md/raid1: stop mdx_raid1 thread when raid1 array run failed
[platform/kernel/linux-starfive.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include <linux/dm-bufio.h>
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21 #include <linux/jump_label.h>
22
23 #define DM_MSG_PREFIX "bufio"
24
25 /*
26  * Memory management policy:
27  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
28  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
29  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
30  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
31  *      dirty buffers.
32  */
33 #define DM_BUFIO_MIN_BUFFERS            8
34
35 #define DM_BUFIO_MEMORY_PERCENT         2
36 #define DM_BUFIO_VMALLOC_PERCENT        25
37 #define DM_BUFIO_WRITEBACK_RATIO        3
38 #define DM_BUFIO_LOW_WATERMARK_RATIO    16
39
40 /*
41  * Check buffer ages in this interval (seconds)
42  */
43 #define DM_BUFIO_WORK_TIMER_SECS        30
44
45 /*
46  * Free buffers when they are older than this (seconds)
47  */
48 #define DM_BUFIO_DEFAULT_AGE_SECS       300
49
50 /*
51  * The nr of bytes of cached data to keep around.
52  */
53 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
54
55 /*
56  * Align buffer writes to this boundary.
57  * Tests show that SSDs have the highest IOPS when using 4k writes.
58  */
59 #define DM_BUFIO_WRITE_ALIGN            4096
60
61 /*
62  * dm_buffer->list_mode
63  */
64 #define LIST_CLEAN      0
65 #define LIST_DIRTY      1
66 #define LIST_SIZE       2
67
68 /*
69  * Linking of buffers:
70  *      All buffers are linked to buffer_tree with their node field.
71  *
72  *      Clean buffers that are not being written (B_WRITING not set)
73  *      are linked to lru[LIST_CLEAN] with their lru_list field.
74  *
75  *      Dirty and clean buffers that are being written are linked to
76  *      lru[LIST_DIRTY] with their lru_list field. When the write
77  *      finishes, the buffer cannot be relinked immediately (because we
78  *      are in an interrupt context and relinking requires process
79  *      context), so some clean-not-writing buffers can be held on
80  *      dirty_lru too.  They are later added to lru in the process
81  *      context.
82  */
83 struct dm_bufio_client {
84         struct mutex lock;
85         spinlock_t spinlock;
86         bool no_sleep;
87
88         struct list_head lru[LIST_SIZE];
89         unsigned long n_buffers[LIST_SIZE];
90
91         struct block_device *bdev;
92         unsigned block_size;
93         s8 sectors_per_block_bits;
94         void (*alloc_callback)(struct dm_buffer *);
95         void (*write_callback)(struct dm_buffer *);
96         struct kmem_cache *slab_buffer;
97         struct kmem_cache *slab_cache;
98         struct dm_io_client *dm_io;
99
100         struct list_head reserved_buffers;
101         unsigned need_reserved_buffers;
102
103         unsigned minimum_buffers;
104
105         struct rb_root buffer_tree;
106         wait_queue_head_t free_buffer_wait;
107
108         sector_t start;
109
110         int async_write_error;
111
112         struct list_head client_list;
113
114         struct shrinker shrinker;
115         struct work_struct shrink_work;
116         atomic_long_t need_shrink;
117 };
118
119 /*
120  * Buffer state bits.
121  */
122 #define B_READING       0
123 #define B_WRITING       1
124 #define B_DIRTY         2
125
126 /*
127  * Describes how the block was allocated:
128  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
129  * See the comment at alloc_buffer_data.
130  */
131 enum data_mode {
132         DATA_MODE_SLAB = 0,
133         DATA_MODE_GET_FREE_PAGES = 1,
134         DATA_MODE_VMALLOC = 2,
135         DATA_MODE_LIMIT = 3
136 };
137
138 struct dm_buffer {
139         struct rb_node node;
140         struct list_head lru_list;
141         struct list_head global_list;
142         sector_t block;
143         void *data;
144         unsigned char data_mode;                /* DATA_MODE_* */
145         unsigned char list_mode;                /* LIST_* */
146         blk_status_t read_error;
147         blk_status_t write_error;
148         unsigned accessed;
149         unsigned hold_count;
150         unsigned long state;
151         unsigned long last_accessed;
152         unsigned dirty_start;
153         unsigned dirty_end;
154         unsigned write_start;
155         unsigned write_end;
156         struct dm_bufio_client *c;
157         struct list_head write_list;
158         void (*end_io)(struct dm_buffer *, blk_status_t);
159 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
160 #define MAX_STACK 10
161         unsigned int stack_len;
162         unsigned long stack_entries[MAX_STACK];
163 #endif
164 };
165
166 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
167
168 /*----------------------------------------------------------------*/
169
170 #define dm_bufio_in_request()   (!!current->bio_list)
171
172 static void dm_bufio_lock(struct dm_bufio_client *c)
173 {
174         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
175                 spin_lock_bh(&c->spinlock);
176         else
177                 mutex_lock_nested(&c->lock, dm_bufio_in_request());
178 }
179
180 static int dm_bufio_trylock(struct dm_bufio_client *c)
181 {
182         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
183                 return spin_trylock_bh(&c->spinlock);
184         else
185                 return mutex_trylock(&c->lock);
186 }
187
188 static void dm_bufio_unlock(struct dm_bufio_client *c)
189 {
190         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
191                 spin_unlock_bh(&c->spinlock);
192         else
193                 mutex_unlock(&c->lock);
194 }
195
196 /*----------------------------------------------------------------*/
197
198 /*
199  * Default cache size: available memory divided by the ratio.
200  */
201 static unsigned long dm_bufio_default_cache_size;
202
203 /*
204  * Total cache size set by the user.
205  */
206 static unsigned long dm_bufio_cache_size;
207
208 /*
209  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
210  * at any time.  If it disagrees, the user has changed cache size.
211  */
212 static unsigned long dm_bufio_cache_size_latch;
213
214 static DEFINE_SPINLOCK(global_spinlock);
215
216 static LIST_HEAD(global_queue);
217
218 static unsigned long global_num = 0;
219
220 /*
221  * Buffers are freed after this timeout
222  */
223 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
224 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
225
226 static unsigned long dm_bufio_peak_allocated;
227 static unsigned long dm_bufio_allocated_kmem_cache;
228 static unsigned long dm_bufio_allocated_get_free_pages;
229 static unsigned long dm_bufio_allocated_vmalloc;
230 static unsigned long dm_bufio_current_allocated;
231
232 /*----------------------------------------------------------------*/
233
234 /*
235  * The current number of clients.
236  */
237 static int dm_bufio_client_count;
238
239 /*
240  * The list of all clients.
241  */
242 static LIST_HEAD(dm_bufio_all_clients);
243
244 /*
245  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
246  */
247 static DEFINE_MUTEX(dm_bufio_clients_lock);
248
249 static struct workqueue_struct *dm_bufio_wq;
250 static struct delayed_work dm_bufio_cleanup_old_work;
251 static struct work_struct dm_bufio_replacement_work;
252
253
254 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
255 static void buffer_record_stack(struct dm_buffer *b)
256 {
257         b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
258 }
259 #endif
260
261 /*----------------------------------------------------------------
262  * A red/black tree acts as an index for all the buffers.
