bcache: don't set max writeback rate if gc is running
[platform/kernel/linux-starfive.git] / drivers / md / bcache / writeback.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * background writeback - scan btree for dirty data and write it to the backing
4  * device
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19
20 static void update_gc_after_writeback(struct cache_set *c)
21 {
22         if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23             c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24                 return;
25
26         c->gc_after_writeback |= BCH_DO_AUTO_GC;
27 }
28
29 /* Rate limiting */
30 static uint64_t __calc_target_rate(struct cached_dev *dc)
31 {
32         struct cache_set *c = dc->disk.c;
33
34         /*
35          * This is the size of the cache, minus the amount used for
36          * flash-only devices
37          */
38         uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
39                                 atomic_long_read(&c->flash_dev_dirty_sectors);
40
41         /*
42          * Unfortunately there is no control of global dirty data.  If the
43          * user states that they want 10% dirty data in the cache, and has,
44          * e.g., 5 backing volumes of equal size, we try and ensure each
45          * backing volume uses about 2% of the cache for dirty data.
46          */
47         uint32_t bdev_share =
48                 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49                                 c->cached_dev_sectors);
50
51         uint64_t cache_dirty_target =
52                 div_u64(cache_sectors * dc->writeback_percent, 100);
53
54         /* Ensure each backing dev gets at least one dirty share */
55         if (bdev_share < 1)
56                 bdev_share = 1;
57
58         return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59 }
60
61 static void __update_writeback_rate(struct cached_dev *dc)
62 {
63         /*
64          * PI controller:
65          * Figures out the amount that should be written per second.
66          *
67          * First, the error (number of sectors that are dirty beyond our
68          * target) is calculated.  The error is accumulated (numerically
69          * integrated).
70          *
71          * Then, the proportional value and integral value are scaled
72          * based on configured values.  These are stored as inverses to
73          * avoid fixed point math and to make configuration easy-- e.g.
74          * the default value of 40 for writeback_rate_p_term_inverse
75          * attempts to write at a rate that would retire all the dirty
76          * blocks in 40 seconds.
77          *
78          * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79          * of the error is accumulated in the integral term per second.
80          * This acts as a slow, long-term average that is not subject to
81          * variations in usage like the p term.
82          */
83         int64_t target = __calc_target_rate(dc);
84         int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85         int64_t error = dirty - target;
86         int64_t proportional_scaled =
87                 div_s64(error, dc->writeback_rate_p_term_inverse);
88         int64_t integral_scaled;
89         uint32_t new_rate;
90
91         if ((error < 0 && dc->writeback_rate_integral > 0) ||
92             (error > 0 && time_before64(local_clock(),
93                          dc->writeback_rate.next + NSEC_PER_MSEC))) {
94                 /*
95                  * Only decrease the integral term if it's more than
96                  * zero.  Only increase the integral term if the device
97                  * is keeping up.  (Don't wind up the integral
98                  * ineffectively in either case).
99                  *
100                  * It's necessary to scale this by
101                  * writeback_rate_update_seconds to keep the integral
102                  * term dimensioned properly.
103                  */
104                 dc->writeback_rate_integral += error *
105                         dc->writeback_rate_update_seconds;
106         }
107
108         integral_scaled = div_s64(dc->writeback_rate_integral,
109                         dc->writeback_rate_i_term_inverse);
110
111         new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
112                         dc->writeback_rate_minimum, NSEC_PER_SEC);
113
114         dc->writeback_rate_proportional = proportional_scaled;
115         dc->writeback_rate_integral_scaled = integral_scaled;
116         dc->writeback_rate_change = new_rate -
117                         atomic_long_read(&dc->writeback_rate.rate);
118         atomic_long_set(&dc->writeback_rate.rate, new_rate);
119         dc->writeback_rate_target = target;
120 }
121
122 static bool set_at_max_writeback_rate(struct cache_set *c,
123                                        struct cached_dev *dc)
124 {
125         /* Don't set max writeback rate if gc is running */
126         if (!c->gc_mark_valid)
127                 return false;
128         /*
129          * Idle_counter is increased everytime when update_writeback_rate() is
130          * called. If all backing devices attached to the same cache set have
131          * identical dc->writeback_rate_update_seconds values, it is about 6
132          * rounds of update_writeback_rate() on each backing device before
133          * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
134          * to each dc->writeback_rate.rate.
135          * In order to avoid extra locking cost for counting exact dirty cached
136          * devices number, c->attached_dev_nr is used to calculate the idle
137          * throushold. It might be bigger if not all cached device are in write-
138          * back mode, but it still works well with limited extra rounds of
139          * update_writeback_rate().
