2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <linux/key-type.h>
38 #include <keys/user-type.h>
39 #include <keys/encrypted-type.h>
40 #include <keys/trusted-type.h>
42 #include <linux/device-mapper.h>
44 #define DM_MSG_PREFIX "crypt"
47 * context holding the current state of a multi-part conversion
49 struct convert_context {
50 struct completion restart;
53 struct bvec_iter iter_in;
54 struct bvec_iter iter_out;
58 struct skcipher_request *req;
59 struct aead_request *req_aead;
65 * per bio private data
68 struct crypt_config *cc;
70 u8 *integrity_metadata;
71 bool integrity_metadata_from_pool;
72 struct work_struct work;
73 struct tasklet_struct tasklet;
75 struct convert_context ctx;
81 struct rb_node rb_node;
82 } CRYPTO_MINALIGN_ATTR;
84 struct dm_crypt_request {
85 struct convert_context *ctx;
86 struct scatterlist sg_in[4];
87 struct scatterlist sg_out[4];
93 struct crypt_iv_operations {
94 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
96 void (*dtr)(struct crypt_config *cc);
97 int (*init)(struct crypt_config *cc);
98 int (*wipe)(struct crypt_config *cc);
99 int (*generator)(struct crypt_config *cc, u8 *iv,
100 struct dm_crypt_request *dmreq);
101 int (*post)(struct crypt_config *cc, u8 *iv,
102 struct dm_crypt_request *dmreq);
105 struct iv_benbi_private {
109 #define LMK_SEED_SIZE 64 /* hash + 0 */
110 struct iv_lmk_private {
111 struct crypto_shash *hash_tfm;
115 #define TCW_WHITENING_SIZE 16
116 struct iv_tcw_private {
117 struct crypto_shash *crc32_tfm;
122 #define ELEPHANT_MAX_KEY_SIZE 32
123 struct iv_elephant_private {
124 struct crypto_skcipher *tfm;
128 * Crypt: maps a linear range of a block device
129 * and encrypts / decrypts at the same time.
131 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
132 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
133 DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
134 DM_CRYPT_WRITE_INLINE };
137 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
138 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
139 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
143 * The fields in here must be read only after initialization.
145 struct crypt_config {
149 struct percpu_counter n_allocated_pages;
151 struct workqueue_struct *io_queue;
152 struct workqueue_struct *crypt_queue;
154 spinlock_t write_thread_lock;
155 struct task_struct *write_thread;
156 struct rb_root write_tree;
162 const struct crypt_iv_operations *iv_gen_ops;
164 struct iv_benbi_private benbi;
165 struct iv_lmk_private lmk;
166 struct iv_tcw_private tcw;
167 struct iv_elephant_private elephant;
170 unsigned int iv_size;
171 unsigned short int sector_size;
172 unsigned char sector_shift;
175 struct crypto_skcipher **tfms;
176 struct crypto_aead **tfms_aead;
179 unsigned long cipher_flags;
182 * Layout of each crypto request:
184 * struct skcipher_request
187 * struct dm_crypt_request
191 * The padding is added so that dm_crypt_request and the IV are
194 unsigned int dmreq_start;
196 unsigned int per_bio_data_size;
199 unsigned int key_size;
200 unsigned int key_parts; /* independent parts in key buffer */
201 unsigned int key_extra_size; /* additional keys length */
202 unsigned int key_mac_size; /* MAC key size for authenc(...) */
204 unsigned int integrity_tag_size;
205 unsigned int integrity_iv_size;
206 unsigned int on_disk_tag_size;
209 * pool for per bio private data, crypto requests,
210 * encryption requeusts/buffer pages and integrity tags
212 unsigned tag_pool_max_sectors;
218 struct mutex bio_alloc_lock;
220 u8 *authenc_key; /* space for keys in authenc() format (if used) */
225 #define MAX_TAG_SIZE 480
226 #define POOL_ENTRY_SIZE 512
228 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
229 static unsigned dm_crypt_clients_n = 0;
230 static volatile unsigned long dm_crypt_pages_per_client;
231 #define DM_CRYPT_MEMORY_PERCENT 2
232 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
234 static void clone_init(struct dm_crypt_io *, struct bio *);
235 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
236 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
237 struct scatterlist *sg);
239 static bool crypt_integrity_aead(struct crypt_config *cc);
242 * Use this to access cipher attributes that are independent of the key.
244 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
246 return cc->cipher_tfm.tfms[0];
249 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
251 return cc->cipher_tfm.tfms_aead[0];
255 * Different IV generation algorithms:
257 * plain: the initial vector is the 32-bit little-endian version of the sector
258 * number, padded with zeros if necessary.
260 * plain64: the initial vector is the 64-bit little-endian version of the sector
261 * number, padded with zeros if necessary.
263 * plain64be: the initial vector is the 64-bit big-endian version of the sector
264 * number, padded with zeros if necessary.
266 * essiv: "encrypted sector|salt initial vector", the sector number is
267 * encrypted with the bulk cipher using a salt as key. The salt
268 * should be derived from the bulk cipher's key via hashing.
270 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
271 * (needed for LRW-32-AES and possible other narrow block modes)
273 * null: the initial vector is always zero. Provides compatibility with
274 * obsolete loop_fish2 devices. Do not use for new devices.
276 * lmk: Compatible implementation of the block chaining mode used
277 * by the Loop-AES block device encryption system
278 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
279 * It operates on full 512 byte sectors and uses CBC
280 * with an IV derived from the sector number, the data and
281 * optionally extra IV seed.
282 * This means that after decryption the first block
283 * of sector must be tweaked according to decrypted data.
284 * Loop-AES can use three encryption schemes:
285 * version 1: is plain aes-cbc mode
286 * version 2: uses 64 multikey scheme with lmk IV generator
287 * version 3: the same as version 2 with additional IV seed
288 * (it uses 65 keys, last key is used as IV seed)
290 * tcw: Compatible implementation of the block chaining mode used
291 * by the TrueCrypt device encryption system (prior to version 4.1).
292 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
293 * It operates on full 512 byte sectors and uses CBC
294 * with an IV derived from initial key and the sector number.
295 * In addition, whitening value is applied on every sector, whitening
296 * is calculated from initial key, sector number and mixed using CRC32.
297 * Note that this encryption scheme is vulnerable to watermarking attacks
298 * and should be used for old compatible containers access only.
300 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
301 * The IV is encrypted little-endian byte-offset (with the same key
302 * and cipher as the volume).
304 * elephant: The extended version of eboiv with additional Elephant diffuser
305 * used with Bitlocker CBC mode.
306 * This mode was used in older Windows systems
307 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
310 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
311 struct dm_crypt_request *dmreq)
313 memset(iv, 0, cc->iv_size);
314 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
319 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
320 struct dm_crypt_request *dmreq)
322 memset(iv, 0, cc->iv_size);
323 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
328 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
329 struct dm_crypt_request *dmreq)
331 memset(iv, 0, cc->iv_size);
332 /* iv_size is at least of size u64; usually it is 16 bytes */
333 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
338 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
339 struct dm_crypt_request *dmreq)
342 * ESSIV encryption of the IV is now handled by the crypto API,
343 * so just pass the plain sector number here.