263  *--------------------------------------------------------------*/
264 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
265 {
266         struct rb_node *n = c->buffer_tree.rb_node;
267         struct dm_buffer *b;
268
269         while (n) {
270                 b = container_of(n, struct dm_buffer, node);
271
272                 if (b->block == block)
273                         return b;
274
275                 n = block < b->block ? n->rb_left : n->rb_right;
276         }
277
278         return NULL;
279 }
280
281 static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
282 {
283         struct rb_node *n = c->buffer_tree.rb_node;
284         struct dm_buffer *b;
285         struct dm_buffer *best = NULL;
286
287         while (n) {
288                 b = container_of(n, struct dm_buffer, node);
289
290                 if (b->block == block)
291                         return b;
292
293                 if (block <= b->block) {
294                         n = n->rb_left;
295                         best = b;
296                 } else {
297                         n = n->rb_right;
298                 }
299         }
300
301         return best;
302 }
303
304 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
305 {
306         struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
307         struct dm_buffer *found;
308
309         while (*new) {
310                 found = container_of(*new, struct dm_buffer, node);
311
312                 if (found->block == b->block) {
313                         BUG_ON(found != b);
314                         return;
315                 }
316
317                 parent = *new;
318                 new = b->block < found->block ?
319                         &found->node.rb_left : &found->node.rb_right;
320         }
321
322         rb_link_node(&b->node, parent, new);
323         rb_insert_color(&b->node, &c->buffer_tree);
324 }
325
326 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
327 {
328         rb_erase(&b->node, &c->buffer_tree);
329 }
330
331 /*----------------------------------------------------------------*/
332
333 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
334 {
335         unsigned char data_mode;
336         long diff;
337
338         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
339                 &dm_bufio_allocated_kmem_cache,
340                 &dm_bufio_allocated_get_free_pages,
341                 &dm_bufio_allocated_vmalloc,
342         };
343
344         data_mode = b->data_mode;
345         diff = (long)b->c->block_size;
346         if (unlink)
347                 diff = -diff;
348
349         spin_lock(&global_spinlock);
350
351         *class_ptr[data_mode] += diff;
352
353         dm_bufio_current_allocated += diff;
354
355         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
356                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
357
358         b->accessed = 1;
359
360         if (!unlink) {
361                 list_add(&b->global_list, &global_queue);
362                 global_num++;
363                 if (dm_bufio_current_allocated > dm_bufio_cache_size)
364                         queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
365         } else {
366                 list_del(&b->global_list);
367                 global_num--;
368         }
369
370         spin_unlock(&global_spinlock);
371 }
372
373 /*
374  * Change the number of clients and recalculate per-client limit.
375  */
376 static void __cache_size_refresh(void)
377 {
378         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
379         BUG_ON(dm_bufio_client_count < 0);
380
381         dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
382
383         /*
384          * Use default if set to 0 and report the actual cache size used.
385          */
386         if (!dm_bufio_cache_size_latch) {
387                 (void)cmpxchg(&dm_bufio_cache_size, 0,
388                               dm_bufio_default_cache_size);
389                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
390         }
391 }
392
393 /*
394  * Allocating buffer data.
395  *
396  * Small buffers are allocated with kmem_cache, to use space optimally.
397  *
398  * For large buffers, we choose between get_free_pages and vmalloc.
399  * Each has advantages and disadvantages.
400  *
401  * __get_free_pages can randomly fail if the memory is fragmented.
402  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
403  * as low as 128M) so using it for caching is not appropriate.
404  *
405  * If the allocation may fail we use __get_free_pages. Memory fragmentation
406  * won't have a fatal effect here, but it just causes flushes of some other
407  * buffers and more I/O will be performed. Don't use __get_free_pages if it
408  * always fails (i.e. order >= MAX_ORDER).
409  *
410  * If the allocation shouldn't fail we use __vmalloc. This is only for the
411  * initial reserve allocation, so there's no risk of wasting all vmalloc
412  * space.
413  */
414 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
415                                unsigned char *data_mode)
416 {
417         if (unlikely(c->slab_cache != NULL)) {
418                 *data_mode = DATA_MODE_SLAB;
419                 return kmem_cache_alloc(c->slab_cache, gfp_mask);
420         }
421
422         if (c->block_size <= KMALLOC_MAX_SIZE &&
423             gfp_mask & __GFP_NORETRY) {
424                 *data_mode = DATA_MODE_GET_FREE_PAGES;
425                 return (void *)__get_free_pages(gfp_mask,
426                                                 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
427         }
428
429         *data_mode = DATA_MODE_VMALLOC;
430
431         /*
432          * __vmalloc allocates the data pages and auxiliary structures with
433          * gfp_flags that were specified, but pagetables are always allocated
434          * with GFP_KERNEL, no matter what was specified as gfp_mask.
435          *
436          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
437          * all allocations done by this process (including pagetables) are done
438          * as if GFP_NOIO was specified.
439          */
440         if (gfp_mask & __GFP_NORETRY) {
441                 unsigned noio_flag = memalloc_noio_save();
442                 void *ptr = __vmalloc(c->block_size, gfp_mask);
443
444                 memalloc_noio_restore(noio_flag);
445                 return ptr;
446         }
447
448         return __vmalloc(c->block_size, gfp_mask);
449 }
450
451 /*
452  * Free buffer's data.
453  */
454 static void free_buffer_data(struct dm_bufio_client *c,
455                              void *data, unsigned char data_mode)
456 {
457         switch (data_mode) {
458         case DATA_MODE_SLAB:
459                 kmem_cache_free(c->slab_cache, data);
460                 break;
461
462         case DATA_MODE_GET_FREE_PAGES:
463                 free_pages((unsigned long)data,
464                            c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
465                 break;
466
467         case DATA_MODE_VMALLOC:
468                 vfree(data);
469                 break;
470
471         default:
472                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
473                        data_mode);
474                 BUG();
475         }
476 }
477
478 /*
479  * Allocate buffer and its data.
480  */
481 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
482 {
483         struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
484
485         if (!b)
486                 return NULL;
487
488         b->c = c;
489
490         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
491         if (!b->data) {
492                 kmem_cache_free(c->slab_buffer, b);
493                 return NULL;
494         }
495
496 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
497         b->stack_len = 0;
498 #endif
499         return b;
500 }
501
502 /*
503  * Free buffer and its data.
504  */
505 static void free_buffer(struct dm_buffer *b)
506 {
507         struct dm_bufio_client *c = b->c;
508
509         free_buffer_data(c, b->data, b->data_mode);
510         kmem_cache_free(c->slab_buffer, b);
511 }
512
513 /*
514  * Link buffer to the buffer tree and clean or dirty queue.
515  */
516 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
517 {
518         struct dm_bufio_client *c = b->c;
519
520         c->n_buffers[dirty]++;
521         b->block = block;
522         b->list_mode = dirty;
523         list_add(&b->lru_list, &c->lru[dirty]);
524         __insert(b->c, b);
525         b->last_accessed = jiffies;
526
527         adjust_total_allocated(b, false);
528 }
529
530 /*
531  * Unlink buffer from the buffer tree and dirty or clean queue.
532  */
533 static void __unlink_buffer(struct dm_buffer *b)
534 {
535         struct dm_bufio_client *c = b->c;
536
537         BUG_ON(!c->n_buffers[b->list_mode]);
538
539         c->n_buffers[b->list_mode]--;
540         __remove(b->c, b);
541         list_del(&b->lru_list);
542
543         adjust_total_allocated(b, true);
544 }
545
546 /*
547  * Place the buffer to the head of dirty or clean LRU queue.
548  */
549 static void __relink_lru(struct dm_buffer *b, int dirty)
550 {
551         struct dm_bufio_client *c = b->c;
552
553         b->accessed = 1;
554
555         BUG_ON(!c->n_buffers[b->list_mode]);
556
557         c->n_buffers[b->list_mode]--;
558         c->n_buffers[dirty]++;
559         b->list_mode = dirty;
560         list_move(&b->lru_list, &c->lru[dirty]);
561         b->last_accessed = jiffies;
562 }
563
564 /*----------------------------------------------------------------
565  * Submit I/O on the buffer.
566  *
567  * Bio interface is faster but it has some problems:
568  *      the vector list is limited (increasing this limit increases
569  *      memory-consumption per buffer, so it is not viable);
570  *
571  *      the memory must be direct-mapped, not vmalloced;
572  *
573  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
574  * it is not vmalloced, try using the bio interface.
