Merge tag 'leds-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel/linux...
[platform/kernel/linux-starfive.git] / drivers / md / dm-cache-target.c
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 #include "dm-io-tracker.h"
12
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/init.h>
17 #include <linux/mempool.h>
18 #include <linux/module.h>
19 #include <linux/rwsem.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22
23 #define DM_MSG_PREFIX "cache"
24
25 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
26         "A percentage of time allocated for copying to and/or from cache");
27
28 /*----------------------------------------------------------------*/
29
30 /*
31  * Glossary:
32  *
33  * oblock: index of an origin block
34  * cblock: index of a cache block
35  * promotion: movement of a block from origin to cache
36  * demotion: movement of a block from cache to origin
37  * migration: movement of a block between the origin and cache device,
38  *            either direction
39  */
40
41 /*----------------------------------------------------------------*/
42
43 /*
44  * Represents a chunk of future work.  'input' allows continuations to pass
45  * values between themselves, typically error values.
46  */
47 struct continuation {
48         struct work_struct ws;
49         blk_status_t input;
50 };
51
52 static inline void init_continuation(struct continuation *k,
53                                      void (*fn)(struct work_struct *))
54 {
55         INIT_WORK(&k->ws, fn);
56         k->input = 0;
57 }
58
59 static inline void queue_continuation(struct workqueue_struct *wq,
60                                       struct continuation *k)
61 {
62         queue_work(wq, &k->ws);
63 }
64
65 /*----------------------------------------------------------------*/
66
67 /*
68  * The batcher collects together pieces of work that need a particular
69  * operation to occur before they can proceed (typically a commit).
70  */
71 struct batcher {
72         /*
73          * The operation that everyone is waiting for.
74          */
75         blk_status_t (*commit_op)(void *context);
76         void *commit_context;
77
78         /*
79          * This is how bios should be issued once the commit op is complete
80          * (accounted_request).
81          */
82         void (*issue_op)(struct bio *bio, void *context);
83         void *issue_context;
84
85         /*
86          * Queued work gets put on here after commit.
87          */
88         struct workqueue_struct *wq;
89
90         spinlock_t lock;
91         struct list_head work_items;
92         struct bio_list bios;
93         struct work_struct commit_work;
94
95         bool commit_scheduled;
96 };
97
98 static void __commit(struct work_struct *_ws)
99 {
100         struct batcher *b = container_of(_ws, struct batcher, commit_work);
101         blk_status_t r;
102         struct list_head work_items;
103         struct work_struct *ws, *tmp;
104         struct continuation *k;
105         struct bio *bio;
106         struct bio_list bios;
107
108         INIT_LIST_HEAD(&work_items);
109         bio_list_init(&bios);
110
111         /*
112          * We have to grab these before the commit_op to avoid a race
113          * condition.
114          */
115         spin_lock_irq(&b->lock);
116         list_splice_init(&b->work_items, &work_items);
117         bio_list_merge(&bios, &b->bios);
118         bio_list_init(&b->bios);
119         b->commit_scheduled = false;
120         spin_unlock_irq(&b->lock);
121
122         r = b->commit_op(b->commit_context);
123
124         list_for_each_entry_safe(ws, tmp, &work_items, entry) {
125                 k = container_of(ws, struct continuation, ws);
126                 k->input = r;
127                 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
128                 queue_work(b->wq, ws);
129         }
130
131         while ((bio = bio_list_pop(&bios))) {
132                 if (r) {
133                         bio->bi_status = r;
134                         bio_endio(bio);
135                 } else
136                         b->issue_op(bio, b->issue_context);
137         }
138 }
139
140 static void batcher_init(struct batcher *b,
141                          blk_status_t (*commit_op)(void *),
142                          void *commit_context,
143                          void (*issue_op)(struct bio *bio, void *),
144                          void *issue_context,
145                          struct workqueue_struct *wq)
146 {
147         b->commit_op = commit_op;
148         b->commit_context = commit_context;
149         b->issue_op = issue_op;
150         b->issue_context = issue_context;
151         b->wq = wq;
152
153         spin_lock_init(&b->lock);
154         INIT_LIST_HEAD(&b->work_items);
155         bio_list_init(&b->bios);
156         INIT_WORK(&b->commit_work, __commit);
157         b->commit_scheduled = false;
158 }
159
160 static void async_commit(struct batcher *b)
161 {
162         queue_work(b->wq, &b->commit_work);
163 }
164
165 static void continue_after_commit(struct batcher *b, struct continuation *k)
166 {
167         bool commit_scheduled;
168
169         spin_lock_irq(&b->lock);
170         commit_scheduled = b->commit_scheduled;
171         list_add_tail(&k->ws.entry, &b->work_items);
172         spin_unlock_irq(&b->lock);
173
174         if (commit_scheduled)
175                 async_commit(b);
176 }
177
178 /*
179  * Bios are errored if commit failed.
180  */
181 static void issue_after_commit(struct batcher *b, struct bio *bio)
182 {
183        bool commit_scheduled;
184
185        spin_lock_irq(&b->lock);
186        commit_scheduled = b->commit_scheduled;
187        bio_list_add(&b->bios, bio);
188        spin_unlock_irq(&b->lock);
189
190        if (commit_scheduled)
191                async_commit(b);
192 }
193
194 /*
195  * Call this if some urgent work is waiting for the commit to complete.
196  */
197 static void schedule_commit(struct batcher *b)
198 {
199         bool immediate;
200
201         spin_lock_irq(&b->lock);
202         immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
203         b->commit_scheduled = true;
204         spin_unlock_irq(&b->lock);
205
206         if (immediate)
207                 async_commit(b);
208 }
209
210 /*
211  * There are a couple of places where we let a bio run, but want to do some
212  * work before calling its endio function.  We do this by temporarily
213  * changing the endio fn.
214  */
215 struct dm_hook_info {
216         bio_end_io_t *bi_end_io;
217 };
218
219 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
220                         bio_end_io_t *bi_end_io, void *bi_private)
221 {
222         h->bi_end_io = bio->bi_end_io;
223
224         bio->bi_end_io = bi_end_io;
225         bio->bi_private = bi_private;
226 }
227
228 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
229 {
230         bio->bi_end_io = h->bi_end_io;
231 }
232
233 /*----------------------------------------------------------------*/
234
235 #define MIGRATION_POOL_SIZE 128
236 #define COMMIT_PERIOD HZ
237 #define MIGRATION_COUNT_WINDOW 10
238
239 /*
240  * The block size of the device holding cache data must be
241  * between 32KB and 1GB.
242  */
243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
245
246 enum cache_metadata_mode {
247         CM_WRITE,               /* metadata may be changed */
248         CM_READ_ONLY,           /* metadata may not be changed */
249         CM_FAIL
250 };
251
252 enum cache_io_mode {
253         /*
254          * Data is written to cached blocks only.  These blocks are marked
255          * dirty.  If you lose the cache device you will lose data.
256          * Potential performance increase for both reads and writes.
257          */
258         CM_IO_WRITEBACK,
259
260         /*
261          * Data is written to both cache and origin.  Blocks are never
262          * dirty.  Potential performance benfit for reads only.
263          */
264         CM_IO_WRITETHROUGH,
265
266         /*
267          * A degraded mode useful for various cache coherency situations
268          * (eg, rolling back snapshots).  Reads and writes always go to the
269          * origin.  If a write goes to a cached oblock, then the cache
270          * block is invalidated.
271          */
272         CM_IO_PASSTHROUGH
273 };
274
275 struct cache_features {
276         enum cache_metadata_mode mode;
277         enum cache_io_mode io_mode;
278         unsigned metadata_version;
279         bool discard_passdown:1;
280 };
281
282 struct cache_stats {
283         atomic_t read_hit;
284         atomic_t read_miss;
285         atomic_t write_hit;
286         atomic_t write_miss;
287         atomic_t demotion;
288         atomic_t promotion;
289         atomic_t writeback;
290         atomic_t copies_avoided;
291         atomic_t cache_cell_clash;
292         atomic_t commit_count;
293         atomic_t discard_count;
294 };
295
296 struct cache {
297         struct dm_target *ti;
298         spinlock_t lock;
299
300         /*
301          * Fields for converting from sectors to blocks.
302          */
303         int sectors_per_block_shift;
304         sector_t sectors_per_block;
305
306         struct dm_cache_metadata *cmd;
307
308         /*
309          * Metadata is written to this device.
310          */
311         struct dm_dev *metadata_dev;
312
313         /*
314          * The slower of the two data devices.  Typically a spindle.
315          */
316         struct dm_dev *origin_dev;
317
318         /*
319          * The faster of the two data devices.  Typically an SSD.
320          */
321         struct dm_dev *cache_dev;
322
323         /*
324          * Size of the origin device in _complete_ blocks and native sectors.
325          */
326         dm_oblock_t origin_blocks;
327         sector_t origin_sectors;
328
329         /*
330          * Size of the cache device in blocks.
331          */
332         dm_cblock_t cache_size;
333
334         /*
335          * Invalidation fields.
336          */
337         spinlock_t invalidation_lock;
338         struct list_head invalidation_requests;
339
340         sector_t migration_threshold;
341         wait_queue_head_t migration_wait;
342         atomic_t nr_allocated_migrations;
343
344         /*
345          * The number of in flight migrations that are performing
346          * background io. eg, promotion, writeback.
347          */
348         atomic_t nr_io_migrations;
349
350         struct bio_list deferred_bios;
351
352         struct rw_semaphore quiesce_lock;
353
354         /*
355          * origin_blocks entries, discarded if set.
356          */
357         dm_dblock_t discard_nr_blocks;
358         unsigned long *discard_bitset;
359         uint32_t discard_block_size; /* a power of 2 times sectors per block */
360
361         /*
362          * Rather than reconstructing the table line for the status we just
363          * save it and regurgitate.
364          */
365         unsigned nr_ctr_args;
366         const char **ctr_args;
367
368         struct dm_kcopyd_client *copier;
369         struct work_struct deferred_bio_worker;
370         struct work_struct migration_worker;
371         struct workqueue_struct *wq;
372         struct delayed_work waker;
373         struct dm_bio_prison_v2 *prison;
374
375         /*
376          * cache_size entries, dirty if set
377          */
378         unsigned long *dirty_bitset;
379         atomic_t nr_dirty;
380
381         unsigned policy_nr_args;
382         struct dm_cache_policy *policy;
383
384         /*
385          * Cache features such as write-through.
386          */
387         struct cache_features features;
388
389         struct cache_stats stats;
390
391         bool need_tick_bio:1;
392         bool sized:1;
393         bool invalidate:1;
394         bool commit_requested:1;
395         bool loaded_mappings:1;
396         bool loaded_discards:1;
397
398         struct rw_semaphore background_work_lock;
399
400         struct batcher committer;
401         struct work_struct commit_ws;
402
403         struct dm_io_tracker tracker;
404
405         mempool_t migration_pool;
406
407         struct bio_set bs;
408 };
409
410 struct per_bio_data {
411         bool tick:1;
412         unsigned req_nr:2;
413         struct dm_bio_prison_cell_v2 *cell;
414         struct dm_hook_info hook_info;
415         sector_t len;
416 };
417
418 struct dm_cache_migration {
419         struct continuation k;
420         struct cache *cache;
421
422         struct policy_work *op;
423         struct bio *overwrite_bio;
424         struct dm_bio_prison_cell_v2 *cell;
425
426         dm_cblock_t invalidate_cblock;
427         dm_oblock_t invalidate_oblock;
428 };
429
430 /*----------------------------------------------------------------*/
431
432 static bool writethrough_mode(struct cache *cache)
433 {
434         return cache->features.io_mode == CM_IO_WRITETHROUGH;
435 }
436
437 static bool writeback_mode(struct cache *cache)
438 {
439         return cache->features.io_mode == CM_IO_WRITEBACK;
440 }
441
442 static inline bool passthrough_mode(struct cache *cache)
443 {
444         return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
445 }
446
447 /*----------------------------------------------------------------*/
448
449 static void wake_deferred_bio_worker(struct cache *cache)
450 {
451         queue_work(cache->wq, &cache->deferred_bio_worker);
452 }
453
454 static void wake_migration_worker(struct cache *cache)
455 {
456         if (passthrough_mode(cache))
457                 return;
458
459         queue_work(cache->wq, &cache->migration_worker);
460 }
461
462 /*----------------------------------------------------------------*/
463
464 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
465 {
466         return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
467 }
468
469 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
470 {
471         dm_bio_prison_free_cell_v2(cache->prison, cell);
472 }
473
474 static struct dm_cache_migration *alloc_migration(struct cache *cache)
475 {
476         struct dm_cache_migration *mg;
477
478         mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
479
480         memset(mg, 0, sizeof(*mg));
481
482         mg->cache = cache;
483         atomic_inc(&cache->nr_allocated_migrations);
484
485         return mg;
486 }
487
488 static void free_migration(struct dm_cache_migration *mg)
489 {
490         struct cache *cache = mg->cache;
491
492         if (atomic_dec_and_test(&cache->nr_allocated_migrations))
493                 wake_up(&cache->migration_wait);
494
495         mempool_free(mg, &cache->migration_pool);
496 }
497
498 /*----------------------------------------------------------------*/
499
500 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
501 {
502         return to_oblock(from_oblock(b) + 1ull);
503 }
504
505 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
506 {
507         key->virtual = 0;
508         key->dev = 0;
509         key->block_begin = from_oblock(begin);
510         key->block_end = from_oblock(end);
511 }
512
513 /*
514  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
515  * level 1 which prevents *both* READs and WRITEs.
