Merge tag 'edac_for_3.14' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[platform/kernel/linux-stable.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17
18 #define DM_MSG_PREFIX "bufio"
19
20 /*
21  * Memory management policy:
22  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26  *      dirty buffers.
27  */
28 #define DM_BUFIO_MIN_BUFFERS            8
29
30 #define DM_BUFIO_MEMORY_PERCENT         2
31 #define DM_BUFIO_VMALLOC_PERCENT        25
32 #define DM_BUFIO_WRITEBACK_PERCENT      75
33
34 /*
35  * Check buffer ages in this interval (seconds)
36  */
37 #define DM_BUFIO_WORK_TIMER_SECS        10
38
39 /*
40  * Free buffers when they are older than this (seconds)
41  */
42 #define DM_BUFIO_DEFAULT_AGE_SECS       60
43
44 /*
45  * The number of bvec entries that are embedded directly in the buffer.
46  * If the chunk size is larger, dm-io is used to do the io.
47  */
48 #define DM_BUFIO_INLINE_VECS            16
49
50 /*
51  * Buffer hash
52  */
53 #define DM_BUFIO_HASH_BITS      20
54 #define DM_BUFIO_HASH(block) \
55         ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56          ((1 << DM_BUFIO_HASH_BITS) - 1))
57
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT  (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT   (PAGE_SIZE << (MAX_ORDER - 1))
64
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN      0
69 #define LIST_DIRTY      1
70 #define LIST_SIZE       2
71
72 /*
73  * Linking of buffers:
74  *      All buffers are linked to cache_hash with their hash_list field.
75  *
76  *      Clean buffers that are not being written (B_WRITING not set)
77  *      are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *      Dirty and clean buffers that are being written are linked to
80  *      lru[LIST_DIRTY] with their lru_list field. When the write
81  *      finishes, the buffer cannot be relinked immediately (because we
82  *      are in an interrupt context and relinking requires process
83  *      context), so some clean-not-writing buffers can be held on
84  *      dirty_lru too.  They are later added to lru in the process
85  *      context.
86  */
87 struct dm_bufio_client {
88         struct mutex lock;
89
90         struct list_head lru[LIST_SIZE];
91         unsigned long n_buffers[LIST_SIZE];
92
93         struct block_device *bdev;
94         unsigned block_size;
95         unsigned char sectors_per_block_bits;
96         unsigned char pages_per_block_bits;
97         unsigned char blocks_per_page_bits;
98         unsigned aux_size;
99         void (*alloc_callback)(struct dm_buffer *);
100         void (*write_callback)(struct dm_buffer *);
101
102         struct dm_io_client *dm_io;
103
104         struct list_head reserved_buffers;
105         unsigned need_reserved_buffers;
106
107         struct hlist_head *cache_hash;
108         wait_queue_head_t free_buffer_wait;
109
110         int async_write_error;
111
112         struct list_head client_list;
113         struct shrinker shrinker;
114 };
115
116 /*
117  * Buffer state bits.
118  */
119 #define B_READING       0
120 #define B_WRITING       1
121 #define B_DIRTY         2
122
123 /*
124  * Describes how the block was allocated:
125  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
126  * See the comment at alloc_buffer_data.
127  */
128 enum data_mode {
129         DATA_MODE_SLAB = 0,
130         DATA_MODE_GET_FREE_PAGES = 1,
131         DATA_MODE_VMALLOC = 2,
132         DATA_MODE_LIMIT = 3
133 };
134
135 struct dm_buffer {
136         struct hlist_node hash_list;
137         struct list_head lru_list;
138         sector_t block;
139         void *data;
140         enum data_mode data_mode;
141         unsigned char list_mode;                /* LIST_* */
142         unsigned hold_count;
143         int read_error;
144         int write_error;
145         unsigned long state;
146         unsigned long last_accessed;
147         struct dm_bufio_client *c;
148         struct list_head write_list;
149         struct bio bio;
150         struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
151 };
152
153 /*----------------------------------------------------------------*/
154
155 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
156 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
157
158 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
159 {
160         unsigned ret = c->blocks_per_page_bits - 1;
161
162         BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
163
164         return ret;
165 }
166
167 #define DM_BUFIO_CACHE(c)       (dm_bufio_caches[dm_bufio_cache_index(c)])
168 #define DM_BUFIO_CACHE_NAME(c)  (dm_bufio_cache_names[dm_bufio_cache_index(c)])
169
170 #define dm_bufio_in_request()   (!!current->bio_list)
171
172 static void dm_bufio_lock(struct dm_bufio_client *c)
173 {
174         mutex_lock_nested(&c->lock, dm_bufio_in_request());
175 }
176
177 static int dm_bufio_trylock(struct dm_bufio_client *c)
178 {
179         return mutex_trylock(&c->lock);
180 }
181
182 static void dm_bufio_unlock(struct dm_bufio_client *c)
183 {
184         mutex_unlock(&c->lock);
185 }
186
187 /*
188  * FIXME Move to sched.h?
189  */
190 #ifdef CONFIG_PREEMPT_VOLUNTARY
191 #  define dm_bufio_cond_resched()               \
192 do {                                            \
193         if (unlikely(need_resched()))           \
194                 _cond_resched();                \
195 } while (0)
196 #else
197 #  define dm_bufio_cond_resched()                do { } while (0)
198 #endif
199
200 /*----------------------------------------------------------------*/
201
202 /*
203  * Default cache size: available memory divided by the ratio.
204  */
205 static unsigned long dm_bufio_default_cache_size;
206
207 /*
208  * Total cache size set by the user.
209  */
210 static unsigned long dm_bufio_cache_size;
211
212 /*
213  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
214  * at any time.  If it disagrees, the user has changed cache size.
215  */
216 static unsigned long dm_bufio_cache_size_latch;
217
218 static DEFINE_SPINLOCK(param_spinlock);
219
220 /*
221  * Buffers are freed after this timeout
222  */
223 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
224
225 static unsigned long dm_bufio_peak_allocated;
226 static unsigned long dm_bufio_allocated_kmem_cache;
227 static unsigned long dm_bufio_allocated_get_free_pages;
228 static unsigned long dm_bufio_allocated_vmalloc;
229 static unsigned long dm_bufio_current_allocated;
230
231 /*----------------------------------------------------------------*/
232
233 /*
234  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
235  */
236 static unsigned long dm_bufio_cache_size_per_client;
237
238 /*
239  * The current number of clients.
240  */
241 static int dm_bufio_client_count;
242
243 /*
244  * The list of all clients.