575  *
576  * If the buffer is big, if it is vmalloced or if the underlying device
577  * rejects the bio because it is too large, use dm-io layer to do the I/O.
578  * The dm-io layer splits the I/O into multiple requests, avoiding the above
579  * shortcomings.
580  *--------------------------------------------------------------*/
581
582 /*
583  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
584  * that the request was handled directly with bio interface.
585  */
586 static void dmio_complete(unsigned long error, void *context)
587 {
588         struct dm_buffer *b = context;
589
590         b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
591 }
592
593 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
594                      unsigned n_sectors, unsigned offset)
595 {
596         int r;
597         struct dm_io_request io_req = {
598                 .bi_opf = op,
599                 .notify.fn = dmio_complete,
600                 .notify.context = b,
601                 .client = b->c->dm_io,
602         };
603         struct dm_io_region region = {
604                 .bdev = b->c->bdev,
605                 .sector = sector,
606                 .count = n_sectors,
607         };
608
609         if (b->data_mode != DATA_MODE_VMALLOC) {
610                 io_req.mem.type = DM_IO_KMEM;
611                 io_req.mem.ptr.addr = (char *)b->data + offset;
612         } else {
613                 io_req.mem.type = DM_IO_VMA;
614                 io_req.mem.ptr.vma = (char *)b->data + offset;
615         }
616
617         r = dm_io(&io_req, 1, &region, NULL);
618         if (unlikely(r))
619                 b->end_io(b, errno_to_blk_status(r));
620 }
621
622 static void bio_complete(struct bio *bio)
623 {
624         struct dm_buffer *b = bio->bi_private;
625         blk_status_t status = bio->bi_status;
626         bio_uninit(bio);
627         kfree(bio);
628         b->end_io(b, status);
629 }
630
631 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
632                     unsigned n_sectors, unsigned offset)
633 {
634         struct bio *bio;
635         char *ptr;
636         unsigned vec_size, len;
637
638         vec_size = b->c->block_size >> PAGE_SHIFT;
639         if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
640                 vec_size += 2;
641
642         bio = bio_kmalloc(vec_size, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
643         if (!bio) {
644 dmio:
645                 use_dmio(b, op, sector, n_sectors, offset);
646                 return;
647         }
648         bio_init(bio, b->c->bdev, bio->bi_inline_vecs, vec_size, op);
649         bio->bi_iter.bi_sector = sector;
650         bio->bi_end_io = bio_complete;
651         bio->bi_private = b;
652
653         ptr = (char *)b->data + offset;
654         len = n_sectors << SECTOR_SHIFT;
655
656         do {
657                 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
658                 if (!bio_add_page(bio, virt_to_page(ptr), this_step,
659                                   offset_in_page(ptr))) {
660                         bio_put(bio);
661                         goto dmio;
662                 }
663
664                 len -= this_step;
665                 ptr += this_step;
666         } while (len > 0);
667
668         submit_bio(bio);
669 }
670
671 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
672 {
673         sector_t sector;
674
675         if (likely(c->sectors_per_block_bits >= 0))
676                 sector = block << c->sectors_per_block_bits;
677         else
678                 sector = block * (c->block_size >> SECTOR_SHIFT);
679         sector += c->start;
680
681         return sector;
682 }
683
684 static void submit_io(struct dm_buffer *b, enum req_op op,
685                       void (*end_io)(struct dm_buffer *, blk_status_t))
686 {
687         unsigned n_sectors;
688         sector_t sector;
689         unsigned offset, end;
690
691         b->end_io = end_io;
692
693         sector = block_to_sector(b->c, b->block);
694
695         if (op != REQ_OP_WRITE) {
696                 n_sectors = b->c->block_size >> SECTOR_SHIFT;
697                 offset = 0;
698         } else {
699                 if (b->c->write_callback)
700                         b->c->write_callback(b);
701                 offset = b->write_start;
702                 end = b->write_end;
703                 offset &= -DM_BUFIO_WRITE_ALIGN;
704                 end += DM_BUFIO_WRITE_ALIGN - 1;
705                 end &= -DM_BUFIO_WRITE_ALIGN;
706                 if (unlikely(end > b->c->block_size))
707                         end = b->c->block_size;
708
709                 sector += offset >> SECTOR_SHIFT;
710                 n_sectors = (end - offset) >> SECTOR_SHIFT;
711         }
712
713         if (b->data_mode != DATA_MODE_VMALLOC)
714                 use_bio(b, op, sector, n_sectors, offset);
715         else
716                 use_dmio(b, op, sector, n_sectors, offset);
717 }
718
719 /*----------------------------------------------------------------
720  * Writing dirty buffers
721  *--------------------------------------------------------------*/
722
723 /*
724  * The endio routine for write.
725  *
726  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
727  * it.
728  */
729 static void write_endio(struct dm_buffer *b, blk_status_t status)
730 {
731         b->write_error = status;
732         if (unlikely(status)) {
733                 struct dm_bufio_client *c = b->c;
734
735                 (void)cmpxchg(&c->async_write_error, 0,
736                                 blk_status_to_errno(status));
737         }
738
739         BUG_ON(!test_bit(B_WRITING, &b->state));
740
741         smp_mb__before_atomic();
742         clear_bit(B_WRITING, &b->state);
743         smp_mb__after_atomic();
744
745         wake_up_bit(&b->state, B_WRITING);
746 }
747
748 /*
749  * Initiate a write on a dirty buffer, but don't wait for it.
750  *
751  * - If the buffer is not dirty, exit.
752  * - If there some previous write going on, wait for it to finish (we can't
753  *   have two writes on the same buffer simultaneously).
754  * - Submit our write and don't wait on it. We set B_WRITING indicating
755  *   that there is a write in progress.
756  */
757 static void __write_dirty_buffer(struct dm_buffer *b,
758                                  struct list_head *write_list)
759 {
760         if (!test_bit(B_DIRTY, &b->state))
761                 return;
762
763         clear_bit(B_DIRTY, &b->state);
764         wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
765
766         b->write_start = b->dirty_start;
767         b->write_end = b->dirty_end;
768
769         if (!write_list)
770                 submit_io(b, REQ_OP_WRITE, write_endio);
771         else
772                 list_add_tail(&b->write_list, write_list);
773 }
774
775 static void __flush_write_list(struct list_head *write_list)
776 {
777         struct blk_plug plug;
778         blk_start_plug(&plug);
779         while (!list_empty(write_list)) {
780                 struct dm_buffer *b =
781                         list_entry(write_list->next, struct dm_buffer, write_list);
782                 list_del(&b->write_list);
783                 submit_io(b, REQ_OP_WRITE, write_endio);
784                 cond_resched();
785         }
786         blk_finish_plug(&plug);
787 }
788
789 /*
790  * Wait until any activity on the buffer finishes.  Possibly write the
791  * buffer if it is dirty.  When this function finishes, there is no I/O
792  * running on the buffer and the buffer is not dirty.
793  */
794 static void __make_buffer_clean(struct dm_buffer *b)
795 {
796         BUG_ON(b->hold_count);
797
798         /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
799         if (!smp_load_acquire(&b->state))       /* fast case */
800                 return;
801
802         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
803         __write_dirty_buffer(b, NULL);
804         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
805 }
806
807 /*
808  * Find some buffer that is not held by anybody, clean it, unlink it and
809  * return it.
