
3235 #endif
3236 }
3237
3238 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3239                                 unsigned status_flags, char *result, unsigned maxlen)
3240 {
3241         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3242         unsigned arg_count;
3243         size_t sz = 0;
3244
3245         switch (type) {
3246         case STATUSTYPE_INFO:
3247                 DMEMIT("%llu %llu",
3248                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3249                         ic->provided_data_sectors);
3250                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3251                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3252                 else
3253                         DMEMIT(" -");
3254                 break;
3255
3256         case STATUSTYPE_TABLE: {
3257                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3258                 watermark_percentage += ic->journal_entries / 2;
3259                 do_div(watermark_percentage, ic->journal_entries);
3260                 arg_count = 3;
3261                 arg_count += !!ic->meta_dev;
3262                 arg_count += ic->sectors_per_block != 1;
3263                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3264                 arg_count += ic->reset_recalculate_flag;
3265                 arg_count += ic->discard;
3266                 arg_count += ic->mode == 'J';
3267                 arg_count += ic->mode == 'J';
3268                 arg_count += ic->mode == 'B';
3269                 arg_count += ic->mode == 'B';
3270                 arg_count += !!ic->internal_hash_alg.alg_string;
3271                 arg_count += !!ic->journal_crypt_alg.alg_string;
3272                 arg_count += !!ic->journal_mac_alg.alg_string;
3273                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3274                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3275                 arg_count += ic->legacy_recalculate;
3276                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3277                        ic->tag_size, ic->mode, arg_count);
3278                 if (ic->meta_dev)
3279                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3280                 if (ic->sectors_per_block != 1)
3281                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3282                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3283                         DMEMIT(" recalculate");
3284                 if (ic->reset_recalculate_flag)
3285                         DMEMIT(" reset_recalculate");
3286                 if (ic->discard)
3287                         DMEMIT(" allow_discards");
3288                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3289                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3290                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3291                 if (ic->mode == 'J') {
3292                         DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3293                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3294                 }
3295                 if (ic->mode == 'B') {
3296                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3297                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3298                 }
3299                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3300                         DMEMIT(" fix_padding");
3301                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3302                         DMEMIT(" fix_hmac");
3303                 if (ic->legacy_recalculate)
3304                         DMEMIT(" legacy_recalculate");
3305
3306 #define EMIT_ALG(a, n)                                                  \
3307                 do {                                                    \
3308                         if (ic->a.alg_string) {                         \
3309                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3310                                 if (ic->a.key_string)                   \
3311                                         DMEMIT(":%s", ic->a.key_string);\
3312                         }                                               \
3313                 } while (0)
3314                 EMIT_ALG(internal_hash_alg, "internal_hash");
3315                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3316                 EMIT_ALG(journal_mac_alg, "journal_mac");
3317                 break;
3318         }
3319         case STATUSTYPE_IMA:
3320                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3321                 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3322                         ic->dev->name, ic->start, ic->tag_size, ic->mode);
3323
3324                 if (ic->meta_dev)
3325                         DMEMIT(",meta_device=%s", ic->meta_dev->name);
3326                 if (ic->sectors_per_block != 1)
3327                         DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3328
3329                 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3330                        'y' : 'n');
3331                 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3332                 DMEMIT(",fix_padding=%c",
3333                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3334                 DMEMIT(",fix_hmac=%c",
3335                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3336                 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3337
3338                 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3339                 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3340                 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3341                 DMEMIT(";");
3342                 break;
3343         }
3344 }
3345
3346 static int dm_integrity_iterate_devices(struct dm_target *ti,
3347                                         iterate_devices_callout_fn fn, void *data)
3348 {
3349         struct dm_integrity_c *ic = ti->private;
3350
3351         if (!ic->meta_dev)
3352                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3353         else
3354                 return fn(ti, ic->dev, 0, ti->len, data);
3355 }
3356
3357 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3358 {
3359         struct dm_integrity_c *ic = ti->private;
3360
3361         if (ic->sectors_per_block > 1) {
3362                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3363                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3364                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3365         }
3366 }
3367
3368 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3369 {
3370         unsigned sector_space = JOURNAL_SECTOR_DATA;
3371
3372         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3373         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3374                                          JOURNAL_ENTRY_ROUNDUP);
3375
3376         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3377                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3378         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3379         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3380         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3381         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3382 }
3383
3384 static int calculate_device_limits(struct dm_integrity_c *ic)
3385 {
3386         __u64 initial_sectors;
3387
3388         calculate_journal_section_size(ic);
3389         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3390         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3391                 return -EINVAL;