516  */
517 #define WRITE_LOCK_LEVEL 0
518 #define READ_WRITE_LOCK_LEVEL 1
519
520 static unsigned lock_level(struct bio *bio)
521 {
522         return bio_data_dir(bio) == WRITE ?
523                 WRITE_LOCK_LEVEL :
524                 READ_WRITE_LOCK_LEVEL;
525 }
526
527 /*----------------------------------------------------------------
528  * Per bio data
529  *--------------------------------------------------------------*/
530
531 static struct per_bio_data *get_per_bio_data(struct bio *bio)
532 {
533         struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
534         BUG_ON(!pb);
535         return pb;
536 }
537
538 static struct per_bio_data *init_per_bio_data(struct bio *bio)
539 {
540         struct per_bio_data *pb = get_per_bio_data(bio);
541
542         pb->tick = false;
543         pb->req_nr = dm_bio_get_target_bio_nr(bio);
544         pb->cell = NULL;
545         pb->len = 0;
546
547         return pb;
548 }
549
550 /*----------------------------------------------------------------*/
551
552 static void defer_bio(struct cache *cache, struct bio *bio)
553 {
554         spin_lock_irq(&cache->lock);
555         bio_list_add(&cache->deferred_bios, bio);
556         spin_unlock_irq(&cache->lock);
557
558         wake_deferred_bio_worker(cache);
559 }
560
561 static void defer_bios(struct cache *cache, struct bio_list *bios)
562 {
563         spin_lock_irq(&cache->lock);
564         bio_list_merge(&cache->deferred_bios, bios);
565         bio_list_init(bios);
566         spin_unlock_irq(&cache->lock);
567
568         wake_deferred_bio_worker(cache);
569 }
570
571 /*----------------------------------------------------------------*/
572
573 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
574 {
575         bool r;
576         struct per_bio_data *pb;
577         struct dm_cell_key_v2 key;
578         dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
579         struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
580
581         cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
582
583         build_key(oblock, end, &key);
584         r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
585         if (!r) {
586                 /*
587                  * Failed to get the lock.
588                  */
589                 free_prison_cell(cache, cell_prealloc);
590                 return r;
591         }
592
593         if (cell != cell_prealloc)
594                 free_prison_cell(cache, cell_prealloc);
595
596         pb = get_per_bio_data(bio);
597         pb->cell = cell;
598
599         return r;
600 }
601
602 /*----------------------------------------------------------------*/
603
604 static bool is_dirty(struct cache *cache, dm_cblock_t b)
605 {
606         return test_bit(from_cblock(b), cache->dirty_bitset);
607 }
608
609 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
610 {
611         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
612                 atomic_inc(&cache->nr_dirty);
613                 policy_set_dirty(cache->policy, cblock);
614         }
615 }
616
617 /*
618  * These two are called when setting after migrations to force the policy
619  * and dirty bitset to be in sync.
620  */
621 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
622 {
623         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
624                 atomic_inc(&cache->nr_dirty);
625         policy_set_dirty(cache->policy, cblock);
626 }
627
628 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
629 {
630         if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
631                 if (atomic_dec_return(&cache->nr_dirty) == 0)
632                         dm_table_event(cache->ti->table);
633         }
634
635         policy_clear_dirty(cache->policy, cblock);
636 }
637
638 /*----------------------------------------------------------------*/
639
640 static bool block_size_is_power_of_two(struct cache *cache)
641 {
642         return cache->sectors_per_block_shift >= 0;
643 }
644
645 static dm_block_t block_div(dm_block_t b, uint32_t n)
646 {
647         do_div(b, n);
648
649         return b;
650 }
651
652 static dm_block_t oblocks_per_dblock(struct cache *cache)
653 {
654         dm_block_t oblocks = cache->discard_block_size;
655
656         if (block_size_is_power_of_two(cache))
657                 oblocks >>= cache->sectors_per_block_shift;
658         else
659                 oblocks = block_div(oblocks, cache->sectors_per_block);
660
661         return oblocks;
662 }
663
664 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
665 {
666         return to_dblock(block_div(from_oblock(oblock),
667                                    oblocks_per_dblock(cache)));
668 }
669
670 static void set_discard(struct cache *cache, dm_dblock_t b)
671 {
672         BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
673         atomic_inc(&cache->stats.discard_count);
674
675         spin_lock_irq(&cache->lock);
676         set_bit(from_dblock(b), cache->discard_bitset);
677         spin_unlock_irq(&cache->lock);
678 }
679
680 static void clear_discard(struct cache *cache, dm_dblock_t b)
681 {
682         spin_lock_irq(&cache->lock);
683         clear_bit(from_dblock(b), cache->discard_bitset);
684         spin_unlock_irq(&cache->lock);
685 }
686
687 static bool is_discarded(struct cache *cache, dm_dblock_t b)
688 {
689         int r;
690         spin_lock_irq(&cache->lock);
691         r = test_bit(from_dblock(b), cache->discard_bitset);
692         spin_unlock_irq(&cache->lock);
693
694         return r;
695 }
696
697 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
698 {
699         int r;
700         spin_lock_irq(&cache->lock);
701         r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
702                      cache->discard_bitset);
703         spin_unlock_irq(&cache->lock);
704
705         return r;
706 }
707
708 /*----------------------------------------------------------------
709  * Remapping
710  *--------------------------------------------------------------*/
711 static void remap_to_origin(struct cache *cache, struct bio *bio)
712 {
713         bio_set_dev(bio, cache->origin_dev->bdev);
714 }
715
716 static void remap_to_cache(struct cache *cache, struct bio *bio,
717                            dm_cblock_t cblock)
718 {
719         sector_t bi_sector = bio->bi_iter.bi_sector;
720         sector_t block = from_cblock(cblock);
721
722         bio_set_dev(bio, cache->cache_dev->bdev);
723         if (!block_size_is_power_of_two(cache))
724                 bio->bi_iter.bi_sector =
725                         (block * cache->sectors_per_block) +
726                         sector_div(bi_sector, cache->sectors_per_block);
727         else
728                 bio->bi_iter.bi_sector =
729                         (block << cache->sectors_per_block_shift) |
730                         (bi_sector & (cache->sectors_per_block - 1));
731 }
732
733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734 {
735         struct per_bio_data *pb;
736
737         spin_lock_irq(&cache->lock);
738         if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
739             bio_op(bio) != REQ_OP_DISCARD) {
740                 pb = get_per_bio_data(bio);
741                 pb->tick = true;
742                 cache->need_tick_bio = false;
743         }
744         spin_unlock_irq(&cache->lock);
745 }
746
747 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
748                                           dm_oblock_t oblock)
749 {
750         // FIXME: check_if_tick_bio_needed() is called way too much through this interface
751         check_if_tick_bio_needed(cache, bio);
752         remap_to_origin(cache, bio);
753         if (bio_data_dir(bio) == WRITE)
754                 clear_discard(cache, oblock_to_dblock(cache, oblock));
755 }
756
757 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
758                                  dm_oblock_t oblock, dm_cblock_t cblock)
759 {
760         check_if_tick_bio_needed(cache, bio);
761         remap_to_cache(cache, bio, cblock);
762         if (bio_data_dir(bio) == WRITE) {
763                 set_dirty(cache, cblock);
764                 clear_discard(cache, oblock_to_dblock(cache, oblock));
765         }
766 }
767
768 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
769 {
770         sector_t block_nr = bio->bi_iter.bi_sector;
771
772         if (!block_size_is_power_of_two(cache))
773                 (void) sector_div(block_nr, cache->sectors_per_block);
774         else
775                 block_nr >>= cache->sectors_per_block_shift;
776
777         return to_oblock(block_nr);
778 }
779
780 static bool accountable_bio(struct cache *cache, struct bio *bio)
781 {
782         return bio_op(bio) != REQ_OP_DISCARD;
783 }
784
785 static void accounted_begin(struct cache *cache, struct bio *bio)
786 {
787         struct per_bio_data *pb;
788
789         if (accountable_bio(cache, bio)) {
790                 pb = get_per_bio_data(bio);
791                 pb->len = bio_sectors(bio);
792                 dm_iot_io_begin(&cache->tracker, pb->len);
793         }
794 }
795
796 static void accounted_complete(struct cache *cache, struct bio *bio)
797 {
798         struct per_bio_data *pb = get_per_bio_data(bio);
799
800         dm_iot_io_end(&cache->tracker, pb->len);
801 }
802
803 static void accounted_request(struct cache *cache, struct bio *bio)
804 {
805         accounted_begin(cache, bio);
806         dm_submit_bio_remap(bio, NULL);
807 }
808
809 static void issue_op(struct bio *bio, void *context)
810 {
811         struct cache *cache = context;
812         accounted_request(cache, bio);
813 }
814
815 /*
816  * When running in writethrough mode we need to send writes to clean blocks
817  * to both the cache and origin devices.  Clone the bio and send them in parallel.
