64766100517674f0d9fad19701ef67124a88edb2
[platform/kernel/linux-starfive.git] / drivers / md / bcache / writeback.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * background writeback - scan btree for dirty data and write it to the backing
4  * device
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19
20 static void update_gc_after_writeback(struct cache_set *c)
21 {
22         if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23             c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24                 return;
25
26         c->gc_after_writeback |= BCH_DO_AUTO_GC;
27 }
28
29 /* Rate limiting */
30 static uint64_t __calc_target_rate(struct cached_dev *dc)
31 {
32         struct cache_set *c = dc->disk.c;
33
34         /*
35          * This is the size of the cache, minus the amount used for
36          * flash-only devices
37          */
38         uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
39                                 atomic_long_read(&c->flash_dev_dirty_sectors);
40
41         /*
42          * Unfortunately there is no control of global dirty data.  If the
43          * user states that they want 10% dirty data in the cache, and has,
44          * e.g., 5 backing volumes of equal size, we try and ensure each
45          * backing volume uses about 2% of the cache for dirty data.
46          */
47         uint32_t bdev_share =
48                 div64_u64(bdev_nr_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49                                 c->cached_dev_sectors);
50
51         uint64_t cache_dirty_target =
52                 div_u64(cache_sectors * dc->writeback_percent, 100);
53
54         /* Ensure each backing dev gets at least one dirty share */
55         if (bdev_share < 1)
56                 bdev_share = 1;
57
58         return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59 }
60
61 static void __update_writeback_rate(struct cached_dev *dc)
62 {
63         /*
64          * PI controller:
65          * Figures out the amount that should be written per second.
66          *
67          * First, the error (number of sectors that are dirty beyond our
68          * target) is calculated.  The error is accumulated (numerically
69          * integrated).
70          *
71          * Then, the proportional value and integral value are scaled
72          * based on configured values.  These are stored as inverses to
73          * avoid fixed point math and to make configuration easy-- e.g.
74          * the default value of 40 for writeback_rate_p_term_inverse
75          * attempts to write at a rate that would retire all the dirty
76          * blocks in 40 seconds.
77          *
78          * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79          * of the error is accumulated in the integral term per second.
80          * This acts as a slow, long-term average that is not subject to
81          * variations in usage like the p term.
82          */
83         int64_t target = __calc_target_rate(dc);
84         int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85         int64_t error = dirty - target;
86         int64_t proportional_scaled =
87                 div_s64(error, dc->writeback_rate_p_term_inverse);
88         int64_t integral_scaled;
89         uint32_t new_rate;
90
91         /*
92          * We need to consider the number of dirty buckets as well
93          * when calculating the proportional_scaled, Otherwise we might
94          * have an unreasonable small writeback rate at a highly fragmented situation
95          * when very few dirty sectors consumed a lot dirty buckets, the
96          * worst case is when dirty buckets reached cutoff_writeback_sync and
97          * dirty data is still not even reached to writeback percent, so the rate
98          * still will be at the minimum value, which will cause the write
99          * stuck at a non-writeback mode.
100          */
101         struct cache_set *c = dc->disk.c;
102
103         int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets;
104
105         if (dc->writeback_consider_fragment &&
106                 c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) {
107                 int64_t fragment =
108                         div_s64((dirty_buckets *  c->cache->sb.bucket_size), dirty);
109                 int64_t fp_term;
110                 int64_t fps;
111
112                 if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) {
113                         fp_term = (int64_t)dc->writeback_rate_fp_term_low *
114                         (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW);
115                 } else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) {
116                         fp_term = (int64_t)dc->writeback_rate_fp_term_mid *
117                         (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID);
118                 } else {
119                         fp_term = (int64_t)dc->writeback_rate_fp_term_high *
120                         (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH);
121                 }
122                 fps = div_s64(dirty, dirty_buckets) * fp_term;
123                 if (fragment > 3 && fps > proportional_scaled) {
124                         /* Only overrite the p when fragment > 3 */
125                         proportional_scaled = fps;
126                 }
127         }
128
129         if ((error < 0 && dc->writeback_rate_integral > 0) ||
130             (error > 0 && time_before64(local_clock(),
131                          dc->writeback_rate.next + NSEC_PER_MSEC))) {
132                 /*
133                  * Only decrease the integral term if it's more than
134                  * zero.  Only increase the integral term if the device
135                  * is keeping up.  (Don't wind up the integral
136                  * ineffectively in either case).
