usb: phy: rcar-gen2-usb: always use 'dev' variable in probe() method
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17
18 #define DM_MSG_PREFIX "bufio"
19
20 /*
21  * Memory management policy:
22  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26  *      dirty buffers.
27  */
28 #define DM_BUFIO_MIN_BUFFERS            8
29
30 #define DM_BUFIO_MEMORY_PERCENT         2
31 #define DM_BUFIO_VMALLOC_PERCENT        25
32 #define DM_BUFIO_WRITEBACK_PERCENT      75
33
34 /*
35  * Check buffer ages in this interval (seconds)
36  */
37 #define DM_BUFIO_WORK_TIMER_SECS        10
38
39 /*
40  * Free buffers when they are older than this (seconds)
41  */
42 #define DM_BUFIO_DEFAULT_AGE_SECS       60
43
44 /*
45  * The number of bvec entries that are embedded directly in the buffer.
46  * If the chunk size is larger, dm-io is used to do the io.
47  */
48 #define DM_BUFIO_INLINE_VECS            16
49
50 /*
51  * Buffer hash
52  */
53 #define DM_BUFIO_HASH_BITS      20
54 #define DM_BUFIO_HASH(block) \
55         ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56          ((1 << DM_BUFIO_HASH_BITS) - 1))
57
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT  (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT   (PAGE_SIZE << (MAX_ORDER - 1))
64
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN      0
69 #define LIST_DIRTY      1
70 #define LIST_SIZE       2
71
72 /*
73  * Linking of buffers:
74  *      All buffers are linked to cache_hash with their hash_list field.
75  *
76  *      Clean buffers that are not being written (B_WRITING not set)
77  *      are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *      Dirty and clean buffers that are being written are linked to
80  *      lru[LIST_DIRTY] with their lru_list field. When the write
81  *      finishes, the buffer cannot be relinked immediately (because we
82  *      are in an interrupt context and relinking requires process
83  *      context), so some clean-not-writing buffers can be held on
84  *      dirty_lru too.  They are later added to lru in the process
85  *      context.
86  */
87 struct dm_bufio_client {
88         struct mutex lock;
89
90         struct list_head lru[LIST_SIZE];
91         unsigned long n_buffers[LIST_SIZE];
92
93         struct block_device *bdev;
94         unsigned block_size;
95         unsigned char sectors_per_block_bits;
96         unsigned char pages_per_block_bits;
97         unsigned char blocks_per_page_bits;
98         unsigned aux_size;
99         void (*alloc_callback)(struct dm_buffer *);
100         void (*write_callback)(struct dm_buffer *);
101
102         struct dm_io_client *dm_io;
103
104         struct list_head reserved_buffers;
105         unsigned need_reserved_buffers;
106
107         unsigned minimum_buffers;
108
109         struct hlist_head *cache_hash;
110         wait_queue_head_t free_buffer_wait;
111
112         int async_write_error;
113
114         struct list_head client_list;
115         struct shrinker shrinker;
116 };
117
118 /*
119  * Buffer state bits.
120  */
121 #define B_READING       0
122 #define B_WRITING       1
123 #define B_DIRTY         2
124
125 /*
126  * Describes how the block was allocated:
127  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128  * See the comment at alloc_buffer_data.
129  */
130 enum data_mode {
131         DATA_MODE_SLAB = 0,
132         DATA_MODE_GET_FREE_PAGES = 1,
133         DATA_MODE_VMALLOC = 2,
134         DATA_MODE_LIMIT = 3
135 };
136
137 struct dm_buffer {
138         struct hlist_node hash_list;
139         struct list_head lru_list;
140         sector_t block;
141         void *data;
142         enum data_mode data_mode;
143         unsigned char list_mode;                /* LIST_* */
144         unsigned hold_count;
145         int read_error;
146         int write_error;
147         unsigned long state;
148         unsigned long last_accessed;
149         struct dm_bufio_client *c;
150         struct list_head write_list;
151         struct bio bio;
152         struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 };
154
155 /*----------------------------------------------------------------*/
156
157 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
158 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
159
160 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
161 {
162         unsigned ret = c->blocks_per_page_bits - 1;
163
164         BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
165
166         return ret;
167 }
168
169 #define DM_BUFIO_CACHE(c)       (dm_bufio_caches[dm_bufio_cache_index(c)])
170 #define DM_BUFIO_CACHE_NAME(c)  (dm_bufio_cache_names[dm_bufio_cache_index(c)])
171
172 #define dm_bufio_in_request()   (!!current->bio_list)
173
174 static void dm_bufio_lock(struct dm_bufio_client *c)
175 {
176         mutex_lock_nested(&c->lock, dm_bufio_in_request());
177 }
178
179 static int dm_bufio_trylock(struct dm_bufio_client *c)
180 {
181         return mutex_trylock(&c->lock);
182 }
183
184 static void dm_bufio_unlock(struct dm_bufio_client *c)
185 {
186         mutex_unlock(&c->lock);
187 }
188
189 /*
190  * FIXME Move to sched.h?
191  */
192 #ifdef CONFIG_PREEMPT_VOLUNTARY
193 #  define dm_bufio_cond_resched()               \
194 do {                                            \
195         if (unlikely(need_resched()))           \
196                 _cond_resched();                \
197 } while (0)
198 #else
199 #  define dm_bufio_cond_resched()                do { } while (0)
200 #endif
201
202 /*----------------------------------------------------------------*/
203
204 /*
205  * Default cache size: available memory divided by the ratio.
206  */
207 static unsigned long dm_bufio_default_cache_size;
208
209 /*
210  * Total cache size set by the user.
211  */
212 static unsigned long dm_bufio_cache_size;
213
214 /*
215  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
216  * at any time.  If it disagrees, the user has changed cache size.
217  */
218 static unsigned long dm_bufio_cache_size_latch;
219
220 static DEFINE_SPINLOCK(param_spinlock);
221
222 /*
223  * Buffers are freed after this timeout
224  */
225 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
226
227 static unsigned long dm_bufio_peak_allocated;
228 static unsigned long dm_bufio_allocated_kmem_cache;
229 static unsigned long dm_bufio_allocated_get_free_pages;
230 static unsigned long dm_bufio_allocated_vmalloc;
231 static unsigned long dm_bufio_current_allocated;
232
233 /*----------------------------------------------------------------*/
234
235 /*
236  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
237  */
238 static unsigned long dm_bufio_cache_size_per_client;
239
240 /*
241  * The current number of clients.
242  */
243 static int dm_bufio_client_count;
244
245 /*
246  * The list of all clients.
