2 * Copyright (C) 2009-2011 Red Hat, Inc.
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 * This file is released under the GPL.
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
18 #define DM_MSG_PREFIX "bufio"
21 * Memory management policy:
22 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
28 #define DM_BUFIO_MIN_BUFFERS 8
30 #define DM_BUFIO_MEMORY_PERCENT 2
31 #define DM_BUFIO_VMALLOC_PERCENT 25
32 #define DM_BUFIO_WRITEBACK_PERCENT 75
35 * Check buffer ages in this interval (seconds)
37 #define DM_BUFIO_WORK_TIMER_SECS 10
40 * Free buffers when they are older than this (seconds)
42 #define DM_BUFIO_DEFAULT_AGE_SECS 60
45 * The number of bvec entries that are embedded directly in the buffer.
46 * If the chunk size is larger, dm-io is used to do the io.
48 #define DM_BUFIO_INLINE_VECS 16
53 #define DM_BUFIO_HASH_BITS 20
54 #define DM_BUFIO_HASH(block) \
55 ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56 ((1 << DM_BUFIO_HASH_BITS) - 1))
59 * Don't try to use kmem_cache_alloc for blocks larger than this.
60 * For explanation, see alloc_buffer_data below.
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
66 * dm_buffer->list_mode
74 * All buffers are linked to cache_hash with their hash_list field.
76 * Clean buffers that are not being written (B_WRITING not set)
77 * are linked to lru[LIST_CLEAN] with their lru_list field.
79 * Dirty and clean buffers that are being written are linked to
80 * lru[LIST_DIRTY] with their lru_list field. When the write
81 * finishes, the buffer cannot be relinked immediately (because we
82 * are in an interrupt context and relinking requires process
83 * context), so some clean-not-writing buffers can be held on
84 * dirty_lru too. They are later added to lru in the process
87 struct dm_bufio_client {
90 struct list_head lru[LIST_SIZE];
91 unsigned long n_buffers[LIST_SIZE];
93 struct block_device *bdev;
95 unsigned char sectors_per_block_bits;
96 unsigned char pages_per_block_bits;
97 unsigned char blocks_per_page_bits;
99 void (*alloc_callback)(struct dm_buffer *);
100 void (*write_callback)(struct dm_buffer *);
102 struct dm_io_client *dm_io;
104 struct list_head reserved_buffers;
105 unsigned need_reserved_buffers;
107 struct hlist_head *cache_hash;
108 wait_queue_head_t free_buffer_wait;
110 int async_write_error;
112 struct list_head client_list;
113 struct shrinker shrinker;
124 * Describes how the block was allocated:
125 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
126 * See the comment at alloc_buffer_data.
130 DATA_MODE_GET_FREE_PAGES = 1,
131 DATA_MODE_VMALLOC = 2,
136 struct hlist_node hash_list;
137 struct list_head lru_list;
140 enum data_mode data_mode;
141 unsigned char list_mode; /* LIST_* */
146 unsigned long last_accessed;
147 struct dm_bufio_client *c;
149 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
152 /*----------------------------------------------------------------*/
154 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
155 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
157 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
159 unsigned ret = c->blocks_per_page_bits - 1;
161 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
166 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
167 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
169 #define dm_bufio_in_request() (!!current->bio_list)
171 static void dm_bufio_lock(struct dm_bufio_client *c)
173 mutex_lock_nested(&c->lock, dm_bufio_in_request());
176 static int dm_bufio_trylock(struct dm_bufio_client *c)
178 return mutex_trylock(&c->lock);
181 static void dm_bufio_unlock(struct dm_bufio_client *c)
183 mutex_unlock(&c->lock);
187 * FIXME Move to sched.h?
189 #ifdef CONFIG_PREEMPT_VOLUNTARY
190 # define dm_bufio_cond_resched() \
192 if (unlikely(need_resched())) \
196 # define dm_bufio_cond_resched() do { } while (0)
199 /*----------------------------------------------------------------*/
202 * Default cache size: available memory divided by the ratio.
204 static unsigned long dm_bufio_default_cache_size;
207 * Total cache size set by the user.
209 static unsigned long dm_bufio_cache_size;
212 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
213 * at any time. If it disagrees, the user has changed cache size.
215 static unsigned long dm_bufio_cache_size_latch;
217 static DEFINE_SPINLOCK(param_spinlock);
220 * Buffers are freed after this timeout
222 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
224 static unsigned long dm_bufio_peak_allocated;
225 static unsigned long dm_bufio_allocated_kmem_cache;
226 static unsigned long dm_bufio_allocated_get_free_pages;
227 static unsigned long dm_bufio_allocated_vmalloc;
228 static unsigned long dm_bufio_current_allocated;
230 /*----------------------------------------------------------------*/
233 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
235 static unsigned long dm_bufio_cache_size_per_client;
238 * The current number of clients.