137                  *
138                  * It's necessary to scale this by
139                  * writeback_rate_update_seconds to keep the integral
140                  * term dimensioned properly.
141                  */
142                 dc->writeback_rate_integral += error *
143                         dc->writeback_rate_update_seconds;
144         }
145
146         integral_scaled = div_s64(dc->writeback_rate_integral,
147                         dc->writeback_rate_i_term_inverse);
148
149         new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
150                         dc->writeback_rate_minimum, NSEC_PER_SEC);
151
152         dc->writeback_rate_proportional = proportional_scaled;
153         dc->writeback_rate_integral_scaled = integral_scaled;
154         dc->writeback_rate_change = new_rate -
155                         atomic_long_read(&dc->writeback_rate.rate);
156         atomic_long_set(&dc->writeback_rate.rate, new_rate);
157         dc->writeback_rate_target = target;
158 }
159
160 static bool set_at_max_writeback_rate(struct cache_set *c,
161                                        struct cached_dev *dc)
162 {
163         /* Don't sst max writeback rate if it is disabled */
164         if (!c->idle_max_writeback_rate_enabled)
165                 return false;
166
167         /* Don't set max writeback rate if gc is running */
168         if (!c->gc_mark_valid)
169                 return false;
170         /*
171          * Idle_counter is increased everytime when update_writeback_rate() is
172          * called. If all backing devices attached to the same cache set have
173          * identical dc->writeback_rate_update_seconds values, it is about 6
174          * rounds of update_writeback_rate() on each backing device before
175          * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
176          * to each dc->writeback_rate.rate.
177          * In order to avoid extra locking cost for counting exact dirty cached
178          * devices number, c->attached_dev_nr is used to calculate the idle
179          * throushold. It might be bigger if not all cached device are in write-
180          * back mode, but it still works well with limited extra rounds of
181          * update_writeback_rate().
182          */
183         if (atomic_inc_return(&c->idle_counter) <
184             atomic_read(&c->attached_dev_nr) * 6)
185                 return false;
186
187         if (atomic_read(&c->at_max_writeback_rate) != 1)
188                 atomic_set(&c->at_max_writeback_rate, 1);
189
190         atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
191
192         /* keep writeback_rate_target as existing value */
193         dc->writeback_rate_proportional = 0;
194         dc->writeback_rate_integral_scaled = 0;
195         dc->writeback_rate_change = 0;
196
197         /*
198          * Check c->idle_counter and c->at_max_writeback_rate agagain in case
199          * new I/O arrives during before set_at_max_writeback_rate() returns.
200          * Then the writeback rate is set to 1, and its new value should be
201          * decided via __update_writeback_rate().
202          */
203         if ((atomic_read(&c->idle_counter) <
204              atomic_read(&c->attached_dev_nr) * 6) ||
205             !atomic_read(&c->at_max_writeback_rate))
206                 return false;
207
208         return true;
209 }
210
211 static void update_writeback_rate(struct work_struct *work)
212 {
213         struct cached_dev *dc = container_of(to_delayed_work(work),
214                                              struct cached_dev,
215                                              writeback_rate_update);
216         struct cache_set *c = dc->disk.c;
217
218         /*
219          * should check BCACHE_DEV_RATE_DW_RUNNING before calling
220          * cancel_delayed_work_sync().
221          */
222         set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
223         /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
224         smp_mb__after_atomic();
225
226         /*
227          * CACHE_SET_IO_DISABLE might be set via sysfs interface,
228          * check it here too.
229          */
230         if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
231             test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
232                 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
233                 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
234                 smp_mb__after_atomic();
235                 return;
236         }
237
238         /*
239          * If the whole cache set is idle, set_at_max_writeback_rate()
240          * will set writeback rate to a max number. Then it is
241          * unncessary to update writeback rate for an idle cache set
242          * in maximum writeback rate number(s).