247  */
248 static LIST_HEAD(dm_bufio_all_clients);
249
250 /*
251  * This mutex protects dm_bufio_cache_size_latch,
252  * dm_bufio_cache_size_per_client and dm_bufio_client_count
253  */
254 static DEFINE_MUTEX(dm_bufio_clients_lock);
255
256 /*----------------------------------------------------------------*/
257
258 static void adjust_total_allocated(enum data_mode data_mode, long diff)
259 {
260         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
261                 &dm_bufio_allocated_kmem_cache,
262                 &dm_bufio_allocated_get_free_pages,
263                 &dm_bufio_allocated_vmalloc,
264         };
265
266         spin_lock(&param_spinlock);
267
268         *class_ptr[data_mode] += diff;
269
270         dm_bufio_current_allocated += diff;
271
272         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
273                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
274
275         spin_unlock(&param_spinlock);
276 }
277
278 /*
279  * Change the number of clients and recalculate per-client limit.
280  */
281 static void __cache_size_refresh(void)
282 {
283         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
284         BUG_ON(dm_bufio_client_count < 0);
285
286         dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
287
288         /*
289          * Use default if set to 0 and report the actual cache size used.
290          */
291         if (!dm_bufio_cache_size_latch) {
292                 (void)cmpxchg(&dm_bufio_cache_size, 0,
293                               dm_bufio_default_cache_size);
294                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
295         }
296
297         dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
298                                          (dm_bufio_client_count ? : 1);
299 }
300
301 /*
302  * Allocating buffer data.
303  *
304  * Small buffers are allocated with kmem_cache, to use space optimally.
305  *
306  * For large buffers, we choose between get_free_pages and vmalloc.
307  * Each has advantages and disadvantages.
308  *
309  * __get_free_pages can randomly fail if the memory is fragmented.
310  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
311  * as low as 128M) so using it for caching is not appropriate.
312  *
313  * If the allocation may fail we use __get_free_pages. Memory fragmentation
314  * won't have a fatal effect here, but it just causes flushes of some other
315  * buffers and more I/O will be performed. Don't use __get_free_pages if it
316  * always fails (i.e. order >= MAX_ORDER).
317  *
318  * If the allocation shouldn't fail we use __vmalloc. This is only for the
319  * initial reserve allocation, so there's no risk of wasting all vmalloc
320  * space.
321  */
322 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
323                                enum data_mode *data_mode)
324 {
325         unsigned noio_flag;
326         void *ptr;
327
328         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
329                 *data_mode = DATA_MODE_SLAB;
330                 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
331         }
332
333         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
334             gfp_mask & __GFP_NORETRY) {
335                 *data_mode = DATA_MODE_GET_FREE_PAGES;
336                 return (void *)__get_free_pages(gfp_mask,
337                                                 c->pages_per_block_bits);
338         }
339
340         *data_mode = DATA_MODE_VMALLOC;
341
342         /*
343          * __vmalloc allocates the data pages and auxiliary structures with
344          * gfp_flags that were specified, but pagetables are always allocated
345          * with GFP_KERNEL, no matter what was specified as gfp_mask.
346          *
347          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
348          * all allocations done by this process (including pagetables) are done
349          * as if GFP_NOIO was specified.
350          */
351
352         if (gfp_mask & __GFP_NORETRY)
353                 noio_flag = memalloc_noio_save();
354
355         ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
356
357         if (gfp_mask & __GFP_NORETRY)
358                 memalloc_noio_restore(noio_flag);
359
360         return ptr;
361 }
362
363 /*
364  * Free buffer's data.
365  */
366 static void free_buffer_data(struct dm_bufio_client *c,
367                              void *data, enum data_mode data_mode)
368 {
369         switch (data_mode) {
370         case DATA_MODE_SLAB:
371                 kmem_cache_free(DM_BUFIO_CACHE(c), data);
372                 break;
373
374         case DATA_MODE_GET_FREE_PAGES:
375                 free_pages((unsigned long)data, c->pages_per_block_bits);
376                 break;
377
378         case DATA_MODE_VMALLOC:
379                 vfree(data);
380                 break;
381
382         default:
383                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
384                        data_mode);
385                 BUG();
386         }
387 }
388
389 /*
390  * Allocate buffer and its data.
391  */
392 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
393 {
394         struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
395                                       gfp_mask);
396
397         if (!b)
398                 return NULL;
399
400         b->c = c;
401
402         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
403         if (!b->data) {
404                 kfree(b);
405                 return NULL;
406         }
407
408         adjust_total_allocated(b->data_mode, (long)c->block_size);
409
410         return b;
411 }
412
413 /*
414  * Free buffer and its data.
415  */
416 static void free_buffer(struct dm_buffer *b)
417 {
418         struct dm_bufio_client *c = b->c;
419
420         adjust_total_allocated(b->data_mode, -(long)c->block_size);
421
422         free_buffer_data(c, b->data, b->data_mode);
423         kfree(b);
424 }
425
426 /*
427  * Link buffer to the hash list and clean or dirty queue.
428  */
429 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
430 {
431         struct dm_bufio_client *c = b->c;
432
433         c->n_buffers[dirty]++;
434         b->block = block;
435         b->list_mode = dirty;
436         list_add(&b->lru_list, &c->lru[dirty]);
437         hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
438         b->last_accessed = jiffies;
439 }
440
441 /*
442  * Unlink buffer from the hash list and dirty or clean queue.
443  */
444 static void __unlink_buffer(struct dm_buffer *b)
445 {
446         struct dm_bufio_client *c = b->c;
447
448         BUG_ON(!c->n_buffers[b->list_mode]);
449
450         c->n_buffers[b->list_mode]--;
451         hlist_del(&b->hash_list);
452         list_del(&b->lru_list);
453 }
454
455 /*
456  * Place the buffer to the head of dirty or clean LRU queue.
457  */
458 static void __relink_lru(struct dm_buffer *b, int dirty)
459 {
460         struct dm_bufio_client *c = b->c;
461
462         BUG_ON(!c->n_buffers[b->list_mode]);
463
464         c->n_buffers[b->list_mode]--;
465         c->n_buffers[dirty]++;
466         b->list_mode = dirty;
467         list_move(&b->lru_list, &c->lru[dirty]);
468         b->last_accessed = jiffies;
469 }
470
471 /*----------------------------------------------------------------
472  * Submit I/O on the buffer.
473  *
474  * Bio interface is faster but it has some problems:
475  *      the vector list is limited (increasing this limit increases
476  *      memory-consumption per buffer, so it is not viable);
477  *
478  *      the memory must be direct-mapped, not vmalloced;
479  *
480  *      the I/O driver can reject requests spuriously if it thinks that
481  *      the requests are too big for the device or if they cross a
482  *      controller-defined memory boundary.
483  *
484  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
485  * it is not vmalloced, try using the bio interface.