3392         ic->initial_sectors = initial_sectors;
3393
3394         if (!ic->meta_dev) {
3395                 sector_t last_sector, last_area, last_offset;
3396
3397                 /* we have to maintain excessive padding for compatibility with existing volumes */
3398                 __u64 metadata_run_padding =
3399                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3400                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3401                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3402
3403                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3404                                             metadata_run_padding) >> SECTOR_SHIFT;
3405                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3406                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3407                 else
3408                         ic->log2_metadata_run = -1;
3409
3410                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3411                 last_sector = get_data_sector(ic, last_area, last_offset);
3412                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3413                         return -EINVAL;
3414         } else {
3415                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3416                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3417                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3418                 meta_size <<= ic->log2_buffer_sectors;
3419                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3420                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3421                         return -EINVAL;
3422                 ic->metadata_run = 1;
3423                 ic->log2_metadata_run = 0;
3424         }
3425
3426         return 0;
3427 }
3428
3429 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3430 {
3431         if (!ic->meta_dev) {
3432                 int test_bit;
3433                 ic->provided_data_sectors = 0;
3434                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3435                         __u64 prev_data_sectors = ic->provided_data_sectors;
3436
3437                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3438                         if (calculate_device_limits(ic))
3439                                 ic->provided_data_sectors = prev_data_sectors;
3440                 }
3441         } else {
3442                 ic->provided_data_sectors = ic->data_device_sectors;
3443                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3444         }
3445 }
3446
3447 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3448 {
3449         unsigned journal_sections;
3450         int test_bit;
3451
3452         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3453         memcpy(ic->sb->magic, SB_MAGIC, 8);
3454         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3455         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3456         if (ic->journal_mac_alg.alg_string)
3457                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3458
3459         calculate_journal_section_size(ic);
3460         journal_sections = journal_sectors / ic->journal_section_sectors;
3461         if (!journal_sections)
3462                 journal_sections = 1;
3463
3464         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3465                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3466                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3467         }
3468
3469         if (!ic->meta_dev) {
3470                 if (ic->fix_padding)
3471                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3472                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3473                 if (!interleave_sectors)
3474                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3475                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3476                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3477                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3478
3479                 get_provided_data_sectors(ic);
3480                 if (!ic->provided_data_sectors)
3481                         return -EINVAL;
3482         } else {
3483                 ic->sb->log2_interleave_sectors = 0;
3484
3485                 get_provided_data_sectors(ic);
3486                 if (!ic->provided_data_sectors)
3487                         return -EINVAL;
3488
3489 try_smaller_buffer:
3490                 ic->sb->journal_sections = cpu_to_le32(0);
3491                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3492                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3493                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3494                         if (test_journal_sections > journal_sections)
3495                                 continue;
3496                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3497                         if (calculate_device_limits(ic))
3498                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3499
3500                 }
3501                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3502                         if (ic->log2_buffer_sectors > 3) {
3503                                 ic->log2_buffer_sectors--;
3504                                 goto try_smaller_buffer;
3505                         }
3506                         return -EINVAL;
3507                 }
3508         }
3509
3510         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3511
3512         sb_set_version(ic);
3513
3514         return 0;
3515 }
3516
3517 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3518 {
3519         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3520         struct blk_integrity bi;
3521
3522         memset(&bi, 0, sizeof(bi));
3523         bi.profile = &dm_integrity_profile;
3524         bi.tuple_size = ic->tag_size;
3525         bi.tag_size = bi.tuple_size;
3526         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3527
3528         blk_integrity_register(disk, &bi);
3529         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3530 }
3531
3532 static void dm_integrity_free_page_list(struct page_list *pl)
3533 {
3534         unsigned i;
3535
3536         if (!pl)
3537                 return;
3538         for (i = 0; pl[i].page; i++)
3539                 __free_page(pl[i].page);
3540         kvfree(pl);
3541 }
3542
3543 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3544 {
3545         struct page_list *pl;
3546         unsigned i;
3547
3548         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3549         if (!pl)
3550                 return NULL;
3551
3552         for (i = 0; i < n_pages; i++) {
3553                 pl[i].page = alloc_page(GFP_KERNEL);
3554                 if (!pl[i].page) {
3555                         dm_integrity_free_page_list(pl);
3556                         return NULL;
3557                 }
3558                 if (i)
3559                         pl[i - 1].next = &pl[i];
3560         }
3561         pl[i].page = NULL;
3562         pl[i].next = NULL;
3563
3564         return pl;
3565 }
3566
3567 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3568 {
3569         unsigned i;
3570         for (i = 0; i < ic->journal_sections; i++)
3571                 kvfree(sl[i]);
3572         kvfree(sl);
3573 }
3574
3575 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3576                                                                    struct page_list *pl)
3577 {
3578         struct scatterlist **sl;
3579         unsigned i;
3580
3581         sl = kvmalloc_array(ic->journal_sections,
