2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
39 #include <linux/device-mapper.h>
41 #define DM_MSG_PREFIX "crypt"
44 * context holding the current state of a multi-part conversion
46 struct convert_context {
47 struct completion restart;
50 struct bvec_iter iter_in;
51 struct bvec_iter iter_out;
55 struct skcipher_request *req;
56 struct aead_request *req_aead;
62 * per bio private data
65 struct crypt_config *cc;
67 u8 *integrity_metadata;
68 bool integrity_metadata_from_pool;
69 struct work_struct work;
71 struct convert_context ctx;
77 struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
80 struct dm_crypt_request {
81 struct convert_context *ctx;
82 struct scatterlist sg_in[4];
83 struct scatterlist sg_out[4];
89 struct crypt_iv_operations {
90 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
92 void (*dtr)(struct crypt_config *cc);
93 int (*init)(struct crypt_config *cc);
94 int (*wipe)(struct crypt_config *cc);
95 int (*generator)(struct crypt_config *cc, u8 *iv,
96 struct dm_crypt_request *dmreq);
97 int (*post)(struct crypt_config *cc, u8 *iv,
98 struct dm_crypt_request *dmreq);
101 struct iv_benbi_private {
105 #define LMK_SEED_SIZE 64 /* hash + 0 */
106 struct iv_lmk_private {
107 struct crypto_shash *hash_tfm;
111 #define TCW_WHITENING_SIZE 16
112 struct iv_tcw_private {
113 struct crypto_shash *crc32_tfm;
119 * Crypt: maps a linear range of a block device
120 * and encrypts / decrypts at the same time.
122 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
123 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
126 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
127 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
131 * The fields in here must be read only after initialization.
133 struct crypt_config {
137 struct percpu_counter n_allocated_pages;
139 struct workqueue_struct *io_queue;
140 struct workqueue_struct *crypt_queue;
142 spinlock_t write_thread_lock;
143 struct task_struct *write_thread;
144 struct rb_root write_tree;
150 const struct crypt_iv_operations *iv_gen_ops;
152 struct iv_benbi_private benbi;
153 struct iv_lmk_private lmk;
154 struct iv_tcw_private tcw;
157 unsigned int iv_size;
158 unsigned short int sector_size;
159 unsigned char sector_shift;
162 struct crypto_skcipher **tfms;
163 struct crypto_aead **tfms_aead;
166 unsigned long cipher_flags;
169 * Layout of each crypto request:
171 * struct skcipher_request
174 * struct dm_crypt_request
178 * The padding is added so that dm_crypt_request and the IV are
181 unsigned int dmreq_start;
183 unsigned int per_bio_data_size;
186 unsigned int key_size;
187 unsigned int key_parts; /* independent parts in key buffer */
188 unsigned int key_extra_size; /* additional keys length */
189 unsigned int key_mac_size; /* MAC key size for authenc(...) */
191 unsigned int integrity_tag_size;
192 unsigned int integrity_iv_size;
193 unsigned int on_disk_tag_size;
196 * pool for per bio private data, crypto requests,
197 * encryption requeusts/buffer pages and integrity tags
199 unsigned tag_pool_max_sectors;
205 struct mutex bio_alloc_lock;
207 u8 *authenc_key; /* space for keys in authenc() format (if used) */
212 #define MAX_TAG_SIZE 480
213 #define POOL_ENTRY_SIZE 512
215 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
216 static unsigned dm_crypt_clients_n = 0;
217 static volatile unsigned long dm_crypt_pages_per_client;
218 #define DM_CRYPT_MEMORY_PERCENT 2
219 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_PAGES * 16)
221 static void clone_init(struct dm_crypt_io *, struct bio *);
222 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
223 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
224 struct scatterlist *sg);
227 * Use this to access cipher attributes that are independent of the key.
229 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
231 return cc->cipher_tfm.tfms[0];
234 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
236 return cc->cipher_tfm.tfms_aead[0];
240 * Different IV generation algorithms:
242 * plain: the initial vector is the 32-bit little-endian version of the sector
243 * number, padded with zeros if necessary.
245 * plain64: the initial vector is the 64-bit little-endian version of the sector
246 * number, padded with zeros if necessary.
248 * plain64be: the initial vector is the 64-bit big-endian version of the sector
249 * number, padded with zeros if necessary.
251 * essiv: "encrypted sector|salt initial vector", the sector number is
252 * encrypted with the bulk cipher using a salt as key. The salt
253 * should be derived from the bulk cipher's key via hashing.
255 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
256 * (needed for LRW-32-AES and possible other narrow block modes)
258 * null: the initial vector is always zero. Provides compatibility with
259 * obsolete loop_fish2 devices. Do not use for new devices.
261 * lmk: Compatible implementation of the block chaining mode used
262 * by the Loop-AES block device encryption system
263 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
264 * It operates on full 512 byte sectors and uses CBC
265 * with an IV derived from the sector number, the data and
266 * optionally extra IV seed.
267 * This means that after decryption the first block
268 * of sector must be tweaked according to decrypted data.
269 * Loop-AES can use three encryption schemes:
270 * version 1: is plain aes-cbc mode
271 * version 2: uses 64 multikey scheme with lmk IV generator
272 * version 3: the same as version 2 with additional IV seed
273 * (it uses 65 keys, last key is used as IV seed)
275 * tcw: Compatible implementation of the block chaining mode used
276 * by the TrueCrypt device encryption system (prior to version 4.1).
277 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
278 * It operates on full 512 byte sectors and uses CBC
279 * with an IV derived from initial key and the sector number.
280 * In addition, whitening value is applied on every sector, whitening
281 * is calculated from initial key, sector number and mixed using CRC32.
282 * Note that this encryption scheme is vulnerable to watermarking attacks
283 * and should be used for old compatible containers access only.
285 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
286 * The IV is encrypted little-endian byte-offset (with the same key
287 * and cipher as the volume).
290 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
291 struct dm_crypt_request *dmreq)
293 memset(iv, 0, cc->iv_size);
294 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
299 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
300 struct dm_crypt_request *dmreq)
302 memset(iv, 0, cc->iv_size);
303 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
308 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
309 struct dm_crypt_request *dmreq)
311 memset(iv, 0, cc->iv_size);
312 /* iv_size is at least of size u64; usually it is 16 bytes */
313 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
318 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
319 struct dm_crypt_request *dmreq)
322 * ESSIV encryption of the IV is now handled by the crypto API,
323 * so just pass the plain sector number here.