486  *
487  * If the buffer is big, if it is vmalloced or if the underlying device
488  * rejects the bio because it is too large, use dm-io layer to do the I/O.
489  * The dm-io layer splits the I/O into multiple requests, avoiding the above
490  * shortcomings.
491  *--------------------------------------------------------------*/
492
493 /*
494  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
495  * that the request was handled directly with bio interface.
496  */
497 static void dmio_complete(unsigned long error, void *context)
498 {
499         struct dm_buffer *b = context;
500
501         b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
502 }
503
504 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
505                      bio_end_io_t *end_io)
506 {
507         int r;
508         struct dm_io_request io_req = {
509                 .bi_rw = rw,
510                 .notify.fn = dmio_complete,
511                 .notify.context = b,
512                 .client = b->c->dm_io,
513         };
514         struct dm_io_region region = {
515                 .bdev = b->c->bdev,
516                 .sector = block << b->c->sectors_per_block_bits,
517                 .count = b->c->block_size >> SECTOR_SHIFT,
518         };
519
520         if (b->data_mode != DATA_MODE_VMALLOC) {
521                 io_req.mem.type = DM_IO_KMEM;
522                 io_req.mem.ptr.addr = b->data;
523         } else {
524                 io_req.mem.type = DM_IO_VMA;
525                 io_req.mem.ptr.vma = b->data;
526         }
527
528         b->bio.bi_end_io = end_io;
529
530         r = dm_io(&io_req, 1, &region, NULL);
531         if (r)
532                 end_io(&b->bio, r);
533 }
534
535 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
536                            bio_end_io_t *end_io)
537 {
538         char *ptr;
539         int len;
540
541         bio_init(&b->bio);
542         b->bio.bi_io_vec = b->bio_vec;
543         b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
544         b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
545         b->bio.bi_bdev = b->c->bdev;
546         b->bio.bi_end_io = end_io;
547
548         /*
549          * We assume that if len >= PAGE_SIZE ptr is page-aligned.
550          * If len < PAGE_SIZE the buffer doesn't cross page boundary.
551          */
552         ptr = b->data;
553         len = b->c->block_size;
554
555         if (len >= PAGE_SIZE)
556                 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
557         else
558                 BUG_ON((unsigned long)ptr & (len - 1));
559
560         do {
561                 if (!bio_add_page(&b->bio, virt_to_page(ptr),
562                                   len < PAGE_SIZE ? len : PAGE_SIZE,
563                                   virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
564                         BUG_ON(b->c->block_size <= PAGE_SIZE);
565                         use_dmio(b, rw, block, end_io);
566                         return;
567                 }
568
569                 len -= PAGE_SIZE;
570                 ptr += PAGE_SIZE;
571         } while (len > 0);
572
573         submit_bio(rw, &b->bio);
574 }
575
576 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
577                       bio_end_io_t *end_io)
578 {
579         if (rw == WRITE && b->c->write_callback)
580                 b->c->write_callback(b);
581
582         if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
583             b->data_mode != DATA_MODE_VMALLOC)
584                 use_inline_bio(b, rw, block, end_io);
585         else
586                 use_dmio(b, rw, block, end_io);
587 }
588
589 /*----------------------------------------------------------------
590  * Writing dirty buffers
591  *--------------------------------------------------------------*/
592
593 /*
594  * The endio routine for write.
595  *
596  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
597  * it.
598  */
599 static void write_endio(struct bio *bio, int error)
600 {
601         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
602
603         b->write_error = error;
604         if (unlikely(error)) {
605                 struct dm_bufio_client *c = b->c;
606                 (void)cmpxchg(&c->async_write_error, 0, error);
607         }
608
609         BUG_ON(!test_bit(B_WRITING, &b->state));
610
611         smp_mb__before_clear_bit();
612         clear_bit(B_WRITING, &b->state);
613         smp_mb__after_clear_bit();
614
615         wake_up_bit(&b->state, B_WRITING);
616 }
617
618 /*
619  * This function is called when wait_on_bit is actually waiting.
620  */
621 static int do_io_schedule(void *word)
622 {
623         io_schedule();
624
625         return 0;
626 }
627
628 /*
629  * Initiate a write on a dirty buffer, but don't wait for it.
630  *
631  * - If the buffer is not dirty, exit.
632  * - If there some previous write going on, wait for it to finish (we can't
633  *   have two writes on the same buffer simultaneously).
634  * - Submit our write and don't wait on it. We set B_WRITING indicating
635  *   that there is a write in progress.
636  */
637 static void __write_dirty_buffer(struct dm_buffer *b,
638                                  struct list_head *write_list)
639 {
640         if (!test_bit(B_DIRTY, &b->state))
641                 return;
642
643         clear_bit(B_DIRTY, &b->state);
644         wait_on_bit_lock(&b->state, B_WRITING,
645                          do_io_schedule, TASK_UNINTERRUPTIBLE);
646
647         if (!write_list)
648                 submit_io(b, WRITE, b->block, write_endio);
649         else
650                 list_add_tail(&b->write_list, write_list);
651 }
652
653 static void __flush_write_list(struct list_head *write_list)
654 {
655         struct blk_plug plug;
656         blk_start_plug(&plug);
657         while (!list_empty(write_list)) {
658                 struct dm_buffer *b =
659                         list_entry(write_list->next, struct dm_buffer, write_list);
660                 list_del(&b->write_list);
661                 submit_io(b, WRITE, b->block, write_endio);
662                 dm_bufio_cond_resched();
663         }
664         blk_finish_plug(&plug);
665 }
666
667 /*
668  * Wait until any activity on the buffer finishes.  Possibly write the
669  * buffer if it is dirty.  When this function finishes, there is no I/O
670  * running on the buffer and the buffer is not dirty.
671  */
672 static void __make_buffer_clean(struct dm_buffer *b)
673 {
674         BUG_ON(b->hold_count);
675
676         if (!b->state)  /* fast case */
677                 return;
678
679         wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
680         __write_dirty_buffer(b, NULL);
681         wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
682 }
683
684 /*
685  * Find some buffer that is not held by anybody, clean it, unlink it and
686  * return it.
687  */
688 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
689 {
690         struct dm_buffer *b;
691
692         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
693                 BUG_ON(test_bit(B_WRITING, &b->state));
694                 BUG_ON(test_bit(B_DIRTY, &b->state));
695
696                 if (!b->hold_count) {
697                         __make_buffer_clean(b);
698                         __unlink_buffer(b);
699                         return b;
700                 }
701                 dm_bufio_cond_resched();
702         }
703
704         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
705                 BUG_ON(test_bit(B_READING, &b->state));
706
707                 if (!b->hold_count) {
708                         __make_buffer_clean(b);
709                         __unlink_buffer(b);
710                         return b;
711                 }
712                 dm_bufio_cond_resched();
713         }
714
715         return NULL;
716 }
717
718 /*
719  * Wait until some other threads free some buffer or release hold count on
720  * some buffer.