240 static int dm_bufio_client_count;
243 * The list of all clients.
245 static LIST_HEAD(dm_bufio_all_clients);
248 * This mutex protects dm_bufio_cache_size_latch,
249 * dm_bufio_cache_size_per_client and dm_bufio_client_count
251 static DEFINE_MUTEX(dm_bufio_clients_lock);
253 /*----------------------------------------------------------------*/
255 static void adjust_total_allocated(enum data_mode data_mode, long diff)
257 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
258 &dm_bufio_allocated_kmem_cache,
259 &dm_bufio_allocated_get_free_pages,
260 &dm_bufio_allocated_vmalloc,
263 spin_lock(¶m_spinlock);
265 *class_ptr[data_mode] += diff;
267 dm_bufio_current_allocated += diff;
269 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
270 dm_bufio_peak_allocated = dm_bufio_current_allocated;
272 spin_unlock(¶m_spinlock);
276 * Change the number of clients and recalculate per-client limit.
278 static void __cache_size_refresh(void)
280 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
281 BUG_ON(dm_bufio_client_count < 0);
283 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
286 * Use default if set to 0 and report the actual cache size used.
288 if (!dm_bufio_cache_size_latch) {
289 (void)cmpxchg(&dm_bufio_cache_size, 0,
290 dm_bufio_default_cache_size);
291 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
294 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
295 (dm_bufio_client_count ? : 1);
299 * Allocating buffer data.
301 * Small buffers are allocated with kmem_cache, to use space optimally.
303 * For large buffers, we choose between get_free_pages and vmalloc.
304 * Each has advantages and disadvantages.
306 * __get_free_pages can randomly fail if the memory is fragmented.
307 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
308 * as low as 128M) so using it for caching is not appropriate.
310 * If the allocation may fail we use __get_free_pages. Memory fragmentation
311 * won't have a fatal effect here, but it just causes flushes of some other
312 * buffers and more I/O will be performed. Don't use __get_free_pages if it
313 * always fails (i.e. order >= MAX_ORDER).
315 * If the allocation shouldn't fail we use __vmalloc. This is only for the
316 * initial reserve allocation, so there's no risk of wasting all vmalloc
319 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
320 enum data_mode *data_mode)
322 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
323 *data_mode = DATA_MODE_SLAB;
324 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
327 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
328 gfp_mask & __GFP_NORETRY) {
329 *data_mode = DATA_MODE_GET_FREE_PAGES;
330 return (void *)__get_free_pages(gfp_mask,
331 c->pages_per_block_bits);
334 *data_mode = DATA_MODE_VMALLOC;
335 return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
339 * Free buffer's data.
341 static void free_buffer_data(struct dm_bufio_client *c,
342 void *data, enum data_mode data_mode)
346 kmem_cache_free(DM_BUFIO_CACHE(c), data);
349 case DATA_MODE_GET_FREE_PAGES:
350 free_pages((unsigned long)data, c->pages_per_block_bits);
353 case DATA_MODE_VMALLOC:
358 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
365 * Allocate buffer and its data.
367 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
369 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
377 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
383 adjust_total_allocated(b->data_mode, (long)c->block_size);
389 * Free buffer and its data.
391 static void free_buffer(struct dm_buffer *b)
393 struct dm_bufio_client *c = b->c;
395 adjust_total_allocated(b->data_mode, -(long)c->block_size);
397 free_buffer_data(c, b->data, b->data_mode);
402 * Link buffer to the hash list and clean or dirty queue.
404 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
406 struct dm_bufio_client *c = b->c;
408 c->n_buffers[dirty]++;
410 b->list_mode = dirty;
411 list_add(&b->lru_list, &c->lru[dirty]);
412 hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
413 b->last_accessed = jiffies;
417 * Unlink buffer from the hash list and dirty or clean queue.
419 static void __unlink_buffer(struct dm_buffer *b)
421 struct dm_bufio_client *c = b->c;
423 BUG_ON(!c->n_buffers[b->list_mode]);
425 c->n_buffers[b->list_mode]--;
426 hlist_del(&b->hash_list);
427 list_del(&b->lru_list);
431 * Place the buffer to the head of dirty or clean LRU queue.