818  */
819 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
820                                       dm_oblock_t oblock, dm_cblock_t cblock)
821 {
822         struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
823                                                  GFP_NOIO, &cache->bs);
824
825         BUG_ON(!origin_bio);
826
827         bio_chain(origin_bio, bio);
828
829         if (bio_data_dir(origin_bio) == WRITE)
830                 clear_discard(cache, oblock_to_dblock(cache, oblock));
831         submit_bio(origin_bio);
832
833         remap_to_cache(cache, bio, cblock);
834 }
835
836 /*----------------------------------------------------------------
837  * Failure modes
838  *--------------------------------------------------------------*/
839 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
840 {
841         return cache->features.mode;
842 }
843
844 static const char *cache_device_name(struct cache *cache)
845 {
846         return dm_table_device_name(cache->ti->table);
847 }
848
849 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
850 {
851         const char *descs[] = {
852                 "write",
853                 "read-only",
854                 "fail"
855         };
856
857         dm_table_event(cache->ti->table);
858         DMINFO("%s: switching cache to %s mode",
859                cache_device_name(cache), descs[(int)mode]);
860 }
861
862 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
863 {
864         bool needs_check;
865         enum cache_metadata_mode old_mode = get_cache_mode(cache);
866
867         if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
868                 DMERR("%s: unable to read needs_check flag, setting failure mode.",
869                       cache_device_name(cache));
870                 new_mode = CM_FAIL;
871         }
872
873         if (new_mode == CM_WRITE && needs_check) {
874                 DMERR("%s: unable to switch cache to write mode until repaired.",
875                       cache_device_name(cache));
876                 if (old_mode != new_mode)
877                         new_mode = old_mode;
878                 else
879                         new_mode = CM_READ_ONLY;
880         }
881
882         /* Never move out of fail mode */
883         if (old_mode == CM_FAIL)
884                 new_mode = CM_FAIL;
885
886         switch (new_mode) {
887         case CM_FAIL:
888         case CM_READ_ONLY:
889                 dm_cache_metadata_set_read_only(cache->cmd);
890                 break;
891
892         case CM_WRITE:
893                 dm_cache_metadata_set_read_write(cache->cmd);
894                 break;
895         }
896
897         cache->features.mode = new_mode;
898
899         if (new_mode != old_mode)
900                 notify_mode_switch(cache, new_mode);
901 }
902
903 static void abort_transaction(struct cache *cache)
904 {
905         const char *dev_name = cache_device_name(cache);
906
907         if (get_cache_mode(cache) >= CM_READ_ONLY)
908                 return;
909
910         if (dm_cache_metadata_set_needs_check(cache->cmd)) {
911                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
912                 set_cache_mode(cache, CM_FAIL);
913         }
914
915         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
916         if (dm_cache_metadata_abort(cache->cmd)) {
917                 DMERR("%s: failed to abort metadata transaction", dev_name);
918                 set_cache_mode(cache, CM_FAIL);
919         }
920 }
921
922 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
923 {
924         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
925                     cache_device_name(cache), op, r);
926         abort_transaction(cache);
927         set_cache_mode(cache, CM_READ_ONLY);
928 }
929
930 /*----------------------------------------------------------------*/
931
932 static void load_stats(struct cache *cache)
933 {
934         struct dm_cache_statistics stats;
935
936         dm_cache_metadata_get_stats(cache->cmd, &stats);
937         atomic_set(&cache->stats.read_hit, stats.read_hits);
938         atomic_set(&cache->stats.read_miss, stats.read_misses);
939         atomic_set(&cache->stats.write_hit, stats.write_hits);
940         atomic_set(&cache->stats.write_miss, stats.write_misses);
941 }
942
943 static void save_stats(struct cache *cache)
944 {
945         struct dm_cache_statistics stats;
946
947         if (get_cache_mode(cache) >= CM_READ_ONLY)
948                 return;
949
950         stats.read_hits = atomic_read(&cache->stats.read_hit);
951         stats.read_misses = atomic_read(&cache->stats.read_miss);
952         stats.write_hits = atomic_read(&cache->stats.write_hit);
953         stats.write_misses = atomic_read(&cache->stats.write_miss);
954
955         dm_cache_metadata_set_stats(cache->cmd, &stats);
956 }
957
958 static void update_stats(struct cache_stats *stats, enum policy_operation op)
959 {
960         switch (op) {
961         case POLICY_PROMOTE:
962                 atomic_inc(&stats->promotion);
963                 break;
964
965         case POLICY_DEMOTE:
966                 atomic_inc(&stats->demotion);
967                 break;
968
969         case POLICY_WRITEBACK:
970                 atomic_inc(&stats->writeback);
971                 break;
972         }
973 }
974
975 /*----------------------------------------------------------------
976  * Migration processing
977  *
978  * Migration covers moving data from the origin device to the cache, or
979  * vice versa.
980  *--------------------------------------------------------------*/
981
982 static void inc_io_migrations(struct cache *cache)
983 {
984         atomic_inc(&cache->nr_io_migrations);
985 }
986
987 static void dec_io_migrations(struct cache *cache)
988 {
989         atomic_dec(&cache->nr_io_migrations);
990 }
991
992 static bool discard_or_flush(struct bio *bio)
993 {
994         return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
995 }
996
997 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
998                                      dm_dblock_t *b, dm_dblock_t *e)
999 {
1000         sector_t sb = bio->bi_iter.bi_sector;
1001         sector_t se = bio_end_sector(bio);
1002
1003         *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1004
1005         if (se - sb < cache->discard_block_size)
1006                 *e = *b;
1007         else
1008                 *e = to_dblock(block_div(se, cache->discard_block_size));
1009 }
1010
1011 /*----------------------------------------------------------------*/
1012
1013 static void prevent_background_work(struct cache *cache)
1014 {
1015         lockdep_off();
1016         down_write(&cache->background_work_lock);
1017         lockdep_on();
1018 }
1019
1020 static void allow_background_work(struct cache *cache)
1021 {
1022         lockdep_off();
1023         up_write(&cache->background_work_lock);
1024         lockdep_on();
1025 }
1026
1027 static bool background_work_begin(struct cache *cache)
1028 {
1029         bool r;
1030
1031         lockdep_off();
1032         r = down_read_trylock(&cache->background_work_lock);
1033         lockdep_on();
1034
1035         return r;
1036 }
1037
1038 static void background_work_end(struct cache *cache)
1039 {
1040         lockdep_off();
1041         up_read(&cache->background_work_lock);
1042         lockdep_on();
1043 }
1044
1045 /*----------------------------------------------------------------*/
1046
1047 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1048 {
1049         return (bio_data_dir(bio) == WRITE) &&
1050                 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1051 }
1052
1053 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1054 {
1055         return writeback_mode(cache) &&
1056                 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1057 }
1058
1059 static void quiesce(struct dm_cache_migration *mg,
1060                     void (*continuation)(struct work_struct *))
1061 {
1062         init_continuation(&mg->k, continuation);
1063         dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1064 }
1065
1066 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1067 {
1068         struct continuation *k = container_of(ws, struct continuation, ws);
1069         return container_of(k, struct dm_cache_migration, k);
1070 }
1071
1072 static void copy_complete(int read_err, unsigned long write_err, void *context)
1073 {
1074         struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1075
1076         if (read_err || write_err)
1077                 mg->k.input = BLK_STS_IOERR;
1078
1079         queue_continuation(mg->cache->wq, &mg->k);
1080 }
1081
1082 static void copy(struct dm_cache_migration *mg, bool promote)
1083 {
1084         struct dm_io_region o_region, c_region;
1085         struct cache *cache = mg->cache;
1086
1087         o_region.bdev = cache->origin_dev->bdev;
1088         o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1089         o_region.count = cache->sectors_per_block;
1090
1091         c_region.bdev = cache->cache_dev->bdev;
1092         c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1093         c_region.count = cache->sectors_per_block;
1094
1095         if (promote)
1096                 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1097         else
1098                 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1099 }
1100
1101 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1102 {
1103         struct per_bio_data *pb = get_per_bio_data(bio);
1104
1105         if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1106                 free_prison_cell(cache, pb->cell);
1107         pb->cell = NULL;
1108 }
1109
1110 static void overwrite_endio(struct bio *bio)
1111 {
1112         struct dm_cache_migration *mg = bio->bi_private;
1113         struct cache *cache = mg->cache;
1114         struct per_bio_data *pb = get_per_bio_data(bio);
1115
1116         dm_unhook_bio(&pb->hook_info, bio);
1117
1118         if (bio->bi_status)
1119                 mg->k.input = bio->bi_status;
1120
1121         queue_continuation(cache->wq, &mg->k);
1122 }
1123
1124 static void overwrite(struct dm_cache_migration *mg,
1125                       void (*continuation)(struct work_struct *))
1126 {
1127         struct bio *bio = mg->overwrite_bio;
1128         struct per_bio_data *pb = get_per_bio_data(bio);
1129
1130         dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1131
1132         /*
1133          * The overwrite bio is part of the copy operation, as such it does
1134          * not set/clear discard or dirty flags.
1135          */
1136         if (mg->op->op == POLICY_PROMOTE)
1137                 remap_to_cache(mg->cache, bio, mg->op->cblock);
1138         else
1139                 remap_to_origin(mg->cache, bio);
1140
1141         init_continuation(&mg->k, continuation);
1142         accounted_request(mg->cache, bio);
1143 }
1144
1145 /*
1146  * Migration steps:
1147  *
1148  * 1) exclusive lock preventing WRITEs
1149  * 2) quiesce
1150  * 3) copy or issue overwrite bio
1151  * 4) upgrade to exclusive lock preventing READs and WRITEs
1152  * 5) quiesce
1153  * 6) update metadata and commit
1154  * 7) unlock
1155  */
1156 static void mg_complete(struct dm_cache_migration *mg, bool success)
1157 {
1158         struct bio_list bios;
1159         struct cache *cache = mg->cache;
1160         struct policy_work *op = mg->op;
1161         dm_cblock_t cblock = op->cblock;
1162
1163         if (success)
1164                 update_stats(&cache->stats, op->op);
1165
1166         switch (op->op) {
1167         case POLICY_PROMOTE:
1168                 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1169                 policy_complete_background_work(cache->policy, op, success);
1170
1171                 if (mg->overwrite_bio) {
1172                         if (success)
1173                                 force_set_dirty(cache, cblock);
1174                         else if (mg->k.input)
1175                                 mg->overwrite_bio->bi_status = mg->k.input;
1176                         else
1177                                 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1178                         bio_endio(mg->overwrite_bio);
1179                 } else {
1180                         if (success)
1181                                 force_clear_dirty(cache, cblock);
1182                         dec_io_migrations(cache);
1183                 }
1184                 break;
1185
1186         case POLICY_DEMOTE:
1187                 /*
1188                  * We clear dirty here to update the nr_dirty counter.
1189                  */
1190                 if (success)
1191                         force_clear_dirty(cache, cblock);
1192                 policy_complete_background_work(cache->policy, op, success);
1193                 dec_io_migrations(cache);
1194                 break;
1195
1196         case POLICY_WRITEBACK:
1197                 if (success)
1198                         force_clear_dirty(cache, cblock);
1199                 policy_complete_background_work(cache->policy, op, success);
1200                 dec_io_migrations(cache);
1201                 break;
1202         }
1203
1204         bio_list_init(&bios);
1205         if (mg->cell) {
1206                 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1207                         free_prison_cell(cache, mg->cell);
1208         }
1209
1210         free_migration(mg);
1211         defer_bios(cache, &bios);
1212         wake_migration_worker(cache);
1213
1214         background_work_end(cache);
1215 }
1216
1217 static void mg_success(struct work_struct *ws)
1218 {
1219         struct dm_cache_migration *mg = ws_to_mg(ws);
1220         mg_complete(mg, mg->k.input == 0);
1221 }
1222
1223 static void mg_update_metadata(struct work_struct *ws)
1224 {
1225         int r;
1226         struct dm_cache_migration *mg = ws_to_mg(ws);
1227         struct cache *cache = mg->cache;
1228         struct policy_work *op = mg->op;
1229
1230         switch (op->op) {
1231         case POLICY_PROMOTE:
1232                 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1233                 if (r) {
1234                         DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1235                                     cache_device_name(cache));
1236                         metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1237
1238                         mg_complete(mg, false);
1239                         return;
1240                 }
1241                 mg_complete(mg, true);
1242                 break;
1243
1244         case POLICY_DEMOTE:
1245                 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1246                 if (r) {
1247                         DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1248                                     cache_device_name(cache));
1249                         metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1250
1251                         mg_complete(mg, false);
1252                         return;
1253                 }
1254
1255                 /*
1256                  * It would be nice if we only had to commit when a REQ_FLUSH
1257                  * comes through.  But there's one scenario that we have to
1258                  * look out for:
1259                  *
1260                  * - vblock x in a cache block
1261                  * - domotion occurs
1262                  * - cache block gets reallocated and over written
1263                  * - crash
1264                  *
1265                  * When we recover, because there was no commit the cache will
1266                  * rollback to having the data for vblock x in the cache block.
1267                  * But the cache block has since been overwritten, so it'll end
1268                  * up pointing to data that was never in 'x' during the history
1269                  * of the device.
1270                  *
1271                  * To avoid this issue we require a commit as part of the
1272                  * demotion operation.
1273                  */
1274                 init_continuation(&mg->k, mg_success);
1275                 continue_after_commit(&cache->committer, &mg->k);
1276                 schedule_commit(&cache->committer);
1277                 break;
1278
1279         case POLICY_WRITEBACK:
1280                 mg_complete(mg, true);
1281                 break;
1282         }
1283 }
1284
1285 static void mg_update_metadata_after_copy(struct work_struct *ws)
1286 {
1287         struct dm_cache_migration *mg = ws_to_mg(ws);
1288
1289         /*
1290          * Did the copy succeed?
1291          */
1292         if (mg->k.input)
1293                 mg_complete(mg, false);
1294         else
1295                 mg_update_metadata(ws);
1296 }
1297
1298 static void mg_upgrade_lock(struct work_struct *ws)
1299 {
1300         int r;
1301         struct dm_cache_migration *mg = ws_to_mg(ws);
1302
1303         /*
1304          * Did the copy succeed?
1305          */
1306         if (mg->k.input)
1307                 mg_complete(mg, false);
1308
1309         else {
1310                 /*
1311                  * Now we want the lock to prevent both reads and writes.