721  *
722  * This function is entered with c->lock held, drops it and regains it
723  * before exiting.
724  */
725 static void __wait_for_free_buffer(struct dm_bufio_client *c)
726 {
727         DECLARE_WAITQUEUE(wait, current);
728
729         add_wait_queue(&c->free_buffer_wait, &wait);
730         set_task_state(current, TASK_UNINTERRUPTIBLE);
731         dm_bufio_unlock(c);
732
733         io_schedule();
734
735         set_task_state(current, TASK_RUNNING);
736         remove_wait_queue(&c->free_buffer_wait, &wait);
737
738         dm_bufio_lock(c);
739 }
740
741 enum new_flag {
742         NF_FRESH = 0,
743         NF_READ = 1,
744         NF_GET = 2,
745         NF_PREFETCH = 3
746 };
747
748 /*
749  * Allocate a new buffer. If the allocation is not possible, wait until
750  * some other thread frees a buffer.
751  *
752  * May drop the lock and regain it.
753  */
754 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
755 {
756         struct dm_buffer *b;
757
758         /*
759          * dm-bufio is resistant to allocation failures (it just keeps
760          * one buffer reserved in cases all the allocations fail).
761          * So set flags to not try too hard:
762          *      GFP_NOIO: don't recurse into the I/O layer
763          *      __GFP_NORETRY: don't retry and rather return failure
764          *      __GFP_NOMEMALLOC: don't use emergency reserves
765          *      __GFP_NOWARN: don't print a warning in case of failure
766          *
767          * For debugging, if we set the cache size to 1, no new buffers will
768          * be allocated.
769          */
770         while (1) {
771                 if (dm_bufio_cache_size_latch != 1) {
772                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
773                         if (b)
774                                 return b;
775                 }
776
777                 if (nf == NF_PREFETCH)
778                         return NULL;
779
780                 if (!list_empty(&c->reserved_buffers)) {
781                         b = list_entry(c->reserved_buffers.next,
782                                        struct dm_buffer, lru_list);
783                         list_del(&b->lru_list);
784                         c->need_reserved_buffers++;
785
786                         return b;
787                 }
788
789                 b = __get_unclaimed_buffer(c);
790                 if (b)
791                         return b;
792
793                 __wait_for_free_buffer(c);
794         }
795 }
796
797 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
798 {
799         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
800
801         if (!b)
802                 return NULL;
803
804         if (c->alloc_callback)
805                 c->alloc_callback(b);
806
807         return b;
808 }
809
810 /*
811  * Free a buffer and wake other threads waiting for free buffers.
812  */
813 static void __free_buffer_wake(struct dm_buffer *b)
814 {
815         struct dm_bufio_client *c = b->c;
816
817         if (!c->need_reserved_buffers)
818                 free_buffer(b);
819         else {
820                 list_add(&b->lru_list, &c->reserved_buffers);
821                 c->need_reserved_buffers--;
822         }
823
824         wake_up(&c->free_buffer_wait);
825 }
826
827 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
828                                         struct list_head *write_list)
829 {
830         struct dm_buffer *b, *tmp;
831
832         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
833                 BUG_ON(test_bit(B_READING, &b->state));
834
835                 if (!test_bit(B_DIRTY, &b->state) &&
836                     !test_bit(B_WRITING, &b->state)) {
837                         __relink_lru(b, LIST_CLEAN);
838                         continue;
839                 }
840
841                 if (no_wait && test_bit(B_WRITING, &b->state))
842                         return;
843
844                 __write_dirty_buffer(b, write_list);
845                 dm_bufio_cond_resched();
846         }
847 }
848
849 /*
850  * Get writeback threshold and buffer limit for a given client.
851  */
852 static void __get_memory_limit(struct dm_bufio_client *c,
853                                unsigned long *threshold_buffers,
854                                unsigned long *limit_buffers)
855 {
856         unsigned long buffers;
857
858         if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
859                 mutex_lock(&dm_bufio_clients_lock);
860                 __cache_size_refresh();
861                 mutex_unlock(&dm_bufio_clients_lock);
862         }
863
864         buffers = dm_bufio_cache_size_per_client >>
865                   (c->sectors_per_block_bits + SECTOR_SHIFT);
866
867         if (buffers < c->minimum_buffers)
868                 buffers = c->minimum_buffers;
869
870         *limit_buffers = buffers;
871         *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
872 }
873
874 /*
875  * Check if we're over watermark.
876  * If we are over threshold_buffers, start freeing buffers.
877  * If we're over "limit_buffers", block until we get under the limit.
878  */
879 static void __check_watermark(struct dm_bufio_client *c,
880                               struct list_head *write_list)
881 {
882         unsigned long threshold_buffers, limit_buffers;
883
884         __get_memory_limit(c, &threshold_buffers, &limit_buffers);
885
886         while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
887                limit_buffers) {
888
889                 struct dm_buffer *b = __get_unclaimed_buffer(c);
890
891                 if (!b)
892                         return;
893
894                 __free_buffer_wake(b);
895                 dm_bufio_cond_resched();
896         }
897
898         if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
899                 __write_dirty_buffers_async(c, 1, write_list);
900 }
901
902 /*
903  * Find a buffer in the hash.
904  */
905 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
906 {
907         struct dm_buffer *b;
908
909         hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
910                              hash_list) {
911                 dm_bufio_cond_resched();
912                 if (b->block == block)
913                         return b;
914         }
915
916         return NULL;
917 }
918
919 /*----------------------------------------------------------------
920  * Getting a buffer
921  *--------------------------------------------------------------*/
922
923 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
924                                      enum new_flag nf, int *need_submit,
925                                      struct list_head *write_list)
926 {
927         struct dm_buffer *b, *new_b = NULL;
928
929         *need_submit = 0;
930
931         b = __find(c, block);
932         if (b)
933                 goto found_buffer;
934
935         if (nf == NF_GET)
936                 return NULL;
937
938         new_b = __alloc_buffer_wait(c, nf);
939         if (!new_b)
940                 return NULL;
941
942         /*
943          * We've had a period where the mutex was unlocked, so need to
944          * recheck the hash table.
945          */
946         b = __find(c, block);
947         if (b) {
948                 __free_buffer_wake(new_b);
949                 goto found_buffer;
950         }
951
952         __check_watermark(c, write_list);
953
954         b = new_b;
955         b->hold_count = 1;
956         b->read_error = 0;
957         b->write_error = 0;
958         __link_buffer(b, block, LIST_CLEAN);
959
960         if (nf == NF_FRESH) {
961                 b->state = 0;
962                 return b;
963         }
964
965         b->state = 1 << B_READING;
966         *need_submit = 1;
967
968         return b;
969
970 found_buffer:
971         if (nf == NF_PREFETCH)
972                 return NULL;
973         /*
974          * Note: it is essential that we don't wait for the buffer to be
975          * read if dm_bufio_get function is used. Both dm_bufio_get and
976          * dm_bufio_prefetch can be used in the driver request routine.