243          */
244         if (atomic_read(&dc->has_dirty) && dc->writeback_percent &&
245             !set_at_max_writeback_rate(c, dc)) {
246                 do {
247                         if (!down_read_trylock((&dc->writeback_lock))) {
248                                 dc->rate_update_retry++;
249                                 if (dc->rate_update_retry <=
250                                     BCH_WBRATE_UPDATE_MAX_SKIPS)
251                                         break;
252                                 down_read(&dc->writeback_lock);
253                                 dc->rate_update_retry = 0;
254                         }
255                         __update_writeback_rate(dc);
256                         update_gc_after_writeback(c);
257                         up_read(&dc->writeback_lock);
258                 } while (0);
259         }
260
261
262         /*
263          * CACHE_SET_IO_DISABLE might be set via sysfs interface,
264          * check it here too.
265          */
266         if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
267             !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
268                 schedule_delayed_work(&dc->writeback_rate_update,
269                               dc->writeback_rate_update_seconds * HZ);
270         }
271
272         /*
273          * should check BCACHE_DEV_RATE_DW_RUNNING before calling
274          * cancel_delayed_work_sync().
275          */
276         clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
277         /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
278         smp_mb__after_atomic();
279 }
280
281 static unsigned int writeback_delay(struct cached_dev *dc,
282                                     unsigned int sectors)
283 {
284         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
285             !dc->writeback_percent)
286                 return 0;
287
288         return bch_next_delay(&dc->writeback_rate, sectors);
289 }
290
291 struct dirty_io {
292         struct closure          cl;
293         struct cached_dev       *dc;
294         uint16_t                sequence;
295         struct bio              bio;
296 };
297
298 static void dirty_init(struct keybuf_key *w)
299 {
300         struct dirty_io *io = w->private;
301         struct bio *bio = &io->bio;
302
303         bio_init(bio, NULL, bio->bi_inline_vecs,
304                  DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), 0);
305         if (!io->dc->writeback_percent)
306                 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
307
308         bio->bi_iter.bi_size    = KEY_SIZE(&w->key) << 9;
309         bio->bi_private         = w;
310         bch_bio_map(bio, NULL);
311 }
312
313 static void dirty_io_destructor(struct closure *cl)
314 {
315         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
316
317         kfree(io);
318 }
319
320 static void write_dirty_finish(struct closure *cl)
321 {
322         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
323         struct keybuf_key *w = io->bio.bi_private;
324         struct cached_dev *dc = io->dc;
325
326         bio_free_pages(&io->bio);
327
328         /* This is kind of a dumb way of signalling errors. */
329         if (KEY_DIRTY(&w->key)) {
330                 int ret;
331                 unsigned int i;
332                 struct keylist keys;
333
334                 bch_keylist_init(&keys);
335
336                 bkey_copy(keys.top, &w->key);
337                 SET_KEY_DIRTY(keys.top, false);
338                 bch_keylist_push(&keys);
339
340                 for (i = 0; i < KEY_PTRS(&w->key); i++)
341                         atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
342
343                 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
344
345                 if (ret)
346                         trace_bcache_writeback_collision(&w->key);
347
348                 atomic_long_inc(ret
349                                 ? &dc->disk.c->writeback_keys_failed
350                                 : &dc->disk.c->writeback_keys_done);
351         }
352
353         bch_keybuf_del(&dc->writeback_keys, w);
354         up(&dc->in_flight);
355
356         closure_return_with_destructor(cl, dirty_io_destructor);
357 }
358
359 static void dirty_endio(struct bio *bio)
360 {
361         struct keybuf_key *w = bio->bi_private;
362         struct dirty_io *io = w->private;
363
364         if (bio->bi_status) {
365                 SET_KEY_DIRTY(&w->key, false);
366                 bch_count_backing_io_errors(io->dc, bio);
367         }
368
369         closure_put(&io->cl);
370 }
371
372 static void write_dirty(struct closure *cl)
373 {
374         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
375         struct keybuf_key *w = io->bio.bi_private;
376         struct cached_dev *dc = io->dc;
377
378         uint16_t next_sequence;
379
380         if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
381                 /* Not our turn to write; wait for a write to complete */
382                 closure_wait(&dc->writeback_ordering_wait, cl);
383
384                 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
385                         /*
386                          * Edge case-- it happened in indeterminate order
387                          * relative to when we were added to wait list..