325 memset(iv, 0, cc->iv_size);
326 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
331 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
337 if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags))
338 bs = crypto_aead_blocksize(any_tfm_aead(cc));
340 bs = crypto_skcipher_blocksize(any_tfm(cc));
343 /* we need to calculate how far we must shift the sector count
344 * to get the cipher block count, we use this shift in _gen */
346 if (1 << log != bs) {
347 ti->error = "cypher blocksize is not a power of 2";
352 ti->error = "cypher blocksize is > 512";
356 cc->iv_gen_private.benbi.shift = 9 - log;
361 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
365 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
366 struct dm_crypt_request *dmreq)
370 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
372 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
373 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
378 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
379 struct dm_crypt_request *dmreq)
381 memset(iv, 0, cc->iv_size);
386 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
388 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
390 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
391 crypto_free_shash(lmk->hash_tfm);
392 lmk->hash_tfm = NULL;
398 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
401 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
403 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
404 ti->error = "Unsupported sector size for LMK";
408 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
409 if (IS_ERR(lmk->hash_tfm)) {
410 ti->error = "Error initializing LMK hash";
411 return PTR_ERR(lmk->hash_tfm);
414 /* No seed in LMK version 2 */
415 if (cc->key_parts == cc->tfms_count) {
420 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
422 crypt_iv_lmk_dtr(cc);
423 ti->error = "Error kmallocing seed storage in LMK";
430 static int crypt_iv_lmk_init(struct crypt_config *cc)
432 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
433 int subkey_size = cc->key_size / cc->key_parts;
435 /* LMK seed is on the position of LMK_KEYS + 1 key */
437 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
438 crypto_shash_digestsize(lmk->hash_tfm));
443 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
445 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
448 memset(lmk->seed, 0, LMK_SEED_SIZE);
453 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
454 struct dm_crypt_request *dmreq,
457 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
458 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
459 struct md5_state md5state;
463 desc->tfm = lmk->hash_tfm;
465 r = crypto_shash_init(desc);
470 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
475 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
476 r = crypto_shash_update(desc, data + 16, 16 * 31);
480 /* Sector is cropped to 56 bits here */
481 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
482 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
483 buf[2] = cpu_to_le32(4024);
485 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
489 /* No MD5 padding here */
490 r = crypto_shash_export(desc, &md5state);
494 for (i = 0; i < MD5_HASH_WORDS; i++)
495 __cpu_to_le32s(&md5state.hash[i]);
496 memcpy(iv, &md5state.hash, cc->iv_size);
501 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
502 struct dm_crypt_request *dmreq)
504 struct scatterlist *sg;
508 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
509 sg = crypt_get_sg_data(cc, dmreq->sg_in);
510 src = kmap_atomic(sg_page(sg));
511 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
514 memset(iv, 0, cc->iv_size);
519 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
520 struct dm_crypt_request *dmreq)
522 struct scatterlist *sg;
526 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
529 sg = crypt_get_sg_data(cc, dmreq->sg_out);
530 dst = kmap_atomic(sg_page(sg));
531 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
533 /* Tweak the first block of plaintext sector */
535 crypto_xor(dst + sg->offset, iv, cc->iv_size);
541 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
543 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
545 kzfree(tcw->iv_seed);
547 kzfree(tcw->whitening);
548 tcw->whitening = NULL;
550 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
551 crypto_free_shash(tcw->crc32_tfm);
552 tcw->crc32_tfm = NULL;
555 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
558 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
560 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
561 ti->error = "Unsupported sector size for TCW";
565 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
566 ti->error = "Wrong key size for TCW";
570 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
571 if (IS_ERR(tcw->crc32_tfm)) {
572 ti->error = "Error initializing CRC32 in TCW";
573 return PTR_ERR(tcw->crc32_tfm);
576 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
577 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
578 if (!tcw->iv_seed || !tcw->whitening) {
579 crypt_iv_tcw_dtr(cc);
580 ti->error = "Error allocating seed storage in TCW";
587 static int crypt_iv_tcw_init(struct crypt_config *cc)
589 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
590 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
592 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
593 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
599 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
601 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
603 memset(tcw->iv_seed, 0, cc->iv_size);
604 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
609 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
610 struct dm_crypt_request *dmreq,
613 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
614 __le64 sector = cpu_to_le64(dmreq->iv_sector);
615 u8 buf[TCW_WHITENING_SIZE];
616 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
619 /* xor whitening with sector number */
620 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8);
621 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8);
623 /* calculate crc32 for every 32bit part and xor it */
624 desc->tfm = tcw->crc32_tfm;
625 for (i = 0; i < 4; i++) {
626 r = crypto_shash_init(desc);
629 r = crypto_shash_update(desc, &buf[i * 4], 4);
632 r = crypto_shash_final(desc, &buf[i * 4]);
636 crypto_xor(&buf[0], &buf[12], 4);
637 crypto_xor(&buf[4], &buf[8], 4);
639 /* apply whitening (8 bytes) to whole sector */
640 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
641 crypto_xor(data + i * 8, buf, 8);
643 memzero_explicit(buf, sizeof(buf));
647 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
648 struct dm_crypt_request *dmreq)
650 struct scatterlist *sg;
651 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
652 __le64 sector = cpu_to_le64(dmreq->iv_sector);
656 /* Remove whitening from ciphertext */
657 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
658 sg = crypt_get_sg_data(cc, dmreq->sg_in);
659 src = kmap_atomic(sg_page(sg));
660 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
665 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8);
667 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or,
673 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
674 struct dm_crypt_request *dmreq)
676 struct scatterlist *sg;
680 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
683 /* Apply whitening on ciphertext */
684 sg = crypt_get_sg_data(cc, dmreq->sg_out);
685 dst = kmap_atomic(sg_page(sg));
686 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
692 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
693 struct dm_crypt_request *dmreq)
695 /* Used only for writes, there must be an additional space to store IV */
696 get_random_bytes(iv, cc->iv_size);
700 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
703 if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags)) {
704 ti->error = "AEAD transforms not supported for EBOIV";
708 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
709 ti->error = "Block size of EBOIV cipher does "
710 "not match IV size of block cipher";
717 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
718 struct dm_crypt_request *dmreq)
720 u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
721 struct skcipher_request *req;
722 struct scatterlist src, dst;
723 struct crypto_wait wait;
726 req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
730 memset(buf, 0, cc->iv_size);
731 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
733 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
734 sg_init_one(&dst, iv, cc->iv_size);
735 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
736 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
737 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
738 skcipher_request_free(req);
743 static const struct crypt_iv_operations crypt_iv_plain_ops = {
744 .generator = crypt_iv_plain_gen
747 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
748 .generator = crypt_iv_plain64_gen
751 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
752 .generator = crypt_iv_plain64be_gen
755 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
756 .generator = crypt_iv_essiv_gen
759 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
760 .ctr = crypt_iv_benbi_ctr,
761 .dtr = crypt_iv_benbi_dtr,
762 .generator = crypt_iv_benbi_gen
765 static const struct crypt_iv_operations crypt_iv_null_ops = {
766 .generator = crypt_iv_null_gen
769 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
770 .ctr = crypt_iv_lmk_ctr,
771 .dtr = crypt_iv_lmk_dtr,
772 .init = crypt_iv_lmk_init,
773 .wipe = crypt_iv_lmk_wipe,
774 .generator = crypt_iv_lmk_gen,
775 .post = crypt_iv_lmk_post
778 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
779 .ctr = crypt_iv_tcw_ctr,
780 .dtr = crypt_iv_tcw_dtr,
781 .init = crypt_iv_tcw_init,
782 .wipe = crypt_iv_tcw_wipe,
783 .generator = crypt_iv_tcw_gen,
784 .post = crypt_iv_tcw_post
787 static struct crypt_iv_operations crypt_iv_random_ops = {
788 .generator = crypt_iv_random_gen
791 static struct crypt_iv_operations crypt_iv_eboiv_ops = {
792 .ctr = crypt_iv_eboiv_ctr,
793 .generator = crypt_iv_eboiv_gen
797 * Integrity extensions
799 static bool crypt_integrity_aead(struct crypt_config *cc)