977          * If the user called both dm_bufio_prefetch and dm_bufio_get on
978          * the same buffer, it would deadlock if we waited.
979          */
980         if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
981                 return NULL;
982
983         b->hold_count++;
984         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
985                      test_bit(B_WRITING, &b->state));
986         return b;
987 }
988
989 /*
990  * The endio routine for reading: set the error, clear the bit and wake up
991  * anyone waiting on the buffer.
992  */
993 static void read_endio(struct bio *bio, int error)
994 {
995         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
996
997         b->read_error = error;
998
999         BUG_ON(!test_bit(B_READING, &b->state));
1000
1001         smp_mb__before_clear_bit();
1002         clear_bit(B_READING, &b->state);
1003         smp_mb__after_clear_bit();
1004
1005         wake_up_bit(&b->state, B_READING);
1006 }
1007
1008 /*
1009  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1010  * functions is similar except that dm_bufio_new doesn't read the
1011  * buffer from the disk (assuming that the caller overwrites all the data
1012  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1013  */
1014 static void *new_read(struct dm_bufio_client *c, sector_t block,
1015                       enum new_flag nf, struct dm_buffer **bp)
1016 {
1017         int need_submit;
1018         struct dm_buffer *b;
1019
1020         LIST_HEAD(write_list);
1021
1022         dm_bufio_lock(c);
1023         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1024         dm_bufio_unlock(c);
1025
1026         __flush_write_list(&write_list);
1027
1028         if (!b)
1029                 return b;
1030
1031         if (need_submit)
1032                 submit_io(b, READ, b->block, read_endio);
1033
1034         wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
1035
1036         if (b->read_error) {
1037                 int error = b->read_error;
1038
1039                 dm_bufio_release(b);
1040
1041                 return ERR_PTR(error);
1042         }
1043
1044         *bp = b;
1045
1046         return b->data;
1047 }
1048
1049 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1050                    struct dm_buffer **bp)
1051 {
1052         return new_read(c, block, NF_GET, bp);
1053 }
1054 EXPORT_SYMBOL_GPL(dm_bufio_get);
1055
1056 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1057                     struct dm_buffer **bp)
1058 {
1059         BUG_ON(dm_bufio_in_request());
1060
1061         return new_read(c, block, NF_READ, bp);
1062 }
1063 EXPORT_SYMBOL_GPL(dm_bufio_read);
1064
1065 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1066                    struct dm_buffer **bp)
1067 {
1068         BUG_ON(dm_bufio_in_request());
1069
1070         return new_read(c, block, NF_FRESH, bp);
1071 }
1072 EXPORT_SYMBOL_GPL(dm_bufio_new);
1073
1074 void dm_bufio_prefetch(struct dm_bufio_client *c,
1075                        sector_t block, unsigned n_blocks)
1076 {
1077         struct blk_plug plug;
1078
1079         LIST_HEAD(write_list);
1080
1081         BUG_ON(dm_bufio_in_request());
1082
1083         blk_start_plug(&plug);
1084         dm_bufio_lock(c);
1085
1086         for (; n_blocks--; block++) {
1087                 int need_submit;
1088                 struct dm_buffer *b;
1089                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1090                                 &write_list);
1091                 if (unlikely(!list_empty(&write_list))) {
1092                         dm_bufio_unlock(c);
1093                         blk_finish_plug(&plug);
1094                         __flush_write_list(&write_list);
1095                         blk_start_plug(&plug);
1096                         dm_bufio_lock(c);
1097                 }
1098                 if (unlikely(b != NULL)) {
1099                         dm_bufio_unlock(c);
1100
1101                         if (need_submit)
1102                                 submit_io(b, READ, b->block, read_endio);
1103                         dm_bufio_release(b);
1104
1105                         dm_bufio_cond_resched();
1106
1107                         if (!n_blocks)
1108                                 goto flush_plug;
1109                         dm_bufio_lock(c);
1110                 }
1111         }
1112
1113         dm_bufio_unlock(c);
1114
1115 flush_plug:
1116         blk_finish_plug(&plug);
1117 }
1118 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1119
1120 void dm_bufio_release(struct dm_buffer *b)
1121 {
1122         struct dm_bufio_client *c = b->c;
1123
1124         dm_bufio_lock(c);
1125
1126         BUG_ON(!b->hold_count);
1127
1128         b->hold_count--;
1129         if (!b->hold_count) {
1130                 wake_up(&c->free_buffer_wait);
1131
1132                 /*
1133                  * If there were errors on the buffer, and the buffer is not
1134                  * to be written, free the buffer. There is no point in caching
1135                  * invalid buffer.
1136                  */
1137                 if ((b->read_error || b->write_error) &&
1138                     !test_bit(B_READING, &b->state) &&
1139                     !test_bit(B_WRITING, &b->state) &&
1140                     !test_bit(B_DIRTY, &b->state)) {
1141                         __unlink_buffer(b);
1142                         __free_buffer_wake(b);
1143                 }
1144         }
1145
1146         dm_bufio_unlock(c);
1147 }
1148 EXPORT_SYMBOL_GPL(dm_bufio_release);
1149
1150 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1151 {
1152         struct dm_bufio_client *c = b->c;
1153
1154         dm_bufio_lock(c);
1155
1156         BUG_ON(test_bit(B_READING, &b->state));
1157
1158         if (!test_and_set_bit(B_DIRTY, &b->state))
1159                 __relink_lru(b, LIST_DIRTY);
1160
1161         dm_bufio_unlock(c);
1162 }
1163 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1164
1165 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1166 {
1167         LIST_HEAD(write_list);
1168
1169         BUG_ON(dm_bufio_in_request());
1170
1171         dm_bufio_lock(c);
1172         __write_dirty_buffers_async(c, 0, &write_list);
1173         dm_bufio_unlock(c);
1174         __flush_write_list(&write_list);
1175 }
1176 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1177
1178 /*
1179  * For performance, it is essential that the buffers are written asynchronously
1180  * and simultaneously (so that the block layer can merge the writes) and then
1181  * waited upon.
1182  *
1183  * Finally, we flush hardware disk cache.