388                          */
389                         closure_wake_up(&dc->writeback_ordering_wait);
390                 }
391
392                 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
393                 return;
394         }
395
396         next_sequence = io->sequence + 1;
397
398         /*
399          * IO errors are signalled using the dirty bit on the key.
400          * If we failed to read, we should not attempt to write to the
401          * backing device.  Instead, immediately go to write_dirty_finish
402          * to clean up.
403          */
404         if (KEY_DIRTY(&w->key)) {
405                 dirty_init(w);
406                 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
407                 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
408                 bio_set_dev(&io->bio, io->dc->bdev);
409                 io->bio.bi_end_io       = dirty_endio;
410
411                 /* I/O request sent to backing device */
412                 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
413         }
414
415         atomic_set(&dc->writeback_sequence_next, next_sequence);
416         closure_wake_up(&dc->writeback_ordering_wait);
417
418         continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
419 }
420
421 static void read_dirty_endio(struct bio *bio)
422 {
423         struct keybuf_key *w = bio->bi_private;
424         struct dirty_io *io = w->private;
425
426         /* is_read = 1 */
427         bch_count_io_errors(io->dc->disk.c->cache,
428                             bio->bi_status, 1,
429                             "reading dirty data from cache");
430
431         dirty_endio(bio);
432 }
433
434 static void read_dirty_submit(struct closure *cl)
435 {
436         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
437
438         closure_bio_submit(io->dc->disk.c, &io->bio, cl);
439
440         continue_at(cl, write_dirty, io->dc->writeback_write_wq);
441 }
442
443 static void read_dirty(struct cached_dev *dc)
444 {
445         unsigned int delay = 0;
446         struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
447         size_t size;
448         int nk, i;
449         struct dirty_io *io;
450         struct closure cl;
451         uint16_t sequence = 0;
452
453         BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
454         atomic_set(&dc->writeback_sequence_next, sequence);
455         closure_init_stack(&cl);
456
457         /*
458          * XXX: if we error, background writeback just spins. Should use some
459          * mempools.
460          */
461
462         next = bch_keybuf_next(&dc->writeback_keys);
463
464         while (!kthread_should_stop() &&
465                !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
466                next) {
467                 size = 0;
468                 nk = 0;
469
470                 do {
471                         BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
472
473                         /*
474                          * Don't combine too many operations, even if they
475                          * are all small.
476                          */
477                         if (nk >= MAX_WRITEBACKS_IN_PASS)
478                                 break;
479
480                         /*
481                          * If the current operation is very large, don't
482                          * further combine operations.
483                          */
484                         if (size >= MAX_WRITESIZE_IN_PASS)
485                                 break;
486
487                         /*
488                          * Operations are only eligible to be combined
489                          * if they are contiguous.
490                          *
491                          * TODO: add a heuristic willing to fire a
492                          * certain amount of non-contiguous IO per pass,
493                          * so that we can benefit from backing device
494                          * command queueing.
495                          */
496                         if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
497                                                 &START_KEY(&next->key)))
498                                 break;
499
500                         size += KEY_SIZE(&next->key);
501                         keys[nk++] = next;
502                 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
503
504                 /* Now we have gathered a set of 1..5 keys to write back. */
505                 for (i = 0; i < nk; i++) {
506                         w = keys[i];
507
508                         io = kzalloc(struct_size(io, bio.bi_inline_vecs,
509                                                 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
510                                      GFP_KERNEL);
511                         if (!io)
512                                 goto err;
513
514                         w->private      = io;
515                         io->dc          = dc;
516                         io->sequence    = sequence++;
517
518                         dirty_init(w);
519                         bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
520                         io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
521                         bio_set_dev(&io->bio, dc->disk.c->cache->bdev);
522                         io->bio.bi_end_io       = read_dirty_endio;
523
524                         if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
525                                 goto err_free;
526
527                         trace_bcache_writeback(&w->key);
528
529                         down(&dc->in_flight);
530
531                         /*
532                          * We've acquired a semaphore for the maximum
533                          * simultaneous number of writebacks; from here
534                          * everything happens asynchronously.