810  */
811 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
812 {
813         struct dm_buffer *b;
814
815         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
816                 BUG_ON(test_bit(B_WRITING, &b->state));
817                 BUG_ON(test_bit(B_DIRTY, &b->state));
818
819                 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
820                     unlikely(test_bit_acquire(B_READING, &b->state)))
821                         continue;
822
823                 if (!b->hold_count) {
824                         __make_buffer_clean(b);
825                         __unlink_buffer(b);
826                         return b;
827                 }
828                 cond_resched();
829         }
830
831         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
832                 return NULL;
833
834         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
835                 BUG_ON(test_bit(B_READING, &b->state));
836
837                 if (!b->hold_count) {
838                         __make_buffer_clean(b);
839                         __unlink_buffer(b);
840                         return b;
841                 }
842                 cond_resched();
843         }
844
845         return NULL;
846 }
847
848 /*
849  * Wait until some other threads free some buffer or release hold count on
850  * some buffer.
851  *
852  * This function is entered with c->lock held, drops it and regains it
853  * before exiting.
854  */
855 static void __wait_for_free_buffer(struct dm_bufio_client *c)
856 {
857         DECLARE_WAITQUEUE(wait, current);
858
859         add_wait_queue(&c->free_buffer_wait, &wait);
860         set_current_state(TASK_UNINTERRUPTIBLE);
861         dm_bufio_unlock(c);
862
863         io_schedule();
864
865         remove_wait_queue(&c->free_buffer_wait, &wait);
866
867         dm_bufio_lock(c);
868 }
869
870 enum new_flag {
871         NF_FRESH = 0,
872         NF_READ = 1,
873         NF_GET = 2,
874         NF_PREFETCH = 3
875 };
876
877 /*
878  * Allocate a new buffer. If the allocation is not possible, wait until
879  * some other thread frees a buffer.
880  *
881  * May drop the lock and regain it.
882  */
883 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
884 {
885         struct dm_buffer *b;
886         bool tried_noio_alloc = false;
887
888         /*
889          * dm-bufio is resistant to allocation failures (it just keeps
890          * one buffer reserved in cases all the allocations fail).
891          * So set flags to not try too hard:
892          *      GFP_NOWAIT: don't wait; if we need to sleep we'll release our
893          *                  mutex and wait ourselves.
894          *      __GFP_NORETRY: don't retry and rather return failure
895          *      __GFP_NOMEMALLOC: don't use emergency reserves
896          *      __GFP_NOWARN: don't print a warning in case of failure
897          *
898          * For debugging, if we set the cache size to 1, no new buffers will
899          * be allocated.
900          */
901         while (1) {
902                 if (dm_bufio_cache_size_latch != 1) {
903                         b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
904                         if (b)
905                                 return b;
906                 }
907
908                 if (nf == NF_PREFETCH)
909                         return NULL;
910
911                 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
912                         dm_bufio_unlock(c);
913                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
914                         dm_bufio_lock(c);
915                         if (b)
916                                 return b;
917                         tried_noio_alloc = true;
918                 }
919
920                 if (!list_empty(&c->reserved_buffers)) {
921                         b = list_entry(c->reserved_buffers.next,
922                                        struct dm_buffer, lru_list);
923                         list_del(&b->lru_list);
924                         c->need_reserved_buffers++;
925
926                         return b;
927                 }
928
929                 b = __get_unclaimed_buffer(c);
930                 if (b)
931                         return b;
932
933                 __wait_for_free_buffer(c);
934         }
935 }
936
937 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
938 {
939         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
940
941         if (!b)
942                 return NULL;
943
944         if (c->alloc_callback)
945                 c->alloc_callback(b);
946
947         return b;
948 }
949
950 /*
951  * Free a buffer and wake other threads waiting for free buffers.
952  */
953 static void __free_buffer_wake(struct dm_buffer *b)
954 {
955         struct dm_bufio_client *c = b->c;
956
957         if (!c->need_reserved_buffers)
958                 free_buffer(b);
959         else {
960                 list_add(&b->lru_list, &c->reserved_buffers);
961                 c->need_reserved_buffers--;
962         }
963
964         wake_up(&c->free_buffer_wait);
965 }
966
967 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
968                                         struct list_head *write_list)
969 {
970         struct dm_buffer *b, *tmp;
971
972         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
973                 BUG_ON(test_bit(B_READING, &b->state));
974
975                 if (!test_bit(B_DIRTY, &b->state) &&
976                     !test_bit(B_WRITING, &b->state)) {
977                         __relink_lru(b, LIST_CLEAN);
978                         continue;
979                 }
980
981                 if (no_wait && test_bit(B_WRITING, &b->state))
982                         return;
983
984                 __write_dirty_buffer(b, write_list);
985                 cond_resched();
986         }
987 }
988
989 /*
990  * Check if we're over watermark.
991  * If we are over threshold_buffers, start freeing buffers.
992  * If we're over "limit_buffers", block until we get under the limit.
993  */
994 static void __check_watermark(struct dm_bufio_client *c,
995                               struct list_head *write_list)
996 {
997         if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
998                 __write_dirty_buffers_async(c, 1, write_list);
999 }
1000
1001 /*----------------------------------------------------------------
1002  * Getting a buffer
1003  *--------------------------------------------------------------*/
1004
1005 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1006                                      enum new_flag nf, int *need_submit,
1007                                      struct list_head *write_list)
1008 {
1009         struct dm_buffer *b, *new_b = NULL;
1010
1011         *need_submit = 0;
1012
1013         b = __find(c, block);
1014         if (b)
1015                 goto found_buffer;
1016
1017         if (nf == NF_GET)
1018                 return NULL;
1019
1020         new_b = __alloc_buffer_wait(c, nf);
1021         if (!new_b)
1022                 return NULL;
1023
1024         /*
1025          * We've had a period where the mutex was unlocked, so need to
1026          * recheck the buffer tree.
1027          */
1028         b = __find(c, block);
1029         if (b) {
1030                 __free_buffer_wake(new_b);
1031                 goto found_buffer;
1032         }
1033
1034         __check_watermark(c, write_list);
1035
1036         b = new_b;
1037         b->hold_count = 1;
1038         b->read_error = 0;
1039         b->write_error = 0;
1040         __link_buffer(b, block, LIST_CLEAN);
1041
1042         if (nf == NF_FRESH) {
1043                 b->state = 0;
1044                 return b;
1045         }
1046
1047         b->state = 1 << B_READING;
1048         *need_submit = 1;
1049
1050         return b;
1051
1052 found_buffer:
1053         if (nf == NF_PREFETCH)
1054                 return NULL;
1055         /*
1056          * Note: it is essential that we don't wait for the buffer to be
1057          * read if dm_bufio_get function is used. Both dm_bufio_get and
1058          * dm_bufio_prefetch can be used in the driver request routine.
1059          * If the user called both dm_bufio_prefetch and dm_bufio_get on
1060          * the same buffer, it would deadlock if we waited.
1061          */
1062         if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state)))
1063                 return NULL;
1064
1065         b->hold_count++;
1066         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1067                      test_bit(B_WRITING, &b->state));
1068         return b;
1069 }
1070
1071 /*
1072  * The endio routine for reading: set the error, clear the bit and wake up
1073  * anyone waiting on the buffer.