1184  */
1185 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1186 {
1187         int a, f;
1188         unsigned long buffers_processed = 0;
1189         struct dm_buffer *b, *tmp;
1190
1191         LIST_HEAD(write_list);
1192
1193         dm_bufio_lock(c);
1194         __write_dirty_buffers_async(c, 0, &write_list);
1195         dm_bufio_unlock(c);
1196         __flush_write_list(&write_list);
1197         dm_bufio_lock(c);
1198
1199 again:
1200         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1201                 int dropped_lock = 0;
1202
1203                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1204                         buffers_processed++;
1205
1206                 BUG_ON(test_bit(B_READING, &b->state));
1207
1208                 if (test_bit(B_WRITING, &b->state)) {
1209                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1210                                 dropped_lock = 1;
1211                                 b->hold_count++;
1212                                 dm_bufio_unlock(c);
1213                                 wait_on_bit(&b->state, B_WRITING,
1214                                             do_io_schedule,
1215                                             TASK_UNINTERRUPTIBLE);
1216                                 dm_bufio_lock(c);
1217                                 b->hold_count--;
1218                         } else
1219                                 wait_on_bit(&b->state, B_WRITING,
1220                                             do_io_schedule,
1221                                             TASK_UNINTERRUPTIBLE);
1222                 }
1223
1224                 if (!test_bit(B_DIRTY, &b->state) &&
1225                     !test_bit(B_WRITING, &b->state))
1226                         __relink_lru(b, LIST_CLEAN);
1227
1228                 dm_bufio_cond_resched();
1229
1230                 /*
1231                  * If we dropped the lock, the list is no longer consistent,
1232                  * so we must restart the search.
1233                  *
1234                  * In the most common case, the buffer just processed is
1235                  * relinked to the clean list, so we won't loop scanning the
1236                  * same buffer again and again.
1237                  *
1238                  * This may livelock if there is another thread simultaneously
1239                  * dirtying buffers, so we count the number of buffers walked
1240                  * and if it exceeds the total number of buffers, it means that
1241                  * someone is doing some writes simultaneously with us.  In
1242                  * this case, stop, dropping the lock.
1243                  */
1244                 if (dropped_lock)
1245                         goto again;
1246         }
1247         wake_up(&c->free_buffer_wait);
1248         dm_bufio_unlock(c);
1249
1250         a = xchg(&c->async_write_error, 0);
1251         f = dm_bufio_issue_flush(c);
1252         if (a)
1253                 return a;
1254
1255         return f;
1256 }
1257 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1258
1259 /*
1260  * Use dm-io to send and empty barrier flush the device.
1261  */
1262 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1263 {
1264         struct dm_io_request io_req = {
1265                 .bi_rw = WRITE_FLUSH,
1266                 .mem.type = DM_IO_KMEM,
1267                 .mem.ptr.addr = NULL,
1268                 .client = c->dm_io,
1269         };
1270         struct dm_io_region io_reg = {
1271                 .bdev = c->bdev,
1272                 .sector = 0,
1273                 .count = 0,
1274         };
1275
1276         BUG_ON(dm_bufio_in_request());
1277
1278         return dm_io(&io_req, 1, &io_reg, NULL);
1279 }
1280 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1281
1282 /*
1283  * We first delete any other buffer that may be at that new location.
1284  *
1285  * Then, we write the buffer to the original location if it was dirty.
1286  *
1287  * Then, if we are the only one who is holding the buffer, relink the buffer
1288  * in the hash queue for the new location.
1289  *
1290  * If there was someone else holding the buffer, we write it to the new
1291  * location but not relink it, because that other user needs to have the buffer
1292  * at the same place.
1293  */
1294 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1295 {
1296         struct dm_bufio_client *c = b->c;
1297         struct dm_buffer *new;
1298
1299         BUG_ON(dm_bufio_in_request());
1300
1301         dm_bufio_lock(c);
1302
1303 retry:
1304         new = __find(c, new_block);
1305         if (new) {
1306                 if (new->hold_count) {
1307                         __wait_for_free_buffer(c);
1308                         goto retry;
1309                 }
1310
1311                 /*
1312                  * FIXME: Is there any point waiting for a write that's going
1313                  * to be overwritten in a bit?
1314                  */
1315                 __make_buffer_clean(new);
1316                 __unlink_buffer(new);
1317                 __free_buffer_wake(new);
1318         }
1319
1320         BUG_ON(!b->hold_count);
1321         BUG_ON(test_bit(B_READING, &b->state));
1322
1323         __write_dirty_buffer(b, NULL);
1324         if (b->hold_count == 1) {
1325                 wait_on_bit(&b->state, B_WRITING,
1326                             do_io_schedule, TASK_UNINTERRUPTIBLE);
1327                 set_bit(B_DIRTY, &b->state);
1328                 __unlink_buffer(b);
1329                 __link_buffer(b, new_block, LIST_DIRTY);
1330         } else {
1331                 sector_t old_block;
1332                 wait_on_bit_lock(&b->state, B_WRITING,
1333                                  do_io_schedule, TASK_UNINTERRUPTIBLE);
1334                 /*
1335                  * Relink buffer to "new_block" so that write_callback
1336                  * sees "new_block" as a block number.
1337                  * After the write, link the buffer back to old_block.
1338                  * All this must be done in bufio lock, so that block number
1339                  * change isn't visible to other threads.
1340                  */
1341                 old_block = b->block;
1342                 __unlink_buffer(b);
1343                 __link_buffer(b, new_block, b->list_mode);
1344                 submit_io(b, WRITE, new_block, write_endio);
1345                 wait_on_bit(&b->state, B_WRITING,
1346                             do_io_schedule, TASK_UNINTERRUPTIBLE);
1347                 __unlink_buffer(b);
1348                 __link_buffer(b, old_block, b->list_mode);
1349         }
1350
1351         dm_bufio_unlock(c);
1352         dm_bufio_release(b);
1353 }
1354 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1355
1356 /*
1357  * Free the given buffer.
1358  *
1359  * This is just a hint, if the buffer is in use or dirty, this function
1360  * does nothing.
1361  */
1362 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1363 {
1364         struct dm_buffer *b;
1365
1366         dm_bufio_lock(c);
1367
1368         b = __find(c, block);
1369         if (b && likely(!b->hold_count) && likely(!b->state)) {
1370                 __unlink_buffer(b);
1371                 __free_buffer_wake(b);
1372         }
1373
1374         dm_bufio_unlock(c);
1375 }
1376 EXPORT_SYMBOL(dm_bufio_forget);
1377
1378 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1379 {
1380         c->minimum_buffers = n;
1381 }
1382 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1383
1384 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1385 {
1386         return c->block_size;
1387 }
1388 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1389
1390 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1391 {
1392         return i_size_read(c->bdev->bd_inode) >>
1393                            (SECTOR_SHIFT + c->sectors_per_block_bits);
1394 }
1395 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1396
1397 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1398 {
1399         return b->block;
1400 }
1401 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1402
1403 void *dm_bufio_get_block_data(struct dm_buffer *b)
1404 {
1405         return b->data;
1406 }
1407 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1408
1409 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1410 {
1411         return b + 1;
1412 }
1413 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1414
1415 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1416 {
1417         return b->c;
1418 }
1419 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1420
1421 static void drop_buffers(struct dm_bufio_client *c)
1422 {
1423         struct dm_buffer *b;
1424         int i;
1425
1426         BUG_ON(dm_bufio_in_request());
1427
1428         /*
1429          * An optimization so that the buffers are not written one-by-one.