801 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
804 static bool crypt_integrity_hmac(struct crypt_config *cc)
806 return crypt_integrity_aead(cc) && cc->key_mac_size;
809 /* Get sg containing data */
810 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
811 struct scatterlist *sg)
813 if (unlikely(crypt_integrity_aead(cc)))
819 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
821 struct bio_integrity_payload *bip;
822 unsigned int tag_len;
825 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
828 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
832 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
834 bip->bip_iter.bi_size = tag_len;
835 bip->bip_iter.bi_sector = io->cc->start + io->sector;
837 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
838 tag_len, offset_in_page(io->integrity_metadata));
839 if (unlikely(ret != tag_len))
845 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
847 #ifdef CONFIG_BLK_DEV_INTEGRITY
848 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
849 struct mapped_device *md = dm_table_get_md(ti->table);
851 /* From now we require underlying device with our integrity profile */
852 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
853 ti->error = "Integrity profile not supported.";
857 if (bi->tag_size != cc->on_disk_tag_size ||
858 bi->tuple_size != cc->on_disk_tag_size) {
859 ti->error = "Integrity profile tag size mismatch.";
862 if (1 << bi->interval_exp != cc->sector_size) {
863 ti->error = "Integrity profile sector size mismatch.";
867 if (crypt_integrity_aead(cc)) {
868 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
869 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
870 cc->integrity_tag_size, cc->integrity_iv_size);
872 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
873 ti->error = "Integrity AEAD auth tag size is not supported.";
876 } else if (cc->integrity_iv_size)
877 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
878 cc->integrity_iv_size);
880 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
881 ti->error = "Not enough space for integrity tag in the profile.";
887 ti->error = "Integrity profile not supported.";
892 static void crypt_convert_init(struct crypt_config *cc,
893 struct convert_context *ctx,
894 struct bio *bio_out, struct bio *bio_in,
897 ctx->bio_in = bio_in;
898 ctx->bio_out = bio_out;
900 ctx->iter_in = bio_in->bi_iter;
902 ctx->iter_out = bio_out->bi_iter;
903 ctx->cc_sector = sector + cc->iv_offset;
904 init_completion(&ctx->restart);
907 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
910 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
913 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
915 return (void *)((char *)dmreq - cc->dmreq_start);
918 static u8 *iv_of_dmreq(struct crypt_config *cc,
919 struct dm_crypt_request *dmreq)
921 if (crypt_integrity_aead(cc))
922 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
923 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
925 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
926 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
929 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
930 struct dm_crypt_request *dmreq)
932 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
935 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
936 struct dm_crypt_request *dmreq)
938 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
939 return (__le64 *) ptr;
942 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
943 struct dm_crypt_request *dmreq)
945 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
946 cc->iv_size + sizeof(uint64_t);
947 return (unsigned int*)ptr;
950 static void *tag_from_dmreq(struct crypt_config *cc,
951 struct dm_crypt_request *dmreq)
953 struct convert_context *ctx = dmreq->ctx;
954 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
956 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
957 cc->on_disk_tag_size];
960 static void *iv_tag_from_dmreq(struct crypt_config *cc,
961 struct dm_crypt_request *dmreq)
963 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
966 static int crypt_convert_block_aead(struct crypt_config *cc,
967 struct convert_context *ctx,
968 struct aead_request *req,
969 unsigned int tag_offset)
971 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
972 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
973 struct dm_crypt_request *dmreq;
974 u8 *iv, *org_iv, *tag_iv, *tag;
978 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
980 /* Reject unexpected unaligned bio. */
981 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
984 dmreq = dmreq_of_req(cc, req);
985 dmreq->iv_sector = ctx->cc_sector;
986 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
987 dmreq->iv_sector >>= cc->sector_shift;
990 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
992 sector = org_sector_of_dmreq(cc, dmreq);
993 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
995 iv = iv_of_dmreq(cc, dmreq);
996 org_iv = org_iv_of_dmreq(cc, dmreq);
997 tag = tag_from_dmreq(cc, dmreq);
998 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1001 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1002 * | (authenticated) | (auth+encryption) | |
1003 * | sector_LE | IV | sector in/out | tag in/out |
1005 sg_init_table(dmreq->sg_in, 4);
1006 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1007 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1008 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1009 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1011 sg_init_table(dmreq->sg_out, 4);
1012 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1013 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1014 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1015 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1017 if (cc->iv_gen_ops) {
1018 /* For READs use IV stored in integrity metadata */
1019 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1020 memcpy(org_iv, tag_iv, cc->iv_size);
1022 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1025 /* Store generated IV in integrity metadata */
1026 if (cc->integrity_iv_size)
1027 memcpy(tag_iv, org_iv, cc->iv_size);
1029 /* Working copy of IV, to be modified in crypto API */
1030 memcpy(iv, org_iv, cc->iv_size);
1033 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1034 if (bio_data_dir(ctx->bio_in) == WRITE) {
1035 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1036 cc->sector_size, iv);
1037 r = crypto_aead_encrypt(req);
1038 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1039 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1040 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1042 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1043 cc->sector_size + cc->integrity_tag_size, iv);
1044 r = crypto_aead_decrypt(req);
1047 if (r == -EBADMSG) {
1048 char b[BDEVNAME_SIZE];
1049 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1050 (unsigned long long)le64_to_cpu(*sector));
1053 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1054 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1056 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1057 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1062 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1063 struct convert_context *ctx,
1064 struct skcipher_request *req,
1065 unsigned int tag_offset)
1067 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1068 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1069 struct scatterlist *sg_in, *sg_out;
1070 struct dm_crypt_request *dmreq;
1071 u8 *iv, *org_iv, *tag_iv;
1075 /* Reject unexpected unaligned bio. */
1076 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1079 dmreq = dmreq_of_req(cc, req);
1080 dmreq->iv_sector = ctx->cc_sector;
1081 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1082 dmreq->iv_sector >>= cc->sector_shift;
1085 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1087 iv = iv_of_dmreq(cc, dmreq);
1088 org_iv = org_iv_of_dmreq(cc, dmreq);
1089 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1091 sector = org_sector_of_dmreq(cc, dmreq);
1092 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1094 /* For skcipher we use only the first sg item */
1095 sg_in = &dmreq->sg_in[0];
1096 sg_out = &dmreq->sg_out[0];
1098 sg_init_table(sg_in, 1);
1099 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1101 sg_init_table(sg_out, 1);
1102 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1104 if (cc->iv_gen_ops) {
1105 /* For READs use IV stored in integrity metadata */
1106 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1107 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1109 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1112 /* Store generated IV in integrity metadata */
1113 if (cc->integrity_iv_size)
1114 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1116 /* Working copy of IV, to be modified in crypto API */
1117 memcpy(iv, org_iv, cc->iv_size);
1120 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1122 if (bio_data_dir(ctx->bio_in) == WRITE)
1123 r = crypto_skcipher_encrypt(req);
1125 r = crypto_skcipher_decrypt(req);
1127 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1128 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1130 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1131 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1136 static void kcryptd_async_done(struct crypto_async_request *async_req,
1139 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1140 struct convert_context *ctx)
1142 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1145 ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
1147 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1150 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1151 * requests if driver request queue is full.
1153 skcipher_request_set_callback(ctx->r.req,
1154 CRYPTO_TFM_REQ_MAY_BACKLOG,
1155 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1158 static void crypt_alloc_req_aead(struct crypt_config *cc,
1159 struct convert_context *ctx)
1161 if (!ctx->r.req_aead)
1162 ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
1164 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1167 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1168 * requests if driver request queue is full.