433 static void __relink_lru(struct dm_buffer *b, int dirty)
435 struct dm_bufio_client *c = b->c;
437 BUG_ON(!c->n_buffers[b->list_mode]);
439 c->n_buffers[b->list_mode]--;
440 c->n_buffers[dirty]++;
441 b->list_mode = dirty;
442 list_move(&b->lru_list, &c->lru[dirty]);
445 /*----------------------------------------------------------------
446 * Submit I/O on the buffer.
448 * Bio interface is faster but it has some problems:
449 * the vector list is limited (increasing this limit increases
450 * memory-consumption per buffer, so it is not viable);
452 * the memory must be direct-mapped, not vmalloced;
454 * the I/O driver can reject requests spuriously if it thinks that
455 * the requests are too big for the device or if they cross a
456 * controller-defined memory boundary.
458 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
459 * it is not vmalloced, try using the bio interface.
461 * If the buffer is big, if it is vmalloced or if the underlying device
462 * rejects the bio because it is too large, use dm-io layer to do the I/O.
463 * The dm-io layer splits the I/O into multiple requests, avoiding the above
465 *--------------------------------------------------------------*/
468 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
469 * that the request was handled directly with bio interface.
471 static void dmio_complete(unsigned long error, void *context)
473 struct dm_buffer *b = context;
475 b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
478 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
479 bio_end_io_t *end_io)
482 struct dm_io_request io_req = {
484 .notify.fn = dmio_complete,
486 .client = b->c->dm_io,
488 struct dm_io_region region = {
490 .sector = block << b->c->sectors_per_block_bits,
491 .count = b->c->block_size >> SECTOR_SHIFT,
494 if (b->data_mode != DATA_MODE_VMALLOC) {
495 io_req.mem.type = DM_IO_KMEM;
496 io_req.mem.ptr.addr = b->data;
498 io_req.mem.type = DM_IO_VMA;
499 io_req.mem.ptr.vma = b->data;
502 b->bio.bi_end_io = end_io;
504 r = dm_io(&io_req, 1, ®ion, NULL);
509 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
510 bio_end_io_t *end_io)
516 b->bio.bi_io_vec = b->bio_vec;
517 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
518 b->bio.bi_sector = block << b->c->sectors_per_block_bits;
519 b->bio.bi_bdev = b->c->bdev;
520 b->bio.bi_end_io = end_io;
523 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
524 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
527 len = b->c->block_size;
529 if (len >= PAGE_SIZE)
530 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
532 BUG_ON((unsigned long)ptr & (len - 1));
535 if (!bio_add_page(&b->bio, virt_to_page(ptr),
536 len < PAGE_SIZE ? len : PAGE_SIZE,
537 virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
538 BUG_ON(b->c->block_size <= PAGE_SIZE);
539 use_dmio(b, rw, block, end_io);
547 submit_bio(rw, &b->bio);
550 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
551 bio_end_io_t *end_io)
553 if (rw == WRITE && b->c->write_callback)
554 b->c->write_callback(b);
556 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
557 b->data_mode != DATA_MODE_VMALLOC)
558 use_inline_bio(b, rw, block, end_io);
560 use_dmio(b, rw, block, end_io);
563 /*----------------------------------------------------------------
564 * Writing dirty buffers
565 *--------------------------------------------------------------*/
568 * The endio routine for write.
570 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
573 static void write_endio(struct bio *bio, int error)
575 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
577 b->write_error = error;
578 if (unlikely(error)) {
579 struct dm_bufio_client *c = b->c;
580 (void)cmpxchg(&c->async_write_error, 0, error);
583 BUG_ON(!test_bit(B_WRITING, &b->state));
585 smp_mb__before_clear_bit();
586 clear_bit(B_WRITING, &b->state);
587 smp_mb__after_clear_bit();
589 wake_up_bit(&b->state, B_WRITING);
593 * This function is called when wait_on_bit is actually waiting.
595 static int do_io_schedule(void *word)
603 * Initiate a write on a dirty buffer, but don't wait for it.
605 * - If the buffer is not dirty, exit.
606 * - If there some previous write going on, wait for it to finish (we can't
607 * have two writes on the same buffer simultaneously).
608 * - Submit our write and don't wait on it. We set B_WRITING indicating
609 * that there is a write in progress.
611 static void __write_dirty_buffer(struct dm_buffer *b)
613 if (!test_bit(B_DIRTY, &b->state))
616 clear_bit(B_DIRTY, &b->state);
617 wait_on_bit_lock(&b->state, B_WRITING,
618 do_io_schedule, TASK_UNINTERRUPTIBLE);
620 submit_io(b, WRITE, b->block, write_endio);
624 * Wait until any activity on the buffer finishes. Possibly write the
625 * buffer if it is dirty. When this function finishes, there is no I/O
626 * running on the buffer and the buffer is not dirty.
