drm/vc4: Drop planes that have 0 destination size
[platform/kernel/linux-rpi.git] / drivers / md / dm-delay.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2005-2007 Red Hat GmbH
4  *
5  * A target that delays reads and/or writes and can send
6  * them to different devices.
7  *
8  * This file is released under the GPL.
9  */
10
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/blkdev.h>
14 #include <linux/bio.h>
15 #include <linux/slab.h>
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "delay"
20
21 struct delay_class {
22         struct dm_dev *dev;
23         sector_t start;
24         unsigned int delay;
25         unsigned int ops;
26 };
27
28 struct delay_c {
29         struct timer_list delay_timer;
30         struct mutex timer_lock;
31         struct workqueue_struct *kdelayd_wq;
32         struct work_struct flush_expired_bios;
33         struct list_head delayed_bios;
34         bool may_delay;
35
36         struct delay_class read;
37         struct delay_class write;
38         struct delay_class flush;
39
40         int argc;
41 };
42
43 struct dm_delay_info {
44         struct delay_c *context;
45         struct delay_class *class;
46         struct list_head list;
47         unsigned long expires;
48 };
49
50 static DEFINE_MUTEX(delayed_bios_lock);
51
52 static void handle_delayed_timer(struct timer_list *t)
53 {
54         struct delay_c *dc = from_timer(dc, t, delay_timer);
55
56         queue_work(dc->kdelayd_wq, &dc->flush_expired_bios);
57 }
58
59 static void queue_timeout(struct delay_c *dc, unsigned long expires)
60 {
61         mutex_lock(&dc->timer_lock);
62
63         if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
64                 mod_timer(&dc->delay_timer, expires);
65
66         mutex_unlock(&dc->timer_lock);
67 }
68
69 static void flush_bios(struct bio *bio)
70 {
71         struct bio *n;
72
73         while (bio) {
74                 n = bio->bi_next;
75                 bio->bi_next = NULL;
76                 dm_submit_bio_remap(bio, NULL);
77                 bio = n;
78         }
79 }
80
81 static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all)
82 {
83         struct dm_delay_info *delayed, *next;
84         unsigned long next_expires = 0;
85         unsigned long start_timer = 0;
86         struct bio_list flush_bios = { };
87
88         mutex_lock(&delayed_bios_lock);
89         list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
90                 if (flush_all || time_after_eq(jiffies, delayed->expires)) {
91                         struct bio *bio = dm_bio_from_per_bio_data(delayed,
92                                                 sizeof(struct dm_delay_info));
93                         list_del(&delayed->list);
94                         bio_list_add(&flush_bios, bio);
95                         delayed->class->ops--;
96                         continue;
97                 }
98
99                 if (!start_timer) {
100                         start_timer = 1;
101                         next_expires = delayed->expires;
102                 } else
103                         next_expires = min(next_expires, delayed->expires);
104         }
105         mutex_unlock(&delayed_bios_lock);
106
107         if (start_timer)
108                 queue_timeout(dc, next_expires);
109
110         return bio_list_get(&flush_bios);
111 }
112
113 static void flush_expired_bios(struct work_struct *work)
114 {
115         struct delay_c *dc;
116
117         dc = container_of(work, struct delay_c, flush_expired_bios);
118         flush_bios(flush_delayed_bios(dc, 0));
119 }
120
121 static void delay_dtr(struct dm_target *ti)
122 {
123         struct delay_c *dc = ti->private;
124
125         if (dc->kdelayd_wq)
126                 destroy_workqueue(dc->kdelayd_wq);
127
128         if (dc->read.dev)
129                 dm_put_device(ti, dc->read.dev);
130         if (dc->write.dev)
131                 dm_put_device(ti, dc->write.dev);
132         if (dc->flush.dev)
133                 dm_put_device(ti, dc->flush.dev);
134
135         mutex_destroy(&dc->timer_lock);
136
137         kfree(dc);
138 }
139
140 static int delay_class_ctr(struct dm_target *ti, struct delay_class *c, char **argv)
141 {
142         int ret;
143         unsigned long long tmpll;
144         char dummy;
145
146         if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
147                 ti->error = "Invalid device sector";
148                 return -EINVAL;
149         }
150         c->start = tmpll;
151
152         if (sscanf(argv[2], "%u%c", &c->delay, &dummy) != 1) {
153                 ti->error = "Invalid delay";
154                 return -EINVAL;
155         }
156
157         ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &c->dev);
158         if (ret) {
159                 ti->error = "Device lookup failed";
160                 return ret;
161         }
162
163         return 0;
164 }
165
166 /*
167  * Mapping parameters:
168  *    <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
169  *
170  * With separate write parameters, the first set is only used for reads.
171  * Offsets are specified in sectors.
172  * Delays are specified in milliseconds.