1170 aead_request_set_callback(ctx->r.req_aead,
1171 CRYPTO_TFM_REQ_MAY_BACKLOG,
1172 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1175 static void crypt_alloc_req(struct crypt_config *cc,
1176 struct convert_context *ctx)
1178 if (crypt_integrity_aead(cc))
1179 crypt_alloc_req_aead(cc, ctx);
1181 crypt_alloc_req_skcipher(cc, ctx);
1184 static void crypt_free_req_skcipher(struct crypt_config *cc,
1185 struct skcipher_request *req, struct bio *base_bio)
1187 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1189 if ((struct skcipher_request *)(io + 1) != req)
1190 mempool_free(req, &cc->req_pool);
1193 static void crypt_free_req_aead(struct crypt_config *cc,
1194 struct aead_request *req, struct bio *base_bio)
1196 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1198 if ((struct aead_request *)(io + 1) != req)
1199 mempool_free(req, &cc->req_pool);
1202 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1204 if (crypt_integrity_aead(cc))
1205 crypt_free_req_aead(cc, req, base_bio);
1207 crypt_free_req_skcipher(cc, req, base_bio);
1211 * Encrypt / decrypt data from one bio to another one (can be the same one)
1213 static blk_status_t crypt_convert(struct crypt_config *cc,
1214 struct convert_context *ctx)
1216 unsigned int tag_offset = 0;
1217 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1220 atomic_set(&ctx->cc_pending, 1);
1222 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1224 crypt_alloc_req(cc, ctx);
1225 atomic_inc(&ctx->cc_pending);
1227 if (crypt_integrity_aead(cc))
1228 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1230 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1234 * The request was queued by a crypto driver
1235 * but the driver request queue is full, let's wait.
1238 wait_for_completion(&ctx->restart);
1239 reinit_completion(&ctx->restart);
1242 * The request is queued and processed asynchronously,
1243 * completion function kcryptd_async_done() will be called.
1247 ctx->cc_sector += sector_step;
1251 * The request was already processed (synchronously).
1254 atomic_dec(&ctx->cc_pending);
1255 ctx->cc_sector += sector_step;
1260 * There was a data integrity error.
1263 atomic_dec(&ctx->cc_pending);
1264 return BLK_STS_PROTECTION;
1266 * There was an error while processing the request.
1269 atomic_dec(&ctx->cc_pending);
1270 return BLK_STS_IOERR;
1277 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1280 * Generate a new unfragmented bio with the given size
1281 * This should never violate the device limitations (but only because
1282 * max_segment_size is being constrained to PAGE_SIZE).
1284 * This function may be called concurrently. If we allocate from the mempool
1285 * concurrently, there is a possibility of deadlock. For example, if we have
1286 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1287 * the mempool concurrently, it may deadlock in a situation where both processes
1288 * have allocated 128 pages and the mempool is exhausted.
1290 * In order to avoid this scenario we allocate the pages under a mutex.
1292 * In order to not degrade performance with excessive locking, we try
1293 * non-blocking allocations without a mutex first but on failure we fallback
1294 * to blocking allocations with a mutex.
1296 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1298 struct crypt_config *cc = io->cc;
1300 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1301 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1302 unsigned i, len, remaining_size;
1306 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1307 mutex_lock(&cc->bio_alloc_lock);
1309 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1313 clone_init(io, clone);
1315 remaining_size = size;
1317 for (i = 0; i < nr_iovecs; i++) {
1318 page = mempool_alloc(&cc->page_pool, gfp_mask);
1320 crypt_free_buffer_pages(cc, clone);
1322 gfp_mask |= __GFP_DIRECT_RECLAIM;
1326 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1328 bio_add_page(clone, page, len, 0);
1330 remaining_size -= len;
1333 /* Allocate space for integrity tags */
1334 if (dm_crypt_integrity_io_alloc(io, clone)) {
1335 crypt_free_buffer_pages(cc, clone);
1340 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1341 mutex_unlock(&cc->bio_alloc_lock);
1346 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1349 struct bvec_iter_all iter_all;
1351 bio_for_each_segment_all(bv, clone, iter_all) {
1352 BUG_ON(!bv->bv_page);
1353 mempool_free(bv->bv_page, &cc->page_pool);
1357 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1358 struct bio *bio, sector_t sector)
1362 io->sector = sector;
1364 io->ctx.r.req = NULL;
1365 io->integrity_metadata = NULL;
1366 io->integrity_metadata_from_pool = false;
1367 atomic_set(&io->io_pending, 0);
1370 static void crypt_inc_pending(struct dm_crypt_io *io)
1372 atomic_inc(&io->io_pending);
1376 * One of the bios was finished. Check for completion of
1377 * the whole request and correctly clean up the buffer.
1379 static void crypt_dec_pending(struct dm_crypt_io *io)
1381 struct crypt_config *cc = io->cc;
1382 struct bio *base_bio = io->base_bio;
1383 blk_status_t error = io->error;
1385 if (!atomic_dec_and_test(&io->io_pending))
1389 crypt_free_req(cc, io->ctx.r.req, base_bio);
1391 if (unlikely(io->integrity_metadata_from_pool))
1392 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1394 kfree(io->integrity_metadata);
1396 base_bio->bi_status = error;
1397 bio_endio(base_bio);
1401 * kcryptd/kcryptd_io:
1403 * Needed because it would be very unwise to do decryption in an
1404 * interrupt context.
1406 * kcryptd performs the actual encryption or decryption.
1408 * kcryptd_io performs the IO submission.
1410 * They must be separated as otherwise the final stages could be
1411 * starved by new requests which can block in the first stages due
1412 * to memory allocation.
1414 * The work is done per CPU global for all dm-crypt instances.
1415 * They should not depend on each other and do not block.
1417 static void crypt_endio(struct bio *clone)
1419 struct dm_crypt_io *io = clone->bi_private;
1420 struct crypt_config *cc = io->cc;
1421 unsigned rw = bio_data_dir(clone);
1425 * free the processed pages
1428 crypt_free_buffer_pages(cc, clone);
1430 error = clone->bi_status;
1433 if (rw == READ && !error) {
1434 kcryptd_queue_crypt(io);
1438 if (unlikely(error))
1441 crypt_dec_pending(io);
1444 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1446 struct crypt_config *cc = io->cc;
1448 clone->bi_private = io;
1449 clone->bi_end_io = crypt_endio;
1450 bio_set_dev(clone, cc->dev->bdev);
1451 clone->bi_opf = io->base_bio->bi_opf;
1454 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1456 struct crypt_config *cc = io->cc;
1460 * We need the original biovec array in order to decrypt
1461 * the whole bio data *afterwards* -- thanks to immutable
1462 * biovecs we don't need to worry about the block layer
1463 * modifying the biovec array; so leverage bio_clone_fast().
1465 clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1469 crypt_inc_pending(io);
1471 clone_init(io, clone);
1472 clone->bi_iter.bi_sector = cc->start + io->sector;
1474 if (dm_crypt_integrity_io_alloc(io, clone)) {
1475 crypt_dec_pending(io);
1480 generic_make_request(clone);
1484 static void kcryptd_io_read_work(struct work_struct *work)
1486 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1488 crypt_inc_pending(io);
1489 if (kcryptd_io_read(io, GFP_NOIO))
1490 io->error = BLK_STS_RESOURCE;
1491 crypt_dec_pending(io);
1494 static void kcryptd_queue_read(struct dm_crypt_io *io)
1496 struct crypt_config *cc = io->cc;
1498 INIT_WORK(&io->work, kcryptd_io_read_work);
1499 queue_work(cc->io_queue, &io->work);
1502 static void kcryptd_io_write(struct dm_crypt_io *io)
1504 struct bio *clone = io->ctx.bio_out;
1506 generic_make_request(clone);
1509 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1511 static int dmcrypt_write(void *data)
1513 struct crypt_config *cc = data;
1514 struct dm_crypt_io *io;
1517 struct rb_root write_tree;
1518 struct blk_plug plug;
1520 spin_lock_irq(&cc->write_thread_lock);
1523 if (!RB_EMPTY_ROOT(&cc->write_tree))
1526 set_current_state(TASK_INTERRUPTIBLE);
1528 spin_unlock_irq(&cc->write_thread_lock);
1530 if (unlikely(kthread_should_stop())) {
1531 set_current_state(TASK_RUNNING);
1537 set_current_state(TASK_RUNNING);
1538 spin_lock_irq(&cc->write_thread_lock);
1539 goto continue_locked;
1542 write_tree = cc->write_tree;
1543 cc->write_tree = RB_ROOT;
1544 spin_unlock_irq(&cc->write_thread_lock);
1546 BUG_ON(rb_parent(write_tree.rb_node));
1549 * Note: we cannot walk the tree here with rb_next because
1550 * the structures may be freed when kcryptd_io_write is called.