345 memset(iv, 0, cc->iv_size);
346 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
351 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
357 if (crypt_integrity_aead(cc))
358 bs = crypto_aead_blocksize(any_tfm_aead(cc));
360 bs = crypto_skcipher_blocksize(any_tfm(cc));
363 /* we need to calculate how far we must shift the sector count
364 * to get the cipher block count, we use this shift in _gen */
366 if (1 << log != bs) {
367 ti->error = "cypher blocksize is not a power of 2";
372 ti->error = "cypher blocksize is > 512";
376 cc->iv_gen_private.benbi.shift = 9 - log;
381 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
385 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
386 struct dm_crypt_request *dmreq)
390 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
392 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
393 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
398 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
399 struct dm_crypt_request *dmreq)
401 memset(iv, 0, cc->iv_size);
406 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
408 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
410 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
411 crypto_free_shash(lmk->hash_tfm);
412 lmk->hash_tfm = NULL;
414 kfree_sensitive(lmk->seed);
418 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
421 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
423 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
424 ti->error = "Unsupported sector size for LMK";
428 lmk->hash_tfm = crypto_alloc_shash("md5", 0,
429 CRYPTO_ALG_ALLOCATES_MEMORY);
430 if (IS_ERR(lmk->hash_tfm)) {
431 ti->error = "Error initializing LMK hash";
432 return PTR_ERR(lmk->hash_tfm);
435 /* No seed in LMK version 2 */
436 if (cc->key_parts == cc->tfms_count) {
441 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
443 crypt_iv_lmk_dtr(cc);
444 ti->error = "Error kmallocing seed storage in LMK";
451 static int crypt_iv_lmk_init(struct crypt_config *cc)
453 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
454 int subkey_size = cc->key_size / cc->key_parts;
456 /* LMK seed is on the position of LMK_KEYS + 1 key */
458 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
459 crypto_shash_digestsize(lmk->hash_tfm));
464 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
466 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
469 memset(lmk->seed, 0, LMK_SEED_SIZE);
474 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
475 struct dm_crypt_request *dmreq,
478 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
479 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
480 struct md5_state md5state;
484 desc->tfm = lmk->hash_tfm;
486 r = crypto_shash_init(desc);
491 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
496 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
497 r = crypto_shash_update(desc, data + 16, 16 * 31);
501 /* Sector is cropped to 56 bits here */
502 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
503 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
504 buf[2] = cpu_to_le32(4024);
506 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
510 /* No MD5 padding here */
511 r = crypto_shash_export(desc, &md5state);
515 for (i = 0; i < MD5_HASH_WORDS; i++)
516 __cpu_to_le32s(&md5state.hash[i]);
517 memcpy(iv, &md5state.hash, cc->iv_size);
522 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
523 struct dm_crypt_request *dmreq)
525 struct scatterlist *sg;
529 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
530 sg = crypt_get_sg_data(cc, dmreq->sg_in);
531 src = kmap_atomic(sg_page(sg));
532 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
535 memset(iv, 0, cc->iv_size);
540 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
541 struct dm_crypt_request *dmreq)
543 struct scatterlist *sg;
547 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
550 sg = crypt_get_sg_data(cc, dmreq->sg_out);
551 dst = kmap_atomic(sg_page(sg));
552 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
554 /* Tweak the first block of plaintext sector */
556 crypto_xor(dst + sg->offset, iv, cc->iv_size);
562 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
564 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
566 kfree_sensitive(tcw->iv_seed);
568 kfree_sensitive(tcw->whitening);
569 tcw->whitening = NULL;
571 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
572 crypto_free_shash(tcw->crc32_tfm);
573 tcw->crc32_tfm = NULL;
576 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
579 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
581 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
582 ti->error = "Unsupported sector size for TCW";
586 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
587 ti->error = "Wrong key size for TCW";
591 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
592 CRYPTO_ALG_ALLOCATES_MEMORY);
593 if (IS_ERR(tcw->crc32_tfm)) {
594 ti->error = "Error initializing CRC32 in TCW";
595 return PTR_ERR(tcw->crc32_tfm);
598 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
599 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
600 if (!tcw->iv_seed || !tcw->whitening) {
601 crypt_iv_tcw_dtr(cc);
602 ti->error = "Error allocating seed storage in TCW";
609 static int crypt_iv_tcw_init(struct crypt_config *cc)
611 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
612 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
614 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
615 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
621 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
623 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
625 memset(tcw->iv_seed, 0, cc->iv_size);
626 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
631 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
632 struct dm_crypt_request *dmreq,
635 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
636 __le64 sector = cpu_to_le64(dmreq->iv_sector);
637 u8 buf[TCW_WHITENING_SIZE];
638 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
641 /* xor whitening with sector number */
642 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8);
643 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8);
645 /* calculate crc32 for every 32bit part and xor it */
646 desc->tfm = tcw->crc32_tfm;
647 for (i = 0; i < 4; i++) {
648 r = crypto_shash_init(desc);
651 r = crypto_shash_update(desc, &buf[i * 4], 4);
654 r = crypto_shash_final(desc, &buf[i * 4]);
658 crypto_xor(&buf[0], &buf[12], 4);
659 crypto_xor(&buf[4], &buf[8], 4);
661 /* apply whitening (8 bytes) to whole sector */
662 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
663 crypto_xor(data + i * 8, buf, 8);
665 memzero_explicit(buf, sizeof(buf));
669 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
670 struct dm_crypt_request *dmreq)
672 struct scatterlist *sg;
673 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
674 __le64 sector = cpu_to_le64(dmreq->iv_sector);
678 /* Remove whitening from ciphertext */
679 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
680 sg = crypt_get_sg_data(cc, dmreq->sg_in);
681 src = kmap_atomic(sg_page(sg));
682 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
687 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8);
689 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or,
695 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
696 struct dm_crypt_request *dmreq)
698 struct scatterlist *sg;
702 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
705 /* Apply whitening on ciphertext */
706 sg = crypt_get_sg_data(cc, dmreq->sg_out);
707 dst = kmap_atomic(sg_page(sg));
708 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
714 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
715 struct dm_crypt_request *dmreq)
717 /* Used only for writes, there must be an additional space to store IV */
718 get_random_bytes(iv, cc->iv_size);
722 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
725 if (crypt_integrity_aead(cc)) {
726 ti->error = "AEAD transforms not supported for EBOIV";
730 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
731 ti->error = "Block size of EBOIV cipher does "
732 "not match IV size of block cipher";
739 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
740 struct dm_crypt_request *dmreq)
742 u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
743 struct skcipher_request *req;
744 struct scatterlist src, dst;
745 DECLARE_CRYPTO_WAIT(wait);
748 req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
752 memset(buf, 0, cc->iv_size);
753 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
755 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
756 sg_init_one(&dst, iv, cc->iv_size);
757 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
758 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
759 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
760 skcipher_request_free(req);
765 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
767 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
769 crypto_free_skcipher(elephant->tfm);
770 elephant->tfm = NULL;
773 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
776 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
779 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
780 CRYPTO_ALG_ALLOCATES_MEMORY);
781 if (IS_ERR(elephant->tfm)) {
782 r = PTR_ERR(elephant->tfm);
783 elephant->tfm = NULL;
787 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
789 crypt_iv_elephant_dtr(cc);
793 static void diffuser_disk_to_cpu(u32 *d, size_t n)
795 #ifndef __LITTLE_ENDIAN
798 for (i = 0; i < n; i++)
799 d[i] = le32_to_cpu((__le32)d[i]);
803 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
805 #ifndef __LITTLE_ENDIAN
808 for (i = 0; i < n; i++)
809 d[i] = cpu_to_le32((u32)d[i]);
813 static void diffuser_a_decrypt(u32 *d, size_t n)
817 for (i = 0; i < 5; i++) {
822 while (i1 < (n - 1)) {
823 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
829 d[i1] += d[i2] ^ d[i3];
835 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
838 d[i1] += d[i2] ^ d[i3];
844 static void diffuser_a_encrypt(u32 *d, size_t n)
848 for (i = 0; i < 5; i++) {
854 d[i1] -= d[i2] ^ d[i3];
857 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
863 d[i1] -= d[i2] ^ d[i3];
869 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
875 static void diffuser_b_decrypt(u32 *d, size_t n)
879 for (i = 0; i < 3; i++) {
884 while (i1 < (n - 1)) {
885 d[i1] += d[i2] ^ d[i3];
888 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
894 d[i1] += d[i2] ^ d[i3];
900 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
906 static void diffuser_b_encrypt(u32 *d, size_t n)
910 for (i = 0; i < 3; i++) {
916 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
922 d[i1] -= d[i2] ^ d[i3];
928 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
931 d[i1] -= d[i2] ^ d[i3];
937 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
939 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
940 u8 *es, *ks, *data, *data2, *data_offset;
941 struct skcipher_request *req;
942 struct scatterlist *sg, *sg2, src, dst;
943 DECLARE_CRYPTO_WAIT(wait);
946 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
947 es = kzalloc(16, GFP_NOIO); /* Key for AES */
948 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
950 if (!req || !es || !ks) {
955 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
958 sg_init_one(&src, es, 16);
959 sg_init_one(&dst, ks, 16);
960 skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
961 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
962 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
968 sg_init_one(&dst, &ks[16], 16);
969 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
973 sg = crypt_get_sg_data(cc, dmreq->sg_out);
974 data = kmap_atomic(sg_page(sg));
975 data_offset = data + sg->offset;
977 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
978 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
979 sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
980 data2 = kmap_atomic(sg_page(sg2));
981 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
982 kunmap_atomic(data2);
985 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
986 diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
987 diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
988 diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
989 diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
992 for (i = 0; i < (cc->sector_size / 32); i++)
993 crypto_xor(data_offset + i * 32, ks, 32);
995 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
996 diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
997 diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
998 diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
999 diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
1002 kunmap_atomic(data);
1004 kfree_sensitive(ks);
1005 kfree_sensitive(es);
1006 skcipher_request_free(req);
1010 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1011 struct dm_crypt_request *dmreq)