3582                             sizeof(struct scatterlist *),
3583                             GFP_KERNEL | __GFP_ZERO);
3584         if (!sl)
3585                 return NULL;
3586
3587         for (i = 0; i < ic->journal_sections; i++) {
3588                 struct scatterlist *s;
3589                 unsigned start_index, start_offset;
3590                 unsigned end_index, end_offset;
3591                 unsigned n_pages;
3592                 unsigned idx;
3593
3594                 page_list_location(ic, i, 0, &start_index, &start_offset);
3595                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3596                                    &end_index, &end_offset);
3597
3598                 n_pages = (end_index - start_index + 1);
3599
3600                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3601                                    GFP_KERNEL);
3602                 if (!s) {
3603                         dm_integrity_free_journal_scatterlist(ic, sl);
3604                         return NULL;
3605                 }
3606
3607                 sg_init_table(s, n_pages);
3608                 for (idx = start_index; idx <= end_index; idx++) {
3609                         char *va = lowmem_page_address(pl[idx].page);
3610                         unsigned start = 0, end = PAGE_SIZE;
3611                         if (idx == start_index)
3612                                 start = start_offset;
3613                         if (idx == end_index)
3614                                 end = end_offset + (1 << SECTOR_SHIFT);
3615                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3616                 }
3617
3618                 sl[i] = s;
3619         }
3620
3621         return sl;
3622 }
3623
3624 static void free_alg(struct alg_spec *a)
3625 {
3626         kfree_sensitive(a->alg_string);
3627         kfree_sensitive(a->key);
3628         memset(a, 0, sizeof *a);
3629 }
3630
3631 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3632 {
3633         char *k;
3634
3635         free_alg(a);
3636
3637         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3638         if (!a->alg_string)
3639                 goto nomem;
3640
3641         k = strchr(a->alg_string, ':');
3642         if (k) {
3643                 *k = 0;
3644                 a->key_string = k + 1;
3645                 if (strlen(a->key_string) & 1)
3646                         goto inval;
3647
3648                 a->key_size = strlen(a->key_string) / 2;
3649                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3650                 if (!a->key)
3651                         goto nomem;
3652                 if (hex2bin(a->key, a->key_string, a->key_size))
3653                         goto inval;
3654         }
3655
3656         return 0;
3657 inval:
3658         *error = error_inval;
3659         return -EINVAL;
3660 nomem:
3661         *error = "Out of memory for an argument";
3662         return -ENOMEM;
3663 }
3664
3665 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3666                    char *error_alg, char *error_key)
3667 {
3668         int r;
3669
3670         if (a->alg_string) {
3671                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3672                 if (IS_ERR(*hash)) {
3673                         *error = error_alg;
3674                         r = PTR_ERR(*hash);
3675                         *hash = NULL;
3676                         return r;
3677                 }
3678
3679                 if (a->key) {
3680                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3681                         if (r) {
3682                                 *error = error_key;
3683                                 return r;
3684                         }
3685                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3686                         *error = error_key;
3687                         return -ENOKEY;
3688                 }
3689         }
3690
3691         return 0;
3692 }
3693
3694 static int create_journal(struct dm_integrity_c *ic, char **error)
3695 {
3696         int r = 0;
3697         unsigned i;
3698         __u64 journal_pages, journal_desc_size, journal_tree_size;
3699         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3700         struct skcipher_request *req = NULL;
3701
3702         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3703         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3704         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3705         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3706
3707         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3708                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3709         journal_desc_size = journal_pages * sizeof(struct page_list);
3710         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3711                 *error = "Journal doesn't fit into memory";
3712                 r = -ENOMEM;
3713                 goto bad;
3714         }
3715         ic->journal_pages = journal_pages;
3716
3717         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3718         if (!ic->journal) {
3719                 *error = "Could not allocate memory for journal";
3720                 r = -ENOMEM;
3721                 goto bad;
3722         }
3723         if (ic->journal_crypt_alg.alg_string) {
3724                 unsigned ivsize, blocksize;
3725                 struct journal_completion comp;
3726
3727                 comp.ic = ic;
3728                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3729                 if (IS_ERR(ic->journal_crypt)) {
3730                         *error = "Invalid journal cipher";
3731                         r = PTR_ERR(ic->journal_crypt);
3732                         ic->journal_crypt = NULL;
3733                         goto bad;
3734                 }
3735                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3736                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3737
3738                 if (ic->journal_crypt_alg.key) {
3739                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3740                                                    ic->journal_crypt_alg.key_size);
3741                         if (r) {
3742                                 *error = "Error setting encryption key";
3743                                 goto bad;
3744                         }
3745                 }
3746                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3747                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3748
3749                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3750                 if (!ic->journal_io) {
3751                         *error = "Could not allocate memory for journal io";
3752                         r = -ENOMEM;
3753                         goto bad;
3754                 }
3755
3756                 if (blocksize == 1) {
3757                         struct scatterlist *sg;
3758
3759                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3760                         if (!req) {
3761                                 *error = "Could not allocate crypt request";
3762                                 r = -ENOMEM;
3763                                 goto bad;
3764                         }
3765
3766                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3767                         if (!crypt_iv) {
3768                                 *error = "Could not allocate iv";
3769                                 r = -ENOMEM;
3770                                 goto bad;
3771                         }
3772
3773                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3774                         if (!ic->journal_xor) {