1312                  */
1313                 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1314                                             READ_WRITE_LOCK_LEVEL);
1315                 if (r < 0)
1316                         mg_complete(mg, false);
1317
1318                 else if (r)
1319                         quiesce(mg, mg_update_metadata);
1320
1321                 else
1322                         mg_update_metadata(ws);
1323         }
1324 }
1325
1326 static void mg_full_copy(struct work_struct *ws)
1327 {
1328         struct dm_cache_migration *mg = ws_to_mg(ws);
1329         struct cache *cache = mg->cache;
1330         struct policy_work *op = mg->op;
1331         bool is_policy_promote = (op->op == POLICY_PROMOTE);
1332
1333         if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1334             is_discarded_oblock(cache, op->oblock)) {
1335                 mg_upgrade_lock(ws);
1336                 return;
1337         }
1338
1339         init_continuation(&mg->k, mg_upgrade_lock);
1340         copy(mg, is_policy_promote);
1341 }
1342
1343 static void mg_copy(struct work_struct *ws)
1344 {
1345         struct dm_cache_migration *mg = ws_to_mg(ws);
1346
1347         if (mg->overwrite_bio) {
1348                 /*
1349                  * No exclusive lock was held when we last checked if the bio
1350                  * was optimisable.  So we have to check again in case things
1351                  * have changed (eg, the block may no longer be discarded).
1352                  */
1353                 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1354                         /*
1355                          * Fallback to a real full copy after doing some tidying up.
1356                          */
1357                         bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1358                         BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1359                         mg->overwrite_bio = NULL;
1360                         inc_io_migrations(mg->cache);
1361                         mg_full_copy(ws);
1362                         return;
1363                 }
1364
1365                 /*
1366                  * It's safe to do this here, even though it's new data
1367                  * because all IO has been locked out of the block.
1368                  *
1369                  * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1370                  * so _not_ using mg_upgrade_lock() as continutation.
1371                  */
1372                 overwrite(mg, mg_update_metadata_after_copy);
1373
1374         } else
1375                 mg_full_copy(ws);
1376 }
1377
1378 static int mg_lock_writes(struct dm_cache_migration *mg)
1379 {
1380         int r;
1381         struct dm_cell_key_v2 key;
1382         struct cache *cache = mg->cache;
1383         struct dm_bio_prison_cell_v2 *prealloc;
1384
1385         prealloc = alloc_prison_cell(cache);
1386
1387         /*
1388          * Prevent writes to the block, but allow reads to continue.
1389          * Unless we're using an overwrite bio, in which case we lock
1390          * everything.
1391          */
1392         build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1393         r = dm_cell_lock_v2(cache->prison, &key,
1394                             mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1395                             prealloc, &mg->cell);
1396         if (r < 0) {
1397                 free_prison_cell(cache, prealloc);
1398                 mg_complete(mg, false);
1399                 return r;
1400         }
1401
1402         if (mg->cell != prealloc)
1403                 free_prison_cell(cache, prealloc);
1404
1405         if (r == 0)
1406                 mg_copy(&mg->k.ws);
1407         else
1408                 quiesce(mg, mg_copy);
1409
1410         return 0;
1411 }
1412
1413 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1414 {
1415         struct dm_cache_migration *mg;
1416
1417         if (!background_work_begin(cache)) {
1418                 policy_complete_background_work(cache->policy, op, false);
1419                 return -EPERM;
1420         }
1421
1422         mg = alloc_migration(cache);
1423
1424         mg->op = op;
1425         mg->overwrite_bio = bio;
1426
1427         if (!bio)
1428                 inc_io_migrations(cache);
1429
1430         return mg_lock_writes(mg);
1431 }
1432
1433 /*----------------------------------------------------------------
1434  * invalidation processing
1435  *--------------------------------------------------------------*/
1436
1437 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1438 {
1439         struct bio_list bios;
1440         struct cache *cache = mg->cache;
1441
1442         bio_list_init(&bios);
1443         if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1444                 free_prison_cell(cache, mg->cell);
1445
1446         if (!success && mg->overwrite_bio)
1447                 bio_io_error(mg->overwrite_bio);
1448
1449         free_migration(mg);
1450         defer_bios(cache, &bios);
1451
1452         background_work_end(cache);
1453 }
1454
1455 static void invalidate_completed(struct work_struct *ws)
1456 {
1457         struct dm_cache_migration *mg = ws_to_mg(ws);
1458         invalidate_complete(mg, !mg->k.input);
1459 }
1460
1461 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1462 {
1463         int r = policy_invalidate_mapping(cache->policy, cblock);
1464         if (!r) {
1465                 r = dm_cache_remove_mapping(cache->cmd, cblock);
1466                 if (r) {
1467                         DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1468                                     cache_device_name(cache));
1469                         metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1470                 }
1471
1472         } else if (r == -ENODATA) {
1473                 /*
1474                  * Harmless, already unmapped.
1475                  */
1476                 r = 0;
1477
1478         } else
1479                 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1480
1481         return r;
1482 }
1483
1484 static void invalidate_remove(struct work_struct *ws)
1485 {
1486         int r;
1487         struct dm_cache_migration *mg = ws_to_mg(ws);
1488         struct cache *cache = mg->cache;
1489
1490         r = invalidate_cblock(cache, mg->invalidate_cblock);
1491         if (r) {
1492                 invalidate_complete(mg, false);
1493                 return;
1494         }
1495
1496         init_continuation(&mg->k, invalidate_completed);
1497         continue_after_commit(&cache->committer, &mg->k);
1498         remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1499         mg->overwrite_bio = NULL;
1500         schedule_commit(&cache->committer);
1501 }
1502
1503 static int invalidate_lock(struct dm_cache_migration *mg)
1504 {
1505         int r;
1506         struct dm_cell_key_v2 key;
1507         struct cache *cache = mg->cache;
1508         struct dm_bio_prison_cell_v2 *prealloc;
1509
1510         prealloc = alloc_prison_cell(cache);
1511
1512         build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1513         r = dm_cell_lock_v2(cache->prison, &key,
1514                             READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1515         if (r < 0) {
1516                 free_prison_cell(cache, prealloc);
1517                 invalidate_complete(mg, false);
1518                 return r;
1519         }
1520
1521         if (mg->cell != prealloc)
1522                 free_prison_cell(cache, prealloc);
1523
1524         if (r)
1525                 quiesce(mg, invalidate_remove);
1526
1527         else {
1528                 /*
1529                  * We can't call invalidate_remove() directly here because we
1530                  * might still be in request context.
1531                  */
1532                 init_continuation(&mg->k, invalidate_remove);
1533                 queue_work(cache->wq, &mg->k.ws);
1534         }
1535
1536         return 0;
1537 }
1538
1539 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1540                             dm_oblock_t oblock, struct bio *bio)
1541 {
1542         struct dm_cache_migration *mg;
1543
1544         if (!background_work_begin(cache))
1545                 return -EPERM;
1546
1547         mg = alloc_migration(cache);
1548
1549         mg->overwrite_bio = bio;
1550         mg->invalidate_cblock = cblock;
1551         mg->invalidate_oblock = oblock;
1552
1553         return invalidate_lock(mg);
1554 }
1555
1556 /*----------------------------------------------------------------
1557  * bio processing
1558  *--------------------------------------------------------------*/
1559
1560 enum busy {
1561         IDLE,
1562         BUSY
1563 };
1564
1565 static enum busy spare_migration_bandwidth(struct cache *cache)
1566 {
1567         bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1568         sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1569                 cache->sectors_per_block;
1570
1571         if (idle && current_volume <= cache->migration_threshold)
1572                 return IDLE;
1573         else
1574                 return BUSY;
1575 }
1576
1577 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1578 {
1579         atomic_inc(bio_data_dir(bio) == READ ?
1580                    &cache->stats.read_hit : &cache->stats.write_hit);
1581 }
1582
1583 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1584 {
1585         atomic_inc(bio_data_dir(bio) == READ ?
1586                    &cache->stats.read_miss : &cache->stats.write_miss);
1587 }
1588
1589 /*----------------------------------------------------------------*/
1590
1591 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1592                    bool *commit_needed)
1593 {
1594         int r, data_dir;
1595         bool rb, background_queued;
1596         dm_cblock_t cblock;
1597
1598         *commit_needed = false;
1599
1600         rb = bio_detain_shared(cache, block, bio);
1601         if (!rb) {
1602                 /*
1603                  * An exclusive lock is held for this block, so we have to
1604                  * wait.  We set the commit_needed flag so the current
1605                  * transaction will be committed asap, allowing this lock
1606                  * to be dropped.
1607                  */
1608                 *commit_needed = true;
1609                 return DM_MAPIO_SUBMITTED;
1610         }
1611
1612         data_dir = bio_data_dir(bio);
1613
1614         if (optimisable_bio(cache, bio, block)) {
1615                 struct policy_work *op = NULL;
1616
1617                 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1618                 if (unlikely(r && r != -ENOENT)) {
1619                         DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1620                                     cache_device_name(cache), r);
1621                         bio_io_error(bio);
1622                         return DM_MAPIO_SUBMITTED;
1623                 }
1624
1625                 if (r == -ENOENT && op) {
1626                         bio_drop_shared_lock(cache, bio);
1627                         BUG_ON(op->op != POLICY_PROMOTE);
1628                         mg_start(cache, op, bio);
1629                         return DM_MAPIO_SUBMITTED;
1630                 }
1631         } else {
1632                 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1633                 if (unlikely(r && r != -ENOENT)) {
1634                         DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1635                                     cache_device_name(cache), r);
1636                         bio_io_error(bio);
1637                         return DM_MAPIO_SUBMITTED;
1638                 }
1639
1640                 if (background_queued)
1641                         wake_migration_worker(cache);
1642         }
1643
1644         if (r == -ENOENT) {
1645                 struct per_bio_data *pb = get_per_bio_data(bio);
1646
1647                 /*
1648                  * Miss.
1649                  */
1650                 inc_miss_counter(cache, bio);
1651                 if (pb->req_nr == 0) {
1652                         accounted_begin(cache, bio);
1653                         remap_to_origin_clear_discard(cache, bio, block);
1654                 } else {
1655                         /*
1656                          * This is a duplicate writethrough io that is no
1657                          * longer needed because the block has been demoted.
1658                          */
1659                         bio_endio(bio);
1660                         return DM_MAPIO_SUBMITTED;
1661                 }
1662         } else {
1663                 /*
1664                  * Hit.
1665                  */
1666                 inc_hit_counter(cache, bio);
1667
1668                 /*
1669                  * Passthrough always maps to the origin, invalidating any
1670                  * cache blocks that are written to.
1671                  */
1672                 if (passthrough_mode(cache)) {
1673                         if (bio_data_dir(bio) == WRITE) {
1674                                 bio_drop_shared_lock(cache, bio);
1675                                 atomic_inc(&cache->stats.demotion);
1676                                 invalidate_start(cache, cblock, block, bio);
1677                         } else
1678                                 remap_to_origin_clear_discard(cache, bio, block);
1679                 } else {
1680                         if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1681                             !is_dirty(cache, cblock)) {
1682                                 remap_to_origin_and_cache(cache, bio, block, cblock);
1683                                 accounted_begin(cache, bio);
1684                         } else
1685                                 remap_to_cache_dirty(cache, bio, block, cblock);
1686                 }
1687         }
1688
1689         /*
1690          * dm core turns FUA requests into a separate payload and FLUSH req.
1691          */
1692         if (bio->bi_opf & REQ_FUA) {
1693                 /*
1694                  * issue_after_commit will call accounted_begin a second time.  So
1695                  * we call accounted_complete() to avoid double accounting.
1696                  */
1697                 accounted_complete(cache, bio);
1698                 issue_after_commit(&cache->committer, bio);
1699                 *commit_needed = true;
1700                 return DM_MAPIO_SUBMITTED;
1701         }
1702
1703         return DM_MAPIO_REMAPPED;
1704 }
1705
1706 static bool process_bio(struct cache *cache, struct bio *bio)
1707 {
1708         bool commit_needed;
1709
1710         if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1711                 dm_submit_bio_remap(bio, NULL);
1712
1713         return commit_needed;
1714 }
1715
1716 /*
1717  * A non-zero return indicates read_only or fail_io mode.
1718  */
1719 static int commit(struct cache *cache, bool clean_shutdown)
1720 {
1721         int r;
1722
1723         if (get_cache_mode(cache) >= CM_READ_ONLY)
1724                 return -EINVAL;
1725
1726         atomic_inc(&cache->stats.commit_count);
1727         r = dm_cache_commit(cache->cmd, clean_shutdown);
1728         if (r)
1729                 metadata_operation_failed(cache, "dm_cache_commit", r);
1730
1731         return r;
1732 }
1733
1734 /*
1735  * Used by the batcher.