628 static void __make_buffer_clean(struct dm_buffer *b)
630 BUG_ON(b->hold_count);
632 if (!b->state) /* fast case */
635 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
636 __write_dirty_buffer(b);
637 wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
641 * Find some buffer that is not held by anybody, clean it, unlink it and
644 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
648 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
649 BUG_ON(test_bit(B_WRITING, &b->state));
650 BUG_ON(test_bit(B_DIRTY, &b->state));
652 if (!b->hold_count) {
653 __make_buffer_clean(b);
657 dm_bufio_cond_resched();
660 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
661 BUG_ON(test_bit(B_READING, &b->state));
663 if (!b->hold_count) {
664 __make_buffer_clean(b);
668 dm_bufio_cond_resched();
675 * Wait until some other threads free some buffer or release hold count on
678 * This function is entered with c->lock held, drops it and regains it
681 static void __wait_for_free_buffer(struct dm_bufio_client *c)
683 DECLARE_WAITQUEUE(wait, current);
685 add_wait_queue(&c->free_buffer_wait, &wait);
686 set_task_state(current, TASK_UNINTERRUPTIBLE);
691 set_task_state(current, TASK_RUNNING);
692 remove_wait_queue(&c->free_buffer_wait, &wait);
705 * Allocate a new buffer. If the allocation is not possible, wait until
706 * some other thread frees a buffer.
708 * May drop the lock and regain it.
710 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
715 * dm-bufio is resistant to allocation failures (it just keeps
716 * one buffer reserved in cases all the allocations fail).
717 * So set flags to not try too hard:
718 * GFP_NOIO: don't recurse into the I/O layer
719 * __GFP_NORETRY: don't retry and rather return failure
720 * __GFP_NOMEMALLOC: don't use emergency reserves
721 * __GFP_NOWARN: don't print a warning in case of failure
723 * For debugging, if we set the cache size to 1, no new buffers will
727 if (dm_bufio_cache_size_latch != 1) {
728 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
733 if (nf == NF_PREFETCH)
736 if (!list_empty(&c->reserved_buffers)) {
737 b = list_entry(c->reserved_buffers.next,
738 struct dm_buffer, lru_list);
739 list_del(&b->lru_list);
740 c->need_reserved_buffers++;
745 b = __get_unclaimed_buffer(c);
749 __wait_for_free_buffer(c);
753 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
755 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
760 if (c->alloc_callback)
761 c->alloc_callback(b);
767 * Free a buffer and wake other threads waiting for free buffers.
769 static void __free_buffer_wake(struct dm_buffer *b)
771 struct dm_bufio_client *c = b->c;
773 if (!c->need_reserved_buffers)
776 list_add(&b->lru_list, &c->reserved_buffers);
777 c->need_reserved_buffers--;
780 wake_up(&c->free_buffer_wait);
783 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait)
785 struct dm_buffer *b, *tmp;
787 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
788 BUG_ON(test_bit(B_READING, &b->state));
790 if (!test_bit(B_DIRTY, &b->state) &&
791 !test_bit(B_WRITING, &b->state)) {
792 __relink_lru(b, LIST_CLEAN);
796 if (no_wait && test_bit(B_WRITING, &b->state))
799 __write_dirty_buffer(b);
800 dm_bufio_cond_resched();
805 * Get writeback threshold and buffer limit for a given client.
807 static void __get_memory_limit(struct dm_bufio_client *c,
808 unsigned long *threshold_buffers,
809 unsigned long *limit_buffers)
811 unsigned long buffers;
813 if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
814 mutex_lock(&dm_bufio_clients_lock);
815 __cache_size_refresh();
816 mutex_unlock(&dm_bufio_clients_lock);
819 buffers = dm_bufio_cache_size_per_client >>
820 (c->sectors_per_block_bits + SECTOR_SHIFT);
822 if (buffers < DM_BUFIO_MIN_BUFFERS)
823 buffers = DM_BUFIO_MIN_BUFFERS;
825 *limit_buffers = buffers;
826 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
830 * Check if we're over watermark.
831 * If we are over threshold_buffers, start freeing buffers.
832 * If we're over "limit_buffers", block until we get under the limit.
834 static void __check_watermark(struct dm_bufio_client *c)
836 unsigned long threshold_buffers, limit_buffers;
838 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
840 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
843 struct dm_buffer *b = __get_unclaimed_buffer(c);
848 __free_buffer_wake(b);
849 dm_bufio_cond_resched();
852 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
853 __write_dirty_buffers_async(c, 1);
857 * Find a buffer in the hash.