1074  */
1075 static void read_endio(struct dm_buffer *b, blk_status_t status)
1076 {
1077         b->read_error = status;
1078
1079         BUG_ON(!test_bit(B_READING, &b->state));
1080
1081         smp_mb__before_atomic();
1082         clear_bit(B_READING, &b->state);
1083         smp_mb__after_atomic();
1084
1085         wake_up_bit(&b->state, B_READING);
1086 }
1087
1088 /*
1089  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1090  * functions is similar except that dm_bufio_new doesn't read the
1091  * buffer from the disk (assuming that the caller overwrites all the data
1092  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1093  */
1094 static void *new_read(struct dm_bufio_client *c, sector_t block,
1095                       enum new_flag nf, struct dm_buffer **bp)
1096 {
1097         int need_submit;
1098         struct dm_buffer *b;
1099
1100         LIST_HEAD(write_list);
1101
1102         dm_bufio_lock(c);
1103         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1104 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1105         if (b && b->hold_count == 1)
1106                 buffer_record_stack(b);
1107 #endif
1108         dm_bufio_unlock(c);
1109
1110         __flush_write_list(&write_list);
1111
1112         if (!b)
1113                 return NULL;
1114
1115         if (need_submit)
1116                 submit_io(b, REQ_OP_READ, read_endio);
1117
1118         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1119
1120         if (b->read_error) {
1121                 int error = blk_status_to_errno(b->read_error);
1122
1123                 dm_bufio_release(b);
1124
1125                 return ERR_PTR(error);
1126         }
1127
1128         *bp = b;
1129
1130         return b->data;
1131 }
1132
1133 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1134                    struct dm_buffer **bp)
1135 {
1136         return new_read(c, block, NF_GET, bp);
1137 }
1138 EXPORT_SYMBOL_GPL(dm_bufio_get);
1139
1140 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1141                     struct dm_buffer **bp)
1142 {
1143         BUG_ON(dm_bufio_in_request());
1144
1145         return new_read(c, block, NF_READ, bp);
1146 }
1147 EXPORT_SYMBOL_GPL(dm_bufio_read);
1148
1149 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1150                    struct dm_buffer **bp)
1151 {
1152         BUG_ON(dm_bufio_in_request());
1153
1154         return new_read(c, block, NF_FRESH, bp);
1155 }
1156 EXPORT_SYMBOL_GPL(dm_bufio_new);
1157
1158 void dm_bufio_prefetch(struct dm_bufio_client *c,
1159                        sector_t block, unsigned n_blocks)
1160 {
1161         struct blk_plug plug;
1162
1163         LIST_HEAD(write_list);
1164
1165         BUG_ON(dm_bufio_in_request());
1166
1167         blk_start_plug(&plug);
1168         dm_bufio_lock(c);
1169
1170         for (; n_blocks--; block++) {
1171                 int need_submit;
1172                 struct dm_buffer *b;
1173                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1174                                 &write_list);
1175                 if (unlikely(!list_empty(&write_list))) {
1176                         dm_bufio_unlock(c);
1177                         blk_finish_plug(&plug);
1178                         __flush_write_list(&write_list);
1179                         blk_start_plug(&plug);
1180                         dm_bufio_lock(c);
1181                 }
1182                 if (unlikely(b != NULL)) {
1183                         dm_bufio_unlock(c);
1184
1185                         if (need_submit)
1186                                 submit_io(b, REQ_OP_READ, read_endio);
1187                         dm_bufio_release(b);
1188
1189                         cond_resched();
1190
1191                         if (!n_blocks)
1192                                 goto flush_plug;
1193                         dm_bufio_lock(c);
1194                 }
1195         }
1196
1197         dm_bufio_unlock(c);
1198
1199 flush_plug:
1200         blk_finish_plug(&plug);
1201 }
1202 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1203
1204 void dm_bufio_release(struct dm_buffer *b)
1205 {
1206         struct dm_bufio_client *c = b->c;
1207
1208         dm_bufio_lock(c);
1209
1210         BUG_ON(!b->hold_count);
1211
1212         b->hold_count--;
1213         if (!b->hold_count) {
1214                 wake_up(&c->free_buffer_wait);
1215
1216                 /*
1217                  * If there were errors on the buffer, and the buffer is not
1218                  * to be written, free the buffer. There is no point in caching
1219                  * invalid buffer.
1220                  */
1221                 if ((b->read_error || b->write_error) &&
1222                     !test_bit_acquire(B_READING, &b->state) &&
1223                     !test_bit(B_WRITING, &b->state) &&
1224                     !test_bit(B_DIRTY, &b->state)) {
1225                         __unlink_buffer(b);
1226                         __free_buffer_wake(b);
1227                 }
1228         }
1229
1230         dm_bufio_unlock(c);
1231 }
1232 EXPORT_SYMBOL_GPL(dm_bufio_release);
1233
1234 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1235                                         unsigned start, unsigned end)
1236 {
1237         struct dm_bufio_client *c = b->c;
1238
1239         BUG_ON(start >= end);
1240         BUG_ON(end > b->c->block_size);
1241
1242         dm_bufio_lock(c);
1243
1244         BUG_ON(test_bit(B_READING, &b->state));
1245
1246         if (!test_and_set_bit(B_DIRTY, &b->state)) {
1247                 b->dirty_start = start;
1248                 b->dirty_end = end;
1249                 __relink_lru(b, LIST_DIRTY);
1250         } else {
1251                 if (start < b->dirty_start)
1252                         b->dirty_start = start;
1253                 if (end > b->dirty_end)
1254                         b->dirty_end = end;
1255         }
1256
1257         dm_bufio_unlock(c);
1258 }
1259 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1260
1261 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1262 {
1263         dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1264 }
1265 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1266
1267 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1268 {
1269         LIST_HEAD(write_list);
1270
1271         BUG_ON(dm_bufio_in_request());
1272
1273         dm_bufio_lock(c);
1274         __write_dirty_buffers_async(c, 0, &write_list);
1275         dm_bufio_unlock(c);
1276         __flush_write_list(&write_list);
1277 }
1278 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1279
1280 /*
1281  * For performance, it is essential that the buffers are written asynchronously
1282  * and simultaneously (so that the block layer can merge the writes) and then
1283  * waited upon.
1284  *
1285  * Finally, we flush hardware disk cache.
1286  */
1287 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1288 {
1289         int a, f;
1290         unsigned long buffers_processed = 0;
1291         struct dm_buffer *b, *tmp;
1292
1293         LIST_HEAD(write_list);
1294
1295         dm_bufio_lock(c);
1296         __write_dirty_buffers_async(c, 0, &write_list);
1297         dm_bufio_unlock(c);
1298         __flush_write_list(&write_list);
1299         dm_bufio_lock(c);
1300
1301 again:
1302         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1303                 int dropped_lock = 0;
1304
1305                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1306                         buffers_processed++;
1307
1308                 BUG_ON(test_bit(B_READING, &b->state));
1309
1310                 if (test_bit(B_WRITING, &b->state)) {
1311                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1312                                 dropped_lock = 1;
1313                                 b->hold_count++;
1314                                 dm_bufio_unlock(c);
1315                                 wait_on_bit_io(&b->state, B_WRITING,
1316                                                TASK_UNINTERRUPTIBLE);
1317                                 dm_bufio_lock(c);
1318                                 b->hold_count--;
1319                         } else
1320                                 wait_on_bit_io(&b->state, B_WRITING,
1321                                                TASK_UNINTERRUPTIBLE);
1322                 }
1323
1324                 if (!test_bit(B_DIRTY, &b->state) &&
1325                     !test_bit(B_WRITING, &b->state))
1326                         __relink_lru(b, LIST_CLEAN);
1327
1328                 cond_resched();
1329
1330                 /*
1331                  * If we dropped the lock, the list is no longer consistent,
1332                  * so we must restart the search.
1333                  *
1334                  * In the most common case, the buffer just processed is
1335                  * relinked to the clean list, so we won't loop scanning the
1336                  * same buffer again and again.
1337                  *
1338                  * This may livelock if there is another thread simultaneously
1339                  * dirtying buffers, so we count the number of buffers walked
1340                  * and if it exceeds the total number of buffers, it means that
1341                  * someone is doing some writes simultaneously with us.  In
1342                  * this case, stop, dropping the lock.
1343                  */
1344                 if (dropped_lock)
1345                         goto again;
1346         }
1347         wake_up(&c->free_buffer_wait);
1348         dm_bufio_unlock(c);
1349
1350         a = xchg(&c->async_write_error, 0);
1351         f = dm_bufio_issue_flush(c);
1352         if (a)
1353                 return a;
1354
1355         return f;
1356 }
1357 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1358
1359 /*
1360  * Use dm-io to send an empty barrier to flush the device.