1736  */
1737 static blk_status_t commit_op(void *context)
1738 {
1739         struct cache *cache = context;
1740
1741         if (dm_cache_changed_this_transaction(cache->cmd))
1742                 return errno_to_blk_status(commit(cache, false));
1743
1744         return 0;
1745 }
1746
1747 /*----------------------------------------------------------------*/
1748
1749 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1750 {
1751         struct per_bio_data *pb = get_per_bio_data(bio);
1752
1753         if (!pb->req_nr)
1754                 remap_to_origin(cache, bio);
1755         else
1756                 remap_to_cache(cache, bio, 0);
1757
1758         issue_after_commit(&cache->committer, bio);
1759         return true;
1760 }
1761
1762 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1763 {
1764         dm_dblock_t b, e;
1765
1766         // FIXME: do we need to lock the region?  Or can we just assume the
1767         // user wont be so foolish as to issue discard concurrently with
1768         // other IO?
1769         calc_discard_block_range(cache, bio, &b, &e);
1770         while (b != e) {
1771                 set_discard(cache, b);
1772                 b = to_dblock(from_dblock(b) + 1);
1773         }
1774
1775         if (cache->features.discard_passdown) {
1776                 remap_to_origin(cache, bio);
1777                 dm_submit_bio_remap(bio, NULL);
1778         } else
1779                 bio_endio(bio);
1780
1781         return false;
1782 }
1783
1784 static void process_deferred_bios(struct work_struct *ws)
1785 {
1786         struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1787
1788         bool commit_needed = false;
1789         struct bio_list bios;
1790         struct bio *bio;
1791
1792         bio_list_init(&bios);
1793
1794         spin_lock_irq(&cache->lock);
1795         bio_list_merge(&bios, &cache->deferred_bios);
1796         bio_list_init(&cache->deferred_bios);
1797         spin_unlock_irq(&cache->lock);
1798
1799         while ((bio = bio_list_pop(&bios))) {
1800                 if (bio->bi_opf & REQ_PREFLUSH)
1801                         commit_needed = process_flush_bio(cache, bio) || commit_needed;
1802
1803                 else if (bio_op(bio) == REQ_OP_DISCARD)
1804                         commit_needed = process_discard_bio(cache, bio) || commit_needed;
1805
1806                 else
1807                         commit_needed = process_bio(cache, bio) || commit_needed;
1808         }
1809
1810         if (commit_needed)
1811                 schedule_commit(&cache->committer);
1812 }
1813
1814 /*----------------------------------------------------------------
1815  * Main worker loop
1816  *--------------------------------------------------------------*/
1817
1818 static void requeue_deferred_bios(struct cache *cache)
1819 {
1820         struct bio *bio;
1821         struct bio_list bios;
1822
1823         bio_list_init(&bios);
1824         bio_list_merge(&bios, &cache->deferred_bios);
1825         bio_list_init(&cache->deferred_bios);
1826
1827         while ((bio = bio_list_pop(&bios))) {
1828                 bio->bi_status = BLK_STS_DM_REQUEUE;
1829                 bio_endio(bio);
1830         }
1831 }
1832
1833 /*
1834  * We want to commit periodically so that not too much
1835  * unwritten metadata builds up.
1836  */
1837 static void do_waker(struct work_struct *ws)
1838 {
1839         struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1840
1841         policy_tick(cache->policy, true);
1842         wake_migration_worker(cache);
1843         schedule_commit(&cache->committer);
1844         queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1845 }
1846
1847 static void check_migrations(struct work_struct *ws)
1848 {
1849         int r;
1850         struct policy_work *op;
1851         struct cache *cache = container_of(ws, struct cache, migration_worker);
1852         enum busy b;
1853
1854         for (;;) {
1855                 b = spare_migration_bandwidth(cache);
1856
1857                 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1858                 if (r == -ENODATA)
1859                         break;
1860
1861                 if (r) {
1862                         DMERR_LIMIT("%s: policy_background_work failed",
1863                                     cache_device_name(cache));
1864                         break;
1865                 }
1866
1867                 r = mg_start(cache, op, NULL);
1868                 if (r)
1869                         break;
1870         }
1871 }
1872
1873 /*----------------------------------------------------------------
1874  * Target methods
1875  *--------------------------------------------------------------*/
1876
1877 /*
1878  * This function gets called on the error paths of the constructor, so we
1879  * have to cope with a partially initialised struct.
1880  */
1881 static void destroy(struct cache *cache)
1882 {
1883         unsigned i;
1884
1885         mempool_exit(&cache->migration_pool);
1886
1887         if (cache->prison)
1888                 dm_bio_prison_destroy_v2(cache->prison);
1889
1890         if (cache->wq)
1891                 destroy_workqueue(cache->wq);
1892
1893         if (cache->dirty_bitset)
1894                 free_bitset(cache->dirty_bitset);
1895
1896         if (cache->discard_bitset)
1897                 free_bitset(cache->discard_bitset);
1898
1899         if (cache->copier)
1900                 dm_kcopyd_client_destroy(cache->copier);
1901
1902         if (cache->cmd)
1903                 dm_cache_metadata_close(cache->cmd);
1904
1905         if (cache->metadata_dev)
1906                 dm_put_device(cache->ti, cache->metadata_dev);
1907
1908         if (cache->origin_dev)
1909                 dm_put_device(cache->ti, cache->origin_dev);
1910
1911         if (cache->cache_dev)
1912                 dm_put_device(cache->ti, cache->cache_dev);
1913
1914         if (cache->policy)
1915                 dm_cache_policy_destroy(cache->policy);
1916
1917         for (i = 0; i < cache->nr_ctr_args ; i++)
1918                 kfree(cache->ctr_args[i]);
1919         kfree(cache->ctr_args);
1920
1921         bioset_exit(&cache->bs);
1922
1923         kfree(cache);
1924 }
1925
1926 static void cache_dtr(struct dm_target *ti)
1927 {
1928         struct cache *cache = ti->private;
1929
1930         destroy(cache);
1931 }
1932
1933 static sector_t get_dev_size(struct dm_dev *dev)
1934 {
1935         return bdev_nr_sectors(dev->bdev);
1936 }
1937
1938 /*----------------------------------------------------------------*/
1939
1940 /*
1941  * Construct a cache device mapping.
1942  *
1943  * cache <metadata dev> <cache dev> <origin dev> <block size>
1944  *       <#feature args> [<feature arg>]*
1945  *       <policy> <#policy args> [<policy arg>]*
1946  *
1947  * metadata dev    : fast device holding the persistent metadata
1948  * cache dev       : fast device holding cached data blocks
1949  * origin dev      : slow device holding original data blocks
1950  * block size      : cache unit size in sectors
1951  *
1952  * #feature args   : number of feature arguments passed
1953  * feature args    : writethrough.  (The default is writeback.)
1954  *
1955  * policy          : the replacement policy to use
1956  * #policy args    : an even number of policy arguments corresponding
1957  *                   to key/value pairs passed to the policy
1958  * policy args     : key/value pairs passed to the policy
1959  *                   E.g. 'sequential_threshold 1024'
1960  *                   See cache-policies.txt for details.
1961  *
1962  * Optional feature arguments are:
1963  *   writethrough  : write through caching that prohibits cache block
1964  *                   content from being different from origin block content.
1965  *                   Without this argument, the default behaviour is to write
1966  *                   back cache block contents later for performance reasons,
1967  *                   so they may differ from the corresponding origin blocks.
1968  */
1969 struct cache_args {
1970         struct dm_target *ti;
1971
1972         struct dm_dev *metadata_dev;
1973
1974         struct dm_dev *cache_dev;
1975         sector_t cache_sectors;
1976
1977         struct dm_dev *origin_dev;
1978         sector_t origin_sectors;
1979
1980         uint32_t block_size;
1981
1982         const char *policy_name;
1983         int policy_argc;
1984         const char **policy_argv;
1985
1986         struct cache_features features;
1987 };
1988
1989 static void destroy_cache_args(struct cache_args *ca)
1990 {
1991         if (ca->metadata_dev)
1992                 dm_put_device(ca->ti, ca->metadata_dev);
1993
1994         if (ca->cache_dev)
1995                 dm_put_device(ca->ti, ca->cache_dev);
1996
1997         if (ca->origin_dev)
1998                 dm_put_device(ca->ti, ca->origin_dev);
1999
2000         kfree(ca);
2001 }
2002
2003 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2004 {
2005         if (!as->argc) {
2006                 *error = "Insufficient args";
2007                 return false;
2008         }
2009
2010         return true;
2011 }
2012
2013 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2014                               char **error)
2015 {
2016         int r;
2017         sector_t metadata_dev_size;
2018
2019         if (!at_least_one_arg(as, error))
2020                 return -EINVAL;
2021
2022         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2023                           &ca->metadata_dev);
2024         if (r) {
2025                 *error = "Error opening metadata device";
2026                 return r;
2027         }
2028
2029         metadata_dev_size = get_dev_size(ca->metadata_dev);
2030         if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2031                 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2032                        ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2033
2034         return 0;
2035 }
2036
2037 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2038                            char **error)
2039 {
2040         int r;
2041
2042         if (!at_least_one_arg(as, error))
2043                 return -EINVAL;
2044
2045         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2046                           &ca->cache_dev);
2047         if (r) {
2048                 *error = "Error opening cache device";
2049                 return r;
2050         }
2051         ca->cache_sectors = get_dev_size(ca->cache_dev);
2052
2053         return 0;
2054 }
2055
2056 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2057                             char **error)
2058 {
2059         int r;
2060
2061         if (!at_least_one_arg(as, error))
2062                 return -EINVAL;
2063
2064         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2065                           &ca->origin_dev);
2066         if (r) {
2067                 *error = "Error opening origin device";
2068                 return r;
2069         }
2070
2071         ca->origin_sectors = get_dev_size(ca->origin_dev);
2072         if (ca->ti->len > ca->origin_sectors) {
2073                 *error = "Device size larger than cached device";
2074                 return -EINVAL;
2075         }
2076
2077         return 0;
2078 }
2079
2080 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2081                             char **error)
2082 {
2083         unsigned long block_size;
2084
2085         if (!at_least_one_arg(as, error))
2086                 return -EINVAL;
2087
2088         if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2089             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2090             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2091             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2092                 *error = "Invalid data block size";
2093                 return -EINVAL;
2094         }
2095
2096         if (block_size > ca->cache_sectors) {
2097                 *error = "Data block size is larger than the cache device";
2098                 return -EINVAL;
2099         }
2100
2101         ca->block_size = block_size;
2102
2103         return 0;
2104 }
2105
2106 static void init_features(struct cache_features *cf)
2107 {
2108         cf->mode = CM_WRITE;
2109         cf->io_mode = CM_IO_WRITEBACK;
2110         cf->metadata_version = 1;
2111         cf->discard_passdown = true;
2112 }
2113
2114 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2115                           char **error)
2116 {
2117         static const struct dm_arg _args[] = {
2118                 {0, 3, "Invalid number of cache feature arguments"},
2119         };
2120
2121         int r, mode_ctr = 0;
2122         unsigned argc;
2123         const char *arg;
2124         struct cache_features *cf = &ca->features;
2125
2126         init_features(cf);
2127
2128         r = dm_read_arg_group(_args, as, &argc, error);
2129         if (r)
2130                 return -EINVAL;
2131
2132         while (argc--) {
2133                 arg = dm_shift_arg(as);
2134
2135                 if (!strcasecmp(arg, "writeback")) {
2136                         cf->io_mode = CM_IO_WRITEBACK;
2137                         mode_ctr++;
2138                 }
2139
2140                 else if (!strcasecmp(arg, "writethrough")) {
2141                         cf->io_mode = CM_IO_WRITETHROUGH;
2142                         mode_ctr++;
2143                 }
2144
2145                 else if (!strcasecmp(arg, "passthrough")) {
2146                         cf->io_mode = CM_IO_PASSTHROUGH;
2147                         mode_ctr++;
2148                 }
2149
2150                 else if (!strcasecmp(arg, "metadata2"))
2151                         cf->metadata_version = 2;
2152
2153                 else if (!strcasecmp(arg, "no_discard_passdown"))
2154                         cf->discard_passdown = false;
2155
2156                 else {
2157                         *error = "Unrecognised cache feature requested";
2158                         return -EINVAL;
2159                 }
2160         }
2161
2162         if (mode_ctr > 1) {
2163                 *error = "Duplicate cache io_mode features requested";
2164                 return -EINVAL;
2165         }
2166
2167         return 0;
2168 }
2169
2170 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2171                         char **error)
2172 {
2173         static const struct dm_arg _args[] = {
2174                 {0, 1024, "Invalid number of policy arguments"},
2175         };
2176
2177         int r;
2178
2179         if (!at_least_one_arg(as, error))
2180                 return -EINVAL;
2181
2182         ca->policy_name = dm_shift_arg(as);
2183
2184         r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2185         if (r)
2186                 return -EINVAL;
2187
2188         ca->policy_argv = (const char **)as->argv;
2189         dm_consume_args(as, ca->policy_argc);