859 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
863 hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
865 dm_bufio_cond_resched();
866 if (b->block == block)
873 /*----------------------------------------------------------------
875 *--------------------------------------------------------------*/
877 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
878 enum new_flag nf, int *need_submit)
880 struct dm_buffer *b, *new_b = NULL;
884 b = __find(c, block);
891 new_b = __alloc_buffer_wait(c, nf);
896 * We've had a period where the mutex was unlocked, so need to
897 * recheck the hash table.
899 b = __find(c, block);
901 __free_buffer_wake(new_b);
905 __check_watermark(c);
911 __link_buffer(b, block, LIST_CLEAN);
913 if (nf == NF_FRESH) {
918 b->state = 1 << B_READING;
924 if (nf == NF_PREFETCH)
927 * Note: it is essential that we don't wait for the buffer to be
928 * read if dm_bufio_get function is used. Both dm_bufio_get and
929 * dm_bufio_prefetch can be used in the driver request routine.
930 * If the user called both dm_bufio_prefetch and dm_bufio_get on
931 * the same buffer, it would deadlock if we waited.
933 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
937 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
938 test_bit(B_WRITING, &b->state));
943 * The endio routine for reading: set the error, clear the bit and wake up
944 * anyone waiting on the buffer.
946 static void read_endio(struct bio *bio, int error)
948 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
950 b->read_error = error;
952 BUG_ON(!test_bit(B_READING, &b->state));
954 smp_mb__before_clear_bit();
955 clear_bit(B_READING, &b->state);
956 smp_mb__after_clear_bit();
958 wake_up_bit(&b->state, B_READING);
962 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
963 * functions is similar except that dm_bufio_new doesn't read the
964 * buffer from the disk (assuming that the caller overwrites all the data
965 * and uses dm_bufio_mark_buffer_dirty to write new data back).
967 static void *new_read(struct dm_bufio_client *c, sector_t block,
968 enum new_flag nf, struct dm_buffer **bp)
974 b = __bufio_new(c, block, nf, &need_submit);
981 submit_io(b, READ, b->block, read_endio);
983 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
986 int error = b->read_error;
990 return ERR_PTR(error);
998 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
999 struct dm_buffer **bp)
1001 return new_read(c, block, NF_GET, bp);
1003 EXPORT_SYMBOL_GPL(dm_bufio_get);
1005 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1006 struct dm_buffer **bp)
1008 BUG_ON(dm_bufio_in_request());
1010 return new_read(c, block, NF_READ, bp);
1012 EXPORT_SYMBOL_GPL(dm_bufio_read);
1014 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1015 struct dm_buffer **bp)
1017 BUG_ON(dm_bufio_in_request());
1019 return new_read(c, block, NF_FRESH, bp);
1021 EXPORT_SYMBOL_GPL(dm_bufio_new);
1023 void dm_bufio_prefetch(struct dm_bufio_client *c,
1024 sector_t block, unsigned n_blocks)
1026 struct blk_plug plug;
1028 blk_start_plug(&plug);
1031 for (; n_blocks--; block++) {
1033 struct dm_buffer *b;
1034 b = __bufio_new(c, block, NF_PREFETCH, &need_submit);
1035 if (unlikely(b != NULL)) {
1039 submit_io(b, READ, b->block, read_endio);
1040 dm_bufio_release(b);
1042 dm_bufio_cond_resched();
1054 blk_finish_plug(&plug);
1056 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1058 void dm_bufio_release(struct dm_buffer *b)
1060 struct dm_bufio_client *c = b->c;
1064 BUG_ON(!b->hold_count);
1067 if (!b->hold_count) {
1068 wake_up(&c->free_buffer_wait);
1071 * If there were errors on the buffer, and the buffer is not
1072 * to be written, free the buffer. There is no point in caching
1075 if ((b->read_error || b->write_error) &&
1076 !test_bit(B_READING, &b->state) &&
1077 !test_bit(B_WRITING, &b->state) &&
1078 !test_bit(B_DIRTY, &b->state)) {
1080 __free_buffer_wake(b);
1086 EXPORT_SYMBOL_GPL(dm_bufio_release);
1088 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1090 struct dm_bufio_client *c = b->c;
1094 BUG_ON(test_bit(B_READING, &b->state));
1096 if (!test_and_set_bit(B_DIRTY, &b->state))
1097 __relink_lru(b, LIST_DIRTY);
1101 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1103 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1105 BUG_ON(dm_bufio_in_request());
1108 __write_dirty_buffers_async(c, 0);
1111 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1114 * For performance, it is essential that the buffers are written asynchronously
1115 * and simultaneously (so that the block layer can merge the writes) and then
1118 * Finally, we flush hardware disk cache.