1552 blk_start_plug(&plug);
1554 io = crypt_io_from_node(rb_first(&write_tree));
1555 rb_erase(&io->rb_node, &write_tree);
1556 kcryptd_io_write(io);
1557 } while (!RB_EMPTY_ROOT(&write_tree));
1558 blk_finish_plug(&plug);
1563 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1565 struct bio *clone = io->ctx.bio_out;
1566 struct crypt_config *cc = io->cc;
1567 unsigned long flags;
1569 struct rb_node **rbp, *parent;
1571 if (unlikely(io->error)) {
1572 crypt_free_buffer_pages(cc, clone);
1574 crypt_dec_pending(io);
1578 /* crypt_convert should have filled the clone bio */
1579 BUG_ON(io->ctx.iter_out.bi_size);
1581 clone->bi_iter.bi_sector = cc->start + io->sector;
1583 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1584 generic_make_request(clone);
1588 spin_lock_irqsave(&cc->write_thread_lock, flags);
1589 if (RB_EMPTY_ROOT(&cc->write_tree))
1590 wake_up_process(cc->write_thread);
1591 rbp = &cc->write_tree.rb_node;
1593 sector = io->sector;
1596 if (sector < crypt_io_from_node(parent)->sector)
1597 rbp = &(*rbp)->rb_left;
1599 rbp = &(*rbp)->rb_right;
1601 rb_link_node(&io->rb_node, parent, rbp);
1602 rb_insert_color(&io->rb_node, &cc->write_tree);
1603 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1606 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1608 struct crypt_config *cc = io->cc;
1611 sector_t sector = io->sector;
1615 * Prevent io from disappearing until this function completes.
1617 crypt_inc_pending(io);
1618 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1620 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1621 if (unlikely(!clone)) {
1622 io->error = BLK_STS_IOERR;
1626 io->ctx.bio_out = clone;
1627 io->ctx.iter_out = clone->bi_iter;
1629 sector += bio_sectors(clone);
1631 crypt_inc_pending(io);
1632 r = crypt_convert(cc, &io->ctx);
1635 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1637 /* Encryption was already finished, submit io now */
1638 if (crypt_finished) {
1639 kcryptd_crypt_write_io_submit(io, 0);
1640 io->sector = sector;
1644 crypt_dec_pending(io);
1647 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1649 crypt_dec_pending(io);
1652 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1654 struct crypt_config *cc = io->cc;
1657 crypt_inc_pending(io);
1659 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1662 r = crypt_convert(cc, &io->ctx);
1666 if (atomic_dec_and_test(&io->ctx.cc_pending))
1667 kcryptd_crypt_read_done(io);
1669 crypt_dec_pending(io);
1672 static void kcryptd_async_done(struct crypto_async_request *async_req,
1675 struct dm_crypt_request *dmreq = async_req->data;
1676 struct convert_context *ctx = dmreq->ctx;
1677 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1678 struct crypt_config *cc = io->cc;
1681 * A request from crypto driver backlog is going to be processed now,
1682 * finish the completion and continue in crypt_convert().
1683 * (Callback will be called for the second time for this request.)
1685 if (error == -EINPROGRESS) {
1686 complete(&ctx->restart);
1690 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1691 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1693 if (error == -EBADMSG) {
1694 char b[BDEVNAME_SIZE];
1695 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1696 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1697 io->error = BLK_STS_PROTECTION;
1698 } else if (error < 0)
1699 io->error = BLK_STS_IOERR;
1701 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1703 if (!atomic_dec_and_test(&ctx->cc_pending))
1706 if (bio_data_dir(io->base_bio) == READ)
1707 kcryptd_crypt_read_done(io);
1709 kcryptd_crypt_write_io_submit(io, 1);
1712 static void kcryptd_crypt(struct work_struct *work)
1714 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1716 if (bio_data_dir(io->base_bio) == READ)
1717 kcryptd_crypt_read_convert(io);
1719 kcryptd_crypt_write_convert(io);
1722 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1724 struct crypt_config *cc = io->cc;
1726 INIT_WORK(&io->work, kcryptd_crypt);
1727 queue_work(cc->crypt_queue, &io->work);
1730 static void crypt_free_tfms_aead(struct crypt_config *cc)
1732 if (!cc->cipher_tfm.tfms_aead)
1735 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1736 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1737 cc->cipher_tfm.tfms_aead[0] = NULL;
1740 kfree(cc->cipher_tfm.tfms_aead);
1741 cc->cipher_tfm.tfms_aead = NULL;
1744 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1748 if (!cc->cipher_tfm.tfms)
1751 for (i = 0; i < cc->tfms_count; i++)
1752 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1753 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1754 cc->cipher_tfm.tfms[i] = NULL;
1757 kfree(cc->cipher_tfm.tfms);
1758 cc->cipher_tfm.tfms = NULL;
1761 static void crypt_free_tfms(struct crypt_config *cc)
1763 if (crypt_integrity_aead(cc))
1764 crypt_free_tfms_aead(cc);
1766 crypt_free_tfms_skcipher(cc);
1769 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1774 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
1775 sizeof(struct crypto_skcipher *),
1777 if (!cc->cipher_tfm.tfms)
1780 for (i = 0; i < cc->tfms_count; i++) {
1781 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1782 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1783 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1784 crypt_free_tfms(cc);
1790 * dm-crypt performance can vary greatly depending on which crypto
1791 * algorithm implementation is used. Help people debug performance
1792 * problems by logging the ->cra_driver_name.
1794 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1795 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
1799 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1803 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1804 if (!cc->cipher_tfm.tfms)
1807 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1808 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1809 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1810 crypt_free_tfms(cc);
1814 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1815 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
1819 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1821 if (crypt_integrity_aead(cc))
1822 return crypt_alloc_tfms_aead(cc, ciphermode);
1824 return crypt_alloc_tfms_skcipher(cc, ciphermode);
1827 static unsigned crypt_subkey_size(struct crypt_config *cc)
1829 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1832 static unsigned crypt_authenckey_size(struct crypt_config *cc)
1834 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1838 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1839 * the key must be for some reason in special format.
1840 * This funcion converts cc->key to this special format.