1430          */
1431         dm_bufio_write_dirty_buffers_async(c);
1432
1433         dm_bufio_lock(c);
1434
1435         while ((b = __get_unclaimed_buffer(c)))
1436                 __free_buffer_wake(b);
1437
1438         for (i = 0; i < LIST_SIZE; i++)
1439                 list_for_each_entry(b, &c->lru[i], lru_list)
1440                         DMERR("leaked buffer %llx, hold count %u, list %d",
1441                               (unsigned long long)b->block, b->hold_count, i);
1442
1443         for (i = 0; i < LIST_SIZE; i++)
1444                 BUG_ON(!list_empty(&c->lru[i]));
1445
1446         dm_bufio_unlock(c);
1447 }
1448
1449 /*
1450  * Test if the buffer is unused and too old, and commit it.
1451  * At if noio is set, we must not do any I/O because we hold
1452  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1453  * different bufio client.
1454  */
1455 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1456                                 unsigned long max_jiffies)
1457 {
1458         if (jiffies - b->last_accessed < max_jiffies)
1459                 return 0;
1460
1461         if (!(gfp & __GFP_IO)) {
1462                 if (test_bit(B_READING, &b->state) ||
1463                     test_bit(B_WRITING, &b->state) ||
1464                     test_bit(B_DIRTY, &b->state))
1465                         return 0;
1466         }
1467
1468         if (b->hold_count)
1469                 return 0;
1470
1471         __make_buffer_clean(b);
1472         __unlink_buffer(b);
1473         __free_buffer_wake(b);
1474
1475         return 1;
1476 }
1477
1478 static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1479                    gfp_t gfp_mask)
1480 {
1481         int l;
1482         struct dm_buffer *b, *tmp;
1483         long freed = 0;
1484
1485         for (l = 0; l < LIST_SIZE; l++) {
1486                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1487                         freed += __cleanup_old_buffer(b, gfp_mask, 0);
1488                         if (!--nr_to_scan)
1489                                 return freed;
1490                         dm_bufio_cond_resched();
1491                 }
1492         }
1493         return freed;
1494 }
1495
1496 static unsigned long
1497 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1498 {
1499         struct dm_bufio_client *c;
1500         unsigned long freed;
1501
1502         c = container_of(shrink, struct dm_bufio_client, shrinker);
1503         if (sc->gfp_mask & __GFP_IO)
1504                 dm_bufio_lock(c);
1505         else if (!dm_bufio_trylock(c))
1506                 return SHRINK_STOP;
1507
1508         freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1509         dm_bufio_unlock(c);
1510         return freed;
1511 }
1512
1513 static unsigned long
1514 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1515 {
1516         struct dm_bufio_client *c;
1517         unsigned long count;
1518
1519         c = container_of(shrink, struct dm_bufio_client, shrinker);
1520         if (sc->gfp_mask & __GFP_IO)
1521                 dm_bufio_lock(c);
1522         else if (!dm_bufio_trylock(c))
1523                 return 0;
1524
1525         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1526         dm_bufio_unlock(c);
1527         return count;
1528 }
1529
1530 /*
1531  * Create the buffering interface
1532  */
1533 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1534                                                unsigned reserved_buffers, unsigned aux_size,
1535                                                void (*alloc_callback)(struct dm_buffer *),
1536                                                void (*write_callback)(struct dm_buffer *))
1537 {
1538         int r;
1539         struct dm_bufio_client *c;
1540         unsigned i;
1541
1542         BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1543                (block_size & (block_size - 1)));
1544
1545         c = kzalloc(sizeof(*c), GFP_KERNEL);
1546         if (!c) {
1547                 r = -ENOMEM;
1548                 goto bad_client;
1549         }
1550         c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1551         if (!c->cache_hash) {
1552                 r = -ENOMEM;
1553                 goto bad_hash;
1554         }
1555
1556         c->bdev = bdev;
1557         c->block_size = block_size;
1558         c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1559         c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1560                                   ffs(block_size) - 1 - PAGE_SHIFT : 0;
1561         c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1562                                   PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1563
1564         c->aux_size = aux_size;
1565         c->alloc_callback = alloc_callback;
1566         c->write_callback = write_callback;
1567
1568         for (i = 0; i < LIST_SIZE; i++) {
1569                 INIT_LIST_HEAD(&c->lru[i]);
1570                 c->n_buffers[i] = 0;
1571         }
1572
1573         for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1574                 INIT_HLIST_HEAD(&c->cache_hash[i]);
1575
1576         mutex_init(&c->lock);
1577         INIT_LIST_HEAD(&c->reserved_buffers);
1578         c->need_reserved_buffers = reserved_buffers;
1579
1580         c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1581
1582         init_waitqueue_head(&c->free_buffer_wait);
1583         c->async_write_error = 0;
1584
1585         c->dm_io = dm_io_client_create();
1586         if (IS_ERR(c->dm_io)) {
1587                 r = PTR_ERR(c->dm_io);
1588                 goto bad_dm_io;
1589         }
1590
1591         mutex_lock(&dm_bufio_clients_lock);
1592         if (c->blocks_per_page_bits) {
1593                 if (!DM_BUFIO_CACHE_NAME(c)) {
1594                         DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1595                         if (!DM_BUFIO_CACHE_NAME(c)) {
1596                                 r = -ENOMEM;
1597                                 mutex_unlock(&dm_bufio_clients_lock);
1598                                 goto bad_cache;
1599                         }
1600                 }
1601
1602                 if (!DM_BUFIO_CACHE(c)) {
1603                         DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1604                                                               c->block_size,
1605                                                               c->block_size, 0, NULL);
1606                         if (!DM_BUFIO_CACHE(c)) {
1607                                 r = -ENOMEM;
1608                                 mutex_unlock(&dm_bufio_clients_lock);
1609                                 goto bad_cache;
1610                         }
1611                 }
1612         }
1613         mutex_unlock(&dm_bufio_clients_lock);
1614
1615         while (c->need_reserved_buffers) {
1616                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1617
1618                 if (!b) {
1619                         r = -ENOMEM;
1620                         goto bad_buffer;
1621                 }
1622                 __free_buffer_wake(b);
1623         }
1624
1625         mutex_lock(&dm_bufio_clients_lock);
1626         dm_bufio_client_count++;
1627         list_add(&c->client_list, &dm_bufio_all_clients);
1628         __cache_size_refresh();
1629         mutex_unlock(&dm_bufio_clients_lock);
1630
1631         c->shrinker.count_objects = dm_bufio_shrink_count;
1632         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1633         c->shrinker.seeks = 1;
1634         c->shrinker.batch = 0;
1635         register_shrinker(&c->shrinker);
1636
1637         return c;
1638
1639 bad_buffer:
1640 bad_cache:
1641         while (!list_empty(&c->reserved_buffers)) {
1642                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1643                                                  struct dm_buffer, lru_list);
1644                 list_del(&b->lru_list);
1645                 free_buffer(b);
1646         }
1647         dm_io_client_destroy(c->dm_io);
1648 bad_dm_io:
1649         vfree(c->cache_hash);
1650 bad_hash:
1651         kfree(c);
1652 bad_client:
1653         return ERR_PTR(r);
1654 }
1655 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1656
1657 /*
1658  * Free the buffering interface.