1120 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1123 unsigned long buffers_processed = 0;
1124 struct dm_buffer *b, *tmp;
1127 __write_dirty_buffers_async(c, 0);
1130 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1131 int dropped_lock = 0;
1133 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1134 buffers_processed++;
1136 BUG_ON(test_bit(B_READING, &b->state));
1138 if (test_bit(B_WRITING, &b->state)) {
1139 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1143 wait_on_bit(&b->state, B_WRITING,
1145 TASK_UNINTERRUPTIBLE);
1149 wait_on_bit(&b->state, B_WRITING,
1151 TASK_UNINTERRUPTIBLE);
1154 if (!test_bit(B_DIRTY, &b->state) &&
1155 !test_bit(B_WRITING, &b->state))
1156 __relink_lru(b, LIST_CLEAN);
1158 dm_bufio_cond_resched();
1161 * If we dropped the lock, the list is no longer consistent,
1162 * so we must restart the search.
1164 * In the most common case, the buffer just processed is
1165 * relinked to the clean list, so we won't loop scanning the
1166 * same buffer again and again.
1168 * This may livelock if there is another thread simultaneously
1169 * dirtying buffers, so we count the number of buffers walked
1170 * and if it exceeds the total number of buffers, it means that
1171 * someone is doing some writes simultaneously with us. In
1172 * this case, stop, dropping the lock.
1177 wake_up(&c->free_buffer_wait);
1180 a = xchg(&c->async_write_error, 0);
1181 f = dm_bufio_issue_flush(c);
1187 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1190 * Use dm-io to send and empty barrier flush the device.
1192 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1194 struct dm_io_request io_req = {
1195 .bi_rw = WRITE_FLUSH,
1196 .mem.type = DM_IO_KMEM,
1197 .mem.ptr.addr = NULL,
1200 struct dm_io_region io_reg = {
1206 BUG_ON(dm_bufio_in_request());
1208 return dm_io(&io_req, 1, &io_reg, NULL);
1210 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1213 * We first delete any other buffer that may be at that new location.
1215 * Then, we write the buffer to the original location if it was dirty.
1217 * Then, if we are the only one who is holding the buffer, relink the buffer
1218 * in the hash queue for the new location.
1220 * If there was someone else holding the buffer, we write it to the new
1221 * location but not relink it, because that other user needs to have the buffer
1222 * at the same place.
1224 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1226 struct dm_bufio_client *c = b->c;
1227 struct dm_buffer *new;
1229 BUG_ON(dm_bufio_in_request());
1234 new = __find(c, new_block);
1236 if (new->hold_count) {
1237 __wait_for_free_buffer(c);
1242 * FIXME: Is there any point waiting for a write that's going
1243 * to be overwritten in a bit?
1245 __make_buffer_clean(new);
1246 __unlink_buffer(new);
1247 __free_buffer_wake(new);
1250 BUG_ON(!b->hold_count);
1251 BUG_ON(test_bit(B_READING, &b->state));
1253 __write_dirty_buffer(b);
1254 if (b->hold_count == 1) {
1255 wait_on_bit(&b->state, B_WRITING,
1256 do_io_schedule, TASK_UNINTERRUPTIBLE);
1257 set_bit(B_DIRTY, &b->state);
1259 __link_buffer(b, new_block, LIST_DIRTY);
1262 wait_on_bit_lock(&b->state, B_WRITING,
1263 do_io_schedule, TASK_UNINTERRUPTIBLE);
1265 * Relink buffer to "new_block" so that write_callback
1266 * sees "new_block" as a block number.
1267 * After the write, link the buffer back to old_block.
1268 * All this must be done in bufio lock, so that block number
1269 * change isn't visible to other threads.
1271 old_block = b->block;
1273 __link_buffer(b, new_block, b->list_mode);
1274 submit_io(b, WRITE, new_block, write_endio);
1275 wait_on_bit(&b->state, B_WRITING,
1276 do_io_schedule, TASK_UNINTERRUPTIBLE);
1278 __link_buffer(b, old_block, b->list_mode);
1282 dm_bufio_release(b);
1284 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1286 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1288 return c->block_size;
1290 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1292 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1294 return i_size_read(c->bdev->bd_inode) >>
1295 (SECTOR_SHIFT + c->sectors_per_block_bits);
1297 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1299 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1303 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1305 void *dm_bufio_get_block_data(struct dm_buffer *b)
1309 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1311 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1315 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1317 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1321 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1323 static void drop_buffers(struct dm_bufio_client *c)
1325 struct dm_buffer *b;
1328 BUG_ON(dm_bufio_in_request());
1331 * An optimization so that the buffers are not written one-by-one.