1015 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1016 r = crypt_iv_elephant(cc, dmreq);
1021 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1024 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1025 struct dm_crypt_request *dmreq)
1027 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1028 return crypt_iv_elephant(cc, dmreq);
1033 static int crypt_iv_elephant_init(struct crypt_config *cc)
1035 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1036 int key_offset = cc->key_size - cc->key_extra_size;
1038 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1041 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1043 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1044 u8 key[ELEPHANT_MAX_KEY_SIZE];
1046 memset(key, 0, cc->key_extra_size);
1047 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1050 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1051 .generator = crypt_iv_plain_gen
1054 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1055 .generator = crypt_iv_plain64_gen
1058 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1059 .generator = crypt_iv_plain64be_gen
1062 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1063 .generator = crypt_iv_essiv_gen
1066 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1067 .ctr = crypt_iv_benbi_ctr,
1068 .dtr = crypt_iv_benbi_dtr,
1069 .generator = crypt_iv_benbi_gen
1072 static const struct crypt_iv_operations crypt_iv_null_ops = {
1073 .generator = crypt_iv_null_gen
1076 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1077 .ctr = crypt_iv_lmk_ctr,
1078 .dtr = crypt_iv_lmk_dtr,
1079 .init = crypt_iv_lmk_init,
1080 .wipe = crypt_iv_lmk_wipe,
1081 .generator = crypt_iv_lmk_gen,
1082 .post = crypt_iv_lmk_post
1085 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1086 .ctr = crypt_iv_tcw_ctr,
1087 .dtr = crypt_iv_tcw_dtr,
1088 .init = crypt_iv_tcw_init,
1089 .wipe = crypt_iv_tcw_wipe,
1090 .generator = crypt_iv_tcw_gen,
1091 .post = crypt_iv_tcw_post
1094 static const struct crypt_iv_operations crypt_iv_random_ops = {
1095 .generator = crypt_iv_random_gen
1098 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1099 .ctr = crypt_iv_eboiv_ctr,
1100 .generator = crypt_iv_eboiv_gen
1103 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1104 .ctr = crypt_iv_elephant_ctr,
1105 .dtr = crypt_iv_elephant_dtr,
1106 .init = crypt_iv_elephant_init,
1107 .wipe = crypt_iv_elephant_wipe,
1108 .generator = crypt_iv_elephant_gen,
1109 .post = crypt_iv_elephant_post
1113 * Integrity extensions
1115 static bool crypt_integrity_aead(struct crypt_config *cc)
1117 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1120 static bool crypt_integrity_hmac(struct crypt_config *cc)
1122 return crypt_integrity_aead(cc) && cc->key_mac_size;
1125 /* Get sg containing data */
1126 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1127 struct scatterlist *sg)
1129 if (unlikely(crypt_integrity_aead(cc)))
1135 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1137 struct bio_integrity_payload *bip;
1138 unsigned int tag_len;
1141 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1144 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1146 return PTR_ERR(bip);
1148 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1150 bip->bip_iter.bi_size = tag_len;
1151 bip->bip_iter.bi_sector = io->cc->start + io->sector;
1153 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1154 tag_len, offset_in_page(io->integrity_metadata));
1155 if (unlikely(ret != tag_len))
1161 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1163 #ifdef CONFIG_BLK_DEV_INTEGRITY
1164 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1165 struct mapped_device *md = dm_table_get_md(ti->table);
1167 /* From now we require underlying device with our integrity profile */
1168 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1169 ti->error = "Integrity profile not supported.";
1173 if (bi->tag_size != cc->on_disk_tag_size ||
1174 bi->tuple_size != cc->on_disk_tag_size) {
1175 ti->error = "Integrity profile tag size mismatch.";
1178 if (1 << bi->interval_exp != cc->sector_size) {
1179 ti->error = "Integrity profile sector size mismatch.";
1183 if (crypt_integrity_aead(cc)) {
1184 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1185 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1186 cc->integrity_tag_size, cc->integrity_iv_size);
1188 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1189 ti->error = "Integrity AEAD auth tag size is not supported.";
1192 } else if (cc->integrity_iv_size)
1193 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1194 cc->integrity_iv_size);
1196 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1197 ti->error = "Not enough space for integrity tag in the profile.";
1203 ti->error = "Integrity profile not supported.";
1208 static void crypt_convert_init(struct crypt_config *cc,
1209 struct convert_context *ctx,
1210 struct bio *bio_out, struct bio *bio_in,
1213 ctx->bio_in = bio_in;
1214 ctx->bio_out = bio_out;
1216 ctx->iter_in = bio_in->bi_iter;
1218 ctx->iter_out = bio_out->bi_iter;
1219 ctx->cc_sector = sector + cc->iv_offset;
1220 init_completion(&ctx->restart);
1223 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1226 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1229 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1231 return (void *)((char *)dmreq - cc->dmreq_start);
1234 static u8 *iv_of_dmreq(struct crypt_config *cc,
1235 struct dm_crypt_request *dmreq)
1237 if (crypt_integrity_aead(cc))
1238 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1239 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1241 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1242 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1245 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1246 struct dm_crypt_request *dmreq)
1248 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1251 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1252 struct dm_crypt_request *dmreq)
1254 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1255 return (__le64 *) ptr;
1258 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1259 struct dm_crypt_request *dmreq)
1261 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1262 cc->iv_size + sizeof(uint64_t);
1263 return (unsigned int*)ptr;
1266 static void *tag_from_dmreq(struct crypt_config *cc,
1267 struct dm_crypt_request *dmreq)
1269 struct convert_context *ctx = dmreq->ctx;
1270 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1272 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1273 cc->on_disk_tag_size];
1276 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1277 struct dm_crypt_request *dmreq)
1279 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1282 static int crypt_convert_block_aead(struct crypt_config *cc,
1283 struct convert_context *ctx,
1284 struct aead_request *req,
1285 unsigned int tag_offset)
1287 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1288 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1289 struct dm_crypt_request *dmreq;
1290 u8 *iv, *org_iv, *tag_iv, *tag;
1294 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1296 /* Reject unexpected unaligned bio. */
1297 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1300 dmreq = dmreq_of_req(cc, req);
1301 dmreq->iv_sector = ctx->cc_sector;
1302 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1303 dmreq->iv_sector >>= cc->sector_shift;
1306 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1308 sector = org_sector_of_dmreq(cc, dmreq);
1309 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1311 iv = iv_of_dmreq(cc, dmreq);
1312 org_iv = org_iv_of_dmreq(cc, dmreq);
1313 tag = tag_from_dmreq(cc, dmreq);
1314 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1317 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1318 * | (authenticated) | (auth+encryption) | |
1319 * | sector_LE | IV | sector in/out | tag in/out |
1321 sg_init_table(dmreq->sg_in, 4);
1322 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1323 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1324 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1325 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1327 sg_init_table(dmreq->sg_out, 4);
1328 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1329 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1330 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1331 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1333 if (cc->iv_gen_ops) {
1334 /* For READs use IV stored in integrity metadata */
1335 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1336 memcpy(org_iv, tag_iv, cc->iv_size);
1338 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1341 /* Store generated IV in integrity metadata */
1342 if (cc->integrity_iv_size)
1343 memcpy(tag_iv, org_iv, cc->iv_size);
1345 /* Working copy of IV, to be modified in crypto API */
1346 memcpy(iv, org_iv, cc->iv_size);
1349 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1350 if (bio_data_dir(ctx->bio_in) == WRITE) {
1351 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1352 cc->sector_size, iv);
1353 r = crypto_aead_encrypt(req);
1354 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1355 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1356 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1358 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1359 cc->sector_size + cc->integrity_tag_size, iv);
1360 r = crypto_aead_decrypt(req);
1363 if (r == -EBADMSG) {
1364 char b[BDEVNAME_SIZE];
1365 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1366 (unsigned long long)le64_to_cpu(*sector));
1369 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1370 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1372 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1373 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1378 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1379 struct convert_context *ctx,
1380 struct skcipher_request *req,
1381 unsigned int tag_offset)
1383 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1384 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1385 struct scatterlist *sg_in, *sg_out;
1386 struct dm_crypt_request *dmreq;
1387 u8 *iv, *org_iv, *tag_iv;
1391 /* Reject unexpected unaligned bio. */
1392 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1395 dmreq = dmreq_of_req(cc, req);
1396 dmreq->iv_sector = ctx->cc_sector;
1397 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1398 dmreq->iv_sector >>= cc->sector_shift;
1401 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1403 iv = iv_of_dmreq(cc, dmreq);
1404 org_iv = org_iv_of_dmreq(cc, dmreq);
1405 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1407 sector = org_sector_of_dmreq(cc, dmreq);
1408 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1410 /* For skcipher we use only the first sg item */
1411 sg_in = &dmreq->sg_in[0];
1412 sg_out = &dmreq->sg_out[0];
1414 sg_init_table(sg_in, 1);
1415 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1417 sg_init_table(sg_out, 1);
1418 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1420 if (cc->iv_gen_ops) {
1421 /* For READs use IV stored in integrity metadata */
1422 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1423 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1425 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1428 /* Data can be already preprocessed in generator */
1429 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1431 /* Store generated IV in integrity metadata */
1432 if (cc->integrity_iv_size)
1433 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1435 /* Working copy of IV, to be modified in crypto API */
1436 memcpy(iv, org_iv, cc->iv_size);
1439 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1441 if (bio_data_dir(ctx->bio_in) == WRITE)
1442 r = crypto_skcipher_encrypt(req);
1444 r = crypto_skcipher_decrypt(req);
1446 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1447 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1449 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1450 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1455 static void kcryptd_async_done(struct crypto_async_request *async_req,
1458 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1459 struct convert_context *ctx)
1461 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1464 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1469 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1472 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1473 * requests if driver request queue is full.
1475 skcipher_request_set_callback(ctx->r.req,
1476 CRYPTO_TFM_REQ_MAY_BACKLOG,
1477 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1482 static int crypt_alloc_req_aead(struct crypt_config *cc,
1483 struct convert_context *ctx)
1485 if (!ctx->r.req_aead) {
1486 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1487 if (!ctx->r.req_aead)
1491 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1494 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1495 * requests if driver request queue is full.