3775                                 *error = "Could not allocate memory for journal xor";
3776                                 r = -ENOMEM;
3777                                 goto bad;
3778                         }
3779
3780                         sg = kvmalloc_array(ic->journal_pages + 1,
3781                                             sizeof(struct scatterlist),
3782                                             GFP_KERNEL);
3783                         if (!sg) {
3784                                 *error = "Unable to allocate sg list";
3785                                 r = -ENOMEM;
3786                                 goto bad;
3787                         }
3788                         sg_init_table(sg, ic->journal_pages + 1);
3789                         for (i = 0; i < ic->journal_pages; i++) {
3790                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3791                                 clear_page(va);
3792                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3793                         }
3794                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3795
3796                         skcipher_request_set_crypt(req, sg, sg,
3797                                                    PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3798                         init_completion(&comp.comp);
3799                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3800                         if (do_crypt(true, req, &comp))
3801                                 wait_for_completion(&comp.comp);
3802                         kvfree(sg);
3803                         r = dm_integrity_failed(ic);
3804                         if (r) {
3805                                 *error = "Unable to encrypt journal";
3806                                 goto bad;
3807                         }
3808                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3809
3810                         crypto_free_skcipher(ic->journal_crypt);
3811                         ic->journal_crypt = NULL;
3812                 } else {
3813                         unsigned crypt_len = roundup(ivsize, blocksize);
3814
3815                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3816                         if (!req) {
3817                                 *error = "Could not allocate crypt request";
3818                                 r = -ENOMEM;
3819                                 goto bad;
3820                         }
3821
3822                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3823                         if (!crypt_iv) {
3824                                 *error = "Could not allocate iv";
3825                                 r = -ENOMEM;
3826                                 goto bad;
3827                         }
3828
3829                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3830                         if (!crypt_data) {
3831                                 *error = "Unable to allocate crypt data";
3832                                 r = -ENOMEM;
3833                                 goto bad;
3834                         }
3835
3836                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3837                         if (!ic->journal_scatterlist) {
3838                                 *error = "Unable to allocate sg list";
3839                                 r = -ENOMEM;
3840                                 goto bad;
3841                         }
3842                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3843                         if (!ic->journal_io_scatterlist) {
3844                                 *error = "Unable to allocate sg list";
3845                                 r = -ENOMEM;
3846                                 goto bad;
3847                         }
3848                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3849                                                          sizeof(struct skcipher_request *),
3850                                                          GFP_KERNEL | __GFP_ZERO);
3851                         if (!ic->sk_requests) {
3852                                 *error = "Unable to allocate sk requests";
3853                                 r = -ENOMEM;
3854                                 goto bad;
3855                         }
3856                         for (i = 0; i < ic->journal_sections; i++) {
3857                                 struct scatterlist sg;
3858                                 struct skcipher_request *section_req;
3859                                 __le32 section_le = cpu_to_le32(i);
3860
3861                                 memset(crypt_iv, 0x00, ivsize);
3862                                 memset(crypt_data, 0x00, crypt_len);
3863                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3864
3865                                 sg_init_one(&sg, crypt_data, crypt_len);
3866                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3867                                 init_completion(&comp.comp);
3868                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3869                                 if (do_crypt(true, req, &comp))
3870                                         wait_for_completion(&comp.comp);
3871
3872                                 r = dm_integrity_failed(ic);
3873                                 if (r) {
3874                                         *error = "Unable to generate iv";
3875                                         goto bad;
3876                                 }
3877
3878                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3879                                 if (!section_req) {
3880                                         *error = "Unable to allocate crypt request";
3881                                         r = -ENOMEM;
3882                                         goto bad;
3883                                 }
3884                                 section_req->iv = kmalloc_array(ivsize, 2,
3885                                                                 GFP_KERNEL);
3886                                 if (!section_req->iv) {
3887                                         skcipher_request_free(section_req);
3888                                         *error = "Unable to allocate iv";
3889                                         r = -ENOMEM;
3890                                         goto bad;
3891                                 }
3892                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3893                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3894                                 ic->sk_requests[i] = section_req;
3895                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3896                         }
3897                 }
3898         }
3899
3900         for (i = 0; i < N_COMMIT_IDS; i++) {
3901                 unsigned j;
3902 retest_commit_id:
3903                 for (j = 0; j < i; j++) {
3904                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3905                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3906                                 goto retest_commit_id;
3907                         }
3908                 }
3909                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3910         }
3911
3912         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3913         if (journal_tree_size > ULONG_MAX) {
3914                 *error = "Journal doesn't fit into memory";
3915                 r = -ENOMEM;
3916                 goto bad;
3917         }
3918         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3919         if (!ic->journal_tree) {