245  */
246 static LIST_HEAD(dm_bufio_all_clients);
247
248 /*
249  * This mutex protects dm_bufio_cache_size_latch,
250  * dm_bufio_cache_size_per_client and dm_bufio_client_count
251  */
252 static DEFINE_MUTEX(dm_bufio_clients_lock);
253
254 /*----------------------------------------------------------------*/
255
256 static void adjust_total_allocated(enum data_mode data_mode, long diff)
257 {
258         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
259                 &dm_bufio_allocated_kmem_cache,
260                 &dm_bufio_allocated_get_free_pages,
261                 &dm_bufio_allocated_vmalloc,
262         };
263
264         spin_lock(&param_spinlock);
265
266         *class_ptr[data_mode] += diff;
267
268         dm_bufio_current_allocated += diff;
269
270         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
271                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
272
273         spin_unlock(&param_spinlock);
274 }
275
276 /*
277  * Change the number of clients and recalculate per-client limit.
278  */
279 static void __cache_size_refresh(void)
280 {
281         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
282         BUG_ON(dm_bufio_client_count < 0);
283
284         dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
285
286         /*
287          * Use default if set to 0 and report the actual cache size used.
288          */
289         if (!dm_bufio_cache_size_latch) {
290                 (void)cmpxchg(&dm_bufio_cache_size, 0,
291                               dm_bufio_default_cache_size);
292                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
293         }
294
295         dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
296                                          (dm_bufio_client_count ? : 1);
297 }
298
299 /*
300  * Allocating buffer data.
301  *
302  * Small buffers are allocated with kmem_cache, to use space optimally.
303  *
304  * For large buffers, we choose between get_free_pages and vmalloc.
305  * Each has advantages and disadvantages.
306  *
307  * __get_free_pages can randomly fail if the memory is fragmented.
308  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
309  * as low as 128M) so using it for caching is not appropriate.
310  *
311  * If the allocation may fail we use __get_free_pages. Memory fragmentation
312  * won't have a fatal effect here, but it just causes flushes of some other
313  * buffers and more I/O will be performed. Don't use __get_free_pages if it
314  * always fails (i.e. order >= MAX_ORDER).
315  *
316  * If the allocation shouldn't fail we use __vmalloc. This is only for the
317  * initial reserve allocation, so there's no risk of wasting all vmalloc
318  * space.
319  */
320 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
321                                enum data_mode *data_mode)
322 {
323         unsigned noio_flag;
324         void *ptr;
325
326         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
327                 *data_mode = DATA_MODE_SLAB;
328                 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
329         }
330
331         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
332             gfp_mask & __GFP_NORETRY) {
333                 *data_mode = DATA_MODE_GET_FREE_PAGES;
334                 return (void *)__get_free_pages(gfp_mask,
335                                                 c->pages_per_block_bits);
336         }
337
338         *data_mode = DATA_MODE_VMALLOC;
339
340         /*
341          * __vmalloc allocates the data pages and auxiliary structures with
342          * gfp_flags that were specified, but pagetables are always allocated
343          * with GFP_KERNEL, no matter what was specified as gfp_mask.
344          *
345          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
346          * all allocations done by this process (including pagetables) are done
347          * as if GFP_NOIO was specified.
348          */
349
350         if (gfp_mask & __GFP_NORETRY)
351                 noio_flag = memalloc_noio_save();
352
353         ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
354
355         if (gfp_mask & __GFP_NORETRY)
356                 memalloc_noio_restore(noio_flag);
357
358         return ptr;
359 }
360
361 /*
362  * Free buffer's data.
363  */
364 static void free_buffer_data(struct dm_bufio_client *c,
365                              void *data, enum data_mode data_mode)
366 {
367         switch (data_mode) {
368         case DATA_MODE_SLAB:
369                 kmem_cache_free(DM_BUFIO_CACHE(c), data);
370                 break;
371
372         case DATA_MODE_GET_FREE_PAGES:
373                 free_pages((unsigned long)data, c->pages_per_block_bits);
374                 break;
375
376         case DATA_MODE_VMALLOC:
377                 vfree(data);
378                 break;
379
380         default:
381                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
382                        data_mode);
383                 BUG();
384         }
385 }
386
387 /*
388  * Allocate buffer and its data.
389  */
390 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
391 {
392         struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
393                                       gfp_mask);
394
395         if (!b)
396                 return NULL;
397
398         b->c = c;
399
400         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
401         if (!b->data) {
402                 kfree(b);
403                 return NULL;
404         }
405
406         adjust_total_allocated(b->data_mode, (long)c->block_size);
407
408         return b;
409 }
410
411 /*
412  * Free buffer and its data.
413  */
414 static void free_buffer(struct dm_buffer *b)
415 {
416         struct dm_bufio_client *c = b->c;
417
418         adjust_total_allocated(b->data_mode, -(long)c->block_size);
419
420         free_buffer_data(c, b->data, b->data_mode);
421         kfree(b);
422 }
423
424 /*
425  * Link buffer to the hash list and clean or dirty queue.
426  */
427 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
428 {
429         struct dm_bufio_client *c = b->c;
430
431         c->n_buffers[dirty]++;
432         b->block = block;
433         b->list_mode = dirty;
434         list_add(&b->lru_list, &c->lru[dirty]);
435         hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
436         b->last_accessed = jiffies;
437 }
438
439 /*
440  * Unlink buffer from the hash list and dirty or clean queue.
441  */
442 static void __unlink_buffer(struct dm_buffer *b)
443 {
444         struct dm_bufio_client *c = b->c;
445
446         BUG_ON(!c->n_buffers[b->list_mode]);
447
448         c->n_buffers[b->list_mode]--;
449         hlist_del(&b->hash_list);
450         list_del(&b->lru_list);
451 }
452
453 /*
454  * Place the buffer to the head of dirty or clean LRU queue.
455  */
456 static void __relink_lru(struct dm_buffer *b, int dirty)
457 {
458         struct dm_bufio_client *c = b->c;
459
460         BUG_ON(!c->n_buffers[b->list_mode]);
461
462         c->n_buffers[b->list_mode]--;
463         c->n_buffers[dirty]++;
464         b->list_mode = dirty;
465         list_move(&b->lru_list, &c->lru[dirty]);
466 }
467
468 /*----------------------------------------------------------------
469  * Submit I/O on the buffer.
470  *
471  * Bio interface is faster but it has some problems:
472  *      the vector list is limited (increasing this limit increases
473  *      memory-consumption per buffer, so it is not viable);
474  *
475  *      the memory must be direct-mapped, not vmalloced;
476  *
477  *      the I/O driver can reject requests spuriously if it thinks that
478  *      the requests are too big for the device or if they cross a
479  *      controller-defined memory boundary.