535                          */
536                         closure_call(&io->cl, read_dirty_submit, NULL, &cl);
537                 }
538
539                 delay = writeback_delay(dc, size);
540
541                 while (!kthread_should_stop() &&
542                        !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
543                        delay) {
544                         schedule_timeout_interruptible(delay);
545                         delay = writeback_delay(dc, 0);
546                 }
547         }
548
549         if (0) {
550 err_free:
551                 kfree(w->private);
552 err:
553                 bch_keybuf_del(&dc->writeback_keys, w);
554         }
555
556         /*
557          * Wait for outstanding writeback IOs to finish (and keybuf slots to be
558          * freed) before refilling again
559          */
560         closure_sync(&cl);
561 }
562
563 /* Scan for dirty data */
564
565 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
566                                   uint64_t offset, int nr_sectors)
567 {
568         struct bcache_device *d = c->devices[inode];
569         unsigned int stripe_offset, sectors_dirty;
570         int stripe;
571
572         if (!d)
573                 return;
574
575         stripe = offset_to_stripe(d, offset);
576         if (stripe < 0)
577                 return;
578
579         if (UUID_FLASH_ONLY(&c->uuids[inode]))
580                 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
581
582         stripe_offset = offset & (d->stripe_size - 1);
583
584         while (nr_sectors) {
585                 int s = min_t(unsigned int, abs(nr_sectors),
586                               d->stripe_size - stripe_offset);
587
588                 if (nr_sectors < 0)
589                         s = -s;
590
591                 if (stripe >= d->nr_stripes)
592                         return;
593
594                 sectors_dirty = atomic_add_return(s,
595                                         d->stripe_sectors_dirty + stripe);
596                 if (sectors_dirty == d->stripe_size) {
597                         if (!test_bit(stripe, d->full_dirty_stripes))
598                                 set_bit(stripe, d->full_dirty_stripes);
599                 } else {
600                         if (test_bit(stripe, d->full_dirty_stripes))
601                                 clear_bit(stripe, d->full_dirty_stripes);
602                 }
603
604                 nr_sectors -= s;
605                 stripe_offset = 0;
606                 stripe++;
607         }
608 }
609
610 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
611 {
612         struct cached_dev *dc = container_of(buf,
613                                              struct cached_dev,
614                                              writeback_keys);
615
616         BUG_ON(KEY_INODE(k) != dc->disk.id);
617
618         return KEY_DIRTY(k);
619 }
620
621 static void refill_full_stripes(struct cached_dev *dc)
622 {
623         struct keybuf *buf = &dc->writeback_keys;
624         unsigned int start_stripe, next_stripe;
625         int stripe;
626         bool wrapped = false;
627
628         stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
629         if (stripe < 0)
630                 stripe = 0;
631
632         start_stripe = stripe;
633
634         while (1) {
635                 stripe = find_next_bit(dc->disk.full_dirty_stripes,
636                                        dc->disk.nr_stripes, stripe);
637
638                 if (stripe == dc->disk.nr_stripes)
639                         goto next;
640
641                 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
642                                                  dc->disk.nr_stripes, stripe);
643
644                 buf->last_scanned = KEY(dc->disk.id,
645                                         stripe * dc->disk.stripe_size, 0);
646
647                 bch_refill_keybuf(dc->disk.c, buf,
648                                   &KEY(dc->disk.id,
649                                        next_stripe * dc->disk.stripe_size, 0),
650                                   dirty_pred);
651
652                 if (array_freelist_empty(&buf->freelist))
653                         return;
654
655                 stripe = next_stripe;
656 next:
657                 if (wrapped && stripe > start_stripe)
658                         return;
659
660                 if (stripe == dc->disk.nr_stripes) {
661                         stripe = 0;
662                         wrapped = true;
663                 }
664         }
665 }
666
667 /*
668  * Returns true if we scanned the entire disk
669  */
670 static bool refill_dirty(struct cached_dev *dc)
671 {
672         struct keybuf *buf = &dc->writeback_keys;
673         struct bkey start = KEY(dc->disk.id, 0, 0);
674         struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