2190
2191         return 0;
2192 }
2193
2194 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2195                             char **error)
2196 {
2197         int r;
2198         struct dm_arg_set as;
2199
2200         as.argc = argc;
2201         as.argv = argv;
2202
2203         r = parse_metadata_dev(ca, &as, error);
2204         if (r)
2205                 return r;
2206
2207         r = parse_cache_dev(ca, &as, error);
2208         if (r)
2209                 return r;
2210
2211         r = parse_origin_dev(ca, &as, error);
2212         if (r)
2213                 return r;
2214
2215         r = parse_block_size(ca, &as, error);
2216         if (r)
2217                 return r;
2218
2219         r = parse_features(ca, &as, error);
2220         if (r)
2221                 return r;
2222
2223         r = parse_policy(ca, &as, error);
2224         if (r)
2225                 return r;
2226
2227         return 0;
2228 }
2229
2230 /*----------------------------------------------------------------*/
2231
2232 static struct kmem_cache *migration_cache;
2233
2234 #define NOT_CORE_OPTION 1
2235
2236 static int process_config_option(struct cache *cache, const char *key, const char *value)
2237 {
2238         unsigned long tmp;
2239
2240         if (!strcasecmp(key, "migration_threshold")) {
2241                 if (kstrtoul(value, 10, &tmp))
2242                         return -EINVAL;
2243
2244                 cache->migration_threshold = tmp;
2245                 return 0;
2246         }
2247
2248         return NOT_CORE_OPTION;
2249 }
2250
2251 static int set_config_value(struct cache *cache, const char *key, const char *value)
2252 {
2253         int r = process_config_option(cache, key, value);
2254
2255         if (r == NOT_CORE_OPTION)
2256                 r = policy_set_config_value(cache->policy, key, value);
2257
2258         if (r)
2259                 DMWARN("bad config value for %s: %s", key, value);
2260
2261         return r;
2262 }
2263
2264 static int set_config_values(struct cache *cache, int argc, const char **argv)
2265 {
2266         int r = 0;
2267
2268         if (argc & 1) {
2269                 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2270                 return -EINVAL;
2271         }
2272
2273         while (argc) {
2274                 r = set_config_value(cache, argv[0], argv[1]);
2275                 if (r)
2276                         break;
2277
2278                 argc -= 2;
2279                 argv += 2;
2280         }
2281
2282         return r;
2283 }
2284
2285 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2286                                char **error)
2287 {
2288         struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2289                                                            cache->cache_size,
2290                                                            cache->origin_sectors,
2291                                                            cache->sectors_per_block);
2292         if (IS_ERR(p)) {
2293                 *error = "Error creating cache's policy";
2294                 return PTR_ERR(p);
2295         }
2296         cache->policy = p;
2297         BUG_ON(!cache->policy);
2298
2299         return 0;
2300 }
2301
2302 /*
2303  * We want the discard block size to be at least the size of the cache
2304  * block size and have no more than 2^14 discard blocks across the origin.
2305  */
2306 #define MAX_DISCARD_BLOCKS (1 << 14)
2307
2308 static bool too_many_discard_blocks(sector_t discard_block_size,
2309                                     sector_t origin_size)
2310 {
2311         (void) sector_div(origin_size, discard_block_size);
2312
2313         return origin_size > MAX_DISCARD_BLOCKS;
2314 }
2315
2316 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2317                                              sector_t origin_size)
2318 {
2319         sector_t discard_block_size = cache_block_size;
2320
2321         if (origin_size)
2322                 while (too_many_discard_blocks(discard_block_size, origin_size))
2323                         discard_block_size *= 2;
2324
2325         return discard_block_size;
2326 }
2327
2328 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2329 {
2330         dm_block_t nr_blocks = from_cblock(size);
2331
2332         if (nr_blocks > (1 << 20) && cache->cache_size != size)
2333                 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2334                              "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2335                              "Please consider increasing the cache block size to reduce the overall cache block count.",
2336                              (unsigned long long) nr_blocks);
2337
2338         cache->cache_size = size;
2339 }
2340
2341 #define DEFAULT_MIGRATION_THRESHOLD 2048
2342
2343 static int cache_create(struct cache_args *ca, struct cache **result)
2344 {
2345         int r = 0;
2346         char **error = &ca->ti->error;
2347         struct cache *cache;
2348         struct dm_target *ti = ca->ti;
2349         dm_block_t origin_blocks;
2350         struct dm_cache_metadata *cmd;
2351         bool may_format = ca->features.mode == CM_WRITE;
2352
2353         cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2354         if (!cache)
2355                 return -ENOMEM;
2356
2357         cache->ti = ca->ti;
2358         ti->private = cache;
2359         ti->accounts_remapped_io = true;
2360         ti->num_flush_bios = 2;
2361         ti->flush_supported = true;
2362
2363         ti->num_discard_bios = 1;
2364         ti->discards_supported = true;
2365
2366         ti->per_io_data_size = sizeof(struct per_bio_data);
2367
2368         cache->features = ca->features;
2369         if (writethrough_mode(cache)) {
2370                 /* Create bioset for writethrough bios issued to origin */
2371                 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2372                 if (r)
2373                         goto bad;
2374         }
2375
2376         cache->metadata_dev = ca->metadata_dev;
2377         cache->origin_dev = ca->origin_dev;
2378         cache->cache_dev = ca->cache_dev;
2379
2380         ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2381
2382         origin_blocks = cache->origin_sectors = ca->origin_sectors;
2383         origin_blocks = block_div(origin_blocks, ca->block_size);
2384         cache->origin_blocks = to_oblock(origin_blocks);
2385
2386         cache->sectors_per_block = ca->block_size;
2387         if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2388                 r = -EINVAL;
2389                 goto bad;
2390         }
2391
2392         if (ca->block_size & (ca->block_size - 1)) {
2393                 dm_block_t cache_size = ca->cache_sectors;
2394
2395                 cache->sectors_per_block_shift = -1;
2396                 cache_size = block_div(cache_size, ca->block_size);
2397                 set_cache_size(cache, to_cblock(cache_size));
2398         } else {
2399                 cache->sectors_per_block_shift = __ffs(ca->block_size);
2400                 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2401         }
2402
2403         r = create_cache_policy(cache, ca, error);
2404         if (r)
2405                 goto bad;
2406
2407         cache->policy_nr_args = ca->policy_argc;
2408         cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2409
2410         r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2411         if (r) {
2412                 *error = "Error setting cache policy's config values";
2413                 goto bad;
2414         }
2415
2416         cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2417                                      ca->block_size, may_format,
2418                                      dm_cache_policy_get_hint_size(cache->policy),
2419                                      ca->features.metadata_version);
2420         if (IS_ERR(cmd)) {
2421                 *error = "Error creating metadata object";
2422                 r = PTR_ERR(cmd);
2423                 goto bad;
2424         }
2425         cache->cmd = cmd;
2426         set_cache_mode(cache, CM_WRITE);
2427         if (get_cache_mode(cache) != CM_WRITE) {
2428                 *error = "Unable to get write access to metadata, please check/repair metadata.";
2429                 r = -EINVAL;
2430                 goto bad;
2431         }
2432
2433         if (passthrough_mode(cache)) {
2434                 bool all_clean;
2435
2436                 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2437                 if (r) {
2438                         *error = "dm_cache_metadata_all_clean() failed";
2439                         goto bad;
2440                 }
2441
2442                 if (!all_clean) {
2443                         *error = "Cannot enter passthrough mode unless all blocks are clean";
2444                         r = -EINVAL;
2445                         goto bad;
2446                 }
2447
2448                 policy_allow_migrations(cache->policy, false);
2449         }
2450
2451         spin_lock_init(&cache->lock);
2452         bio_list_init(&cache->deferred_bios);
2453         atomic_set(&cache->nr_allocated_migrations, 0);
2454         atomic_set(&cache->nr_io_migrations, 0);
2455         init_waitqueue_head(&cache->migration_wait);
2456
2457         r = -ENOMEM;
2458         atomic_set(&cache->nr_dirty, 0);
2459         cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2460         if (!cache->dirty_bitset) {
2461                 *error = "could not allocate dirty bitset";
2462                 goto bad;
2463         }
2464         clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2465
2466         cache->discard_block_size =
2467                 calculate_discard_block_size(cache->sectors_per_block,
2468                                              cache->origin_sectors);
2469         cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2470                                                               cache->discard_block_size));
2471         cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2472         if (!cache->discard_bitset) {
2473                 *error = "could not allocate discard bitset";
2474                 goto bad;
2475         }
2476         clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2477
2478         cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2479         if (IS_ERR(cache->copier)) {
2480                 *error = "could not create kcopyd client";
2481                 r = PTR_ERR(cache->copier);
2482                 goto bad;
2483         }
2484
2485         cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2486         if (!cache->wq) {
2487                 *error = "could not create workqueue for metadata object";
2488                 goto bad;
2489         }
2490         INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2491         INIT_WORK(&cache->migration_worker, check_migrations);
2492         INIT_DELAYED_WORK(&cache->waker, do_waker);
2493
2494         cache->prison = dm_bio_prison_create_v2(cache->wq);
2495         if (!cache->prison) {
2496                 *error = "could not create bio prison";
2497                 goto bad;
2498         }
2499
2500         r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2501                                    migration_cache);
2502         if (r) {
2503                 *error = "Error creating cache's migration mempool";
2504                 goto bad;
2505         }
2506
2507         cache->need_tick_bio = true;
2508         cache->sized = false;
2509         cache->invalidate = false;
2510         cache->commit_requested = false;
2511         cache->loaded_mappings = false;
2512         cache->loaded_discards = false;
2513
2514         load_stats(cache);
2515
2516         atomic_set(&cache->stats.demotion, 0);
2517         atomic_set(&cache->stats.promotion, 0);
2518         atomic_set(&cache->stats.copies_avoided, 0);
2519         atomic_set(&cache->stats.cache_cell_clash, 0);
2520         atomic_set(&cache->stats.commit_count, 0);
2521         atomic_set(&cache->stats.discard_count, 0);
2522
2523         spin_lock_init(&cache->invalidation_lock);
2524         INIT_LIST_HEAD(&cache->invalidation_requests);
2525
2526         batcher_init(&cache->committer, commit_op, cache,
2527                      issue_op, cache, cache->wq);
2528         dm_iot_init(&cache->tracker);
2529
2530         init_rwsem(&cache->background_work_lock);
2531         prevent_background_work(cache);
2532
2533         *result = cache;
2534         return 0;
2535 bad:
2536         destroy(cache);
2537         return r;
2538 }
2539
2540 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2541 {
2542         unsigned i;
2543         const char **copy;
2544
2545         copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2546         if (!copy)
2547                 return -ENOMEM;
2548         for (i = 0; i < argc; i++) {
2549                 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2550                 if (!copy[i]) {
2551                         while (i--)
2552                                 kfree(copy[i]);
2553                         kfree(copy);
2554                         return -ENOMEM;
2555                 }
2556         }
2557
2558         cache->nr_ctr_args = argc;
2559         cache->ctr_args = copy;
2560
2561         return 0;
2562 }
2563
2564 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2565 {
2566         int r = -EINVAL;
2567         struct cache_args *ca;
2568         struct cache *cache = NULL;
2569
2570         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2571         if (!ca) {
2572                 ti->error = "Error allocating memory for cache";
2573                 return -ENOMEM;
2574         }
2575         ca->ti = ti;
2576
2577         r = parse_cache_args(ca, argc, argv, &ti->error);
2578         if (r)
2579                 goto out;
2580
2581         r = cache_create(ca, &cache);
2582         if (r)
2583                 goto out;
2584
2585         r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2586         if (r) {
2587                 destroy(cache);
2588                 goto out;
2589         }
2590
2591         ti->private = cache;
2592 out:
2593         destroy_cache_args(ca);
2594         return r;
2595 }
2596
2597 /*----------------------------------------------------------------*/
2598
2599 static int cache_map(struct dm_target *ti, struct bio *bio)
2600 {
2601         struct cache *cache = ti->private;
2602
2603         int r;
2604         bool commit_needed;
2605         dm_oblock_t block = get_bio_block(cache, bio);
2606
2607         init_per_bio_data(bio);
2608         if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2609                 /*
2610                  * This can only occur if the io goes to a partial block at
2611                  * the end of the origin device.  We don't cache these.