480  *
481  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
482  * it is not vmalloced, try using the bio interface.
483  *
484  * If the buffer is big, if it is vmalloced or if the underlying device
485  * rejects the bio because it is too large, use dm-io layer to do the I/O.
486  * The dm-io layer splits the I/O into multiple requests, avoiding the above
487  * shortcomings.
488  *--------------------------------------------------------------*/
489
490 /*
491  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
492  * that the request was handled directly with bio interface.
493  */
494 static void dmio_complete(unsigned long error, void *context)
495 {
496         struct dm_buffer *b = context;
497
498         b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
499 }
500
501 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
502                      bio_end_io_t *end_io)
503 {
504         int r;
505         struct dm_io_request io_req = {
506                 .bi_rw = rw,
507                 .notify.fn = dmio_complete,
508                 .notify.context = b,
509                 .client = b->c->dm_io,
510         };
511         struct dm_io_region region = {
512                 .bdev = b->c->bdev,
513                 .sector = block << b->c->sectors_per_block_bits,
514                 .count = b->c->block_size >> SECTOR_SHIFT,
515         };
516
517         if (b->data_mode != DATA_MODE_VMALLOC) {
518                 io_req.mem.type = DM_IO_KMEM;
519                 io_req.mem.ptr.addr = b->data;
520         } else {
521                 io_req.mem.type = DM_IO_VMA;
522                 io_req.mem.ptr.vma = b->data;
523         }
524
525         b->bio.bi_end_io = end_io;
526
527         r = dm_io(&io_req, 1, &region, NULL);
528         if (r)
529                 end_io(&b->bio, r);
530 }
531
532 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
533                            bio_end_io_t *end_io)
534 {
535         char *ptr;
536         int len;
537
538         bio_init(&b->bio);
539         b->bio.bi_io_vec = b->bio_vec;
540         b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
541         b->bio.bi_sector = block << b->c->sectors_per_block_bits;
542         b->bio.bi_bdev = b->c->bdev;
543         b->bio.bi_end_io = end_io;
544
545         /*
546          * We assume that if len >= PAGE_SIZE ptr is page-aligned.
547          * If len < PAGE_SIZE the buffer doesn't cross page boundary.
548          */
549         ptr = b->data;
550         len = b->c->block_size;
551
552         if (len >= PAGE_SIZE)
553                 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
554         else
555                 BUG_ON((unsigned long)ptr & (len - 1));
556
557         do {
558                 if (!bio_add_page(&b->bio, virt_to_page(ptr),
559                                   len < PAGE_SIZE ? len : PAGE_SIZE,
560                                   virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
561                         BUG_ON(b->c->block_size <= PAGE_SIZE);
562                         use_dmio(b, rw, block, end_io);
563                         return;
564                 }
565
566                 len -= PAGE_SIZE;
567                 ptr += PAGE_SIZE;
568         } while (len > 0);
569
570         submit_bio(rw, &b->bio);
571 }
572
573 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
574                       bio_end_io_t *end_io)
575 {
576         if (rw == WRITE && b->c->write_callback)
577                 b->c->write_callback(b);
578
579         if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
580             b->data_mode != DATA_MODE_VMALLOC)
581                 use_inline_bio(b, rw, block, end_io);
582         else
583                 use_dmio(b, rw, block, end_io);
584 }
585
586 /*----------------------------------------------------------------
587  * Writing dirty buffers
588  *--------------------------------------------------------------*/
589
590 /*
591  * The endio routine for write.
592  *
593  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
594  * it.
595  */
596 static void write_endio(struct bio *bio, int error)
597 {
598         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
599
600         b->write_error = error;
601         if (unlikely(error)) {
602                 struct dm_bufio_client *c = b->c;
603                 (void)cmpxchg(&c->async_write_error, 0, error);
604         }
605
606         BUG_ON(!test_bit(B_WRITING, &b->state));
607
608         smp_mb__before_clear_bit();
609         clear_bit(B_WRITING, &b->state);
610         smp_mb__after_clear_bit();
611
612         wake_up_bit(&b->state, B_WRITING);
613 }
614
615 /*
616  * This function is called when wait_on_bit is actually waiting.
617  */
618 static int do_io_schedule(void *word)
619 {
620         io_schedule();
621
622         return 0;
623 }
624
625 /*
626  * Initiate a write on a dirty buffer, but don't wait for it.
627  *
628  * - If the buffer is not dirty, exit.
629  * - If there some previous write going on, wait for it to finish (we can't
630  *   have two writes on the same buffer simultaneously).
631  * - Submit our write and don't wait on it. We set B_WRITING indicating
632  *   that there is a write in progress.
633  */
634 static void __write_dirty_buffer(struct dm_buffer *b,
635                                  struct list_head *write_list)
636 {
637         if (!test_bit(B_DIRTY, &b->state))
638                 return;
639
640         clear_bit(B_DIRTY, &b->state);
641         wait_on_bit_lock(&b->state, B_WRITING,
642                          do_io_schedule, TASK_UNINTERRUPTIBLE);
643
644         if (!write_list)
645                 submit_io(b, WRITE, b->block, write_endio);
646         else
647                 list_add_tail(&b->write_list, write_list);
648 }
649
650 static void __flush_write_list(struct list_head *write_list)
651 {
652         struct blk_plug plug;
653         blk_start_plug(&plug);
654         while (!list_empty(write_list)) {
655                 struct dm_buffer *b =
656                         list_entry(write_list->next, struct dm_buffer, write_list);
657                 list_del(&b->write_list);
658                 submit_io(b, WRITE, b->block, write_endio);
659                 dm_bufio_cond_resched();
660         }
661         blk_finish_plug(&plug);
662 }
663
664 /*
665  * Wait until any activity on the buffer finishes.  Possibly write the
666  * buffer if it is dirty.  When this function finishes, there is no I/O
667  * running on the buffer and the buffer is not dirty.
668  */
669 static void __make_buffer_clean(struct dm_buffer *b)
670 {
671         BUG_ON(b->hold_count);
672
673         if (!b->state)  /* fast case */
674                 return;
675
676         wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
677         __write_dirty_buffer(b, NULL);
678         wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
679 }
680
681 /*
682  * Find some buffer that is not held by anybody, clean it, unlink it and
683  * return it.
684  */
685 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
686 {
687         struct dm_buffer *b;
688
689         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
690                 BUG_ON(test_bit(B_WRITING, &b->state));
691                 BUG_ON(test_bit(B_DIRTY, &b->state));
692
693                 if (!b->hold_count) {
694                         __make_buffer_clean(b);
695                         __unlink_buffer(b);
696                         return b;
697                 }
698                 dm_bufio_cond_resched();
699         }
700
701         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
702                 BUG_ON(test_bit(B_READING, &b->state));
703
704                 if (!b->hold_count) {
705                         __make_buffer_clean(b);
706                         __unlink_buffer(b);
707                         return b;
708                 }
709                 dm_bufio_cond_resched();
710         }
711
712         return NULL;
713 }
714
715 /*
716  * Wait until some other threads free some buffer or release hold count on
717  * some buffer.