3920                 *error = "Could not allocate memory for journal tree";
3921                 r = -ENOMEM;
3922         }
3923 bad:
3924         kfree(crypt_data);
3925         kfree(crypt_iv);
3926         skcipher_request_free(req);
3927
3928         return r;
3929 }
3930
3931 /*
3932  * Construct a integrity mapping
3933  *
3934  * Arguments:
3935  *      device
3936  *      offset from the start of the device
3937  *      tag size
3938  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3939  *      number of optional arguments
3940  *      optional arguments:
3941  *              journal_sectors
3942  *              interleave_sectors
3943  *              buffer_sectors
3944  *              journal_watermark
3945  *              commit_time
3946  *              meta_device
3947  *              block_size
3948  *              sectors_per_bit
3949  *              bitmap_flush_interval
3950  *              internal_hash
3951  *              journal_crypt
3952  *              journal_mac
3953  *              recalculate
3954  */
3955 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3956 {
3957         struct dm_integrity_c *ic;
3958         char dummy;
3959         int r;
3960         unsigned extra_args;
3961         struct dm_arg_set as;
3962         static const struct dm_arg _args[] = {
3963                 {0, 18, "Invalid number of feature args"},
3964         };
3965         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3966         bool should_write_sb;
3967         __u64 threshold;
3968         unsigned long long start;
3969         __s8 log2_sectors_per_bitmap_bit = -1;
3970         __s8 log2_blocks_per_bitmap_bit;
3971         __u64 bits_in_journal;
3972         __u64 n_bitmap_bits;
3973
3974 #define DIRECT_ARGUMENTS        4
3975
3976         if (argc <= DIRECT_ARGUMENTS) {
3977                 ti->error = "Invalid argument count";
3978                 return -EINVAL;
3979         }
3980
3981         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3982         if (!ic) {
3983                 ti->error = "Cannot allocate integrity context";
3984                 return -ENOMEM;
3985         }
3986         ti->private = ic;
3987         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3988         ic->ti = ti;
3989
3990         ic->in_progress = RB_ROOT;
3991         INIT_LIST_HEAD(&ic->wait_list);
3992         init_waitqueue_head(&ic->endio_wait);
3993         bio_list_init(&ic->flush_bio_list);
3994         init_waitqueue_head(&ic->copy_to_journal_wait);
3995         init_completion(&ic->crypto_backoff);
3996         atomic64_set(&ic->number_of_mismatches, 0);
3997         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3998
3999         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4000         if (r) {
4001                 ti->error = "Device lookup failed";
4002                 goto bad;
4003         }
4004
4005         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4006                 ti->error = "Invalid starting offset";
4007                 r = -EINVAL;
4008                 goto bad;
4009         }
4010         ic->start = start;
4011
4012         if (strcmp(argv[2], "-")) {
4013                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4014                         ti->error = "Invalid tag size";
4015                         r = -EINVAL;
4016                         goto bad;
4017                 }
4018         }
4019
4020         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4021             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4022                 ic->mode = argv[3][0];
4023         } else {
4024                 ti->error = "Invalid mode (expecting J, B, D, R)";
4025                 r = -EINVAL;
4026                 goto bad;
4027         }
4028
4029         journal_sectors = 0;
4030         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4031         buffer_sectors = DEFAULT_BUFFER_SECTORS;
4032         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4033         sync_msec = DEFAULT_SYNC_MSEC;
4034         ic->sectors_per_block = 1;
4035
4036         as.argc = argc - DIRECT_ARGUMENTS;
4037         as.argv = argv + DIRECT_ARGUMENTS;
4038         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4039         if (r)
4040                 goto bad;
4041
4042         while (extra_args--) {
4043                 const char *opt_string;
4044                 unsigned val;
4045                 unsigned long long llval;
4046                 opt_string = dm_shift_arg(&as);
4047                 if (!opt_string) {
4048                         r = -EINVAL;
4049                         ti->error = "Not enough feature arguments";
4050                         goto bad;
4051                 }
4052                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4053                         journal_sectors = val ? val : 1;
4054                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4055                         interleave_sectors = val;
4056                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4057                         buffer_sectors = val;
4058                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4059                         journal_watermark = val;
4060                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4061                         sync_msec = val;
4062                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4063                         if (ic->meta_dev) {
4064                                 dm_put_device(ti, ic->meta_dev);
4065                                 ic->meta_dev = NULL;
4066                         }
4067                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4068                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4069                         if (r) {
4070                                 ti->error = "Device lookup failed";
4071                                 goto bad;
4072                         }
4073                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4074                         if (val < 1 << SECTOR_SHIFT ||
4075                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4076                             (val & (val -1))) {
4077                                 r = -EINVAL;
4078                                 ti->error = "Invalid block_size argument";
4079                                 goto bad;
4080                         }
4081                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4082                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4083                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4084                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4085                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4086                                 r = -EINVAL;
4087                                 ti->error = "Invalid bitmap_flush_interval argument";
4088                                 goto bad;
4089                         }
4090                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4091                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4092                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4093                                             "Invalid internal_hash argument");
4094                         if (r)
4095                                 goto bad;
4096                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4097                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4098                                             "Invalid journal_crypt argument");
4099                         if (r)
4100                                 goto bad;