1842 static void crypt_copy_authenckey(char *p, const void *key,
1843 unsigned enckeylen, unsigned authkeylen)
1845 struct crypto_authenc_key_param *param;
1848 rta = (struct rtattr *)p;
1849 param = RTA_DATA(rta);
1850 param->enckeylen = cpu_to_be32(enckeylen);
1851 rta->rta_len = RTA_LENGTH(sizeof(*param));
1852 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1853 p += RTA_SPACE(sizeof(*param));
1854 memcpy(p, key + enckeylen, authkeylen);
1856 memcpy(p, key, enckeylen);
1859 static int crypt_setkey(struct crypt_config *cc)
1861 unsigned subkey_size;
1864 /* Ignore extra keys (which are used for IV etc) */
1865 subkey_size = crypt_subkey_size(cc);
1867 if (crypt_integrity_hmac(cc)) {
1868 if (subkey_size < cc->key_mac_size)
1871 crypt_copy_authenckey(cc->authenc_key, cc->key,
1872 subkey_size - cc->key_mac_size,
1876 for (i = 0; i < cc->tfms_count; i++) {
1877 if (crypt_integrity_hmac(cc))
1878 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1879 cc->authenc_key, crypt_authenckey_size(cc));
1880 else if (crypt_integrity_aead(cc))
1881 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1882 cc->key + (i * subkey_size),
1885 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1886 cc->key + (i * subkey_size),
1892 if (crypt_integrity_hmac(cc))
1893 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1900 static bool contains_whitespace(const char *str)
1903 if (isspace(*str++))
1908 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1910 char *new_key_string, *key_desc;
1913 const struct user_key_payload *ukp;
1916 * Reject key_string with whitespace. dm core currently lacks code for
1917 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1919 if (contains_whitespace(key_string)) {
1920 DMERR("whitespace chars not allowed in key string");
1924 /* look for next ':' separating key_type from key_description */
1925 key_desc = strpbrk(key_string, ":");
1926 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1929 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
1930 strncmp(key_string, "user:", key_desc - key_string + 1))
1933 new_key_string = kstrdup(key_string, GFP_KERNEL);
1934 if (!new_key_string)
1937 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
1938 key_desc + 1, NULL);
1940 kzfree(new_key_string);
1941 return PTR_ERR(key);
1944 down_read(&key->sem);
1946 ukp = user_key_payload_locked(key);
1950 kzfree(new_key_string);
1951 return -EKEYREVOKED;
1954 if (cc->key_size != ukp->datalen) {
1957 kzfree(new_key_string);
1961 memcpy(cc->key, ukp->data, cc->key_size);
1966 /* clear the flag since following operations may invalidate previously valid key */
1967 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1969 ret = crypt_setkey(cc);
1972 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1973 kzfree(cc->key_string);
1974 cc->key_string = new_key_string;
1976 kzfree(new_key_string);
1981 static int get_key_size(char **key_string)
1986 if (*key_string[0] != ':')
1987 return strlen(*key_string) >> 1;
1989 /* look for next ':' in key string */
1990 colon = strpbrk(*key_string + 1, ":");
1994 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
1997 *key_string = colon;
1999 /* remaining key string should be :<logon|user>:<key_desc> */
2006 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2011 static int get_key_size(char **key_string)
2013 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2018 static int crypt_set_key(struct crypt_config *cc, char *key)
2021 int key_string_len = strlen(key);
2023 /* Hyphen (which gives a key_size of zero) means there is no key. */
2024 if (!cc->key_size && strcmp(key, "-"))
2027 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2028 if (key[0] == ':') {
2029 r = crypt_set_keyring_key(cc, key + 1);
2033 /* clear the flag since following operations may invalidate previously valid key */
2034 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2036 /* wipe references to any kernel keyring key */
2037 kzfree(cc->key_string);
2038 cc->key_string = NULL;
2040 /* Decode key from its hex representation. */
2041 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2044 r = crypt_setkey(cc);
2046 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2049 /* Hex key string not needed after here, so wipe it. */
2050 memset(key, '0', key_string_len);
2055 static int crypt_wipe_key(struct crypt_config *cc)
2059 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2060 get_random_bytes(&cc->key, cc->key_size);
2062 /* Wipe IV private keys */
2063 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2064 r = cc->iv_gen_ops->wipe(cc);
2069 kzfree(cc->key_string);
2070 cc->key_string = NULL;
2071 r = crypt_setkey(cc);
2072 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2077 static void crypt_calculate_pages_per_client(void)
2079 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2081 if (!dm_crypt_clients_n)
2084 pages /= dm_crypt_clients_n;
2085 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2086 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2087 dm_crypt_pages_per_client = pages;
2090 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2092 struct crypt_config *cc = pool_data;
2095 if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2096 likely(gfp_mask & __GFP_NORETRY))
2099 page = alloc_page(gfp_mask);
2100 if (likely(page != NULL))
2101 percpu_counter_add(&cc->n_allocated_pages, 1);
2106 static void crypt_page_free(void *page, void *pool_data)
2108 struct crypt_config *cc = pool_data;
2111 percpu_counter_sub(&cc->n_allocated_pages, 1);
2114 static void crypt_dtr(struct dm_target *ti)
2116 struct crypt_config *cc = ti->private;
2123 if (cc->write_thread)
2124 kthread_stop(cc->write_thread);
2127 destroy_workqueue(cc->io_queue);
2128 if (cc->crypt_queue)
2129 destroy_workqueue(cc->crypt_queue);
2131 crypt_free_tfms(cc);
2133 bioset_exit(&cc->bs);
2135 mempool_exit(&cc->page_pool);
2136 mempool_exit(&cc->req_pool);
2137 mempool_exit(&cc->tag_pool);
2139 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2140 percpu_counter_destroy(&cc->n_allocated_pages);
2142 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2143 cc->iv_gen_ops->dtr(cc);
2146 dm_put_device(ti, cc->dev);
2148 kzfree(cc->cipher_string);
2149 kzfree(cc->key_string);
2150 kzfree(cc->cipher_auth);
2151 kzfree(cc->authenc_key);
2153 mutex_destroy(&cc->bio_alloc_lock);
2155 /* Must zero key material before freeing */
2158 spin_lock(&dm_crypt_clients_lock);
2159 WARN_ON(!dm_crypt_clients_n);
2160 dm_crypt_clients_n--;
2161 crypt_calculate_pages_per_client();
2162 spin_unlock(&dm_crypt_clients_lock);
2165 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2167 struct crypt_config *cc = ti->private;
2169 if (crypt_integrity_aead(cc))
2170 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2172 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2175 /* at least a 64 bit sector number should fit in our buffer */
2176 cc->iv_size = max(cc->iv_size,
2177 (unsigned int)(sizeof(u64) / sizeof(u8)));
2179 DMWARN("Selected cipher does not support IVs");
2183 /* Choose ivmode, see comments at iv code. */
2185 cc->iv_gen_ops = NULL;
2186 else if (strcmp(ivmode, "plain") == 0)
2187 cc->iv_gen_ops = &crypt_iv_plain_ops;
2188 else if (strcmp(ivmode, "plain64") == 0)
2189 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2190 else if (strcmp(ivmode, "plain64be") == 0)
2191 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2192 else if (strcmp(ivmode, "essiv") == 0)
2193 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2194 else if (strcmp(ivmode, "benbi") == 0)
2195 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2196 else if (strcmp(ivmode, "null") == 0)
2197 cc->iv_gen_ops = &crypt_iv_null_ops;
2198 else if (strcmp(ivmode, "eboiv") == 0)
2199 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2200 else if (strcmp(ivmode, "lmk") == 0) {
2201 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2203 * Version 2 and 3 is recognised according
2204 * to length of provided multi-key string.
2205 * If present (version 3), last key is used as IV seed.
2206 * All keys (including IV seed) are always the same size.
2208 if (cc->key_size % cc->key_parts) {
2210 cc->key_extra_size = cc->key_size / cc->key_parts;
2212 } else if (strcmp(ivmode, "tcw") == 0) {
2213 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2214 cc->key_parts += 2; /* IV + whitening */
2215 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2216 } else if (strcmp(ivmode, "random") == 0) {
2217 cc->iv_gen_ops = &crypt_iv_random_ops;
2218 /* Need storage space in integrity fields. */
2219 cc->integrity_iv_size = cc->iv_size;
2221 ti->error = "Invalid IV mode";
2229 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2230 * The HMAC is needed to calculate tag size (HMAC digest size).