718  *
719  * This function is entered with c->lock held, drops it and regains it
720  * before exiting.
721  */
722 static void __wait_for_free_buffer(struct dm_bufio_client *c)
723 {
724         DECLARE_WAITQUEUE(wait, current);
725
726         add_wait_queue(&c->free_buffer_wait, &wait);
727         set_task_state(current, TASK_UNINTERRUPTIBLE);
728         dm_bufio_unlock(c);
729
730         io_schedule();
731
732         set_task_state(current, TASK_RUNNING);
733         remove_wait_queue(&c->free_buffer_wait, &wait);
734
735         dm_bufio_lock(c);
736 }
737
738 enum new_flag {
739         NF_FRESH = 0,
740         NF_READ = 1,
741         NF_GET = 2,
742         NF_PREFETCH = 3
743 };
744
745 /*
746  * Allocate a new buffer. If the allocation is not possible, wait until
747  * some other thread frees a buffer.
748  *
749  * May drop the lock and regain it.
750  */
751 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
752 {
753         struct dm_buffer *b;
754
755         /*
756          * dm-bufio is resistant to allocation failures (it just keeps
757          * one buffer reserved in cases all the allocations fail).
758          * So set flags to not try too hard:
759          *      GFP_NOIO: don't recurse into the I/O layer
760          *      __GFP_NORETRY: don't retry and rather return failure
761          *      __GFP_NOMEMALLOC: don't use emergency reserves
762          *      __GFP_NOWARN: don't print a warning in case of failure
763          *
764          * For debugging, if we set the cache size to 1, no new buffers will
765          * be allocated.
766          */
767         while (1) {
768                 if (dm_bufio_cache_size_latch != 1) {
769                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
770                         if (b)
771                                 return b;
772                 }
773
774                 if (nf == NF_PREFETCH)
775                         return NULL;
776
777                 if (!list_empty(&c->reserved_buffers)) {
778                         b = list_entry(c->reserved_buffers.next,
779                                        struct dm_buffer, lru_list);
780                         list_del(&b->lru_list);
781                         c->need_reserved_buffers++;
782
783                         return b;
784                 }
785
786                 b = __get_unclaimed_buffer(c);
787                 if (b)
788                         return b;
789
790                 __wait_for_free_buffer(c);
791         }
792 }
793
794 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
795 {
796         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
797
798         if (!b)
799                 return NULL;
800
801         if (c->alloc_callback)
802                 c->alloc_callback(b);
803
804         return b;
805 }
806
807 /*
808  * Free a buffer and wake other threads waiting for free buffers.
809  */
810 static void __free_buffer_wake(struct dm_buffer *b)
811 {
812         struct dm_bufio_client *c = b->c;
813
814         if (!c->need_reserved_buffers)
815                 free_buffer(b);
816         else {
817                 list_add(&b->lru_list, &c->reserved_buffers);
818                 c->need_reserved_buffers--;
819         }
820
821         wake_up(&c->free_buffer_wait);
822 }
823
824 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
825                                         struct list_head *write_list)
826 {
827         struct dm_buffer *b, *tmp;
828
829         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
830                 BUG_ON(test_bit(B_READING, &b->state));
831
832                 if (!test_bit(B_DIRTY, &b->state) &&
833                     !test_bit(B_WRITING, &b->state)) {
834                         __relink_lru(b, LIST_CLEAN);
835                         continue;
836                 }
837
838                 if (no_wait && test_bit(B_WRITING, &b->state))
839                         return;
840
841                 __write_dirty_buffer(b, write_list);
842                 dm_bufio_cond_resched();
843         }
844 }
845
846 /*
847  * Get writeback threshold and buffer limit for a given client.
848  */
849 static void __get_memory_limit(struct dm_bufio_client *c,
850                                unsigned long *threshold_buffers,
851                                unsigned long *limit_buffers)
852 {
853         unsigned long buffers;
854
855         if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
856                 mutex_lock(&dm_bufio_clients_lock);
857                 __cache_size_refresh();
858                 mutex_unlock(&dm_bufio_clients_lock);
859         }
860
861         buffers = dm_bufio_cache_size_per_client >>
862                   (c->sectors_per_block_bits + SECTOR_SHIFT);
863
864         if (buffers < DM_BUFIO_MIN_BUFFERS)
865                 buffers = DM_BUFIO_MIN_BUFFERS;
866
867         *limit_buffers = buffers;
868         *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
869 }
870
871 /*
872  * Check if we're over watermark.
873  * If we are over threshold_buffers, start freeing buffers.
874  * If we're over "limit_buffers", block until we get under the limit.
875  */
876 static void __check_watermark(struct dm_bufio_client *c,
877                               struct list_head *write_list)
878 {
879         unsigned long threshold_buffers, limit_buffers;
880
881         __get_memory_limit(c, &threshold_buffers, &limit_buffers);
882
883         while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
884                limit_buffers) {
885
886                 struct dm_buffer *b = __get_unclaimed_buffer(c);
887
888                 if (!b)
889                         return;
890
891                 __free_buffer_wake(b);
892                 dm_bufio_cond_resched();
893         }
894
895         if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
896                 __write_dirty_buffers_async(c, 1, write_list);
897 }
898
899 /*
900  * Find a buffer in the hash.
901  */
902 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
903 {
904         struct dm_buffer *b;
905
906         hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
907                              hash_list) {
908                 dm_bufio_cond_resched();
909                 if (b->block == block)
910                         return b;
911         }
912
913         return NULL;
914 }
915
916 /*----------------------------------------------------------------
917  * Getting a buffer
918  *--------------------------------------------------------------*/
919
920 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
921                                      enum new_flag nf, int *need_submit,
922                                      struct list_head *write_list)
923 {
924         struct dm_buffer *b, *new_b = NULL;
925
926         *need_submit = 0;
927
928         b = __find(c, block);
929         if (b)
930                 goto found_buffer;
931
932         if (nf == NF_GET)
933                 return NULL;
934
935         new_b = __alloc_buffer_wait(c, nf);
936         if (!new_b)
937                 return NULL;
938
939         /*
940          * We've had a period where the mutex was unlocked, so need to
941          * recheck the hash table.