1333 dm_bufio_write_dirty_buffers_async(c);
1337 while ((b = __get_unclaimed_buffer(c)))
1338 __free_buffer_wake(b);
1340 for (i = 0; i < LIST_SIZE; i++)
1341 list_for_each_entry(b, &c->lru[i], lru_list)
1342 DMERR("leaked buffer %llx, hold count %u, list %d",
1343 (unsigned long long)b->block, b->hold_count, i);
1345 for (i = 0; i < LIST_SIZE; i++)
1346 BUG_ON(!list_empty(&c->lru[i]));
1352 * Test if the buffer is unused and too old, and commit it.
1353 * At if noio is set, we must not do any I/O because we hold
1354 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1355 * different bufio client.
1357 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1358 unsigned long max_jiffies)
1360 if (jiffies - b->last_accessed < max_jiffies)
1363 if (!(gfp & __GFP_IO)) {
1364 if (test_bit(B_READING, &b->state) ||
1365 test_bit(B_WRITING, &b->state) ||
1366 test_bit(B_DIRTY, &b->state))
1373 __make_buffer_clean(b);
1375 __free_buffer_wake(b);
1380 static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1381 struct shrink_control *sc)
1384 struct dm_buffer *b, *tmp;
1386 for (l = 0; l < LIST_SIZE; l++) {
1387 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list)
1388 if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) &&
1391 dm_bufio_cond_resched();
1395 static int shrink(struct shrinker *shrinker, struct shrink_control *sc)
1397 struct dm_bufio_client *c =
1398 container_of(shrinker, struct dm_bufio_client, shrinker);
1400 unsigned long nr_to_scan = sc->nr_to_scan;
1402 if (sc->gfp_mask & __GFP_IO)
1404 else if (!dm_bufio_trylock(c))
1405 return !nr_to_scan ? 0 : -1;
1408 __scan(c, nr_to_scan, sc);
1410 r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1420 * Create the buffering interface
1422 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1423 unsigned reserved_buffers, unsigned aux_size,
1424 void (*alloc_callback)(struct dm_buffer *),
1425 void (*write_callback)(struct dm_buffer *))
1428 struct dm_bufio_client *c;
1431 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1432 (block_size & (block_size - 1)));
1434 c = kmalloc(sizeof(*c), GFP_KERNEL);
1439 c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1440 if (!c->cache_hash) {
1446 c->block_size = block_size;
1447 c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1448 c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1449 ffs(block_size) - 1 - PAGE_SHIFT : 0;
1450 c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1451 PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1453 c->aux_size = aux_size;
1454 c->alloc_callback = alloc_callback;
1455 c->write_callback = write_callback;
1457 for (i = 0; i < LIST_SIZE; i++) {
1458 INIT_LIST_HEAD(&c->lru[i]);
1459 c->n_buffers[i] = 0;
1462 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1463 INIT_HLIST_HEAD(&c->cache_hash[i]);
1465 mutex_init(&c->lock);
1466 INIT_LIST_HEAD(&c->reserved_buffers);
1467 c->need_reserved_buffers = reserved_buffers;
1469 init_waitqueue_head(&c->free_buffer_wait);
1470 c->async_write_error = 0;
1472 c->dm_io = dm_io_client_create();
1473 if (IS_ERR(c->dm_io)) {
1474 r = PTR_ERR(c->dm_io);
1478 mutex_lock(&dm_bufio_clients_lock);
1479 if (c->blocks_per_page_bits) {
1480 if (!DM_BUFIO_CACHE_NAME(c)) {
1481 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1482 if (!DM_BUFIO_CACHE_NAME(c)) {
1484 mutex_unlock(&dm_bufio_clients_lock);
1489 if (!DM_BUFIO_CACHE(c)) {
1490 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1492 c->block_size, 0, NULL);
1493 if (!DM_BUFIO_CACHE(c)) {
1495 mutex_unlock(&dm_bufio_clients_lock);
1500 mutex_unlock(&dm_bufio_clients_lock);
1502 while (c->need_reserved_buffers) {
1503 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1509 __free_buffer_wake(b);
1512 mutex_lock(&dm_bufio_clients_lock);
1513 dm_bufio_client_count++;
1514 list_add(&c->client_list, &dm_bufio_all_clients);
1515 __cache_size_refresh();
1516 mutex_unlock(&dm_bufio_clients_lock);
1518 c->shrinker.shrink = shrink;
1519 c->shrinker.seeks = 1;
1520 c->shrinker.batch = 0;
1521 register_shrinker(&c->shrinker);
1527 while (!list_empty(&c->reserved_buffers)) {
1528 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1529 struct dm_buffer, lru_list);
1530 list_del(&b->lru_list);
1533 dm_io_client_destroy(c->dm_io);
1535 vfree(c->cache_hash);
1541 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1544 * Free the buffering interface.