1497 aead_request_set_callback(ctx->r.req_aead,
1498 CRYPTO_TFM_REQ_MAY_BACKLOG,
1499 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1504 static int crypt_alloc_req(struct crypt_config *cc,
1505 struct convert_context *ctx)
1507 if (crypt_integrity_aead(cc))
1508 return crypt_alloc_req_aead(cc, ctx);
1510 return crypt_alloc_req_skcipher(cc, ctx);
1513 static void crypt_free_req_skcipher(struct crypt_config *cc,
1514 struct skcipher_request *req, struct bio *base_bio)
1516 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1518 if ((struct skcipher_request *)(io + 1) != req)
1519 mempool_free(req, &cc->req_pool);
1522 static void crypt_free_req_aead(struct crypt_config *cc,
1523 struct aead_request *req, struct bio *base_bio)
1525 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1527 if ((struct aead_request *)(io + 1) != req)
1528 mempool_free(req, &cc->req_pool);
1531 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1533 if (crypt_integrity_aead(cc))
1534 crypt_free_req_aead(cc, req, base_bio);
1536 crypt_free_req_skcipher(cc, req, base_bio);
1540 * Encrypt / decrypt data from one bio to another one (can be the same one)
1542 static blk_status_t crypt_convert(struct crypt_config *cc,
1543 struct convert_context *ctx, bool atomic, bool reset_pending)
1545 unsigned int tag_offset = 0;
1546 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1550 * if reset_pending is set we are dealing with the bio for the first time,
1551 * else we're continuing to work on the previous bio, so don't mess with
1552 * the cc_pending counter
1555 atomic_set(&ctx->cc_pending, 1);
1557 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1559 r = crypt_alloc_req(cc, ctx);
1561 complete(&ctx->restart);
1562 return BLK_STS_DEV_RESOURCE;
1565 atomic_inc(&ctx->cc_pending);
1567 if (crypt_integrity_aead(cc))
1568 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1570 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1574 * The request was queued by a crypto driver
1575 * but the driver request queue is full, let's wait.
1578 if (in_interrupt()) {
1579 if (try_wait_for_completion(&ctx->restart)) {
1581 * we don't have to block to wait for completion,
1586 * we can't wait for completion without blocking
1587 * exit and continue processing in a workqueue
1590 ctx->cc_sector += sector_step;
1592 return BLK_STS_DEV_RESOURCE;
1595 wait_for_completion(&ctx->restart);
1597 reinit_completion(&ctx->restart);
1600 * The request is queued and processed asynchronously,
1601 * completion function kcryptd_async_done() will be called.
1605 ctx->cc_sector += sector_step;
1609 * The request was already processed (synchronously).
1612 atomic_dec(&ctx->cc_pending);
1613 ctx->cc_sector += sector_step;
1619 * There was a data integrity error.
1622 atomic_dec(&ctx->cc_pending);
1623 return BLK_STS_PROTECTION;
1625 * There was an error while processing the request.
1628 atomic_dec(&ctx->cc_pending);
1629 return BLK_STS_IOERR;
1636 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1639 * Generate a new unfragmented bio with the given size
1640 * This should never violate the device limitations (but only because
1641 * max_segment_size is being constrained to PAGE_SIZE).
1643 * This function may be called concurrently. If we allocate from the mempool
1644 * concurrently, there is a possibility of deadlock. For example, if we have
1645 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1646 * the mempool concurrently, it may deadlock in a situation where both processes
1647 * have allocated 128 pages and the mempool is exhausted.
1649 * In order to avoid this scenario we allocate the pages under a mutex.
1651 * In order to not degrade performance with excessive locking, we try
1652 * non-blocking allocations without a mutex first but on failure we fallback
1653 * to blocking allocations with a mutex.
1655 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1657 struct crypt_config *cc = io->cc;
1659 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1660 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1661 unsigned i, len, remaining_size;
1665 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1666 mutex_lock(&cc->bio_alloc_lock);
1668 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1672 clone_init(io, clone);
1674 remaining_size = size;
1676 for (i = 0; i < nr_iovecs; i++) {
1677 page = mempool_alloc(&cc->page_pool, gfp_mask);
1679 crypt_free_buffer_pages(cc, clone);
1681 gfp_mask |= __GFP_DIRECT_RECLAIM;
1685 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1687 bio_add_page(clone, page, len, 0);
1689 remaining_size -= len;
1692 /* Allocate space for integrity tags */
1693 if (dm_crypt_integrity_io_alloc(io, clone)) {
1694 crypt_free_buffer_pages(cc, clone);
1699 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1700 mutex_unlock(&cc->bio_alloc_lock);
1705 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1708 struct bvec_iter_all iter_all;
1710 bio_for_each_segment_all(bv, clone, iter_all) {
1711 BUG_ON(!bv->bv_page);
1712 mempool_free(bv->bv_page, &cc->page_pool);
1716 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1717 struct bio *bio, sector_t sector)
1721 io->sector = sector;
1723 io->ctx.r.req = NULL;
1724 io->integrity_metadata = NULL;
1725 io->integrity_metadata_from_pool = false;
1726 atomic_set(&io->io_pending, 0);
1729 static void crypt_inc_pending(struct dm_crypt_io *io)
1731 atomic_inc(&io->io_pending);
1734 static void kcryptd_io_bio_endio(struct work_struct *work)
1736 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1737 bio_endio(io->base_bio);
1741 * One of the bios was finished. Check for completion of
1742 * the whole request and correctly clean up the buffer.
1744 static void crypt_dec_pending(struct dm_crypt_io *io)
1746 struct crypt_config *cc = io->cc;
1747 struct bio *base_bio = io->base_bio;
1748 blk_status_t error = io->error;
1750 if (!atomic_dec_and_test(&io->io_pending))
1754 crypt_free_req(cc, io->ctx.r.req, base_bio);
1756 if (unlikely(io->integrity_metadata_from_pool))
1757 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1759 kfree(io->integrity_metadata);
1761 base_bio->bi_status = error;
1764 * If we are running this function from our tasklet,
1765 * we can't call bio_endio() here, because it will call
1766 * clone_endio() from dm.c, which in turn will
1767 * free the current struct dm_crypt_io structure with
1768 * our tasklet. In this case we need to delay bio_endio()
1769 * execution to after the tasklet is done and dequeued.
1771 if (tasklet_trylock(&io->tasklet)) {
1772 tasklet_unlock(&io->tasklet);
1773 bio_endio(base_bio);
1777 INIT_WORK(&io->work, kcryptd_io_bio_endio);
1778 queue_work(cc->io_queue, &io->work);
1782 * kcryptd/kcryptd_io:
1784 * Needed because it would be very unwise to do decryption in an
1785 * interrupt context.
1787 * kcryptd performs the actual encryption or decryption.
1789 * kcryptd_io performs the IO submission.
1791 * They must be separated as otherwise the final stages could be
1792 * starved by new requests which can block in the first stages due
1793 * to memory allocation.
1795 * The work is done per CPU global for all dm-crypt instances.
1796 * They should not depend on each other and do not block.
1798 static void crypt_endio(struct bio *clone)
1800 struct dm_crypt_io *io = clone->bi_private;
1801 struct crypt_config *cc = io->cc;
1802 unsigned rw = bio_data_dir(clone);
1806 * free the processed pages
1809 crypt_free_buffer_pages(cc, clone);
1811 error = clone->bi_status;
1814 if (rw == READ && !error) {
1815 kcryptd_queue_crypt(io);
1819 if (unlikely(error))
1822 crypt_dec_pending(io);
1825 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1827 struct crypt_config *cc = io->cc;
1829 clone->bi_private = io;
1830 clone->bi_end_io = crypt_endio;
1831 bio_set_dev(clone, cc->dev->bdev);
1832 clone->bi_opf = io->base_bio->bi_opf;
1835 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1837 struct crypt_config *cc = io->cc;
1841 * We need the original biovec array in order to decrypt
1842 * the whole bio data *afterwards* -- thanks to immutable
1843 * biovecs we don't need to worry about the block layer
1844 * modifying the biovec array; so leverage bio_clone_fast().
1846 clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1850 crypt_inc_pending(io);
1852 clone_init(io, clone);
1853 clone->bi_iter.bi_sector = cc->start + io->sector;
1855 if (dm_crypt_integrity_io_alloc(io, clone)) {
1856 crypt_dec_pending(io);
1861 submit_bio_noacct(clone);
1865 static void kcryptd_io_read_work(struct work_struct *work)
1867 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1869 crypt_inc_pending(io);
1870 if (kcryptd_io_read(io, GFP_NOIO))
1871 io->error = BLK_STS_RESOURCE;
1872 crypt_dec_pending(io);
1875 static void kcryptd_queue_read(struct dm_crypt_io *io)
1877 struct crypt_config *cc = io->cc;
1879 INIT_WORK(&io->work, kcryptd_io_read_work);
1880 queue_work(cc->io_queue, &io->work);
1883 static void kcryptd_io_write(struct dm_crypt_io *io)
1885 struct bio *clone = io->ctx.bio_out;
1887 submit_bio_noacct(clone);
1890 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1892 static int dmcrypt_write(void *data)
1894 struct crypt_config *cc = data;
1895 struct dm_crypt_io *io;
1898 struct rb_root write_tree;
1899 struct blk_plug plug;
1901 spin_lock_irq(&cc->write_thread_lock);
1904 if (!RB_EMPTY_ROOT(&cc->write_tree))
1907 set_current_state(TASK_INTERRUPTIBLE);
1909 spin_unlock_irq(&cc->write_thread_lock);
1911 if (unlikely(kthread_should_stop())) {
1912 set_current_state(TASK_RUNNING);
1918 set_current_state(TASK_RUNNING);
1919 spin_lock_irq(&cc->write_thread_lock);
1920 goto continue_locked;
1923 write_tree = cc->write_tree;
1924 cc->write_tree = RB_ROOT;
1925 spin_unlock_irq(&cc->write_thread_lock);
1927 BUG_ON(rb_parent(write_tree.rb_node));
1930 * Note: we cannot walk the tree here with rb_next because
1931 * the structures may be freed when kcryptd_io_write is called.