4101                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4102                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4103                                             "Invalid journal_mac argument");
4104                         if (r)
4105                                 goto bad;
4106                 } else if (!strcmp(opt_string, "recalculate")) {
4107                         ic->recalculate_flag = true;
4108                 } else if (!strcmp(opt_string, "reset_recalculate")) {
4109                         ic->recalculate_flag = true;
4110                         ic->reset_recalculate_flag = true;
4111                 } else if (!strcmp(opt_string, "allow_discards")) {
4112                         ic->discard = true;
4113                 } else if (!strcmp(opt_string, "fix_padding")) {
4114                         ic->fix_padding = true;
4115                 } else if (!strcmp(opt_string, "fix_hmac")) {
4116                         ic->fix_hmac = true;
4117                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4118                         ic->legacy_recalculate = true;
4119                 } else {
4120                         r = -EINVAL;
4121                         ti->error = "Invalid argument";
4122                         goto bad;
4123                 }
4124         }
4125
4126         ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
4127         if (!ic->meta_dev)
4128                 ic->meta_device_sectors = ic->data_device_sectors;
4129         else
4130                 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
4131
4132         if (!journal_sectors) {
4133                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4134                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4135         }
4136
4137         if (!buffer_sectors)
4138                 buffer_sectors = 1;
4139         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4140
4141         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4142                     "Invalid internal hash", "Error setting internal hash key");
4143         if (r)
4144                 goto bad;
4145
4146         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4147                     "Invalid journal mac", "Error setting journal mac key");
4148         if (r)
4149                 goto bad;
4150
4151         if (!ic->tag_size) {
4152                 if (!ic->internal_hash) {
4153                         ti->error = "Unknown tag size";
4154                         r = -EINVAL;
4155                         goto bad;
4156                 }
4157                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4158         }
4159         if (ic->tag_size > MAX_TAG_SIZE) {
4160                 ti->error = "Too big tag size";
4161                 r = -EINVAL;
4162                 goto bad;
4163         }
4164         if (!(ic->tag_size & (ic->tag_size - 1)))
4165                 ic->log2_tag_size = __ffs(ic->tag_size);
4166         else
4167                 ic->log2_tag_size = -1;
4168
4169         if (ic->mode == 'B' && !ic->internal_hash) {
4170                 r = -EINVAL;
4171                 ti->error = "Bitmap mode can be only used with internal hash";
4172                 goto bad;
4173         }
4174
4175         if (ic->discard && !ic->internal_hash) {
4176                 r = -EINVAL;
4177                 ti->error = "Discard can be only used with internal hash";
4178                 goto bad;
4179         }
4180
4181         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4182         ic->autocommit_msec = sync_msec;
4183         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4184
4185         ic->io = dm_io_client_create();
4186         if (IS_ERR(ic->io)) {
4187                 r = PTR_ERR(ic->io);
4188                 ic->io = NULL;
4189                 ti->error = "Cannot allocate dm io";
4190                 goto bad;
4191         }
4192
4193         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4194         if (r) {
4195                 ti->error = "Cannot allocate mempool";
4196                 goto bad;
4197         }
4198
4199         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4200                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4201         if (!ic->metadata_wq) {
4202                 ti->error = "Cannot allocate workqueue";
4203                 r = -ENOMEM;
4204                 goto bad;
4205         }
4206
4207         /*
4208          * If this workqueue were percpu, it would cause bio reordering
4209          * and reduced performance.
4210          */
4211         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4212         if (!ic->wait_wq) {
4213                 ti->error = "Cannot allocate workqueue";
4214                 r = -ENOMEM;
4215                 goto bad;
4216         }
4217
4218         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4219                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4220         if (!ic->offload_wq) {
4221                 ti->error = "Cannot allocate workqueue";
4222                 r = -ENOMEM;
4223                 goto bad;
4224         }
4225
4226         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4227         if (!ic->commit_wq) {
4228                 ti->error = "Cannot allocate workqueue";
4229                 r = -ENOMEM;
4230                 goto bad;
4231         }
4232         INIT_WORK(&ic->commit_work, integrity_commit);
4233
4234         if (ic->mode == 'J' || ic->mode == 'B') {
4235                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4236                 if (!ic->writer_wq) {
4237                         ti->error = "Cannot allocate workqueue";
4238                         r = -ENOMEM;
4239                         goto bad;
4240                 }
4241                 INIT_WORK(&ic->writer_work, integrity_writer);
4242         }
4243
4244         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4245         if (!ic->sb) {
4246                 r = -ENOMEM;
4247                 ti->error = "Cannot allocate superblock area";
4248                 goto bad;
4249         }
4250
4251         r = sync_rw_sb(ic, REQ_OP_READ, 0);
4252         if (r) {
4253                 ti->error = "Error reading superblock";
4254                 goto bad;
4255         }
4256         should_write_sb = false;
4257         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4258                 if (ic->mode != 'R') {
4259                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4260                                 r = -EINVAL;
4261                                 ti->error = "The device is not initialized";
4262                                 goto bad;
4263                         }
4264                 }
4265
4266                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4267                 if (r) {
4268                         ti->error = "Could not initialize superblock";
4269                         goto bad;
4270                 }
4271                 if (ic->mode != 'R')
4272                         should_write_sb = true;
4273         }
4274
4275         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4276                 r = -EINVAL;
4277                 ti->error = "Unknown version";
4278                 goto bad;
4279         }
4280         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4281                 r = -EINVAL;
4282                 ti->error = "Tag size doesn't match the information in superblock";
4283                 goto bad;
4284         }
4285         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4286                 r = -EINVAL;
4287                 ti->error = "Block size doesn't match the information in superblock";
4288                 goto bad;