942          */
943         b = __find(c, block);
944         if (b) {
945                 __free_buffer_wake(new_b);
946                 goto found_buffer;
947         }
948
949         __check_watermark(c, write_list);
950
951         b = new_b;
952         b->hold_count = 1;
953         b->read_error = 0;
954         b->write_error = 0;
955         __link_buffer(b, block, LIST_CLEAN);
956
957         if (nf == NF_FRESH) {
958                 b->state = 0;
959                 return b;
960         }
961
962         b->state = 1 << B_READING;
963         *need_submit = 1;
964
965         return b;
966
967 found_buffer:
968         if (nf == NF_PREFETCH)
969                 return NULL;
970         /*
971          * Note: it is essential that we don't wait for the buffer to be
972          * read if dm_bufio_get function is used. Both dm_bufio_get and
973          * dm_bufio_prefetch can be used in the driver request routine.
974          * If the user called both dm_bufio_prefetch and dm_bufio_get on
975          * the same buffer, it would deadlock if we waited.
976          */
977         if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
978                 return NULL;
979
980         b->hold_count++;
981         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
982                      test_bit(B_WRITING, &b->state));
983         return b;
984 }
985
986 /*
987  * The endio routine for reading: set the error, clear the bit and wake up
988  * anyone waiting on the buffer.
989  */
990 static void read_endio(struct bio *bio, int error)
991 {
992         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
993
994         b->read_error = error;
995
996         BUG_ON(!test_bit(B_READING, &b->state));
997
998         smp_mb__before_clear_bit();
999         clear_bit(B_READING, &b->state);
1000         smp_mb__after_clear_bit();
1001
1002         wake_up_bit(&b->state, B_READING);
1003 }
1004
1005 /*
1006  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1007  * functions is similar except that dm_bufio_new doesn't read the
1008  * buffer from the disk (assuming that the caller overwrites all the data
1009  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1010  */
1011 static void *new_read(struct dm_bufio_client *c, sector_t block,
1012                       enum new_flag nf, struct dm_buffer **bp)
1013 {
1014         int need_submit;
1015         struct dm_buffer *b;
1016
1017         LIST_HEAD(write_list);
1018
1019         dm_bufio_lock(c);
1020         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1021         dm_bufio_unlock(c);
1022
1023         __flush_write_list(&write_list);
1024
1025         if (!b)
1026                 return b;
1027
1028         if (need_submit)
1029                 submit_io(b, READ, b->block, read_endio);
1030
1031         wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
1032
1033         if (b->read_error) {
1034                 int error = b->read_error;
1035
1036                 dm_bufio_release(b);
1037
1038                 return ERR_PTR(error);
1039         }
1040
1041         *bp = b;
1042
1043         return b->data;
1044 }
1045
1046 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1047                    struct dm_buffer **bp)
1048 {
1049         return new_read(c, block, NF_GET, bp);
1050 }
1051 EXPORT_SYMBOL_GPL(dm_bufio_get);
1052
1053 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1054                     struct dm_buffer **bp)
1055 {
1056         BUG_ON(dm_bufio_in_request());
1057
1058         return new_read(c, block, NF_READ, bp);
1059 }
1060 EXPORT_SYMBOL_GPL(dm_bufio_read);
1061
1062 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1063                    struct dm_buffer **bp)
1064 {
1065         BUG_ON(dm_bufio_in_request());
1066
1067         return new_read(c, block, NF_FRESH, bp);
1068 }
1069 EXPORT_SYMBOL_GPL(dm_bufio_new);
1070
1071 void dm_bufio_prefetch(struct dm_bufio_client *c,
1072                        sector_t block, unsigned n_blocks)
1073 {
1074         struct blk_plug plug;
1075
1076         LIST_HEAD(write_list);
1077
1078         BUG_ON(dm_bufio_in_request());
1079
1080         blk_start_plug(&plug);
1081         dm_bufio_lock(c);
1082
1083         for (; n_blocks--; block++) {
1084                 int need_submit;
1085                 struct dm_buffer *b;
1086                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1087                                 &write_list);
1088                 if (unlikely(!list_empty(&write_list))) {
1089                         dm_bufio_unlock(c);
1090                         blk_finish_plug(&plug);
1091                         __flush_write_list(&write_list);
1092                         blk_start_plug(&plug);
1093                         dm_bufio_lock(c);
1094                 }
1095                 if (unlikely(b != NULL)) {
1096                         dm_bufio_unlock(c);
1097
1098                         if (need_submit)
1099                                 submit_io(b, READ, b->block, read_endio);
1100                         dm_bufio_release(b);
1101
1102                         dm_bufio_cond_resched();
1103
1104                         if (!n_blocks)
1105                                 goto flush_plug;
1106                         dm_bufio_lock(c);
1107                 }
1108         }
1109
1110         dm_bufio_unlock(c);
1111
1112 flush_plug:
1113         blk_finish_plug(&plug);
1114 }
1115 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1116
1117 void dm_bufio_release(struct dm_buffer *b)
1118 {
1119         struct dm_bufio_client *c = b->c;
1120
1121         dm_bufio_lock(c);
1122
1123         BUG_ON(!b->hold_count);
1124
1125         b->hold_count--;
1126         if (!b->hold_count) {
1127                 wake_up(&c->free_buffer_wait);
1128
1129                 /*
1130                  * If there were errors on the buffer, and the buffer is not
1131                  * to be written, free the buffer. There is no point in caching
1132                  * invalid buffer.
1133                  */
1134                 if ((b->read_error || b->write_error) &&
1135                     !test_bit(B_READING, &b->state) &&
1136                     !test_bit(B_WRITING, &b->state) &&
1137                     !test_bit(B_DIRTY, &b->state)) {
1138                         __unlink_buffer(b);
1139                         __free_buffer_wake(b);
1140                 }
1141         }
1142
1143         dm_bufio_unlock(c);
1144 }
1145 EXPORT_SYMBOL_GPL(dm_bufio_release);
1146
1147 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1148 {
1149         struct dm_bufio_client *c = b->c;
1150
1151         dm_bufio_lock(c);
1152
1153         BUG_ON(test_bit(B_READING, &b->state));
1154
1155         if (!test_and_set_bit(B_DIRTY, &b->state))
1156                 __relink_lru(b, LIST_DIRTY);
1157
1158         dm_bufio_unlock(c);
1159 }
1160 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1161
1162 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1163 {
1164         LIST_HEAD(write_list);
1165
1166         BUG_ON(dm_bufio_in_request());
1167
1168         dm_bufio_lock(c);
1169         __write_dirty_buffers_async(c, 0, &write_list);
1170         dm_bufio_unlock(c);
1171         __flush_write_list(&write_list);
1172 }
1173 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1174
1175 /*
1176  * For performance, it is essential that the buffers are written asynchronously
1177  * and simultaneously (so that the block layer can merge the writes) and then
1178  * waited upon.