1933 blk_start_plug(&plug);
1935 io = crypt_io_from_node(rb_first(&write_tree));
1936 rb_erase(&io->rb_node, &write_tree);
1937 kcryptd_io_write(io);
1938 } while (!RB_EMPTY_ROOT(&write_tree));
1939 blk_finish_plug(&plug);
1944 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1946 struct bio *clone = io->ctx.bio_out;
1947 struct crypt_config *cc = io->cc;
1948 unsigned long flags;
1950 struct rb_node **rbp, *parent;
1952 if (unlikely(io->error)) {
1953 crypt_free_buffer_pages(cc, clone);
1955 crypt_dec_pending(io);
1959 /* crypt_convert should have filled the clone bio */
1960 BUG_ON(io->ctx.iter_out.bi_size);
1962 clone->bi_iter.bi_sector = cc->start + io->sector;
1964 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1965 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1966 submit_bio_noacct(clone);
1970 spin_lock_irqsave(&cc->write_thread_lock, flags);
1971 if (RB_EMPTY_ROOT(&cc->write_tree))
1972 wake_up_process(cc->write_thread);
1973 rbp = &cc->write_tree.rb_node;
1975 sector = io->sector;
1978 if (sector < crypt_io_from_node(parent)->sector)
1979 rbp = &(*rbp)->rb_left;
1981 rbp = &(*rbp)->rb_right;
1983 rb_link_node(&io->rb_node, parent, rbp);
1984 rb_insert_color(&io->rb_node, &cc->write_tree);
1985 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1988 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
1989 struct convert_context *ctx)
1992 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
1996 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
1997 * constraints so they do not need to be issued inline by
1998 * kcryptd_crypt_write_convert().
2000 switch (bio_op(ctx->bio_in)) {
2002 case REQ_OP_WRITE_SAME:
2003 case REQ_OP_WRITE_ZEROES:
2010 static void kcryptd_crypt_write_continue(struct work_struct *work)
2012 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2013 struct crypt_config *cc = io->cc;
2014 struct convert_context *ctx = &io->ctx;
2016 sector_t sector = io->sector;
2019 wait_for_completion(&ctx->restart);
2020 reinit_completion(&ctx->restart);
2022 r = crypt_convert(cc, &io->ctx, true, false);
2025 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2026 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2027 /* Wait for completion signaled by kcryptd_async_done() */
2028 wait_for_completion(&ctx->restart);
2032 /* Encryption was already finished, submit io now */
2033 if (crypt_finished) {
2034 kcryptd_crypt_write_io_submit(io, 0);
2035 io->sector = sector;
2038 crypt_dec_pending(io);
2041 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2043 struct crypt_config *cc = io->cc;
2044 struct convert_context *ctx = &io->ctx;
2047 sector_t sector = io->sector;
2051 * Prevent io from disappearing until this function completes.
2053 crypt_inc_pending(io);
2054 crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2056 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2057 if (unlikely(!clone)) {
2058 io->error = BLK_STS_IOERR;
2062 io->ctx.bio_out = clone;
2063 io->ctx.iter_out = clone->bi_iter;
2065 sector += bio_sectors(clone);
2067 crypt_inc_pending(io);
2068 r = crypt_convert(cc, ctx,
2069 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2071 * Crypto API backlogged the request, because its queue was full
2072 * and we're in softirq context, so continue from a workqueue
2073 * (TODO: is it actually possible to be in softirq in the write path?)
2075 if (r == BLK_STS_DEV_RESOURCE) {
2076 INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2077 queue_work(cc->crypt_queue, &io->work);
2082 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2083 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2084 /* Wait for completion signaled by kcryptd_async_done() */
2085 wait_for_completion(&ctx->restart);
2089 /* Encryption was already finished, submit io now */
2090 if (crypt_finished) {
2091 kcryptd_crypt_write_io_submit(io, 0);
2092 io->sector = sector;
2096 crypt_dec_pending(io);
2099 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2101 crypt_dec_pending(io);
2104 static void kcryptd_crypt_read_continue(struct work_struct *work)
2106 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2107 struct crypt_config *cc = io->cc;
2110 wait_for_completion(&io->ctx.restart);
2111 reinit_completion(&io->ctx.restart);
2113 r = crypt_convert(cc, &io->ctx, true, false);
2117 if (atomic_dec_and_test(&io->ctx.cc_pending))
2118 kcryptd_crypt_read_done(io);
2120 crypt_dec_pending(io);
2123 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2125 struct crypt_config *cc = io->cc;
2128 crypt_inc_pending(io);
2130 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2133 r = crypt_convert(cc, &io->ctx,
2134 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2136 * Crypto API backlogged the request, because its queue was full
2137 * and we're in softirq context, so continue from a workqueue
2139 if (r == BLK_STS_DEV_RESOURCE) {
2140 INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2141 queue_work(cc->crypt_queue, &io->work);
2147 if (atomic_dec_and_test(&io->ctx.cc_pending))
2148 kcryptd_crypt_read_done(io);
2150 crypt_dec_pending(io);
2153 static void kcryptd_async_done(struct crypto_async_request *async_req,
2156 struct dm_crypt_request *dmreq = async_req->data;
2157 struct convert_context *ctx = dmreq->ctx;
2158 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2159 struct crypt_config *cc = io->cc;
2162 * A request from crypto driver backlog is going to be processed now,
2163 * finish the completion and continue in crypt_convert().
2164 * (Callback will be called for the second time for this request.)
2166 if (error == -EINPROGRESS) {
2167 complete(&ctx->restart);
2171 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2172 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2174 if (error == -EBADMSG) {
2175 char b[BDEVNAME_SIZE];
2176 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
2177 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
2178 io->error = BLK_STS_PROTECTION;
2179 } else if (error < 0)
2180 io->error = BLK_STS_IOERR;
2182 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2184 if (!atomic_dec_and_test(&ctx->cc_pending))
2188 * The request is fully completed: for inline writes, let
2189 * kcryptd_crypt_write_convert() do the IO submission.
2191 if (bio_data_dir(io->base_bio) == READ) {
2192 kcryptd_crypt_read_done(io);
2196 if (kcryptd_crypt_write_inline(cc, ctx)) {
2197 complete(&ctx->restart);
2201 kcryptd_crypt_write_io_submit(io, 1);
2204 static void kcryptd_crypt(struct work_struct *work)
2206 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2208 if (bio_data_dir(io->base_bio) == READ)
2209 kcryptd_crypt_read_convert(io);
2211 kcryptd_crypt_write_convert(io);
2214 static void kcryptd_crypt_tasklet(unsigned long work)
2216 kcryptd_crypt((struct work_struct *)work);
2219 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2221 struct crypt_config *cc = io->cc;
2223 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2224 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2226 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2227 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2228 * it is being executed with irqs disabled.
2230 if (in_hardirq() || irqs_disabled()) {
2231 tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2232 tasklet_schedule(&io->tasklet);
2236 kcryptd_crypt(&io->work);
2240 INIT_WORK(&io->work, kcryptd_crypt);
2241 queue_work(cc->crypt_queue, &io->work);
2244 static void crypt_free_tfms_aead(struct crypt_config *cc)
2246 if (!cc->cipher_tfm.tfms_aead)
2249 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2250 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2251 cc->cipher_tfm.tfms_aead[0] = NULL;
2254 kfree(cc->cipher_tfm.tfms_aead);
2255 cc->cipher_tfm.tfms_aead = NULL;
2258 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2262 if (!cc->cipher_tfm.tfms)
2265 for (i = 0; i < cc->tfms_count; i++)
2266 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2267 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2268 cc->cipher_tfm.tfms[i] = NULL;
2271 kfree(cc->cipher_tfm.tfms);
2272 cc->cipher_tfm.tfms = NULL;
2275 static void crypt_free_tfms(struct crypt_config *cc)
2277 if (crypt_integrity_aead(cc))
2278 crypt_free_tfms_aead(cc);
2280 crypt_free_tfms_skcipher(cc);
2283 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2288 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2289 sizeof(struct crypto_skcipher *),
2291 if (!cc->cipher_tfm.tfms)
2294 for (i = 0; i < cc->tfms_count; i++) {
2295 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2296 CRYPTO_ALG_ALLOCATES_MEMORY);
2297 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2298 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2299 crypt_free_tfms(cc);
2305 * dm-crypt performance can vary greatly depending on which crypto
2306 * algorithm implementation is used. Help people debug performance
2307 * problems by logging the ->cra_driver_name.