1361  */
1362 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1363 {
1364         struct dm_io_request io_req = {
1365                 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1366                 .mem.type = DM_IO_KMEM,
1367                 .mem.ptr.addr = NULL,
1368                 .client = c->dm_io,
1369         };
1370         struct dm_io_region io_reg = {
1371                 .bdev = c->bdev,
1372                 .sector = 0,
1373                 .count = 0,
1374         };
1375
1376         BUG_ON(dm_bufio_in_request());
1377
1378         return dm_io(&io_req, 1, &io_reg, NULL);
1379 }
1380 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1381
1382 /*
1383  * Use dm-io to send a discard request to flush the device.
1384  */
1385 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1386 {
1387         struct dm_io_request io_req = {
1388                 .bi_opf = REQ_OP_DISCARD | REQ_SYNC,
1389                 .mem.type = DM_IO_KMEM,
1390                 .mem.ptr.addr = NULL,
1391                 .client = c->dm_io,
1392         };
1393         struct dm_io_region io_reg = {
1394                 .bdev = c->bdev,
1395                 .sector = block_to_sector(c, block),
1396                 .count = block_to_sector(c, count),
1397         };
1398
1399         BUG_ON(dm_bufio_in_request());
1400
1401         return dm_io(&io_req, 1, &io_reg, NULL);
1402 }
1403 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1404
1405 /*
1406  * We first delete any other buffer that may be at that new location.
1407  *
1408  * Then, we write the buffer to the original location if it was dirty.
1409  *
1410  * Then, if we are the only one who is holding the buffer, relink the buffer
1411  * in the buffer tree for the new location.
1412  *
1413  * If there was someone else holding the buffer, we write it to the new
1414  * location but not relink it, because that other user needs to have the buffer
1415  * at the same place.
1416  */
1417 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1418 {
1419         struct dm_bufio_client *c = b->c;
1420         struct dm_buffer *new;
1421
1422         BUG_ON(dm_bufio_in_request());
1423
1424         dm_bufio_lock(c);
1425
1426 retry:
1427         new = __find(c, new_block);
1428         if (new) {
1429                 if (new->hold_count) {
1430                         __wait_for_free_buffer(c);
1431                         goto retry;
1432                 }
1433
1434                 /*
1435                  * FIXME: Is there any point waiting for a write that's going
1436                  * to be overwritten in a bit?
1437                  */
1438                 __make_buffer_clean(new);
1439                 __unlink_buffer(new);
1440                 __free_buffer_wake(new);
1441         }
1442
1443         BUG_ON(!b->hold_count);
1444         BUG_ON(test_bit(B_READING, &b->state));
1445
1446         __write_dirty_buffer(b, NULL);
1447         if (b->hold_count == 1) {
1448                 wait_on_bit_io(&b->state, B_WRITING,
1449                                TASK_UNINTERRUPTIBLE);
1450                 set_bit(B_DIRTY, &b->state);
1451                 b->dirty_start = 0;
1452                 b->dirty_end = c->block_size;
1453                 __unlink_buffer(b);
1454                 __link_buffer(b, new_block, LIST_DIRTY);
1455         } else {
1456                 sector_t old_block;
1457                 wait_on_bit_lock_io(&b->state, B_WRITING,
1458                                     TASK_UNINTERRUPTIBLE);
1459                 /*
1460                  * Relink buffer to "new_block" so that write_callback
1461                  * sees "new_block" as a block number.
1462                  * After the write, link the buffer back to old_block.
1463                  * All this must be done in bufio lock, so that block number
1464                  * change isn't visible to other threads.
1465                  */
1466                 old_block = b->block;
1467                 __unlink_buffer(b);
1468                 __link_buffer(b, new_block, b->list_mode);
1469                 submit_io(b, REQ_OP_WRITE, write_endio);
1470                 wait_on_bit_io(&b->state, B_WRITING,
1471                                TASK_UNINTERRUPTIBLE);
1472                 __unlink_buffer(b);
1473                 __link_buffer(b, old_block, b->list_mode);
1474         }
1475
1476         dm_bufio_unlock(c);
1477         dm_bufio_release(b);
1478 }
1479 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1480
1481 static void forget_buffer_locked(struct dm_buffer *b)
1482 {
1483         if (likely(!b->hold_count) && likely(!smp_load_acquire(&b->state))) {
1484                 __unlink_buffer(b);
1485                 __free_buffer_wake(b);
1486         }
1487 }
1488
1489 /*
1490  * Free the given buffer.
1491  *
1492  * This is just a hint, if the buffer is in use or dirty, this function
1493  * does nothing.
1494  */
1495 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1496 {
1497         struct dm_buffer *b;
1498
1499         dm_bufio_lock(c);
1500
1501         b = __find(c, block);
1502         if (b)
1503                 forget_buffer_locked(b);
1504
1505         dm_bufio_unlock(c);
1506 }
1507 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1508
1509 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1510 {
1511         struct dm_buffer *b;
1512         sector_t end_block = block + n_blocks;
1513
1514         while (block < end_block) {
1515                 dm_bufio_lock(c);
1516
1517                 b = __find_next(c, block);
1518                 if (b) {
1519                         block = b->block + 1;
1520                         forget_buffer_locked(b);
1521                 }
1522
1523                 dm_bufio_unlock(c);
1524
1525                 if (!b)
1526                         break;
1527         }
1528
1529 }
1530 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1531
1532 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1533 {
1534         c->minimum_buffers = n;
1535 }
1536 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1537
1538 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1539 {
1540         return c->block_size;
1541 }
1542 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1543
1544 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1545 {
1546         sector_t s = bdev_nr_sectors(c->bdev);
1547         if (s >= c->start)
1548                 s -= c->start;
1549         else
1550                 s = 0;
1551         if (likely(c->sectors_per_block_bits >= 0))
1552                 s >>= c->sectors_per_block_bits;
1553         else
1554                 sector_div(s, c->block_size >> SECTOR_SHIFT);
1555         return s;
1556 }
1557 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1558
1559 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
1560 {
1561         return c->dm_io;
1562 }
1563 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
1564
1565 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1566 {
1567         return b->block;
1568 }
1569 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1570
1571 void *dm_bufio_get_block_data(struct dm_buffer *b)
1572 {
1573         return b->data;
1574 }
1575 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1576
1577 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1578 {
1579         return b + 1;
1580 }
1581 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1582
1583 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1584 {
1585         return b->c;
1586 }
1587 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1588
1589 static void drop_buffers(struct dm_bufio_client *c)
1590 {
1591         struct dm_buffer *b;
1592         int i;
1593         bool warned = false;
1594
1595         BUG_ON(dm_bufio_in_request());
1596
1597         /*
1598          * An optimization so that the buffers are not written one-by-one.
1599          */
1600         dm_bufio_write_dirty_buffers_async(c);
1601
1602         dm_bufio_lock(c);
1603
1604         while ((b = __get_unclaimed_buffer(c)))
1605                 __free_buffer_wake(b);
1606
1607         for (i = 0; i < LIST_SIZE; i++)
1608                 list_for_each_entry(b, &c->lru[i], lru_list) {
1609                         WARN_ON(!warned);
1610                         warned = true;
1611                         DMERR("leaked buffer %llx, hold count %u, list %d",
1612                               (unsigned long long)b->block, b->hold_count, i);
1613 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1614                         stack_trace_print(b->stack_entries, b->stack_len, 1);
1615                         /* mark unclaimed to avoid BUG_ON below */
1616                         b->hold_count = 0;
1617 #endif
1618                 }
1619
1620 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1621         while ((b = __get_unclaimed_buffer(c)))
1622                 __free_buffer_wake(b);
1623 #endif
1624
1625         for (i = 0; i < LIST_SIZE; i++)
1626                 BUG_ON(!list_empty(&c->lru[i]));
1627
1628         dm_bufio_unlock(c);
1629 }
1630
1631 /*
1632  * We may not be able to evict this buffer if IO pending or the client
1633  * is still using it.  Caller is expected to know buffer is too old.