1179  *
1180  * Finally, we flush hardware disk cache.
1181  */
1182 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1183 {
1184         int a, f;
1185         unsigned long buffers_processed = 0;
1186         struct dm_buffer *b, *tmp;
1187
1188         LIST_HEAD(write_list);
1189
1190         dm_bufio_lock(c);
1191         __write_dirty_buffers_async(c, 0, &write_list);
1192         dm_bufio_unlock(c);
1193         __flush_write_list(&write_list);
1194         dm_bufio_lock(c);
1195
1196 again:
1197         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1198                 int dropped_lock = 0;
1199
1200                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1201                         buffers_processed++;
1202
1203                 BUG_ON(test_bit(B_READING, &b->state));
1204
1205                 if (test_bit(B_WRITING, &b->state)) {
1206                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1207                                 dropped_lock = 1;
1208                                 b->hold_count++;
1209                                 dm_bufio_unlock(c);
1210                                 wait_on_bit(&b->state, B_WRITING,
1211                                             do_io_schedule,
1212                                             TASK_UNINTERRUPTIBLE);
1213                                 dm_bufio_lock(c);
1214                                 b->hold_count--;
1215                         } else
1216                                 wait_on_bit(&b->state, B_WRITING,
1217                                             do_io_schedule,
1218                                             TASK_UNINTERRUPTIBLE);
1219                 }
1220
1221                 if (!test_bit(B_DIRTY, &b->state) &&
1222                     !test_bit(B_WRITING, &b->state))
1223                         __relink_lru(b, LIST_CLEAN);
1224
1225                 dm_bufio_cond_resched();
1226
1227                 /*
1228                  * If we dropped the lock, the list is no longer consistent,
1229                  * so we must restart the search.
1230                  *
1231                  * In the most common case, the buffer just processed is
1232                  * relinked to the clean list, so we won't loop scanning the
1233                  * same buffer again and again.
1234                  *
1235                  * This may livelock if there is another thread simultaneously
1236                  * dirtying buffers, so we count the number of buffers walked
1237                  * and if it exceeds the total number of buffers, it means that
1238                  * someone is doing some writes simultaneously with us.  In
1239                  * this case, stop, dropping the lock.
1240                  */
1241                 if (dropped_lock)
1242                         goto again;
1243         }
1244         wake_up(&c->free_buffer_wait);
1245         dm_bufio_unlock(c);
1246
1247         a = xchg(&c->async_write_error, 0);
1248         f = dm_bufio_issue_flush(c);
1249         if (a)
1250                 return a;
1251
1252         return f;
1253 }
1254 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1255
1256 /*
1257  * Use dm-io to send and empty barrier flush the device.
1258  */
1259 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1260 {
1261         struct dm_io_request io_req = {
1262                 .bi_rw = WRITE_FLUSH,
1263                 .mem.type = DM_IO_KMEM,
1264                 .mem.ptr.addr = NULL,
1265                 .client = c->dm_io,
1266         };
1267         struct dm_io_region io_reg = {
1268                 .bdev = c->bdev,
1269                 .sector = 0,
1270                 .count = 0,
1271         };
1272
1273         BUG_ON(dm_bufio_in_request());
1274
1275         return dm_io(&io_req, 1, &io_reg, NULL);
1276 }
1277 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1278
1279 /*
1280  * We first delete any other buffer that may be at that new location.
1281  *
1282  * Then, we write the buffer to the original location if it was dirty.
1283  *
1284  * Then, if we are the only one who is holding the buffer, relink the buffer
1285  * in the hash queue for the new location.
1286  *
1287  * If there was someone else holding the buffer, we write it to the new
1288  * location but not relink it, because that other user needs to have the buffer
1289  * at the same place.
1290  */
1291 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1292 {
1293         struct dm_bufio_client *c = b->c;
1294         struct dm_buffer *new;
1295
1296         BUG_ON(dm_bufio_in_request());
1297
1298         dm_bufio_lock(c);
1299
1300 retry:
1301         new = __find(c, new_block);
1302         if (new) {
1303                 if (new->hold_count) {
1304                         __wait_for_free_buffer(c);
1305                         goto retry;
1306                 }
1307
1308                 /*
1309                  * FIXME: Is there any point waiting for a write that's going
1310                  * to be overwritten in a bit?
1311                  */
1312                 __make_buffer_clean(new);
1313                 __unlink_buffer(new);
1314                 __free_buffer_wake(new);
1315         }
1316
1317         BUG_ON(!b->hold_count);
1318         BUG_ON(test_bit(B_READING, &b->state));
1319
1320         __write_dirty_buffer(b, NULL);
1321         if (b->hold_count == 1) {
1322                 wait_on_bit(&b->state, B_WRITING,
1323                             do_io_schedule, TASK_UNINTERRUPTIBLE);
1324                 set_bit(B_DIRTY, &b->state);
1325                 __unlink_buffer(b);
1326                 __link_buffer(b, new_block, LIST_DIRTY);
1327         } else {
1328                 sector_t old_block;
1329                 wait_on_bit_lock(&b->state, B_WRITING,
1330                                  do_io_schedule, TASK_UNINTERRUPTIBLE);
1331                 /*
1332                  * Relink buffer to "new_block" so that write_callback
1333                  * sees "new_block" as a block number.
1334                  * After the write, link the buffer back to old_block.
1335                  * All this must be done in bufio lock, so that block number
1336                  * change isn't visible to other threads.
1337                  */
1338                 old_block = b->block;
1339                 __unlink_buffer(b);
1340                 __link_buffer(b, new_block, b->list_mode);
1341                 submit_io(b, WRITE, new_block, write_endio);
1342                 wait_on_bit(&b->state, B_WRITING,
1343                             do_io_schedule, TASK_UNINTERRUPTIBLE);
1344                 __unlink_buffer(b);
1345                 __link_buffer(b, old_block, b->list_mode);
1346         }
1347
1348         dm_bufio_unlock(c);
1349         dm_bufio_release(b);
1350 }
1351 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1352
1353 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1354 {
1355         return c->block_size;
1356 }
1357 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1358
1359 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1360 {
1361         return i_size_read(c->bdev->bd_inode) >>
1362                            (SECTOR_SHIFT + c->sectors_per_block_bits);
1363 }
1364 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1365
1366 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1367 {
1368         return b->block;
1369 }
1370 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1371
1372 void *dm_bufio_get_block_data(struct dm_buffer *b)
1373 {
1374         return b->data;
1375 }
1376 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1377
1378 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1379 {
1380         return b + 1;
1381 }
1382 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1383
1384 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1385 {
1386         return b->c;
1387 }
1388 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1389
1390 static void drop_buffers(struct dm_bufio_client *c)
1391 {
1392         struct dm_buffer *b;
1393         int i;
1394
1395         BUG_ON(dm_bufio_in_request());
1396
1397         /*
1398          * An optimization so that the buffers are not written one-by-one.