2309 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2310 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2314 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2318 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2319 if (!cc->cipher_tfm.tfms)
2322 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2323 CRYPTO_ALG_ALLOCATES_MEMORY);
2324 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2325 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2326 crypt_free_tfms(cc);
2330 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2331 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2335 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2337 if (crypt_integrity_aead(cc))
2338 return crypt_alloc_tfms_aead(cc, ciphermode);
2340 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2343 static unsigned crypt_subkey_size(struct crypt_config *cc)
2345 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2348 static unsigned crypt_authenckey_size(struct crypt_config *cc)
2350 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2354 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2355 * the key must be for some reason in special format.
2356 * This funcion converts cc->key to this special format.
2358 static void crypt_copy_authenckey(char *p, const void *key,
2359 unsigned enckeylen, unsigned authkeylen)
2361 struct crypto_authenc_key_param *param;
2364 rta = (struct rtattr *)p;
2365 param = RTA_DATA(rta);
2366 param->enckeylen = cpu_to_be32(enckeylen);
2367 rta->rta_len = RTA_LENGTH(sizeof(*param));
2368 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2369 p += RTA_SPACE(sizeof(*param));
2370 memcpy(p, key + enckeylen, authkeylen);
2372 memcpy(p, key, enckeylen);
2375 static int crypt_setkey(struct crypt_config *cc)
2377 unsigned subkey_size;
2380 /* Ignore extra keys (which are used for IV etc) */
2381 subkey_size = crypt_subkey_size(cc);
2383 if (crypt_integrity_hmac(cc)) {
2384 if (subkey_size < cc->key_mac_size)
2387 crypt_copy_authenckey(cc->authenc_key, cc->key,
2388 subkey_size - cc->key_mac_size,
2392 for (i = 0; i < cc->tfms_count; i++) {
2393 if (crypt_integrity_hmac(cc))
2394 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2395 cc->authenc_key, crypt_authenckey_size(cc));
2396 else if (crypt_integrity_aead(cc))
2397 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2398 cc->key + (i * subkey_size),
2401 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2402 cc->key + (i * subkey_size),
2408 if (crypt_integrity_hmac(cc))
2409 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2416 static bool contains_whitespace(const char *str)
2419 if (isspace(*str++))
2424 static int set_key_user(struct crypt_config *cc, struct key *key)
2426 const struct user_key_payload *ukp;
2428 ukp = user_key_payload_locked(key);
2430 return -EKEYREVOKED;
2432 if (cc->key_size != ukp->datalen)
2435 memcpy(cc->key, ukp->data, cc->key_size);
2440 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2442 const struct encrypted_key_payload *ekp;
2444 ekp = key->payload.data[0];
2446 return -EKEYREVOKED;
2448 if (cc->key_size != ekp->decrypted_datalen)
2451 memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2456 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2458 const struct trusted_key_payload *tkp;
2460 tkp = key->payload.data[0];
2462 return -EKEYREVOKED;
2464 if (cc->key_size != tkp->key_len)
2467 memcpy(cc->key, tkp->key, cc->key_size);
2472 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2474 char *new_key_string, *key_desc;
2476 struct key_type *type;
2478 int (*set_key)(struct crypt_config *cc, struct key *key);
2481 * Reject key_string with whitespace. dm core currently lacks code for
2482 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2484 if (contains_whitespace(key_string)) {
2485 DMERR("whitespace chars not allowed in key string");
2489 /* look for next ':' separating key_type from key_description */
2490 key_desc = strpbrk(key_string, ":");
2491 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2494 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2495 type = &key_type_logon;
2496 set_key = set_key_user;
2497 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2498 type = &key_type_user;
2499 set_key = set_key_user;
2500 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2501 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2502 type = &key_type_encrypted;
2503 set_key = set_key_encrypted;
2504 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2505 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2506 type = &key_type_trusted;
2507 set_key = set_key_trusted;
2512 new_key_string = kstrdup(key_string, GFP_KERNEL);
2513 if (!new_key_string)
2516 key = request_key(type, key_desc + 1, NULL);
2518 kfree_sensitive(new_key_string);
2519 return PTR_ERR(key);
2522 down_read(&key->sem);
2524 ret = set_key(cc, key);
2528 kfree_sensitive(new_key_string);
2535 /* clear the flag since following operations may invalidate previously valid key */
2536 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2538 ret = crypt_setkey(cc);
2541 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2542 kfree_sensitive(cc->key_string);
2543 cc->key_string = new_key_string;
2545 kfree_sensitive(new_key_string);
2550 static int get_key_size(char **key_string)
2555 if (*key_string[0] != ':')
2556 return strlen(*key_string) >> 1;
2558 /* look for next ':' in key string */
2559 colon = strpbrk(*key_string + 1, ":");
2563 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2566 *key_string = colon;
2568 /* remaining key string should be :<logon|user>:<key_desc> */
2575 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2580 static int get_key_size(char **key_string)
2582 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2585 #endif /* CONFIG_KEYS */
2587 static int crypt_set_key(struct crypt_config *cc, char *key)
2590 int key_string_len = strlen(key);
2592 /* Hyphen (which gives a key_size of zero) means there is no key. */
2593 if (!cc->key_size && strcmp(key, "-"))
2596 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2597 if (key[0] == ':') {
2598 r = crypt_set_keyring_key(cc, key + 1);
2602 /* clear the flag since following operations may invalidate previously valid key */
2603 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2605 /* wipe references to any kernel keyring key */
2606 kfree_sensitive(cc->key_string);
2607 cc->key_string = NULL;
2609 /* Decode key from its hex representation. */
2610 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2613 r = crypt_setkey(cc);
2615 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2618 /* Hex key string not needed after here, so wipe it. */
2619 memset(key, '0', key_string_len);
2624 static int crypt_wipe_key(struct crypt_config *cc)
2628 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2629 get_random_bytes(&cc->key, cc->key_size);
2631 /* Wipe IV private keys */
2632 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2633 r = cc->iv_gen_ops->wipe(cc);
2638 kfree_sensitive(cc->key_string);
2639 cc->key_string = NULL;
2640 r = crypt_setkey(cc);
2641 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2646 static void crypt_calculate_pages_per_client(void)
2648 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2650 if (!dm_crypt_clients_n)
2653 pages /= dm_crypt_clients_n;
2654 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2655 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2656 dm_crypt_pages_per_client = pages;
2659 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2661 struct crypt_config *cc = pool_data;
2665 * Note, percpu_counter_read_positive() may over (and under) estimate
2666 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2667 * but avoids potential spinlock contention of an exact result.
2669 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2670 likely(gfp_mask & __GFP_NORETRY))
2673 page = alloc_page(gfp_mask);
2674 if (likely(page != NULL))
2675 percpu_counter_add(&cc->n_allocated_pages, 1);
2680 static void crypt_page_free(void *page, void *pool_data)
2682 struct crypt_config *cc = pool_data;
2685 percpu_counter_sub(&cc->n_allocated_pages, 1);
2688 static void crypt_dtr(struct dm_target *ti)
2690 struct crypt_config *cc = ti->private;
2697 if (cc->write_thread)
2698 kthread_stop(cc->write_thread);
2701 destroy_workqueue(cc->io_queue);
2702 if (cc->crypt_queue)
2703 destroy_workqueue(cc->crypt_queue);
2705 crypt_free_tfms(cc);
2707 bioset_exit(&cc->bs);
2709 mempool_exit(&cc->page_pool);
2710 mempool_exit(&cc->req_pool);
2711 mempool_exit(&cc->tag_pool);
2713 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2714 percpu_counter_destroy(&cc->n_allocated_pages);
2716 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2717 cc->iv_gen_ops->dtr(cc);
2720 dm_put_device(ti, cc->dev);
2722 kfree_sensitive(cc->cipher_string);
2723 kfree_sensitive(cc->key_string);
2724 kfree_sensitive(cc->cipher_auth);
2725 kfree_sensitive(cc->authenc_key);
2727 mutex_destroy(&cc->bio_alloc_lock);
2729 /* Must zero key material before freeing */
2730 kfree_sensitive(cc);
2732 spin_lock(&dm_crypt_clients_lock);
2733 WARN_ON(!dm_crypt_clients_n);
2734 dm_crypt_clients_n--;
2735 crypt_calculate_pages_per_client();
2736 spin_unlock(&dm_crypt_clients_lock);
2739 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2741 struct crypt_config *cc = ti->private;
2743 if (crypt_integrity_aead(cc))
2744 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2746 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2749 /* at least a 64 bit sector number should fit in our buffer */
2750 cc->iv_size = max(cc->iv_size,
2751 (unsigned int)(sizeof(u64) / sizeof(u8)));
2753 DMWARN("Selected cipher does not support IVs");
2757 /* Choose ivmode, see comments at iv code. */
2759 cc->iv_gen_ops = NULL;
2760 else if (strcmp(ivmode, "plain") == 0)
2761 cc->iv_gen_ops = &crypt_iv_plain_ops;
2762 else if (strcmp(ivmode, "plain64") == 0)
2763 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2764 else if (strcmp(ivmode, "plain64be") == 0)
2765 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2766 else if (strcmp(ivmode, "essiv") == 0)
2767 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2768 else if (strcmp(ivmode, "benbi") == 0)
2769 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2770 else if (strcmp(ivmode, "null") == 0)
2771 cc->iv_gen_ops = &crypt_iv_null_ops;
2772 else if (strcmp(ivmode, "eboiv") == 0)
2773 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2774 else if (strcmp(ivmode, "elephant") == 0) {
2775 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2777 cc->key_extra_size = cc->key_size / 2;
2778 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2780 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2781 } else if (strcmp(ivmode, "lmk") == 0) {
2782 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2784 * Version 2 and 3 is recognised according
2785 * to length of provided multi-key string.