4289         }
4290         if (!le32_to_cpu(ic->sb->journal_sections)) {
4291                 r = -EINVAL;
4292                 ti->error = "Corrupted superblock, journal_sections is 0";
4293                 goto bad;
4294         }
4295         /* make sure that ti->max_io_len doesn't overflow */
4296         if (!ic->meta_dev) {
4297                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4298                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4299                         r = -EINVAL;
4300                         ti->error = "Invalid interleave_sectors in the superblock";
4301                         goto bad;
4302                 }
4303         } else {
4304                 if (ic->sb->log2_interleave_sectors) {
4305                         r = -EINVAL;
4306                         ti->error = "Invalid interleave_sectors in the superblock";
4307                         goto bad;
4308                 }
4309         }
4310         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4311                 r = -EINVAL;
4312                 ti->error = "Journal mac mismatch";
4313                 goto bad;
4314         }
4315
4316         get_provided_data_sectors(ic);
4317         if (!ic->provided_data_sectors) {
4318                 r = -EINVAL;
4319                 ti->error = "The device is too small";
4320                 goto bad;
4321         }
4322
4323 try_smaller_buffer:
4324         r = calculate_device_limits(ic);
4325         if (r) {
4326                 if (ic->meta_dev) {
4327                         if (ic->log2_buffer_sectors > 3) {
4328                                 ic->log2_buffer_sectors--;
4329                                 goto try_smaller_buffer;
4330                         }
4331                 }
4332                 ti->error = "The device is too small";
4333                 goto bad;
4334         }
4335
4336         if (log2_sectors_per_bitmap_bit < 0)
4337                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4338         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4339                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4340
4341         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4342         if (bits_in_journal > UINT_MAX)
4343                 bits_in_journal = UINT_MAX;
4344         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4345                 log2_sectors_per_bitmap_bit++;
4346
4347         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4348         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4349         if (should_write_sb) {
4350                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4351         }
4352         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4353                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4354         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4355
4356         if (!ic->meta_dev)
4357                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4358
4359         if (ti->len > ic->provided_data_sectors) {
4360                 r = -EINVAL;
4361                 ti->error = "Not enough provided sectors for requested mapping size";
4362                 goto bad;
4363         }
4364
4365
4366         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4367         threshold += 50;
4368         do_div(threshold, 100);
4369         ic->free_sectors_threshold = threshold;
4370
4371         DEBUG_print("initialized:\n");
4372         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4373         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4374         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4375         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4376         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4377         DEBUG_print("   journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4378         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4379         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4380         DEBUG_print("   data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4381         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4382         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4383         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4384         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4385         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4386         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4387
4388         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4389                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4390                 ic->sb->recalc_sector = cpu_to_le64(0);
4391         }
4392
4393         if (ic->internal_hash) {
4394                 size_t recalc_tags_size;
4395                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4396                 if (!ic->recalc_wq ) {
4397                         ti->error = "Cannot allocate workqueue";
4398                         r = -ENOMEM;
4399                         goto bad;
4400                 }
4401                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4402                 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4403                 if (!ic->recalc_buffer) {
4404                         ti->error = "Cannot allocate buffer for recalculating";
4405                         r = -ENOMEM;
4406                         goto bad;
4407                 }
4408                 recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4409                 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4410                         recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4411                 ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4412                 if (!ic->recalc_tags) {
4413                         ti->error = "Cannot allocate tags for recalculating";
4414                         r = -ENOMEM;
4415                         goto bad;
4416                 }
4417         } else {
4418                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4419                         ti->error = "Recalculate can only be specified with internal_hash";
4420                         r = -EINVAL;
4421                         goto bad;
4422                 }
4423         }
4424
4425         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4426             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4427             dm_integrity_disable_recalculate(ic)) {
4428                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4429                 r = -EOPNOTSUPP;
4430                 goto bad;
4431         }
4432
4433         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4434                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4435         if (IS_ERR(ic->bufio)) {
4436                 r = PTR_ERR(ic->bufio);
4437                 ti->error = "Cannot initialize dm-bufio";
4438                 ic->bufio = NULL;
4439                 goto bad;
4440         }
4441         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4442
4443         if (ic->mode != 'R') {
4444                 r = create_journal(ic, &ti->error);
4445                 if (r)
4446                         goto bad;
4447
4448         }
4449
4450         if (ic->mode == 'B') {
4451                 unsigned i;
4452                 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4453
4454                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4455                 if (!ic->recalc_bitmap) {
4456                         r = -ENOMEM;
4457                         goto bad;
4458                 }