1659  * It is required that there are no references on any buffers.
1660  */
1661 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1662 {
1663         unsigned i;
1664
1665         drop_buffers(c);
1666
1667         unregister_shrinker(&c->shrinker);
1668
1669         mutex_lock(&dm_bufio_clients_lock);
1670
1671         list_del(&c->client_list);
1672         dm_bufio_client_count--;
1673         __cache_size_refresh();
1674
1675         mutex_unlock(&dm_bufio_clients_lock);
1676
1677         for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1678                 BUG_ON(!hlist_empty(&c->cache_hash[i]));
1679
1680         BUG_ON(c->need_reserved_buffers);
1681
1682         while (!list_empty(&c->reserved_buffers)) {
1683                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1684                                                  struct dm_buffer, lru_list);
1685                 list_del(&b->lru_list);
1686                 free_buffer(b);
1687         }
1688
1689         for (i = 0; i < LIST_SIZE; i++)
1690                 if (c->n_buffers[i])
1691                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1692
1693         for (i = 0; i < LIST_SIZE; i++)
1694                 BUG_ON(c->n_buffers[i]);
1695
1696         dm_io_client_destroy(c->dm_io);
1697         vfree(c->cache_hash);
1698         kfree(c);
1699 }
1700 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1701
1702 static void cleanup_old_buffers(void)
1703 {
1704         unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1705         struct dm_bufio_client *c;
1706
1707         if (max_age > ULONG_MAX / HZ)
1708                 max_age = ULONG_MAX / HZ;
1709
1710         mutex_lock(&dm_bufio_clients_lock);
1711         list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1712                 if (!dm_bufio_trylock(c))
1713                         continue;
1714
1715                 while (!list_empty(&c->lru[LIST_CLEAN])) {
1716                         struct dm_buffer *b;
1717                         b = list_entry(c->lru[LIST_CLEAN].prev,
1718                                        struct dm_buffer, lru_list);
1719                         if (!__cleanup_old_buffer(b, 0, max_age * HZ))
1720                                 break;
1721                         dm_bufio_cond_resched();
1722                 }
1723
1724                 dm_bufio_unlock(c);
1725                 dm_bufio_cond_resched();
1726         }
1727         mutex_unlock(&dm_bufio_clients_lock);
1728 }
1729
1730 static struct workqueue_struct *dm_bufio_wq;
1731 static struct delayed_work dm_bufio_work;
1732
1733 static void work_fn(struct work_struct *w)
1734 {
1735         cleanup_old_buffers();
1736
1737         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1738                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1739 }
1740
1741 /*----------------------------------------------------------------
1742  * Module setup
1743  *--------------------------------------------------------------*/
1744
1745 /*
1746  * This is called only once for the whole dm_bufio module.
1747  * It initializes memory limit.
1748  */
1749 static int __init dm_bufio_init(void)
1750 {
1751         __u64 mem;
1752
1753         dm_bufio_allocated_kmem_cache = 0;
1754         dm_bufio_allocated_get_free_pages = 0;
1755         dm_bufio_allocated_vmalloc = 0;
1756         dm_bufio_current_allocated = 0;
1757
1758         memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1759         memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1760
1761         mem = (__u64)((totalram_pages - totalhigh_pages) *
1762                       DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1763
1764         if (mem > ULONG_MAX)
1765                 mem = ULONG_MAX;
1766
1767 #ifdef CONFIG_MMU
1768         /*
1769          * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1770          * in fs/proc/internal.h
1771          */
1772         if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1773                 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1774 #endif
1775
1776         dm_bufio_default_cache_size = mem;
1777
1778         mutex_lock(&dm_bufio_clients_lock);
1779         __cache_size_refresh();
1780         mutex_unlock(&dm_bufio_clients_lock);
1781
1782         dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1783         if (!dm_bufio_wq)
1784                 return -ENOMEM;
1785
1786         INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1787         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1788                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1789
1790         return 0;
1791 }
1792
1793 /*
1794  * This is called once when unloading the dm_bufio module.
1795  */
1796 static void __exit dm_bufio_exit(void)
1797 {
1798         int bug = 0;
1799         int i;
1800
1801         cancel_delayed_work_sync(&dm_bufio_work);
1802         destroy_workqueue(dm_bufio_wq);
1803
1804         for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1805                 struct kmem_cache *kc = dm_bufio_caches[i];
1806
1807                 if (kc)
1808                         kmem_cache_destroy(kc);
1809         }
1810
1811         for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1812                 kfree(dm_bufio_cache_names[i]);
1813
1814         if (dm_bufio_client_count) {
1815                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1816                         __func__, dm_bufio_client_count);
1817                 bug = 1;
1818         }
1819
1820         if (dm_bufio_current_allocated) {
1821                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1822                         __func__, dm_bufio_current_allocated);
1823                 bug = 1;
1824         }
1825
1826         if (dm_bufio_allocated_get_free_pages) {
1827                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1828                        __func__, dm_bufio_allocated_get_free_pages);
1829                 bug = 1;
1830         }
1831
1832         if (dm_bufio_allocated_vmalloc) {
1833                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1834                        __func__, dm_bufio_allocated_vmalloc);
1835                 bug = 1;
1836         }
1837
1838         if (bug)
1839                 BUG();
1840 }
1841
1842 module_init(dm_bufio_init)
1843 module_exit(dm_bufio_exit)
1844
1845 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1846 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1847
1848 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1849 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1850
1851 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1852 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1853
1854 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1855 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1856
1857 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1858 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1859
1860 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1861 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1862
1863 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1864 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1865
1866 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1867 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1868 MODULE_LICENSE("GPL");