2612                  * Just remap to the origin and carry on.
2613                  */
2614                 remap_to_origin(cache, bio);
2615                 accounted_begin(cache, bio);
2616                 return DM_MAPIO_REMAPPED;
2617         }
2618
2619         if (discard_or_flush(bio)) {
2620                 defer_bio(cache, bio);
2621                 return DM_MAPIO_SUBMITTED;
2622         }
2623
2624         r = map_bio(cache, bio, block, &commit_needed);
2625         if (commit_needed)
2626                 schedule_commit(&cache->committer);
2627
2628         return r;
2629 }
2630
2631 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2632 {
2633         struct cache *cache = ti->private;
2634         unsigned long flags;
2635         struct per_bio_data *pb = get_per_bio_data(bio);
2636
2637         if (pb->tick) {
2638                 policy_tick(cache->policy, false);
2639
2640                 spin_lock_irqsave(&cache->lock, flags);
2641                 cache->need_tick_bio = true;
2642                 spin_unlock_irqrestore(&cache->lock, flags);
2643         }
2644
2645         bio_drop_shared_lock(cache, bio);
2646         accounted_complete(cache, bio);
2647
2648         return DM_ENDIO_DONE;
2649 }
2650
2651 static int write_dirty_bitset(struct cache *cache)
2652 {
2653         int r;
2654
2655         if (get_cache_mode(cache) >= CM_READ_ONLY)
2656                 return -EINVAL;
2657
2658         r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2659         if (r)
2660                 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2661
2662         return r;
2663 }
2664
2665 static int write_discard_bitset(struct cache *cache)
2666 {
2667         unsigned i, r;
2668
2669         if (get_cache_mode(cache) >= CM_READ_ONLY)
2670                 return -EINVAL;
2671
2672         r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2673                                            cache->discard_nr_blocks);
2674         if (r) {
2675                 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2676                 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2677                 return r;
2678         }
2679
2680         for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2681                 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2682                                          is_discarded(cache, to_dblock(i)));
2683                 if (r) {
2684                         metadata_operation_failed(cache, "dm_cache_set_discard", r);
2685                         return r;
2686                 }
2687         }
2688
2689         return 0;
2690 }
2691
2692 static int write_hints(struct cache *cache)
2693 {
2694         int r;
2695
2696         if (get_cache_mode(cache) >= CM_READ_ONLY)
2697                 return -EINVAL;
2698
2699         r = dm_cache_write_hints(cache->cmd, cache->policy);
2700         if (r) {
2701                 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2702                 return r;
2703         }
2704
2705         return 0;
2706 }
2707
2708 /*
2709  * returns true on success
2710  */
2711 static bool sync_metadata(struct cache *cache)
2712 {
2713         int r1, r2, r3, r4;
2714
2715         r1 = write_dirty_bitset(cache);
2716         if (r1)
2717                 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2718
2719         r2 = write_discard_bitset(cache);
2720         if (r2)
2721                 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2722
2723         save_stats(cache);
2724
2725         r3 = write_hints(cache);
2726         if (r3)
2727                 DMERR("%s: could not write hints", cache_device_name(cache));
2728
2729         /*
2730          * If writing the above metadata failed, we still commit, but don't
2731          * set the clean shutdown flag.  This will effectively force every
2732          * dirty bit to be set on reload.
2733          */
2734         r4 = commit(cache, !r1 && !r2 && !r3);
2735         if (r4)
2736                 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2737
2738         return !r1 && !r2 && !r3 && !r4;
2739 }
2740
2741 static void cache_postsuspend(struct dm_target *ti)
2742 {
2743         struct cache *cache = ti->private;
2744
2745         prevent_background_work(cache);
2746         BUG_ON(atomic_read(&cache->nr_io_migrations));
2747
2748         cancel_delayed_work_sync(&cache->waker);
2749         drain_workqueue(cache->wq);
2750         WARN_ON(cache->tracker.in_flight);
2751
2752         /*
2753          * If it's a flush suspend there won't be any deferred bios, so this
2754          * call is harmless.
2755          */
2756         requeue_deferred_bios(cache);
2757
2758         if (get_cache_mode(cache) == CM_WRITE)
2759                 (void) sync_metadata(cache);
2760 }
2761
2762 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2763                         bool dirty, uint32_t hint, bool hint_valid)
2764 {
2765         struct cache *cache = context;
2766
2767         if (dirty) {
2768                 set_bit(from_cblock(cblock), cache->dirty_bitset);
2769                 atomic_inc(&cache->nr_dirty);
2770         } else
2771                 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2772
2773         return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2774 }
2775
2776 /*
2777  * The discard block size in the on disk metadata is not
2778  * necessarily the same as we're currently using.  So we have to
2779  * be careful to only set the discarded attribute if we know it
2780  * covers a complete block of the new size.
2781  */
2782 struct discard_load_info {
2783         struct cache *cache;
2784
2785         /*
2786          * These blocks are sized using the on disk dblock size, rather
2787          * than the current one.
2788          */
2789         dm_block_t block_size;
2790         dm_block_t discard_begin, discard_end;
2791 };
2792
2793 static void discard_load_info_init(struct cache *cache,
2794                                    struct discard_load_info *li)
2795 {
2796         li->cache = cache;
2797         li->discard_begin = li->discard_end = 0;
2798 }
2799
2800 static void set_discard_range(struct discard_load_info *li)
2801 {
2802         sector_t b, e;
2803
2804         if (li->discard_begin == li->discard_end)
2805                 return;
2806
2807         /*
2808          * Convert to sectors.
2809          */
2810         b = li->discard_begin * li->block_size;
2811         e = li->discard_end * li->block_size;
2812
2813         /*
2814          * Then convert back to the current dblock size.
2815          */
2816         b = dm_sector_div_up(b, li->cache->discard_block_size);
2817         sector_div(e, li->cache->discard_block_size);
2818
2819         /*
2820          * The origin may have shrunk, so we need to check we're still in
2821          * bounds.
2822          */
2823         if (e > from_dblock(li->cache->discard_nr_blocks))
2824                 e = from_dblock(li->cache->discard_nr_blocks);
2825
2826         for (; b < e; b++)
2827                 set_discard(li->cache, to_dblock(b));
2828 }
2829
2830 static int load_discard(void *context, sector_t discard_block_size,
2831                         dm_dblock_t dblock, bool discard)
2832 {
2833         struct discard_load_info *li = context;
2834
2835         li->block_size = discard_block_size;
2836
2837         if (discard) {
2838                 if (from_dblock(dblock) == li->discard_end)
2839                         /*
2840                          * We're already in a discard range, just extend it.
2841                          */
2842                         li->discard_end = li->discard_end + 1ULL;
2843
2844                 else {
2845                         /*
2846                          * Emit the old range and start a new one.
2847                          */
2848                         set_discard_range(li);
2849                         li->discard_begin = from_dblock(dblock);
2850                         li->discard_end = li->discard_begin + 1ULL;
2851                 }
2852         } else {
2853                 set_discard_range(li);
2854                 li->discard_begin = li->discard_end = 0;
2855         }
2856
2857         return 0;
2858 }
2859
2860 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2861 {
2862         sector_t size = get_dev_size(cache->cache_dev);
2863         (void) sector_div(size, cache->sectors_per_block);
2864         return to_cblock(size);
2865 }
2866
2867 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2868 {
2869         if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2870                 if (cache->sized) {
2871                         DMERR("%s: unable to extend cache due to missing cache table reload",
2872                               cache_device_name(cache));
2873                         return false;
2874                 }
2875         }
2876
2877         /*
2878          * We can't drop a dirty block when shrinking the cache.
2879          */
2880         while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2881                 new_size = to_cblock(from_cblock(new_size) + 1);
2882                 if (is_dirty(cache, new_size)) {
2883                         DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2884                               cache_device_name(cache),
2885                               (unsigned long long) from_cblock(new_size));
2886                         return false;
2887                 }
2888         }
2889
2890         return true;
2891 }
2892
2893 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2894 {
2895         int r;
2896
2897         r = dm_cache_resize(cache->cmd, new_size);
2898         if (r) {
2899                 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2900                 metadata_operation_failed(cache, "dm_cache_resize", r);
2901                 return r;
2902         }
2903
2904         set_cache_size(cache, new_size);
2905
2906         return 0;
2907 }
2908
2909 static int cache_preresume(struct dm_target *ti)
2910 {
2911         int r = 0;
2912         struct cache *cache = ti->private;
2913         dm_cblock_t csize = get_cache_dev_size(cache);
2914
2915         /*
2916          * Check to see if the cache has resized.
2917          */
2918         if (!cache->sized) {
2919                 r = resize_cache_dev(cache, csize);
2920                 if (r)
2921                         return r;
2922
2923                 cache->sized = true;
2924
2925         } else if (csize != cache->cache_size) {
2926                 if (!can_resize(cache, csize))
2927                         return -EINVAL;
2928
2929                 r = resize_cache_dev(cache, csize);
2930                 if (r)
2931                         return r;
2932         }
2933
2934         if (!cache->loaded_mappings) {
2935                 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2936                                            load_mapping, cache);
2937                 if (r) {
2938                         DMERR("%s: could not load cache mappings", cache_device_name(cache));
2939                         metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2940                         return r;
2941                 }
2942
2943                 cache->loaded_mappings = true;
2944         }
2945
2946         if (!cache->loaded_discards) {
2947                 struct discard_load_info li;
2948
2949                 /*
2950                  * The discard bitset could have been resized, or the
2951                  * discard block size changed.  To be safe we start by
2952                  * setting every dblock to not discarded.