4459                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4460                 if (!ic->may_write_bitmap) {
4461                         r = -ENOMEM;
4462                         goto bad;
4463                 }
4464                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4465                 if (!ic->bbs) {
4466                         r = -ENOMEM;
4467                         goto bad;
4468                 }
4469                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4470                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4471                         struct bitmap_block_status *bbs = &ic->bbs[i];
4472                         unsigned sector, pl_index, pl_offset;
4473
4474                         INIT_WORK(&bbs->work, bitmap_block_work);
4475                         bbs->ic = ic;
4476                         bbs->idx = i;
4477                         bio_list_init(&bbs->bio_queue);
4478                         spin_lock_init(&bbs->bio_queue_lock);
4479
4480                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4481                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4482                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4483
4484                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4485                 }
4486         }
4487
4488         if (should_write_sb) {
4489                 init_journal(ic, 0, ic->journal_sections, 0);
4490                 r = dm_integrity_failed(ic);
4491                 if (unlikely(r)) {
4492                         ti->error = "Error initializing journal";
4493                         goto bad;
4494                 }
4495                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4496                 if (r) {
4497                         ti->error = "Error initializing superblock";
4498                         goto bad;
4499                 }
4500                 ic->just_formatted = true;
4501         }
4502
4503         if (!ic->meta_dev) {
4504                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4505                 if (r)
4506                         goto bad;
4507         }
4508         if (ic->mode == 'B') {
4509                 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4510                 if (!max_io_len)
4511                         max_io_len = 1U << 31;
4512                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4513                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4514                         r = dm_set_target_max_io_len(ti, max_io_len);
4515                         if (r)
4516                                 goto bad;
4517                 }
4518         }
4519
4520         if (!ic->internal_hash)
4521                 dm_integrity_set(ti, ic);
4522
4523         ti->num_flush_bios = 1;
4524         ti->flush_supported = true;
4525         if (ic->discard)
4526                 ti->num_discard_bios = 1;
4527
4528         return 0;
4529
4530 bad:
4531         dm_integrity_dtr(ti);
4532         return r;
4533 }
4534
4535 static void dm_integrity_dtr(struct dm_target *ti)
4536 {
4537         struct dm_integrity_c *ic = ti->private;
4538
4539         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4540         BUG_ON(!list_empty(&ic->wait_list));
4541
4542         if (ic->mode == 'B')
4543                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4544         if (ic->metadata_wq)
4545                 destroy_workqueue(ic->metadata_wq);
4546         if (ic->wait_wq)
4547                 destroy_workqueue(ic->wait_wq);
4548         if (ic->offload_wq)
4549                 destroy_workqueue(ic->offload_wq);
4550         if (ic->commit_wq)
4551                 destroy_workqueue(ic->commit_wq);
4552         if (ic->writer_wq)
4553                 destroy_workqueue(ic->writer_wq);
4554         if (ic->recalc_wq)
4555                 destroy_workqueue(ic->recalc_wq);
4556         vfree(ic->recalc_buffer);
4557         kvfree(ic->recalc_tags);
4558         kvfree(ic->bbs);
4559         if (ic->bufio)
4560                 dm_bufio_client_destroy(ic->bufio);
4561         mempool_exit(&ic->journal_io_mempool);
4562         if (ic->io)
4563                 dm_io_client_destroy(ic->io);
4564         if (ic->dev)
4565                 dm_put_device(ti, ic->dev);
4566         if (ic->meta_dev)
4567                 dm_put_device(ti, ic->meta_dev);
4568         dm_integrity_free_page_list(ic->journal);
4569         dm_integrity_free_page_list(ic->journal_io);
4570         dm_integrity_free_page_list(ic->journal_xor);
4571         dm_integrity_free_page_list(ic->recalc_bitmap);
4572         dm_integrity_free_page_list(ic->may_write_bitmap);
4573         if (ic->journal_scatterlist)
4574                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4575         if (ic->journal_io_scatterlist)
4576                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4577         if (ic->sk_requests) {
4578                 unsigned i;
4579
4580                 for (i = 0; i < ic->journal_sections; i++) {
4581                         struct skcipher_request *req = ic->sk_requests[i];
4582                         if (req) {
4583                                 kfree_sensitive(req->iv);
4584                                 skcipher_request_free(req);
4585                         }
4586                 }
4587                 kvfree(ic->sk_requests);
4588         }
4589         kvfree(ic->journal_tree);
4590         if (ic->sb)
4591                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4592
4593         if (ic->internal_hash)
4594                 crypto_free_shash(ic->internal_hash);
4595         free_alg(&ic->internal_hash_alg);
4596
4597         if (ic->journal_crypt)
4598                 crypto_free_skcipher(ic->journal_crypt);
4599         free_alg(&ic->journal_crypt_alg);
4600
4601         if (ic->journal_mac)
4602                 crypto_free_shash(ic->journal_mac);
4603         free_alg(&ic->journal_mac_alg);
4604
4605         kfree(ic);
4606 }
4607
4608 static struct target_type integrity_target = {
4609         .name                   = "integrity",
4610         .version                = {1, 10, 0},
4611         .module                 = THIS_MODULE,
4612         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4613         .ctr                    = dm_integrity_ctr,
4614         .dtr                    = dm_integrity_dtr,
4615         .map                    = dm_integrity_map,
4616         .postsuspend            = dm_integrity_postsuspend,
4617         .resume                 = dm_integrity_resume,
4618         .status                 = dm_integrity_status,
4619         .iterate_devices        = dm_integrity_iterate_devices,
4620         .io_hints               = dm_integrity_io_hints,
4621 };
4622
4623 static int __init dm_integrity_init(void)
4624 {
4625         int r;
4626
4627         journal_io_cache = kmem_cache_create("integrity_journal_io",
4628                                              sizeof(struct journal_io), 0, 0, NULL);
4629         if (!journal_io_cache) {
4630                 DMERR("can't allocate journal io cache");
4631                 return -ENOMEM;
4632         }
4633
4634         r = dm_register_target(&integrity_target);
4635
4636         if (r < 0)
4637                 DMERR("register failed %d", r);
4638
4639         return r;
4640 }
4641
4642 static void __exit dm_integrity_exit(void)
4643 {
4644         dm_unregister_target(&integrity_target);
4645         kmem_cache_destroy(journal_io_cache);
4646 }
4647
4648 module_init(dm_integrity_init);
4649 module_exit(dm_integrity_exit);
4650
4651 MODULE_AUTHOR("Milan Broz");
4652 MODULE_AUTHOR("Mikulas Patocka");
4653 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4654 MODULE_LICENSE("GPL");