173  */
174 static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
175 {
176         struct delay_c *dc;
177         int ret;
178
179         if (argc != 3 && argc != 6 && argc != 9) {
180                 ti->error = "Requires exactly 3, 6 or 9 arguments";
181                 return -EINVAL;
182         }
183
184         dc = kzalloc(sizeof(*dc), GFP_KERNEL);
185         if (!dc) {
186                 ti->error = "Cannot allocate context";
187                 return -ENOMEM;
188         }
189
190         ti->private = dc;
191         timer_setup(&dc->delay_timer, handle_delayed_timer, 0);
192         INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
193         INIT_LIST_HEAD(&dc->delayed_bios);
194         mutex_init(&dc->timer_lock);
195         dc->may_delay = true;
196         dc->argc = argc;
197
198         ret = delay_class_ctr(ti, &dc->read, argv);
199         if (ret)
200                 goto bad;
201
202         if (argc == 3) {
203                 ret = delay_class_ctr(ti, &dc->write, argv);
204                 if (ret)
205                         goto bad;
206                 ret = delay_class_ctr(ti, &dc->flush, argv);
207                 if (ret)
208                         goto bad;
209                 goto out;
210         }
211
212         ret = delay_class_ctr(ti, &dc->write, argv + 3);
213         if (ret)
214                 goto bad;
215         if (argc == 6) {
216                 ret = delay_class_ctr(ti, &dc->flush, argv + 3);
217                 if (ret)
218                         goto bad;
219                 goto out;
220         }
221
222         ret = delay_class_ctr(ti, &dc->flush, argv + 6);
223         if (ret)
224                 goto bad;
225
226 out:
227         dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
228         if (!dc->kdelayd_wq) {
229                 ret = -EINVAL;
230                 DMERR("Couldn't start kdelayd");
231                 goto bad;
232         }
233
234         ti->num_flush_bios = 1;
235         ti->num_discard_bios = 1;
236         ti->accounts_remapped_io = true;
237         ti->per_io_data_size = sizeof(struct dm_delay_info);
238         return 0;
239
240 bad:
241         delay_dtr(ti);
242         return ret;
243 }
244
245 static int delay_bio(struct delay_c *dc, struct delay_class *c, struct bio *bio)
246 {
247         struct dm_delay_info *delayed;
248         unsigned long expires = 0;
249
250         if (!c->delay)
251                 return DM_MAPIO_REMAPPED;
252
253         delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
254
255         delayed->context = dc;
256         delayed->expires = expires = jiffies + msecs_to_jiffies(c->delay);
257
258         mutex_lock(&delayed_bios_lock);
259         if (unlikely(!dc->may_delay)) {
260                 mutex_unlock(&delayed_bios_lock);
261                 return DM_MAPIO_REMAPPED;
262         }
263         c->ops++;
264         list_add_tail(&delayed->list, &dc->delayed_bios);
265         mutex_unlock(&delayed_bios_lock);
266
267         queue_timeout(dc, expires);
268
269         return DM_MAPIO_SUBMITTED;
270 }
271
272 static void delay_presuspend(struct dm_target *ti)
273 {
274         struct delay_c *dc = ti->private;
275
276         mutex_lock(&delayed_bios_lock);
277         dc->may_delay = false;
278         mutex_unlock(&delayed_bios_lock);
279
280         del_timer_sync(&dc->delay_timer);
281         flush_bios(flush_delayed_bios(dc, 1));
282 }
283
284 static void delay_resume(struct dm_target *ti)
285 {
286         struct delay_c *dc = ti->private;
287
288         dc->may_delay = true;
289 }
290
291 static int delay_map(struct dm_target *ti, struct bio *bio)
292 {
293         struct delay_c *dc = ti->private;
294         struct delay_class *c;
295         struct dm_delay_info *delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
296
297         if (bio_data_dir(bio) == WRITE) {
298                 if (unlikely(bio->bi_opf & REQ_PREFLUSH))
299                         c = &dc->flush;
300                 else
301                         c = &dc->write;
302         } else {
303                 c = &dc->read;
304         }
305         delayed->class = c;
306         bio_set_dev(bio, c->dev->bdev);
307         bio->bi_iter.bi_sector = c->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
308
309         return delay_bio(dc, c, bio);
310 }
311
312 #define DMEMIT_DELAY_CLASS(c) \
313         DMEMIT("%s %llu %u", (c)->dev->name, (unsigned long long)(c)->start, (c)->delay)
314
315 static void delay_status(struct dm_target *ti, status_type_t type,
316                          unsigned int status_flags, char *result, unsigned int maxlen)
317 {
318         struct delay_c *dc = ti->private;
319         int sz = 0;
320
321         switch (type) {
322         case STATUSTYPE_INFO:
323                 DMEMIT("%u %u %u", dc->read.ops, dc->write.ops, dc->flush.ops);
324                 break;
325
326         case STATUSTYPE_TABLE:
327                 DMEMIT_DELAY_CLASS(&dc->read);
328                 if (dc->argc >= 6) {
329                         DMEMIT(" ");
330                         DMEMIT_DELAY_CLASS(&dc->write);
331                 }
332                 if (dc->argc >= 9) {
333                         DMEMIT(" ");
334                         DMEMIT_DELAY_CLASS(&dc->flush);
335                 }
336                 break;
337
338         case STATUSTYPE_IMA:
339                 *result = '\0';
340                 break;
341         }
342 }
343
344 static int delay_iterate_devices(struct dm_target *ti,
345                                  iterate_devices_callout_fn fn, void *data)
346 {
347         struct delay_c *dc = ti->private;
348         int ret = 0;
349
350         ret = fn(ti, dc->read.dev, dc->read.start, ti->len, data);
351         if (ret)
352                 goto out;
353         ret = fn(ti, dc->write.dev, dc->write.start, ti->len, data);
354         if (ret)
355                 goto out;
356         ret = fn(ti, dc->flush.dev, dc->flush.start, ti->len, data);
357         if (ret)
358                 goto out;
359
360 out:
361         return ret;
362 }
363
364 static struct target_type delay_target = {
365         .name        = "delay",
366         .version     = {1, 3, 0},
367         .features    = DM_TARGET_PASSES_INTEGRITY,
368         .module      = THIS_MODULE,
369         .ctr         = delay_ctr,
370         .dtr         = delay_dtr,
371         .map         = delay_map,
372         .presuspend  = delay_presuspend,
373         .resume      = delay_resume,
374         .status      = delay_status,
375         .iterate_devices = delay_iterate_devices,
376 };
377 module_dm(delay);
378
379 MODULE_DESCRIPTION(DM_NAME " delay target");
380 MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
381 MODULE_LICENSE("GPL");