675         struct bkey start_pos;
676
677         /*
678          * make sure keybuf pos is inside the range for this disk - at bringup
679          * we might not be attached yet so this disk's inode nr isn't
680          * initialized then
681          */
682         if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
683             bkey_cmp(&buf->last_scanned, &end) > 0)
684                 buf->last_scanned = start;
685
686         if (dc->partial_stripes_expensive) {
687                 refill_full_stripes(dc);
688                 if (array_freelist_empty(&buf->freelist))
689                         return false;
690         }
691
692         start_pos = buf->last_scanned;
693         bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
694
695         if (bkey_cmp(&buf->last_scanned, &end) < 0)
696                 return false;
697
698         /*
699          * If we get to the end start scanning again from the beginning, and
700          * only scan up to where we initially started scanning from:
701          */
702         buf->last_scanned = start;
703         bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
704
705         return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
706 }
707
708 static int bch_writeback_thread(void *arg)
709 {
710         struct cached_dev *dc = arg;
711         struct cache_set *c = dc->disk.c;
712         bool searched_full_index;
713
714         bch_ratelimit_reset(&dc->writeback_rate);
715
716         while (!kthread_should_stop() &&
717                !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
718                 down_write(&dc->writeback_lock);
719                 set_current_state(TASK_INTERRUPTIBLE);
720                 /*
721                  * If the bache device is detaching, skip here and continue
722                  * to perform writeback. Otherwise, if no dirty data on cache,
723                  * or there is dirty data on cache but writeback is disabled,
724                  * the writeback thread should sleep here and wait for others
725                  * to wake up it.
726                  */
727                 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
728                     (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
729                         up_write(&dc->writeback_lock);
730
731                         if (kthread_should_stop() ||
732                             test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
733                                 set_current_state(TASK_RUNNING);
734                                 break;
735                         }
736
737                         schedule();
738                         continue;
739                 }
740                 set_current_state(TASK_RUNNING);
741
742                 searched_full_index = refill_dirty(dc);
743
744                 if (searched_full_index &&
745                     RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
746                         atomic_set(&dc->has_dirty, 0);
747                         SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
748                         bch_write_bdev_super(dc, NULL);
749                         /*
750                          * If bcache device is detaching via sysfs interface,
751                          * writeback thread should stop after there is no dirty
752                          * data on cache. BCACHE_DEV_DETACHING flag is set in
753                          * bch_cached_dev_detach().
754                          */
755                         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
756                                 struct closure cl;
757
758                                 closure_init_stack(&cl);
759                                 memset(&dc->sb.set_uuid, 0, 16);
760                                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
761
762                                 bch_write_bdev_super(dc, &cl);
763                                 closure_sync(&cl);
764
765                                 up_write(&dc->writeback_lock);
766                                 break;
767                         }
768
769                         /*
770                          * When dirty data rate is high (e.g. 50%+), there might
771                          * be heavy buckets fragmentation after writeback
772                          * finished, which hurts following write performance.
773                          * If users really care about write performance they
774                          * may set BCH_ENABLE_AUTO_GC via sysfs, then when
775                          * BCH_DO_AUTO_GC is set, garbage collection thread
776                          * will be wake up here. After moving gc, the shrunk
777                          * btree and discarded free buckets SSD space may be
778                          * helpful for following write requests.