2231 * This should be probably done by crypto-api calls (once available...)
2233 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2235 char *start, *end, *mac_alg = NULL;
2236 struct crypto_ahash *mac;
2238 if (!strstarts(cipher_api, "authenc("))
2241 start = strchr(cipher_api, '(');
2242 end = strchr(cipher_api, ',');
2243 if (!start || !end || ++start > end)
2246 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2249 strncpy(mac_alg, start, end - start);
2251 mac = crypto_alloc_ahash(mac_alg, 0, 0);
2255 return PTR_ERR(mac);
2257 cc->key_mac_size = crypto_ahash_digestsize(mac);
2258 crypto_free_ahash(mac);
2260 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2261 if (!cc->authenc_key)
2267 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2268 char **ivmode, char **ivopts)
2270 struct crypt_config *cc = ti->private;
2271 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2277 * New format (capi: prefix)
2278 * capi:cipher_api_spec-iv:ivopts
2280 tmp = &cipher_in[strlen("capi:")];
2282 /* Separate IV options if present, it can contain another '-' in hash name */
2283 *ivopts = strrchr(tmp, ':');
2289 *ivmode = strrchr(tmp, '-');
2294 /* The rest is crypto API spec */
2297 /* Alloc AEAD, can be used only in new format. */
2298 if (crypt_integrity_aead(cc)) {
2299 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2301 ti->error = "Invalid AEAD cipher spec";
2306 if (*ivmode && !strcmp(*ivmode, "lmk"))
2307 cc->tfms_count = 64;
2309 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2311 ti->error = "Digest algorithm missing for ESSIV mode";
2314 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2315 cipher_api, *ivopts);
2316 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2317 ti->error = "Cannot allocate cipher string";
2323 cc->key_parts = cc->tfms_count;
2325 /* Allocate cipher */
2326 ret = crypt_alloc_tfms(cc, cipher_api);
2328 ti->error = "Error allocating crypto tfm";
2332 if (crypt_integrity_aead(cc))
2333 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2335 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2340 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2341 char **ivmode, char **ivopts)
2343 struct crypt_config *cc = ti->private;
2344 char *tmp, *cipher, *chainmode, *keycount;
2345 char *cipher_api = NULL;
2349 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2350 ti->error = "Bad cipher specification";
2355 * Legacy dm-crypt cipher specification
2356 * cipher[:keycount]-mode-iv:ivopts
2359 keycount = strsep(&tmp, "-");
2360 cipher = strsep(&keycount, ":");
2364 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2365 !is_power_of_2(cc->tfms_count)) {
2366 ti->error = "Bad cipher key count specification";
2369 cc->key_parts = cc->tfms_count;
2371 chainmode = strsep(&tmp, "-");
2372 *ivmode = strsep(&tmp, ":");
2376 * For compatibility with the original dm-crypt mapping format, if
2377 * only the cipher name is supplied, use cbc-plain.
2379 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2384 if (strcmp(chainmode, "ecb") && !*ivmode) {
2385 ti->error = "IV mechanism required";
2389 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2393 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2395 ti->error = "Digest algorithm missing for ESSIV mode";
2399 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2400 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2402 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2403 "%s(%s)", chainmode, cipher);
2405 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2410 /* Allocate cipher */
2411 ret = crypt_alloc_tfms(cc, cipher_api);
2413 ti->error = "Error allocating crypto tfm";
2421 ti->error = "Cannot allocate cipher strings";
2425 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2427 struct crypt_config *cc = ti->private;
2428 char *ivmode = NULL, *ivopts = NULL;
2431 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2432 if (!cc->cipher_string) {
2433 ti->error = "Cannot allocate cipher strings";
2437 if (strstarts(cipher_in, "capi:"))
2438 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2440 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2445 ret = crypt_ctr_ivmode(ti, ivmode);
2449 /* Initialize and set key */
2450 ret = crypt_set_key(cc, key);
2452 ti->error = "Error decoding and setting key";
2457 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2458 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2460 ti->error = "Error creating IV";
2465 /* Initialize IV (set keys for ESSIV etc) */
2466 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2467 ret = cc->iv_gen_ops->init(cc);
2469 ti->error = "Error initialising IV";
2474 /* wipe the kernel key payload copy */
2476 memset(cc->key, 0, cc->key_size * sizeof(u8));
2481 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2483 struct crypt_config *cc = ti->private;
2484 struct dm_arg_set as;
2485 static const struct dm_arg _args[] = {
2486 {0, 6, "Invalid number of feature args"},
2488 unsigned int opt_params, val;
2489 const char *opt_string, *sval;
2493 /* Optional parameters */
2497 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2501 while (opt_params--) {
2502 opt_string = dm_shift_arg(&as);
2504 ti->error = "Not enough feature arguments";
2508 if (!strcasecmp(opt_string, "allow_discards"))
2509 ti->num_discard_bios = 1;
2511 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2512 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2514 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2515 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2516 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2517 if (val == 0 || val > MAX_TAG_SIZE) {
2518 ti->error = "Invalid integrity arguments";
2521 cc->on_disk_tag_size = val;
2522 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2523 if (!strcasecmp(sval, "aead")) {
2524 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2525 } else if (strcasecmp(sval, "none")) {
2526 ti->error = "Unknown integrity profile";
2530 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2531 if (!cc->cipher_auth)
2533 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2534 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2535 cc->sector_size > 4096 ||
2536 (cc->sector_size & (cc->sector_size - 1))) {
2537 ti->error = "Invalid feature value for sector_size";
2540 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2541 ti->error = "Device size is not multiple of sector_size feature";
2544 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2545 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2546 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2548 ti->error = "Invalid feature arguments";
2557 * Construct an encryption mapping:
2558 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2560 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2562 struct crypt_config *cc;
2563 const char *devname = dm_table_device_name(ti->table);
2565 unsigned int align_mask;
2566 unsigned long long tmpll;
2568 size_t iv_size_padding, additional_req_size;
2572 ti->error = "Not enough arguments";
2576 key_size = get_key_size(&argv[1]);
2578 ti->error = "Cannot parse key size";
2582 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
2584 ti->error = "Cannot allocate encryption context";
2587 cc->key_size = key_size;
2588 cc->sector_size = (1 << SECTOR_SHIFT);
2589 cc->sector_shift = 0;
2593 spin_lock(&dm_crypt_clients_lock);
2594 dm_crypt_clients_n++;
2595 crypt_calculate_pages_per_client();
2596 spin_unlock(&dm_crypt_clients_lock);
2598 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2602 /* Optional parameters need to be read before cipher constructor */
2604 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2609 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2613 if (crypt_integrity_aead(cc)) {
2614 cc->dmreq_start = sizeof(struct aead_request);
2615 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2616 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2618 cc->dmreq_start = sizeof(struct skcipher_request);
2619 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2620 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2622 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2624 if (align_mask < CRYPTO_MINALIGN) {
2625 /* Allocate the padding exactly */
2626 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2630 * If the cipher requires greater alignment than kmalloc
2631 * alignment, we don't know the exact position of the
2632 * initialization vector. We must assume worst case.