1634  *
1635  * And if GFP_NOFS is used, we must not do any I/O because we hold
1636  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1637  * rerouted to different bufio client.
1638  */
1639 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1640 {
1641         if (!(gfp & __GFP_FS) ||
1642             (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
1643                 if (test_bit_acquire(B_READING, &b->state) ||
1644                     test_bit(B_WRITING, &b->state) ||
1645                     test_bit(B_DIRTY, &b->state))
1646                         return false;
1647         }
1648
1649         if (b->hold_count)
1650                 return false;
1651
1652         __make_buffer_clean(b);
1653         __unlink_buffer(b);
1654         __free_buffer_wake(b);
1655
1656         return true;
1657 }
1658
1659 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1660 {
1661         unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1662         if (likely(c->sectors_per_block_bits >= 0))
1663                 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1664         else
1665                 retain_bytes /= c->block_size;
1666         return retain_bytes;
1667 }
1668
1669 static void __scan(struct dm_bufio_client *c)
1670 {
1671         int l;
1672         struct dm_buffer *b, *tmp;
1673         unsigned long freed = 0;
1674         unsigned long count = c->n_buffers[LIST_CLEAN] +
1675                               c->n_buffers[LIST_DIRTY];
1676         unsigned long retain_target = get_retain_buffers(c);
1677
1678         for (l = 0; l < LIST_SIZE; l++) {
1679                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1680                         if (count - freed <= retain_target)
1681                                 atomic_long_set(&c->need_shrink, 0);
1682                         if (!atomic_long_read(&c->need_shrink))
1683                                 return;
1684                         if (__try_evict_buffer(b, GFP_KERNEL)) {
1685                                 atomic_long_dec(&c->need_shrink);
1686                                 freed++;
1687                         }
1688                         cond_resched();
1689                 }
1690         }
1691 }
1692
1693 static void shrink_work(struct work_struct *w)
1694 {
1695         struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
1696
1697         dm_bufio_lock(c);
1698         __scan(c);
1699         dm_bufio_unlock(c);
1700 }
1701
1702 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1703 {
1704         struct dm_bufio_client *c;
1705
1706         c = container_of(shrink, struct dm_bufio_client, shrinker);
1707         atomic_long_add(sc->nr_to_scan, &c->need_shrink);
1708         queue_work(dm_bufio_wq, &c->shrink_work);
1709
1710         return sc->nr_to_scan;
1711 }
1712
1713 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1714 {
1715         struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1716         unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1717                               READ_ONCE(c->n_buffers[LIST_DIRTY]);
1718         unsigned long retain_target = get_retain_buffers(c);
1719         unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
1720
1721         if (unlikely(count < retain_target))
1722                 count = 0;
1723         else
1724                 count -= retain_target;
1725
1726         if (unlikely(count < queued_for_cleanup))
1727                 count = 0;
1728         else
1729                 count -= queued_for_cleanup;
1730
1731         return count;
1732 }
1733
1734 /*
1735  * Create the buffering interface
1736  */
1737 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1738                                                unsigned reserved_buffers, unsigned aux_size,
1739                                                void (*alloc_callback)(struct dm_buffer *),
1740                                                void (*write_callback)(struct dm_buffer *),
1741                                                unsigned int flags)
1742 {
1743         int r;
1744         struct dm_bufio_client *c;
1745         unsigned i;
1746         char slab_name[27];
1747
1748         if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1749                 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1750                 r = -EINVAL;
1751                 goto bad_client;
1752         }
1753
1754         c = kzalloc(sizeof(*c), GFP_KERNEL);
1755         if (!c) {
1756                 r = -ENOMEM;
1757                 goto bad_client;
1758         }
1759         c->buffer_tree = RB_ROOT;
1760
1761         c->bdev = bdev;
1762         c->block_size = block_size;
1763         if (is_power_of_2(block_size))
1764                 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1765         else
1766                 c->sectors_per_block_bits = -1;
1767
1768         c->alloc_callback = alloc_callback;
1769         c->write_callback = write_callback;
1770
1771         if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
1772                 c->no_sleep = true;
1773                 static_branch_inc(&no_sleep_enabled);
1774         }
1775
1776         for (i = 0; i < LIST_SIZE; i++) {
1777                 INIT_LIST_HEAD(&c->lru[i]);
1778                 c->n_buffers[i] = 0;
1779         }
1780
1781         mutex_init(&c->lock);
1782         spin_lock_init(&c->spinlock);
1783         INIT_LIST_HEAD(&c->reserved_buffers);
1784         c->need_reserved_buffers = reserved_buffers;
1785
1786         dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1787
1788         init_waitqueue_head(&c->free_buffer_wait);
1789         c->async_write_error = 0;
1790
1791         c->dm_io = dm_io_client_create();
1792         if (IS_ERR(c->dm_io)) {
1793                 r = PTR_ERR(c->dm_io);
1794                 goto bad_dm_io;
1795         }
1796
1797         if (block_size <= KMALLOC_MAX_SIZE &&
1798             (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1799                 unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1800                 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1801                 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1802                                                   SLAB_RECLAIM_ACCOUNT, NULL);
1803                 if (!c->slab_cache) {
1804                         r = -ENOMEM;
1805                         goto bad;
1806                 }
1807         }
1808         if (aux_size)
1809                 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1810         else
1811                 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1812         c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1813                                            0, SLAB_RECLAIM_ACCOUNT, NULL);
1814         if (!c->slab_buffer) {
1815                 r = -ENOMEM;
1816                 goto bad;
1817         }
1818
1819         while (c->need_reserved_buffers) {
1820                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1821
1822                 if (!b) {
1823                         r = -ENOMEM;
1824                         goto bad;
1825                 }
1826                 __free_buffer_wake(b);
1827         }
1828
1829         INIT_WORK(&c->shrink_work, shrink_work);
1830         atomic_long_set(&c->need_shrink, 0);
1831
1832         c->shrinker.count_objects = dm_bufio_shrink_count;
1833         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1834         c->shrinker.seeks = 1;
1835         c->shrinker.batch = 0;
1836         r = register_shrinker(&c->shrinker, "md-%s:(%u:%u)", slab_name,
1837                               MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
1838         if (r)
1839                 goto bad;
1840
1841         mutex_lock(&dm_bufio_clients_lock);
1842         dm_bufio_client_count++;
1843         list_add(&c->client_list, &dm_bufio_all_clients);
1844         __cache_size_refresh();
1845         mutex_unlock(&dm_bufio_clients_lock);
1846
1847         return c;
1848
1849 bad:
1850         while (!list_empty(&c->reserved_buffers)) {
1851                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1852                                                  struct dm_buffer, lru_list);
1853                 list_del(&b->lru_list);
1854                 free_buffer(b);
1855         }
1856         kmem_cache_destroy(c->slab_cache);
1857         kmem_cache_destroy(c->slab_buffer);
1858         dm_io_client_destroy(c->dm_io);
1859 bad_dm_io:
1860         mutex_destroy(&c->lock);
1861         if (c->no_sleep)
1862                 static_branch_dec(&no_sleep_enabled);
1863         kfree(c);
1864 bad_client:
1865         return ERR_PTR(r);
1866 }
1867 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1868
1869 /*
1870  * Free the buffering interface.
1871  * It is required that there are no references on any buffers.