1545 * It is required that there are no references on any buffers.
1547 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1553 unregister_shrinker(&c->shrinker);
1555 mutex_lock(&dm_bufio_clients_lock);
1557 list_del(&c->client_list);
1558 dm_bufio_client_count--;
1559 __cache_size_refresh();
1561 mutex_unlock(&dm_bufio_clients_lock);
1563 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1564 BUG_ON(!hlist_empty(&c->cache_hash[i]));
1566 BUG_ON(c->need_reserved_buffers);
1568 while (!list_empty(&c->reserved_buffers)) {
1569 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1570 struct dm_buffer, lru_list);
1571 list_del(&b->lru_list);
1575 for (i = 0; i < LIST_SIZE; i++)
1576 if (c->n_buffers[i])
1577 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1579 for (i = 0; i < LIST_SIZE; i++)
1580 BUG_ON(c->n_buffers[i]);
1582 dm_io_client_destroy(c->dm_io);
1583 vfree(c->cache_hash);
1586 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1588 static void cleanup_old_buffers(void)
1590 unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1591 struct dm_bufio_client *c;
1593 if (max_age > ULONG_MAX / HZ)
1594 max_age = ULONG_MAX / HZ;
1596 mutex_lock(&dm_bufio_clients_lock);
1597 list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1598 if (!dm_bufio_trylock(c))
1601 while (!list_empty(&c->lru[LIST_CLEAN])) {
1602 struct dm_buffer *b;
1603 b = list_entry(c->lru[LIST_CLEAN].prev,
1604 struct dm_buffer, lru_list);
1605 if (__cleanup_old_buffer(b, 0, max_age * HZ))
1607 dm_bufio_cond_resched();
1611 dm_bufio_cond_resched();
1613 mutex_unlock(&dm_bufio_clients_lock);
1616 static struct workqueue_struct *dm_bufio_wq;
1617 static struct delayed_work dm_bufio_work;
1619 static void work_fn(struct work_struct *w)
1621 cleanup_old_buffers();
1623 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1624 DM_BUFIO_WORK_TIMER_SECS * HZ);
1627 /*----------------------------------------------------------------
1629 *--------------------------------------------------------------*/
1632 * This is called only once for the whole dm_bufio module.
1633 * It initializes memory limit.
1635 static int __init dm_bufio_init(void)
1639 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1640 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1642 mem = (__u64)((totalram_pages - totalhigh_pages) *
1643 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1645 if (mem > ULONG_MAX)
1650 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1651 * in fs/proc/internal.h
1653 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1654 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1657 dm_bufio_default_cache_size = mem;
1659 mutex_lock(&dm_bufio_clients_lock);
1660 __cache_size_refresh();
1661 mutex_unlock(&dm_bufio_clients_lock);
1663 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1667 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1668 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1669 DM_BUFIO_WORK_TIMER_SECS * HZ);
1675 * This is called once when unloading the dm_bufio module.
1677 static void __exit dm_bufio_exit(void)
1682 cancel_delayed_work_sync(&dm_bufio_work);
1683 destroy_workqueue(dm_bufio_wq);
1685 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1686 struct kmem_cache *kc = dm_bufio_caches[i];
1689 kmem_cache_destroy(kc);
1692 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1693 kfree(dm_bufio_cache_names[i]);
1695 if (dm_bufio_client_count) {
1696 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1697 __func__, dm_bufio_client_count);
1701 if (dm_bufio_current_allocated) {
1702 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1703 __func__, dm_bufio_current_allocated);
1707 if (dm_bufio_allocated_get_free_pages) {
1708 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1709 __func__, dm_bufio_allocated_get_free_pages);
1713 if (dm_bufio_allocated_vmalloc) {
1714 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1715 __func__, dm_bufio_allocated_vmalloc);
1723 module_init(dm_bufio_init)
1724 module_exit(dm_bufio_exit)
1726 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1727 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1729 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1730 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1732 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1733 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1735 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1736 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1738 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1739 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1741 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1742 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1744 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1745 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1747 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1748 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1749 MODULE_LICENSE("GPL");