1399          */
1400         dm_bufio_write_dirty_buffers_async(c);
1401
1402         dm_bufio_lock(c);
1403
1404         while ((b = __get_unclaimed_buffer(c)))
1405                 __free_buffer_wake(b);
1406
1407         for (i = 0; i < LIST_SIZE; i++)
1408                 list_for_each_entry(b, &c->lru[i], lru_list)
1409                         DMERR("leaked buffer %llx, hold count %u, list %d",
1410                               (unsigned long long)b->block, b->hold_count, i);
1411
1412         for (i = 0; i < LIST_SIZE; i++)
1413                 BUG_ON(!list_empty(&c->lru[i]));
1414
1415         dm_bufio_unlock(c);
1416 }
1417
1418 /*
1419  * Test if the buffer is unused and too old, and commit it.
1420  * At if noio is set, we must not do any I/O because we hold
1421  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1422  * different bufio client.
1423  */
1424 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1425                                 unsigned long max_jiffies)
1426 {
1427         if (jiffies - b->last_accessed < max_jiffies)
1428                 return 0;
1429
1430         if (!(gfp & __GFP_IO)) {
1431                 if (test_bit(B_READING, &b->state) ||
1432                     test_bit(B_WRITING, &b->state) ||
1433                     test_bit(B_DIRTY, &b->state))
1434                         return 0;
1435         }
1436
1437         if (b->hold_count)
1438                 return 0;
1439
1440         __make_buffer_clean(b);
1441         __unlink_buffer(b);
1442         __free_buffer_wake(b);
1443
1444         return 1;
1445 }
1446
1447 static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1448                    gfp_t gfp_mask)
1449 {
1450         int l;
1451         struct dm_buffer *b, *tmp;
1452         long freed = 0;
1453
1454         for (l = 0; l < LIST_SIZE; l++) {
1455                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1456                         freed += __cleanup_old_buffer(b, gfp_mask, 0);
1457                         if (!--nr_to_scan)
1458                                 break;
1459                 }
1460                 dm_bufio_cond_resched();
1461         }
1462         return freed;
1463 }
1464
1465 static unsigned long
1466 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1467 {
1468         struct dm_bufio_client *c;
1469         unsigned long freed;
1470
1471         c = container_of(shrink, struct dm_bufio_client, shrinker);
1472         if (sc->gfp_mask & __GFP_IO)
1473                 dm_bufio_lock(c);
1474         else if (!dm_bufio_trylock(c))
1475                 return SHRINK_STOP;
1476
1477         freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1478         dm_bufio_unlock(c);
1479         return freed;
1480 }
1481
1482 static unsigned long
1483 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1484 {
1485         struct dm_bufio_client *c;
1486         unsigned long count;
1487
1488         c = container_of(shrink, struct dm_bufio_client, shrinker);
1489         if (sc->gfp_mask & __GFP_IO)
1490                 dm_bufio_lock(c);
1491         else if (!dm_bufio_trylock(c))
1492                 return 0;
1493
1494         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1495         dm_bufio_unlock(c);
1496         return count;
1497 }
1498
1499 /*
1500  * Create the buffering interface
1501  */
1502 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1503                                                unsigned reserved_buffers, unsigned aux_size,
1504                                                void (*alloc_callback)(struct dm_buffer *),
1505                                                void (*write_callback)(struct dm_buffer *))
1506 {
1507         int r;
1508         struct dm_bufio_client *c;
1509         unsigned i;
1510
1511         BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1512                (block_size & (block_size - 1)));
1513
1514         c = kmalloc(sizeof(*c), GFP_KERNEL);
1515         if (!c) {
1516                 r = -ENOMEM;
1517                 goto bad_client;
1518         }
1519         c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1520         if (!c->cache_hash) {
1521                 r = -ENOMEM;
1522                 goto bad_hash;
1523         }
1524
1525         c->bdev = bdev;
1526         c->block_size = block_size;
1527         c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1528         c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1529                                   ffs(block_size) - 1 - PAGE_SHIFT : 0;
1530         c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1531                                   PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1532
1533         c->aux_size = aux_size;
1534         c->alloc_callback = alloc_callback;
1535         c->write_callback = write_callback;
1536
1537         for (i = 0; i < LIST_SIZE; i++) {
1538                 INIT_LIST_HEAD(&c->lru[i]);
1539                 c->n_buffers[i] = 0;
1540         }
1541
1542         for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1543                 INIT_HLIST_HEAD(&c->cache_hash[i]);
1544
1545         mutex_init(&c->lock);
1546         INIT_LIST_HEAD(&c->reserved_buffers);
1547         c->need_reserved_buffers = reserved_buffers;
1548
1549         init_waitqueue_head(&c->free_buffer_wait);
1550         c->async_write_error = 0;
1551
1552         c->dm_io = dm_io_client_create();
1553         if (IS_ERR(c->dm_io)) {
1554                 r = PTR_ERR(c->dm_io);
1555                 goto bad_dm_io;
1556         }
1557
1558         mutex_lock(&dm_bufio_clients_lock);
1559         if (c->blocks_per_page_bits) {
1560                 if (!DM_BUFIO_CACHE_NAME(c)) {
1561                         DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1562                         if (!DM_BUFIO_CACHE_NAME(c)) {
1563                                 r = -ENOMEM;
1564                                 mutex_unlock(&dm_bufio_clients_lock);
1565                                 goto bad_cache;
1566                         }
1567                 }
1568
1569                 if (!DM_BUFIO_CACHE(c)) {
1570                         DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1571                                                               c->block_size,
1572                                                               c->block_size, 0, NULL);
1573                         if (!DM_BUFIO_CACHE(c)) {
1574                                 r = -ENOMEM;
1575                                 mutex_unlock(&dm_bufio_clients_lock);
1576                                 goto bad_cache;
1577                         }
1578                 }
1579         }
1580         mutex_unlock(&dm_bufio_clients_lock);
1581
1582         while (c->need_reserved_buffers) {
1583                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1584
1585                 if (!b) {
1586                         r = -ENOMEM;
1587                         goto bad_buffer;
1588                 }
1589                 __free_buffer_wake(b);
1590         }
1591
1592         mutex_lock(&dm_bufio_clients_lock);
1593         dm_bufio_client_count++;
1594         list_add(&c->client_list, &dm_bufio_all_clients);
1595         __cache_size_refresh();
1596         mutex_unlock(&dm_bufio_clients_lock);
1597
1598         c->shrinker.count_objects = dm_bufio_shrink_count;
1599         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1600         c->shrinker.seeks = 1;
1601         c->shrinker.batch = 0;
1602         register_shrinker(&c->shrinker);
1603
1604         return c;
1605
1606 bad_buffer:
1607 bad_cache:
1608         while (!list_empty(&c->reserved_buffers)) {
1609                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1610                                                  struct dm_buffer, lru_list);
1611                 list_del(&b->lru_list);
1612                 free_buffer(b);
1613         }
1614         dm_io_client_destroy(c->dm_io);
1615 bad_dm_io:
1616         vfree(c->cache_hash);
1617 bad_hash:
1618         kfree(c);
1619 bad_client:
1620         return ERR_PTR(r);
1621 }
1622 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1623
1624 /*
1625  * Free the buffering interface.