1872  */
1873 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1874 {
1875         unsigned i;
1876
1877         drop_buffers(c);
1878
1879         unregister_shrinker(&c->shrinker);
1880         flush_work(&c->shrink_work);
1881
1882         mutex_lock(&dm_bufio_clients_lock);
1883
1884         list_del(&c->client_list);
1885         dm_bufio_client_count--;
1886         __cache_size_refresh();
1887
1888         mutex_unlock(&dm_bufio_clients_lock);
1889
1890         BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1891         BUG_ON(c->need_reserved_buffers);
1892
1893         while (!list_empty(&c->reserved_buffers)) {
1894                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1895                                                  struct dm_buffer, lru_list);
1896                 list_del(&b->lru_list);
1897                 free_buffer(b);
1898         }
1899
1900         for (i = 0; i < LIST_SIZE; i++)
1901                 if (c->n_buffers[i])
1902                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1903
1904         for (i = 0; i < LIST_SIZE; i++)
1905                 BUG_ON(c->n_buffers[i]);
1906
1907         kmem_cache_destroy(c->slab_cache);
1908         kmem_cache_destroy(c->slab_buffer);
1909         dm_io_client_destroy(c->dm_io);
1910         mutex_destroy(&c->lock);
1911         if (c->no_sleep)
1912                 static_branch_dec(&no_sleep_enabled);
1913         kfree(c);
1914 }
1915 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1916
1917 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1918 {
1919         c->start = start;
1920 }
1921 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1922
1923 static unsigned get_max_age_hz(void)
1924 {
1925         unsigned max_age = READ_ONCE(dm_bufio_max_age);
1926
1927         if (max_age > UINT_MAX / HZ)
1928                 max_age = UINT_MAX / HZ;
1929
1930         return max_age * HZ;
1931 }
1932
1933 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1934 {
1935         return time_after_eq(jiffies, b->last_accessed + age_hz);
1936 }
1937
1938 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1939 {
1940         struct dm_buffer *b, *tmp;
1941         unsigned long retain_target = get_retain_buffers(c);
1942         unsigned long count;
1943         LIST_HEAD(write_list);
1944
1945         dm_bufio_lock(c);
1946
1947         __check_watermark(c, &write_list);
1948         if (unlikely(!list_empty(&write_list))) {
1949                 dm_bufio_unlock(c);
1950                 __flush_write_list(&write_list);
1951                 dm_bufio_lock(c);
1952         }
1953
1954         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1955         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1956                 if (count <= retain_target)
1957                         break;
1958
1959                 if (!older_than(b, age_hz))
1960                         break;
1961
1962                 if (__try_evict_buffer(b, 0))
1963                         count--;
1964
1965                 cond_resched();
1966         }
1967
1968         dm_bufio_unlock(c);
1969 }
1970
1971 static void do_global_cleanup(struct work_struct *w)
1972 {
1973         struct dm_bufio_client *locked_client = NULL;
1974         struct dm_bufio_client *current_client;
1975         struct dm_buffer *b;
1976         unsigned spinlock_hold_count;
1977         unsigned long threshold = dm_bufio_cache_size -
1978                 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1979         unsigned long loops = global_num * 2;
1980
1981         mutex_lock(&dm_bufio_clients_lock);
1982
1983         while (1) {
1984                 cond_resched();
1985
1986                 spin_lock(&global_spinlock);
1987                 if (unlikely(dm_bufio_current_allocated <= threshold))
1988                         break;
1989
1990                 spinlock_hold_count = 0;
1991 get_next:
1992                 if (!loops--)
1993                         break;
1994                 if (unlikely(list_empty(&global_queue)))
1995                         break;
1996                 b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1997
1998                 if (b->accessed) {
1999                         b->accessed = 0;
2000                         list_move(&b->global_list, &global_queue);
2001                         if (likely(++spinlock_hold_count < 16))
2002                                 goto get_next;
2003                         spin_unlock(&global_spinlock);
2004                         continue;
2005                 }
2006
2007                 current_client = b->c;
2008                 if (unlikely(current_client != locked_client)) {
2009                         if (locked_client)
2010                                 dm_bufio_unlock(locked_client);
2011
2012                         if (!dm_bufio_trylock(current_client)) {
2013                                 spin_unlock(&global_spinlock);
2014                                 dm_bufio_lock(current_client);
2015                                 locked_client = current_client;
2016                                 continue;
2017                         }
2018
2019                         locked_client = current_client;
2020                 }
2021
2022                 spin_unlock(&global_spinlock);
2023
2024                 if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
2025                         spin_lock(&global_spinlock);
2026                         list_move(&b->global_list, &global_queue);
2027                         spin_unlock(&global_spinlock);
2028                 }
2029         }
2030
2031         spin_unlock(&global_spinlock);
2032
2033         if (locked_client)
2034                 dm_bufio_unlock(locked_client);
2035
2036         mutex_unlock(&dm_bufio_clients_lock);
2037 }
2038
2039 static void cleanup_old_buffers(void)
2040 {
2041         unsigned long max_age_hz = get_max_age_hz();
2042         struct dm_bufio_client *c;
2043
2044         mutex_lock(&dm_bufio_clients_lock);
2045
2046         __cache_size_refresh();
2047
2048         list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2049                 __evict_old_buffers(c, max_age_hz);
2050
2051         mutex_unlock(&dm_bufio_clients_lock);
2052 }
2053
2054 static void work_fn(struct work_struct *w)
2055 {
2056         cleanup_old_buffers();
2057
2058         queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2059                            DM_BUFIO_WORK_TIMER_SECS * HZ);
2060 }
2061
2062 /*----------------------------------------------------------------
2063  * Module setup
2064  *--------------------------------------------------------------*/
2065
2066 /*
2067  * This is called only once for the whole dm_bufio module.
2068  * It initializes memory limit.
2069  */
2070 static int __init dm_bufio_init(void)
2071 {
2072         __u64 mem;
2073
2074         dm_bufio_allocated_kmem_cache = 0;
2075         dm_bufio_allocated_get_free_pages = 0;
2076         dm_bufio_allocated_vmalloc = 0;
2077         dm_bufio_current_allocated = 0;
2078
2079         mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2080                                DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2081
2082         if (mem > ULONG_MAX)
2083                 mem = ULONG_MAX;
2084
2085 #ifdef CONFIG_MMU
2086         if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2087                 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2088 #endif
2089
2090         dm_bufio_default_cache_size = mem;
2091
2092         mutex_lock(&dm_bufio_clients_lock);
2093         __cache_size_refresh();
2094         mutex_unlock(&dm_bufio_clients_lock);
2095
2096         dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2097         if (!dm_bufio_wq)
2098                 return -ENOMEM;
2099
2100         INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2101         INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2102         queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2103                            DM_BUFIO_WORK_TIMER_SECS * HZ);
2104
2105         return 0;
2106 }
2107
2108 /*
2109  * This is called once when unloading the dm_bufio module.
2110  */
2111 static void __exit dm_bufio_exit(void)
2112 {
2113         int bug = 0;
2114
2115         cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2116         destroy_workqueue(dm_bufio_wq);
2117
2118         if (dm_bufio_client_count) {
2119                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
2120                         __func__, dm_bufio_client_count);
2121                 bug = 1;
2122         }
2123
2124         if (dm_bufio_current_allocated) {
2125                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2126                         __func__, dm_bufio_current_allocated);
2127                 bug = 1;
2128         }
2129
2130         if (dm_bufio_allocated_get_free_pages) {
2131                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2132                        __func__, dm_bufio_allocated_get_free_pages);
2133                 bug = 1;
2134         }
2135
2136         if (dm_bufio_allocated_vmalloc) {
2137                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2138                        __func__, dm_bufio_allocated_vmalloc);
2139                 bug = 1;
2140         }
2141
2142         BUG_ON(bug);
2143 }
2144
2145 module_init(dm_bufio_init)
2146 module_exit(dm_bufio_exit)
2147
2148 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2149 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2150
2151 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2152 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2153
2154 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2155 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2156
2157 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2158 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2159
2160 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2161 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2162
2163 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2164 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2165
2166 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2167 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2168
2169 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2170 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2171
2172 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2173 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2174 MODULE_LICENSE("GPL");