2953                  */
2954                 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2955
2956                 discard_load_info_init(cache, &li);
2957                 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2958                 if (r) {
2959                         DMERR("%s: could not load origin discards", cache_device_name(cache));
2960                         metadata_operation_failed(cache, "dm_cache_load_discards", r);
2961                         return r;
2962                 }
2963                 set_discard_range(&li);
2964
2965                 cache->loaded_discards = true;
2966         }
2967
2968         return r;
2969 }
2970
2971 static void cache_resume(struct dm_target *ti)
2972 {
2973         struct cache *cache = ti->private;
2974
2975         cache->need_tick_bio = true;
2976         allow_background_work(cache);
2977         do_waker(&cache->waker.work);
2978 }
2979
2980 static void emit_flags(struct cache *cache, char *result,
2981                        unsigned maxlen, ssize_t *sz_ptr)
2982 {
2983         ssize_t sz = *sz_ptr;
2984         struct cache_features *cf = &cache->features;
2985         unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
2986
2987         DMEMIT("%u ", count);
2988
2989         if (cf->metadata_version == 2)
2990                 DMEMIT("metadata2 ");
2991
2992         if (writethrough_mode(cache))
2993                 DMEMIT("writethrough ");
2994
2995         else if (passthrough_mode(cache))
2996                 DMEMIT("passthrough ");
2997
2998         else if (writeback_mode(cache))
2999                 DMEMIT("writeback ");
3000
3001         else {
3002                 DMEMIT("unknown ");
3003                 DMERR("%s: internal error: unknown io mode: %d",
3004                       cache_device_name(cache), (int) cf->io_mode);
3005         }
3006
3007         if (!cf->discard_passdown)
3008                 DMEMIT("no_discard_passdown ");
3009
3010         *sz_ptr = sz;
3011 }
3012
3013 /*
3014  * Status format:
3015  *
3016  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3017  * <cache block size> <#used cache blocks>/<#total cache blocks>
3018  * <#read hits> <#read misses> <#write hits> <#write misses>
3019  * <#demotions> <#promotions> <#dirty>
3020  * <#features> <features>*
3021  * <#core args> <core args>
3022  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3023  */
3024 static void cache_status(struct dm_target *ti, status_type_t type,
3025                          unsigned status_flags, char *result, unsigned maxlen)
3026 {
3027         int r = 0;
3028         unsigned i;
3029         ssize_t sz = 0;
3030         dm_block_t nr_free_blocks_metadata = 0;
3031         dm_block_t nr_blocks_metadata = 0;
3032         char buf[BDEVNAME_SIZE];
3033         struct cache *cache = ti->private;
3034         dm_cblock_t residency;
3035         bool needs_check;
3036
3037         switch (type) {
3038         case STATUSTYPE_INFO:
3039                 if (get_cache_mode(cache) == CM_FAIL) {
3040                         DMEMIT("Fail");
3041                         break;
3042                 }
3043
3044                 /* Commit to ensure statistics aren't out-of-date */
3045                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3046                         (void) commit(cache, false);
3047
3048                 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3049                 if (r) {
3050                         DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3051                               cache_device_name(cache), r);
3052                         goto err;
3053                 }
3054
3055                 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3056                 if (r) {
3057                         DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3058                               cache_device_name(cache), r);
3059                         goto err;
3060                 }
3061
3062                 residency = policy_residency(cache->policy);
3063
3064                 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3065                        (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3066                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3067                        (unsigned long long)nr_blocks_metadata,
3068                        (unsigned long long)cache->sectors_per_block,
3069                        (unsigned long long) from_cblock(residency),
3070                        (unsigned long long) from_cblock(cache->cache_size),
3071                        (unsigned) atomic_read(&cache->stats.read_hit),
3072                        (unsigned) atomic_read(&cache->stats.read_miss),
3073                        (unsigned) atomic_read(&cache->stats.write_hit),
3074                        (unsigned) atomic_read(&cache->stats.write_miss),
3075                        (unsigned) atomic_read(&cache->stats.demotion),
3076                        (unsigned) atomic_read(&cache->stats.promotion),
3077                        (unsigned long) atomic_read(&cache->nr_dirty));
3078
3079                 emit_flags(cache, result, maxlen, &sz);
3080
3081                 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3082
3083                 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3084                 if (sz < maxlen) {
3085                         r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3086                         if (r)
3087                                 DMERR("%s: policy_emit_config_values returned %d",
3088                                       cache_device_name(cache), r);
3089                 }
3090
3091                 if (get_cache_mode(cache) == CM_READ_ONLY)
3092                         DMEMIT("ro ");
3093                 else
3094                         DMEMIT("rw ");
3095
3096                 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3097
3098                 if (r || needs_check)
3099                         DMEMIT("needs_check ");
3100                 else
3101                         DMEMIT("- ");
3102
3103                 break;
3104
3105         case STATUSTYPE_TABLE:
3106                 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3107                 DMEMIT("%s ", buf);
3108                 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3109                 DMEMIT("%s ", buf);
3110                 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3111                 DMEMIT("%s", buf);
3112
3113                 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3114                         DMEMIT(" %s", cache->ctr_args[i]);
3115                 if (cache->nr_ctr_args)
3116                         DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3117                 break;
3118
3119         case STATUSTYPE_IMA:
3120                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3121                 if (get_cache_mode(cache) == CM_FAIL)
3122                         DMEMIT(",metadata_mode=fail");
3123                 else if (get_cache_mode(cache) == CM_READ_ONLY)
3124                         DMEMIT(",metadata_mode=ro");
3125                 else
3126                         DMEMIT(",metadata_mode=rw");
3127
3128                 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3129                 DMEMIT(",cache_metadata_device=%s", buf);
3130                 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3131                 DMEMIT(",cache_device=%s", buf);
3132                 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3133                 DMEMIT(",cache_origin_device=%s", buf);
3134                 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3135                 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3136                 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3137                 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3138                 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3139                 DMEMIT(";");
3140                 break;
3141         }
3142
3143         return;
3144
3145 err:
3146         DMEMIT("Error");
3147 }
3148
3149 /*
3150  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3151  * the one-past-the-end value.
3152  */
3153 struct cblock_range {
3154         dm_cblock_t begin;
3155         dm_cblock_t end;
3156 };
3157
3158 /*
3159  * A cache block range can take two forms:
3160  *
3161  * i) A single cblock, eg. '3456'
3162  * ii) A begin and end cblock with a dash between, eg. 123-234
3163  */
3164 static int parse_cblock_range(struct cache *cache, const char *str,
3165                               struct cblock_range *result)
3166 {
3167         char dummy;
3168         uint64_t b, e;
3169         int r;
3170
3171         /*
3172          * Try and parse form (ii) first.
3173          */
3174         r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3175         if (r < 0)
3176                 return r;
3177
3178         if (r == 2) {
3179                 result->begin = to_cblock(b);
3180                 result->end = to_cblock(e);
3181                 return 0;
3182         }
3183
3184         /*
3185          * That didn't work, try form (i).
3186          */
3187         r = sscanf(str, "%llu%c", &b, &dummy);
3188         if (r < 0)
3189                 return r;
3190
3191         if (r == 1) {
3192                 result->begin = to_cblock(b);
3193                 result->end = to_cblock(from_cblock(result->begin) + 1u);
3194                 return 0;
3195         }
3196
3197         DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3198         return -EINVAL;
3199 }
3200
3201 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3202 {
3203         uint64_t b = from_cblock(range->begin);
3204         uint64_t e = from_cblock(range->end);
3205         uint64_t n = from_cblock(cache->cache_size);
3206
3207         if (b >= n) {
3208                 DMERR("%s: begin cblock out of range: %llu >= %llu",
3209                       cache_device_name(cache), b, n);
3210                 return -EINVAL;
3211         }
3212
3213         if (e > n) {
3214                 DMERR("%s: end cblock out of range: %llu > %llu",
3215                       cache_device_name(cache), e, n);
3216                 return -EINVAL;
3217         }
3218
3219         if (b >= e) {
3220                 DMERR("%s: invalid cblock range: %llu >= %llu",
3221                       cache_device_name(cache), b, e);
3222                 return -EINVAL;
3223         }
3224
3225         return 0;
3226 }
3227
3228 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3229 {
3230         return to_cblock(from_cblock(b) + 1);
3231 }
3232
3233 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3234 {
3235         int r = 0;
3236
3237         /*
3238          * We don't need to do any locking here because we know we're in
3239          * passthrough mode.  There's is potential for a race between an
3240          * invalidation triggered by an io and an invalidation message.  This
3241          * is harmless, we must not worry if the policy call fails.
3242          */
3243         while (range->begin != range->end) {
3244                 r = invalidate_cblock(cache, range->begin);
3245                 if (r)
3246                         return r;
3247
3248                 range->begin = cblock_succ(range->begin);
3249         }
3250
3251         cache->commit_requested = true;
3252         return r;
3253 }
3254
3255 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3256                                               const char **cblock_ranges)
3257 {
3258         int r = 0;
3259         unsigned i;
3260         struct cblock_range range;
3261
3262         if (!passthrough_mode(cache)) {
3263                 DMERR("%s: cache has to be in passthrough mode for invalidation",
3264                       cache_device_name(cache));
3265                 return -EPERM;
3266         }
3267
3268         for (i = 0; i < count; i++) {
3269                 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3270                 if (r)
3271                         break;
3272
3273                 r = validate_cblock_range(cache, &range);
3274                 if (r)
3275                         break;
3276
3277                 /*
3278                  * Pass begin and end origin blocks to the worker and wake it.
3279                  */
3280                 r = request_invalidation(cache, &range);
3281                 if (r)
3282                         break;
3283         }
3284
3285         return r;
3286 }
3287
3288 /*
3289  * Supports
3290  *      "<key> <value>"
3291  * and
3292  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3293  *
3294  * The key migration_threshold is supported by the cache target core.
3295  */
3296 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3297                          char *result, unsigned maxlen)
3298 {
3299         struct cache *cache = ti->private;
3300
3301         if (!argc)
3302                 return -EINVAL;
3303
3304         if (get_cache_mode(cache) >= CM_READ_ONLY) {
3305                 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3306                       cache_device_name(cache));
3307                 return -EOPNOTSUPP;
3308         }
3309
3310         if (!strcasecmp(argv[0], "invalidate_cblocks"))
3311                 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3312
3313         if (argc != 2)
3314                 return -EINVAL;
3315
3316         return set_config_value(cache, argv[0], argv[1]);
3317 }
3318
3319 static int cache_iterate_devices(struct dm_target *ti,
3320                                  iterate_devices_callout_fn fn, void *data)
3321 {
3322         int r = 0;
3323         struct cache *cache = ti->private;
3324
3325         r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3326         if (!r)
3327                 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3328
3329         return r;
3330 }
3331
3332 /*
3333  * If discard_passdown was enabled verify that the origin device
3334  * supports discards.  Disable discard_passdown if not.
3335  */
3336 static void disable_passdown_if_not_supported(struct cache *cache)
3337 {
3338         struct block_device *origin_bdev = cache->origin_dev->bdev;
3339         struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3340         const char *reason = NULL;
3341
3342         if (!cache->features.discard_passdown)
3343                 return;
3344
3345         if (!bdev_max_discard_sectors(origin_bdev))
3346                 reason = "discard unsupported";
3347
3348         else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3349                 reason = "max discard sectors smaller than a block";
3350
3351         if (reason) {
3352                 DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3353                        origin_bdev, reason);
3354                 cache->features.discard_passdown = false;
3355         }
3356 }
3357
3358 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3359 {
3360         struct block_device *origin_bdev = cache->origin_dev->bdev;
3361         struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3362
3363         if (!cache->features.discard_passdown) {
3364                 /* No passdown is done so setting own virtual limits */
3365                 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3366                                                     cache->origin_sectors);
3367                 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3368                 return;
3369         }
3370
3371         /*
3372          * cache_iterate_devices() is stacking both origin and fast device limits
3373          * but discards aren't passed to fast device, so inherit origin's limits.
3374          */
3375         limits->max_discard_sectors = origin_limits->max_discard_sectors;
3376         limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3377         limits->discard_granularity = origin_limits->discard_granularity;
3378         limits->discard_alignment = origin_limits->discard_alignment;
3379         limits->discard_misaligned = origin_limits->discard_misaligned;
3380 }
3381
3382 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3383 {
3384         struct cache *cache = ti->private;
3385         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3386
3387         /*
3388          * If the system-determined stacked limits are compatible with the
3389          * cache's blocksize (io_opt is a factor) do not override them.
3390          */
3391         if (io_opt_sectors < cache->sectors_per_block ||
3392             do_div(io_opt_sectors, cache->sectors_per_block)) {
3393                 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3394                 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3395         }
3396
3397         disable_passdown_if_not_supported(cache);
3398         set_discard_limits(cache, limits);
3399 }
3400
3401 /*----------------------------------------------------------------*/
3402
3403 static struct target_type cache_target = {
3404         .name = "cache",
3405         .version = {2, 2, 0},
3406         .module = THIS_MODULE,
3407         .ctr = cache_ctr,
3408         .dtr = cache_dtr,
3409         .map = cache_map,
3410         .end_io = cache_end_io,
3411         .postsuspend = cache_postsuspend,
3412         .preresume = cache_preresume,
3413         .resume = cache_resume,
3414         .status = cache_status,
3415         .message = cache_message,
3416         .iterate_devices = cache_iterate_devices,
3417         .io_hints = cache_io_hints,
3418 };
3419
3420 static int __init dm_cache_init(void)
3421 {
3422         int r;
3423
3424         migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3425         if (!migration_cache)
3426                 return -ENOMEM;
3427
3428         r = dm_register_target(&cache_target);
3429         if (r) {
3430                 DMERR("cache target registration failed: %d", r);
3431                 kmem_cache_destroy(migration_cache);
3432                 return r;
3433         }
3434
3435         return 0;
3436 }
3437
3438 static void __exit dm_cache_exit(void)
3439 {
3440         dm_unregister_target(&cache_target);
3441         kmem_cache_destroy(migration_cache);
3442 }
3443
3444 module_init(dm_cache_init);
3445 module_exit(dm_cache_exit);
3446
3447 MODULE_DESCRIPTION(DM_NAME " cache target");
3448 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3449 MODULE_LICENSE("GPL");