2786 * If present (version 3), last key is used as IV seed.
2787 * All keys (including IV seed) are always the same size.
2789 if (cc->key_size % cc->key_parts) {
2791 cc->key_extra_size = cc->key_size / cc->key_parts;
2793 } else if (strcmp(ivmode, "tcw") == 0) {
2794 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2795 cc->key_parts += 2; /* IV + whitening */
2796 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2797 } else if (strcmp(ivmode, "random") == 0) {
2798 cc->iv_gen_ops = &crypt_iv_random_ops;
2799 /* Need storage space in integrity fields. */
2800 cc->integrity_iv_size = cc->iv_size;
2802 ti->error = "Invalid IV mode";
2810 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2811 * The HMAC is needed to calculate tag size (HMAC digest size).
2812 * This should be probably done by crypto-api calls (once available...)
2814 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2816 char *start, *end, *mac_alg = NULL;
2817 struct crypto_ahash *mac;
2819 if (!strstarts(cipher_api, "authenc("))
2822 start = strchr(cipher_api, '(');
2823 end = strchr(cipher_api, ',');
2824 if (!start || !end || ++start > end)
2827 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2830 strncpy(mac_alg, start, end - start);
2832 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2836 return PTR_ERR(mac);
2838 cc->key_mac_size = crypto_ahash_digestsize(mac);
2839 crypto_free_ahash(mac);
2841 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2842 if (!cc->authenc_key)
2848 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2849 char **ivmode, char **ivopts)
2851 struct crypt_config *cc = ti->private;
2852 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2858 * New format (capi: prefix)
2859 * capi:cipher_api_spec-iv:ivopts
2861 tmp = &cipher_in[strlen("capi:")];
2863 /* Separate IV options if present, it can contain another '-' in hash name */
2864 *ivopts = strrchr(tmp, ':');
2870 *ivmode = strrchr(tmp, '-');
2875 /* The rest is crypto API spec */
2878 /* Alloc AEAD, can be used only in new format. */
2879 if (crypt_integrity_aead(cc)) {
2880 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2882 ti->error = "Invalid AEAD cipher spec";
2887 if (*ivmode && !strcmp(*ivmode, "lmk"))
2888 cc->tfms_count = 64;
2890 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2892 ti->error = "Digest algorithm missing for ESSIV mode";
2895 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2896 cipher_api, *ivopts);
2897 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2898 ti->error = "Cannot allocate cipher string";
2904 cc->key_parts = cc->tfms_count;
2906 /* Allocate cipher */
2907 ret = crypt_alloc_tfms(cc, cipher_api);
2909 ti->error = "Error allocating crypto tfm";
2913 if (crypt_integrity_aead(cc))
2914 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2916 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2921 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2922 char **ivmode, char **ivopts)
2924 struct crypt_config *cc = ti->private;
2925 char *tmp, *cipher, *chainmode, *keycount;
2926 char *cipher_api = NULL;
2930 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2931 ti->error = "Bad cipher specification";
2936 * Legacy dm-crypt cipher specification
2937 * cipher[:keycount]-mode-iv:ivopts
2940 keycount = strsep(&tmp, "-");
2941 cipher = strsep(&keycount, ":");
2945 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2946 !is_power_of_2(cc->tfms_count)) {
2947 ti->error = "Bad cipher key count specification";
2950 cc->key_parts = cc->tfms_count;
2952 chainmode = strsep(&tmp, "-");
2953 *ivmode = strsep(&tmp, ":");
2957 * For compatibility with the original dm-crypt mapping format, if
2958 * only the cipher name is supplied, use cbc-plain.
2960 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2965 if (strcmp(chainmode, "ecb") && !*ivmode) {
2966 ti->error = "IV mechanism required";
2970 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2974 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2976 ti->error = "Digest algorithm missing for ESSIV mode";
2980 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2981 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2983 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2984 "%s(%s)", chainmode, cipher);
2986 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2991 /* Allocate cipher */
2992 ret = crypt_alloc_tfms(cc, cipher_api);
2994 ti->error = "Error allocating crypto tfm";
3002 ti->error = "Cannot allocate cipher strings";
3006 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3008 struct crypt_config *cc = ti->private;
3009 char *ivmode = NULL, *ivopts = NULL;
3012 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3013 if (!cc->cipher_string) {
3014 ti->error = "Cannot allocate cipher strings";
3018 if (strstarts(cipher_in, "capi:"))
3019 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3021 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3026 ret = crypt_ctr_ivmode(ti, ivmode);
3030 /* Initialize and set key */
3031 ret = crypt_set_key(cc, key);
3033 ti->error = "Error decoding and setting key";
3038 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3039 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3041 ti->error = "Error creating IV";
3046 /* Initialize IV (set keys for ESSIV etc) */
3047 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3048 ret = cc->iv_gen_ops->init(cc);
3050 ti->error = "Error initialising IV";
3055 /* wipe the kernel key payload copy */
3057 memset(cc->key, 0, cc->key_size * sizeof(u8));
3062 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3064 struct crypt_config *cc = ti->private;
3065 struct dm_arg_set as;
3066 static const struct dm_arg _args[] = {
3067 {0, 8, "Invalid number of feature args"},
3069 unsigned int opt_params, val;
3070 const char *opt_string, *sval;
3074 /* Optional parameters */
3078 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3082 while (opt_params--) {
3083 opt_string = dm_shift_arg(&as);
3085 ti->error = "Not enough feature arguments";
3089 if (!strcasecmp(opt_string, "allow_discards"))
3090 ti->num_discard_bios = 1;
3092 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3093 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3095 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3096 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3097 else if (!strcasecmp(opt_string, "no_read_workqueue"))
3098 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3099 else if (!strcasecmp(opt_string, "no_write_workqueue"))
3100 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3101 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3102 if (val == 0 || val > MAX_TAG_SIZE) {
3103 ti->error = "Invalid integrity arguments";
3106 cc->on_disk_tag_size = val;
3107 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3108 if (!strcasecmp(sval, "aead")) {
3109 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3110 } else if (strcasecmp(sval, "none")) {
3111 ti->error = "Unknown integrity profile";
3115 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3116 if (!cc->cipher_auth)
3118 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3119 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3120 cc->sector_size > 4096 ||
3121 (cc->sector_size & (cc->sector_size - 1))) {
3122 ti->error = "Invalid feature value for sector_size";
3125 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3126 ti->error = "Device size is not multiple of sector_size feature";
3129 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3130 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
3131 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3133 ti->error = "Invalid feature arguments";
3141 #ifdef CONFIG_BLK_DEV_ZONED
3142 static int crypt_report_zones(struct dm_target *ti,
3143 struct dm_report_zones_args *args, unsigned int nr_zones)
3145 struct crypt_config *cc = ti->private;
3147 return dm_report_zones(cc->dev->bdev, cc->start,
3148 cc->start + dm_target_offset(ti, args->next_sector),
3152 #define crypt_report_zones NULL
3156 * Construct an encryption mapping:
3157 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3159 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3161 struct crypt_config *cc;
3162 const char *devname = dm_table_device_name(ti->table);
3164 unsigned int align_mask;
3165 unsigned long long tmpll;
3167 size_t iv_size_padding, additional_req_size;
3171 ti->error = "Not enough arguments";
3175 key_size = get_key_size(&argv[1]);
3177 ti->error = "Cannot parse key size";
3181 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3183 ti->error = "Cannot allocate encryption context";
3186 cc->key_size = key_size;
3187 cc->sector_size = (1 << SECTOR_SHIFT);
3188 cc->sector_shift = 0;
3192 spin_lock(&dm_crypt_clients_lock);
3193 dm_crypt_clients_n++;
3194 crypt_calculate_pages_per_client();
3195 spin_unlock(&dm_crypt_clients_lock);
3197 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3201 /* Optional parameters need to be read before cipher constructor */
3203 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3208 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3212 if (crypt_integrity_aead(cc)) {
3213 cc->dmreq_start = sizeof(struct aead_request);
3214 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3215 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3217 cc->dmreq_start = sizeof(struct skcipher_request);
3218 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3219 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3221 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3223 if (align_mask < CRYPTO_MINALIGN) {
3224 /* Allocate the padding exactly */
3225 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3229 * If the cipher requires greater alignment than kmalloc
3230 * alignment, we don't know the exact position of the
3231 * initialization vector. We must assume worst case.