779                          */
780                         if (c->gc_after_writeback ==
781                             (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
782                                 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
783                                 force_wake_up_gc(c);
784                         }
785                 }
786
787                 up_write(&dc->writeback_lock);
788
789                 read_dirty(dc);
790
791                 if (searched_full_index) {
792                         unsigned int delay = dc->writeback_delay * HZ;
793
794                         while (delay &&
795                                !kthread_should_stop() &&
796                                !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
797                                !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
798                                 delay = schedule_timeout_interruptible(delay);
799
800                         bch_ratelimit_reset(&dc->writeback_rate);
801                 }
802         }
803
804         if (dc->writeback_write_wq)
805                 destroy_workqueue(dc->writeback_write_wq);
806
807         cached_dev_put(dc);
808         wait_for_kthread_stop();
809
810         return 0;
811 }
812
813 /* Init */
814 #define INIT_KEYS_EACH_TIME     500000
815
816 struct sectors_dirty_init {
817         struct btree_op op;
818         unsigned int    inode;
819         size_t          count;
820 };
821
822 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
823                                  struct bkey *k)
824 {
825         struct sectors_dirty_init *op = container_of(_op,
826                                                 struct sectors_dirty_init, op);
827         if (KEY_INODE(k) > op->inode)
828                 return MAP_DONE;
829
830         if (KEY_DIRTY(k))
831                 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
832                                              KEY_START(k), KEY_SIZE(k));
833
834         op->count++;
835         if (!(op->count % INIT_KEYS_EACH_TIME))
836                 cond_resched();
837
838         return MAP_CONTINUE;
839 }
840
841 static int bch_root_node_dirty_init(struct cache_set *c,
842                                      struct bcache_device *d,
843                                      struct bkey *k)
844 {
845         struct sectors_dirty_init op;
846         int ret;
847
848         bch_btree_op_init(&op.op, -1);
849         op.inode = d->id;
850         op.count = 0;
851
852         ret = bcache_btree(map_keys_recurse,
853                            k,
854                            c->root,
855                            &op.op,
856                            &KEY(op.inode, 0, 0),
857                            sectors_dirty_init_fn,
858                            0);
859         if (ret < 0)
860                 pr_warn("sectors dirty init failed, ret=%d!\n", ret);
861
862         return ret;
863 }
864
865 static int bch_dirty_init_thread(void *arg)
866 {
867         struct dirty_init_thrd_info *info = arg;
868         struct bch_dirty_init_state *state = info->state;
869         struct cache_set *c = state->c;
870         struct btree_iter iter;
871         struct bkey *k, *p;
872         int cur_idx, prev_idx, skip_nr;
873
874         k = p = NULL;
875         cur_idx = prev_idx = 0;
876
877         bch_btree_iter_init(&c->root->keys, &iter, NULL);
878         k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
879         BUG_ON(!k);
880
881         p = k;
882
883         while (k) {
884                 spin_lock(&state->idx_lock);
885                 cur_idx = state->key_idx;
886                 state->key_idx++;
887                 spin_unlock(&state->idx_lock);
888
889                 skip_nr = cur_idx - prev_idx;
890
891                 while (skip_nr) {
892                         k = bch_btree_iter_next_filter(&iter,
893                                                        &c->root->keys,
894                                                        bch_ptr_bad);
895                         if (k)
896                                 p = k;
897                         else {
898                                 atomic_set(&state->enough, 1);
899                                 /* Update state->enough earlier */
900                                 smp_mb__after_atomic();
901                                 goto out;
902                         }
903                         skip_nr--;
904                 }
905
906                 if (p) {
907                         if (bch_root_node_dirty_init(c, state->d, p) < 0)
908                                 goto out;
909                 }
910
911                 p = NULL;
912                 prev_idx = cur_idx;
913         }
914
915 out:
916         /* In order to wake up state->wait in time */
917         smp_mb__before_atomic();