2634 iv_size_padding = align_mask;
2637 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2638 additional_req_size = sizeof(struct dm_crypt_request) +
2639 iv_size_padding + cc->iv_size +
2642 sizeof(unsigned int);
2644 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
2646 ti->error = "Cannot allocate crypt request mempool";
2650 cc->per_bio_data_size = ti->per_io_data_size =
2651 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2652 ARCH_KMALLOC_MINALIGN);
2654 ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2656 ti->error = "Cannot allocate page mempool";
2660 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
2662 ti->error = "Cannot allocate crypt bioset";
2666 mutex_init(&cc->bio_alloc_lock);
2669 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2670 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2671 ti->error = "Invalid iv_offset sector";
2674 cc->iv_offset = tmpll;
2676 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2678 ti->error = "Device lookup failed";
2683 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
2684 ti->error = "Invalid device sector";
2689 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2690 ret = crypt_integrity_ctr(cc, ti);
2694 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2695 if (!cc->tag_pool_max_sectors)
2696 cc->tag_pool_max_sectors = 1;
2698 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
2699 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2701 ti->error = "Cannot allocate integrity tags mempool";
2705 cc->tag_pool_max_sectors <<= cc->sector_shift;
2709 cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
2710 if (!cc->io_queue) {
2711 ti->error = "Couldn't create kcryptd io queue";
2715 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2716 cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2719 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2720 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2721 num_online_cpus(), devname);
2722 if (!cc->crypt_queue) {
2723 ti->error = "Couldn't create kcryptd queue";
2727 spin_lock_init(&cc->write_thread_lock);
2728 cc->write_tree = RB_ROOT;
2730 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
2731 if (IS_ERR(cc->write_thread)) {
2732 ret = PTR_ERR(cc->write_thread);
2733 cc->write_thread = NULL;
2734 ti->error = "Couldn't spawn write thread";
2737 wake_up_process(cc->write_thread);
2739 ti->num_flush_bios = 1;
2748 static int crypt_map(struct dm_target *ti, struct bio *bio)
2750 struct dm_crypt_io *io;
2751 struct crypt_config *cc = ti->private;
2754 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2755 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2756 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2758 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2759 bio_op(bio) == REQ_OP_DISCARD)) {
2760 bio_set_dev(bio, cc->dev->bdev);
2761 if (bio_sectors(bio))
2762 bio->bi_iter.bi_sector = cc->start +
2763 dm_target_offset(ti, bio->bi_iter.bi_sector);
2764 return DM_MAPIO_REMAPPED;
2768 * Check if bio is too large, split as needed.
2770 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2771 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2772 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2775 * Ensure that bio is a multiple of internal sector encryption size
2776 * and is aligned to this size as defined in IO hints.
2778 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2779 return DM_MAPIO_KILL;
2781 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2782 return DM_MAPIO_KILL;
2784 io = dm_per_bio_data(bio, cc->per_bio_data_size);
2785 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2787 if (cc->on_disk_tag_size) {
2788 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2790 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2791 unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2792 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2793 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2794 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2795 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
2796 io->integrity_metadata_from_pool = true;
2800 if (crypt_integrity_aead(cc))
2801 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2803 io->ctx.r.req = (struct skcipher_request *)(io + 1);
2805 if (bio_data_dir(io->base_bio) == READ) {
2806 if (kcryptd_io_read(io, GFP_NOWAIT))
2807 kcryptd_queue_read(io);
2809 kcryptd_queue_crypt(io);
2811 return DM_MAPIO_SUBMITTED;
2814 static void crypt_status(struct dm_target *ti, status_type_t type,
2815 unsigned status_flags, char *result, unsigned maxlen)
2817 struct crypt_config *cc = ti->private;
2819 int num_feature_args = 0;
2822 case STATUSTYPE_INFO:
2826 case STATUSTYPE_TABLE:
2827 DMEMIT("%s ", cc->cipher_string);
2829 if (cc->key_size > 0) {
2831 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2833 for (i = 0; i < cc->key_size; i++)
2834 DMEMIT("%02x", cc->key[i]);
2838 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2839 cc->dev->name, (unsigned long long)cc->start);
2841 num_feature_args += !!ti->num_discard_bios;
2842 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2843 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2844 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2845 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2846 if (cc->on_disk_tag_size)
2848 if (num_feature_args) {
2849 DMEMIT(" %d", num_feature_args);
2850 if (ti->num_discard_bios)
2851 DMEMIT(" allow_discards");
2852 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2853 DMEMIT(" same_cpu_crypt");
2854 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2855 DMEMIT(" submit_from_crypt_cpus");
2856 if (cc->on_disk_tag_size)
2857 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2858 if (cc->sector_size != (1 << SECTOR_SHIFT))
2859 DMEMIT(" sector_size:%d", cc->sector_size);
2860 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2861 DMEMIT(" iv_large_sectors");
2868 static void crypt_postsuspend(struct dm_target *ti)
2870 struct crypt_config *cc = ti->private;
2872 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2875 static int crypt_preresume(struct dm_target *ti)
2877 struct crypt_config *cc = ti->private;
2879 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2880 DMERR("aborting resume - crypt key is not set.");
2887 static void crypt_resume(struct dm_target *ti)
2889 struct crypt_config *cc = ti->private;
2891 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2894 /* Message interface
2898 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
2899 char *result, unsigned maxlen)
2901 struct crypt_config *cc = ti->private;
2902 int key_size, ret = -EINVAL;
2907 if (!strcasecmp(argv[0], "key")) {
2908 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2909 DMWARN("not suspended during key manipulation.");
2912 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2913 /* The key size may not be changed. */
2914 key_size = get_key_size(&argv[2]);
2915 if (key_size < 0 || cc->key_size != key_size) {
2916 memset(argv[2], '0', strlen(argv[2]));
2920 ret = crypt_set_key(cc, argv[2]);
2923 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2924 ret = cc->iv_gen_ops->init(cc);
2925 /* wipe the kernel key payload copy */
2927 memset(cc->key, 0, cc->key_size * sizeof(u8));
2930 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
2931 return crypt_wipe_key(cc);
2935 DMWARN("unrecognised message received.");
2939 static int crypt_iterate_devices(struct dm_target *ti,
2940 iterate_devices_callout_fn fn, void *data)
2942 struct crypt_config *cc = ti->private;
2944 return fn(ti, cc->dev, cc->start, ti->len, data);
2947 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2949 struct crypt_config *cc = ti->private;
2952 * Unfortunate constraint that is required to avoid the potential
2953 * for exceeding underlying device's max_segments limits -- due to
2954 * crypt_alloc_buffer() possibly allocating pages for the encryption
2955 * bio that are not as physically contiguous as the original bio.
2957 limits->max_segment_size = PAGE_SIZE;
2959 limits->logical_block_size =
2960 max_t(unsigned short, limits->logical_block_size, cc->sector_size);
2961 limits->physical_block_size =
2962 max_t(unsigned, limits->physical_block_size, cc->sector_size);
2963 limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
2966 static struct target_type crypt_target = {
2968 .version = {1, 19, 0},
2969 .module = THIS_MODULE,
2973 .status = crypt_status,
2974 .postsuspend = crypt_postsuspend,
2975 .preresume = crypt_preresume,
2976 .resume = crypt_resume,
2977 .message = crypt_message,
2978 .iterate_devices = crypt_iterate_devices,
2979 .io_hints = crypt_io_hints,
2982 static int __init dm_crypt_init(void)
2986 r = dm_register_target(&crypt_target);
2988 DMERR("register failed %d", r);
2993 static void __exit dm_crypt_exit(void)
2995 dm_unregister_target(&crypt_target);
2998 module_init(dm_crypt_init);
2999 module_exit(dm_crypt_exit);
3001 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3002 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3003 MODULE_LICENSE("GPL");