1626  * It is required that there are no references on any buffers.
1627  */
1628 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1629 {
1630         unsigned i;
1631
1632         drop_buffers(c);
1633
1634         unregister_shrinker(&c->shrinker);
1635
1636         mutex_lock(&dm_bufio_clients_lock);
1637
1638         list_del(&c->client_list);
1639         dm_bufio_client_count--;
1640         __cache_size_refresh();
1641
1642         mutex_unlock(&dm_bufio_clients_lock);
1643
1644         for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1645                 BUG_ON(!hlist_empty(&c->cache_hash[i]));
1646
1647         BUG_ON(c->need_reserved_buffers);
1648
1649         while (!list_empty(&c->reserved_buffers)) {
1650                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1651                                                  struct dm_buffer, lru_list);
1652                 list_del(&b->lru_list);
1653                 free_buffer(b);
1654         }
1655
1656         for (i = 0; i < LIST_SIZE; i++)
1657                 if (c->n_buffers[i])
1658                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1659
1660         for (i = 0; i < LIST_SIZE; i++)
1661                 BUG_ON(c->n_buffers[i]);
1662
1663         dm_io_client_destroy(c->dm_io);
1664         vfree(c->cache_hash);
1665         kfree(c);
1666 }
1667 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1668
1669 static void cleanup_old_buffers(void)
1670 {
1671         unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1672         struct dm_bufio_client *c;
1673
1674         if (max_age > ULONG_MAX / HZ)
1675                 max_age = ULONG_MAX / HZ;
1676
1677         mutex_lock(&dm_bufio_clients_lock);
1678         list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1679                 if (!dm_bufio_trylock(c))
1680                         continue;
1681
1682                 while (!list_empty(&c->lru[LIST_CLEAN])) {
1683                         struct dm_buffer *b;
1684                         b = list_entry(c->lru[LIST_CLEAN].prev,
1685                                        struct dm_buffer, lru_list);
1686                         if (!__cleanup_old_buffer(b, 0, max_age * HZ))
1687                                 break;
1688                         dm_bufio_cond_resched();
1689                 }
1690
1691                 dm_bufio_unlock(c);
1692                 dm_bufio_cond_resched();
1693         }
1694         mutex_unlock(&dm_bufio_clients_lock);
1695 }
1696
1697 static struct workqueue_struct *dm_bufio_wq;
1698 static struct delayed_work dm_bufio_work;
1699
1700 static void work_fn(struct work_struct *w)
1701 {
1702         cleanup_old_buffers();
1703
1704         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1705                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1706 }
1707
1708 /*----------------------------------------------------------------
1709  * Module setup
1710  *--------------------------------------------------------------*/
1711
1712 /*
1713  * This is called only once for the whole dm_bufio module.
1714  * It initializes memory limit.
1715  */
1716 static int __init dm_bufio_init(void)
1717 {
1718         __u64 mem;
1719
1720         dm_bufio_allocated_kmem_cache = 0;
1721         dm_bufio_allocated_get_free_pages = 0;
1722         dm_bufio_allocated_vmalloc = 0;
1723         dm_bufio_current_allocated = 0;
1724
1725         memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1726         memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1727
1728         mem = (__u64)((totalram_pages - totalhigh_pages) *
1729                       DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1730
1731         if (mem > ULONG_MAX)
1732                 mem = ULONG_MAX;
1733
1734 #ifdef CONFIG_MMU
1735         /*
1736          * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1737          * in fs/proc/internal.h
1738          */
1739         if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1740                 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1741 #endif
1742
1743         dm_bufio_default_cache_size = mem;
1744
1745         mutex_lock(&dm_bufio_clients_lock);
1746         __cache_size_refresh();
1747         mutex_unlock(&dm_bufio_clients_lock);
1748
1749         dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1750         if (!dm_bufio_wq)
1751                 return -ENOMEM;
1752
1753         INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1754         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1755                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1756
1757         return 0;
1758 }
1759
1760 /*
1761  * This is called once when unloading the dm_bufio module.
1762  */
1763 static void __exit dm_bufio_exit(void)
1764 {
1765         int bug = 0;
1766         int i;
1767
1768         cancel_delayed_work_sync(&dm_bufio_work);
1769         destroy_workqueue(dm_bufio_wq);
1770
1771         for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1772                 struct kmem_cache *kc = dm_bufio_caches[i];
1773
1774                 if (kc)
1775                         kmem_cache_destroy(kc);
1776         }
1777
1778         for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1779                 kfree(dm_bufio_cache_names[i]);
1780
1781         if (dm_bufio_client_count) {
1782                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1783                         __func__, dm_bufio_client_count);
1784                 bug = 1;
1785         }
1786
1787         if (dm_bufio_current_allocated) {
1788                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1789                         __func__, dm_bufio_current_allocated);
1790                 bug = 1;
1791         }
1792
1793         if (dm_bufio_allocated_get_free_pages) {
1794                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1795                        __func__, dm_bufio_allocated_get_free_pages);
1796                 bug = 1;
1797         }
1798
1799         if (dm_bufio_allocated_vmalloc) {
1800                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1801                        __func__, dm_bufio_allocated_vmalloc);
1802                 bug = 1;
1803         }
1804
1805         if (bug)
1806                 BUG();
1807 }
1808
1809 module_init(dm_bufio_init)
1810 module_exit(dm_bufio_exit)
1811
1812 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1813 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1814
1815 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1816 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1817
1818 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1819 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1820
1821 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1822 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1823
1824 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1825 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1826
1827 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1828 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1829
1830 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1831 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1832
1833 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1834 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1835 MODULE_LICENSE("GPL");