3233 iv_size_padding = align_mask;
3236 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
3237 additional_req_size = sizeof(struct dm_crypt_request) +
3238 iv_size_padding + cc->iv_size +
3241 sizeof(unsigned int);
3243 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3245 ti->error = "Cannot allocate crypt request mempool";
3249 cc->per_bio_data_size = ti->per_io_data_size =
3250 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3251 ARCH_KMALLOC_MINALIGN);
3253 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3255 ti->error = "Cannot allocate page mempool";
3259 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3261 ti->error = "Cannot allocate crypt bioset";
3265 mutex_init(&cc->bio_alloc_lock);
3268 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3269 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3270 ti->error = "Invalid iv_offset sector";
3273 cc->iv_offset = tmpll;
3275 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3277 ti->error = "Device lookup failed";
3282 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3283 ti->error = "Invalid device sector";
3288 if (bdev_is_zoned(cc->dev->bdev)) {
3290 * For zoned block devices, we need to preserve the issuer write
3291 * ordering. To do so, disable write workqueues and force inline
3292 * encryption completion.
3294 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3295 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3298 * All zone append writes to a zone of a zoned block device will
3299 * have the same BIO sector, the start of the zone. When the
3300 * cypher IV mode uses sector values, all data targeting a
3301 * zone will be encrypted using the first sector numbers of the
3302 * zone. This will not result in write errors but will
3303 * cause most reads to fail as reads will use the sector values
3304 * for the actual data locations, resulting in IV mismatch.
3305 * To avoid this problem, ask DM core to emulate zone append
3306 * operations with regular writes.
3308 DMDEBUG("Zone append operations will be emulated");
3309 ti->emulate_zone_append = true;
3312 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3313 ret = crypt_integrity_ctr(cc, ti);
3317 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3318 if (!cc->tag_pool_max_sectors)
3319 cc->tag_pool_max_sectors = 1;
3321 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3322 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3324 ti->error = "Cannot allocate integrity tags mempool";
3328 cc->tag_pool_max_sectors <<= cc->sector_shift;
3332 cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3333 if (!cc->io_queue) {
3334 ti->error = "Couldn't create kcryptd io queue";
3338 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3339 cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3342 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3343 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3344 num_online_cpus(), devname);
3345 if (!cc->crypt_queue) {
3346 ti->error = "Couldn't create kcryptd queue";
3350 spin_lock_init(&cc->write_thread_lock);
3351 cc->write_tree = RB_ROOT;
3353 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3354 if (IS_ERR(cc->write_thread)) {
3355 ret = PTR_ERR(cc->write_thread);
3356 cc->write_thread = NULL;
3357 ti->error = "Couldn't spawn write thread";
3360 wake_up_process(cc->write_thread);
3362 ti->num_flush_bios = 1;
3363 ti->limit_swap_bios = true;
3372 static int crypt_map(struct dm_target *ti, struct bio *bio)
3374 struct dm_crypt_io *io;
3375 struct crypt_config *cc = ti->private;
3378 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3379 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3380 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3382 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3383 bio_op(bio) == REQ_OP_DISCARD)) {
3384 bio_set_dev(bio, cc->dev->bdev);
3385 if (bio_sectors(bio))
3386 bio->bi_iter.bi_sector = cc->start +
3387 dm_target_offset(ti, bio->bi_iter.bi_sector);
3388 return DM_MAPIO_REMAPPED;
3392 * Check if bio is too large, split as needed.
3394 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3395 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3396 dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3399 * Ensure that bio is a multiple of internal sector encryption size
3400 * and is aligned to this size as defined in IO hints.
3402 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3403 return DM_MAPIO_KILL;
3405 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3406 return DM_MAPIO_KILL;
3408 io = dm_per_bio_data(bio, cc->per_bio_data_size);
3409 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3411 if (cc->on_disk_tag_size) {
3412 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3414 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
3415 unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3416 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3417 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3418 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3419 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3420 io->integrity_metadata_from_pool = true;
3424 if (crypt_integrity_aead(cc))
3425 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3427 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3429 if (bio_data_dir(io->base_bio) == READ) {
3430 if (kcryptd_io_read(io, GFP_NOWAIT))
3431 kcryptd_queue_read(io);
3433 kcryptd_queue_crypt(io);
3435 return DM_MAPIO_SUBMITTED;
3438 static void crypt_status(struct dm_target *ti, status_type_t type,
3439 unsigned status_flags, char *result, unsigned maxlen)
3441 struct crypt_config *cc = ti->private;
3443 int num_feature_args = 0;
3446 case STATUSTYPE_INFO:
3450 case STATUSTYPE_TABLE:
3451 DMEMIT("%s ", cc->cipher_string);
3453 if (cc->key_size > 0) {
3455 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3457 for (i = 0; i < cc->key_size; i++)
3458 DMEMIT("%02x", cc->key[i]);
3462 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3463 cc->dev->name, (unsigned long long)cc->start);
3465 num_feature_args += !!ti->num_discard_bios;
3466 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3467 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3468 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3469 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3470 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3471 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3472 if (cc->on_disk_tag_size)
3474 if (num_feature_args) {
3475 DMEMIT(" %d", num_feature_args);
3476 if (ti->num_discard_bios)
3477 DMEMIT(" allow_discards");
3478 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3479 DMEMIT(" same_cpu_crypt");
3480 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3481 DMEMIT(" submit_from_crypt_cpus");
3482 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3483 DMEMIT(" no_read_workqueue");
3484 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3485 DMEMIT(" no_write_workqueue");
3486 if (cc->on_disk_tag_size)
3487 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3488 if (cc->sector_size != (1 << SECTOR_SHIFT))
3489 DMEMIT(" sector_size:%d", cc->sector_size);
3490 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3491 DMEMIT(" iv_large_sectors");
3495 case STATUSTYPE_IMA:
3496 DMEMIT_TARGET_NAME_VERSION(ti->type);
3497 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3498 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3499 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3501 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3503 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3505 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3508 if (cc->on_disk_tag_size)
3509 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3510 cc->on_disk_tag_size, cc->cipher_auth);
3511 if (cc->sector_size != (1 << SECTOR_SHIFT))
3512 DMEMIT(",sector_size=%d", cc->sector_size);
3513 if (cc->cipher_string)
3514 DMEMIT(",cipher_string=%s", cc->cipher_string);
3516 DMEMIT(",key_size=%u", cc->key_size);
3517 DMEMIT(",key_parts=%u", cc->key_parts);
3518 DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3519 DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3525 static void crypt_postsuspend(struct dm_target *ti)
3527 struct crypt_config *cc = ti->private;
3529 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3532 static int crypt_preresume(struct dm_target *ti)
3534 struct crypt_config *cc = ti->private;
3536 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3537 DMERR("aborting resume - crypt key is not set.");
3544 static void crypt_resume(struct dm_target *ti)
3546 struct crypt_config *cc = ti->private;
3548 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3551 /* Message interface
3555 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3556 char *result, unsigned maxlen)
3558 struct crypt_config *cc = ti->private;
3559 int key_size, ret = -EINVAL;
3564 if (!strcasecmp(argv[0], "key")) {
3565 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3566 DMWARN("not suspended during key manipulation.");
3569 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3570 /* The key size may not be changed. */
3571 key_size = get_key_size(&argv[2]);
3572 if (key_size < 0 || cc->key_size != key_size) {
3573 memset(argv[2], '0', strlen(argv[2]));
3577 ret = crypt_set_key(cc, argv[2]);
3580 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3581 ret = cc->iv_gen_ops->init(cc);
3582 /* wipe the kernel key payload copy */
3584 memset(cc->key, 0, cc->key_size * sizeof(u8));
3587 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3588 return crypt_wipe_key(cc);
3592 DMWARN("unrecognised message received.");
3596 static int crypt_iterate_devices(struct dm_target *ti,
3597 iterate_devices_callout_fn fn, void *data)
3599 struct crypt_config *cc = ti->private;
3601 return fn(ti, cc->dev, cc->start, ti->len, data);
3604 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3606 struct crypt_config *cc = ti->private;
3609 * Unfortunate constraint that is required to avoid the potential
3610 * for exceeding underlying device's max_segments limits -- due to
3611 * crypt_alloc_buffer() possibly allocating pages for the encryption
3612 * bio that are not as physically contiguous as the original bio.
3614 limits->max_segment_size = PAGE_SIZE;
3616 limits->logical_block_size =
3617 max_t(unsigned, limits->logical_block_size, cc->sector_size);
3618 limits->physical_block_size =
3619 max_t(unsigned, limits->physical_block_size, cc->sector_size);
3620 limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3623 static struct target_type crypt_target = {
3625 .version = {1, 23, 0},
3626 .module = THIS_MODULE,
3629 .features = DM_TARGET_ZONED_HM,
3630 .report_zones = crypt_report_zones,
3632 .status = crypt_status,
3633 .postsuspend = crypt_postsuspend,
3634 .preresume = crypt_preresume,
3635 .resume = crypt_resume,
3636 .message = crypt_message,
3637 .iterate_devices = crypt_iterate_devices,
3638 .io_hints = crypt_io_hints,
3641 static int __init dm_crypt_init(void)
3645 r = dm_register_target(&crypt_target);
3647 DMERR("register failed %d", r);
3652 static void __exit dm_crypt_exit(void)
3654 dm_unregister_target(&crypt_target);
3657 module_init(dm_crypt_init);
3658 module_exit(dm_crypt_exit);
3660 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3661 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3662 MODULE_LICENSE("GPL");