918         if (atomic_dec_and_test(&state->started))
919                 wake_up(&state->wait);
920
921         return 0;
922 }
923
924 static int bch_btre_dirty_init_thread_nr(void)
925 {
926         int n = num_online_cpus()/2;
927
928         if (n == 0)
929                 n = 1;
930         else if (n > BCH_DIRTY_INIT_THRD_MAX)
931                 n = BCH_DIRTY_INIT_THRD_MAX;
932
933         return n;
934 }
935
936 void bch_sectors_dirty_init(struct bcache_device *d)
937 {
938         int i;
939         struct bkey *k = NULL;
940         struct btree_iter iter;
941         struct sectors_dirty_init op;
942         struct cache_set *c = d->c;
943         struct bch_dirty_init_state state;
944
945         /* Just count root keys if no leaf node */
946         rw_lock(0, c->root, c->root->level);
947         if (c->root->level == 0) {
948                 bch_btree_op_init(&op.op, -1);
949                 op.inode = d->id;
950                 op.count = 0;
951
952                 for_each_key_filter(&c->root->keys,
953                                     k, &iter, bch_ptr_invalid)
954                         sectors_dirty_init_fn(&op.op, c->root, k);
955
956                 rw_unlock(0, c->root);
957                 return;
958         }
959
960         memset(&state, 0, sizeof(struct bch_dirty_init_state));
961         state.c = c;
962         state.d = d;
963         state.total_threads = bch_btre_dirty_init_thread_nr();
964         state.key_idx = 0;
965         spin_lock_init(&state.idx_lock);
966         atomic_set(&state.started, 0);
967         atomic_set(&state.enough, 0);
968         init_waitqueue_head(&state.wait);
969
970         for (i = 0; i < state.total_threads; i++) {
971                 /* Fetch latest state.enough earlier */
972                 smp_mb__before_atomic();
973                 if (atomic_read(&state.enough))
974                         break;
975
976                 state.infos[i].state = &state;
977                 state.infos[i].thread =
978                         kthread_run(bch_dirty_init_thread, &state.infos[i],
979                                     "bch_dirtcnt[%d]", i);
980                 if (IS_ERR(state.infos[i].thread)) {
981                         pr_err("fails to run thread bch_dirty_init[%d]\n", i);
982                         for (--i; i >= 0; i--)
983                                 kthread_stop(state.infos[i].thread);
984                         goto out;
985                 }
986                 atomic_inc(&state.started);
987         }
988
989 out:
990         /* Must wait for all threads to stop. */
991         wait_event(state.wait, atomic_read(&state.started) == 0);
992         rw_unlock(0, c->root);
993 }
994
995 void bch_cached_dev_writeback_init(struct cached_dev *dc)
996 {
997         sema_init(&dc->in_flight, 64);
998         init_rwsem(&dc->writeback_lock);
999         bch_keybuf_init(&dc->writeback_keys);
1000
1001         dc->writeback_metadata          = true;
1002         dc->writeback_running           = false;
1003         dc->writeback_consider_fragment = true;
1004         dc->writeback_percent           = 10;
1005         dc->writeback_delay             = 30;
1006         atomic_long_set(&dc->writeback_rate.rate, 1024);
1007         dc->writeback_rate_minimum      = 8;
1008
1009         dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1010         dc->writeback_rate_p_term_inverse = 40;
1011         dc->writeback_rate_fp_term_low = 1;
1012         dc->writeback_rate_fp_term_mid = 10;
1013         dc->writeback_rate_fp_term_high = 1000;
1014         dc->writeback_rate_i_term_inverse = 10000;
1015
1016         /* For dc->writeback_lock contention in update_writeback_rate() */
1017         dc->rate_update_retry = 0;
1018
1019         WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1020         INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
1021 }
1022
1023 int bch_cached_dev_writeback_start(struct cached_dev *dc)
1024 {
1025         dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
1026                                                 WQ_MEM_RECLAIM, 0);
1027         if (!dc->writeback_write_wq)
1028                 return -ENOMEM;
1029
1030         cached_dev_get(dc);
1031         dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1032                                               "bcache_writeback");
1033         if (IS_ERR(dc->writeback_thread)) {
1034                 cached_dev_put(dc);
1035                 destroy_workqueue(dc->writeback_write_wq);
1036                 return PTR_ERR(dc->writeback_thread);
1037         }
1038         dc->writeback_running = true;
1039
1040         WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1041         schedule_delayed_work(&dc->writeback_rate_update,
1042                               dc->writeback_rate_update_seconds * HZ);
1043
1044         bch_writeback_queue(dc);
1045
1046         return 0;
1047 }