140          */
141         if (atomic_inc_return(&c->idle_counter) <
142             atomic_read(&c->attached_dev_nr) * 6)
143                 return false;
144
145         if (atomic_read(&c->at_max_writeback_rate) != 1)
146                 atomic_set(&c->at_max_writeback_rate, 1);
147
148         atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
149
150         /* keep writeback_rate_target as existing value */
151         dc->writeback_rate_proportional = 0;
152         dc->writeback_rate_integral_scaled = 0;
153         dc->writeback_rate_change = 0;
154
155         /*
156          * Check c->idle_counter and c->at_max_writeback_rate agagain in case
157          * new I/O arrives during before set_at_max_writeback_rate() returns.
158          * Then the writeback rate is set to 1, and its new value should be
159          * decided via __update_writeback_rate().
160          */
161         if ((atomic_read(&c->idle_counter) <
162              atomic_read(&c->attached_dev_nr) * 6) ||
163             !atomic_read(&c->at_max_writeback_rate))
164                 return false;
165
166         return true;
167 }
168
169 static void update_writeback_rate(struct work_struct *work)
170 {
171         struct cached_dev *dc = container_of(to_delayed_work(work),
172                                              struct cached_dev,
173                                              writeback_rate_update);
174         struct cache_set *c = dc->disk.c;
175
176         /*
177          * should check BCACHE_DEV_RATE_DW_RUNNING before calling
178          * cancel_delayed_work_sync().
179          */
180         set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
181         /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
182         smp_mb();
183
184         /*
185          * CACHE_SET_IO_DISABLE might be set via sysfs interface,
186          * check it here too.
187          */
188         if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
189             test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
190                 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
191                 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
192                 smp_mb();
193                 return;
194         }
195
196         if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
197                 /*
198                  * If the whole cache set is idle, set_at_max_writeback_rate()
199                  * will set writeback rate to a max number. Then it is
200                  * unncessary to update writeback rate for an idle cache set
201                  * in maximum writeback rate number(s).
202                  */
203                 if (!set_at_max_writeback_rate(c, dc)) {
204                         down_read(&dc->writeback_lock);
205                         __update_writeback_rate(dc);
206                         update_gc_after_writeback(c);
207                         up_read(&dc->writeback_lock);
208                 }
209         }
210
211
212         /*
213          * CACHE_SET_IO_DISABLE might be set via sysfs interface,
214          * check it here too.
215          */
216         if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
217             !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
218                 schedule_delayed_work(&dc->writeback_rate_update,
219                               dc->writeback_rate_update_seconds * HZ);
220         }
221
222         /*
223          * should check BCACHE_DEV_RATE_DW_RUNNING before calling
224          * cancel_delayed_work_sync().
225          */
226         clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
227         /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
228         smp_mb();
229 }
230
231 static unsigned int writeback_delay(struct cached_dev *dc,
232                                     unsigned int sectors)
233 {
234         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
235             !dc->writeback_percent)
236                 return 0;
237
238         return bch_next_delay(&dc->writeback_rate, sectors);
239 }
240
241 struct dirty_io {
242         struct closure          cl;
243         struct cached_dev       *dc;
244         uint16_t                sequence;
245         struct bio              bio;
246 };
247
248 static void dirty_init(struct keybuf_key *w)
249 {
250         struct dirty_io *io = w->private;
251         struct bio *bio = &io->bio;
252
253         bio_init(bio, bio->bi_inline_vecs,
254                  DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
255         if (!io->dc->writeback_percent)
256                 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
257
258         bio->bi_iter.bi_size    = KEY_SIZE(&w->key) << 9;
259         bio->bi_private         = w;
260         bch_bio_map(bio, NULL);
261 }
262
263 static void dirty_io_destructor(struct closure *cl)
264 {
265         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
266
267         kfree(io);
268 }
269
270 static void write_dirty_finish(struct closure *cl)
271 {
272         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
273         struct keybuf_key *w = io->bio.bi_private;
274         struct cached_dev *dc = io->dc;
275
276         bio_free_pages(&io->bio);
277
278         /* This is kind of a dumb way of signalling errors. */
279         if (KEY_DIRTY(&w->key)) {
280                 int ret;
281                 unsigned int i;
282                 struct keylist keys;
283
284                 bch_keylist_init(&keys);
285
286                 bkey_copy(keys.top, &w->key);
287                 SET_KEY_DIRTY(keys.top, false);
288                 bch_keylist_push(&keys);
289
290                 for (i = 0; i < KEY_PTRS(&w->key); i++)
291                         atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
292
293                 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
294
295                 if (ret)
296                         trace_bcache_writeback_collision(&w->key);
297
298                 atomic_long_inc(ret
299                                 ? &dc->disk.c->writeback_keys_failed
300                                 : &dc->disk.c->writeback_keys_done);
301         }
302
303         bch_keybuf_del(&dc->writeback_keys, w);
304         up(&dc->in_flight);
305
306         closure_return_with_destructor(cl, dirty_io_destructor);
307 }
308
309 static void dirty_endio(struct bio *bio)
310 {
311         struct keybuf_key *w = bio->bi_private;
312         struct dirty_io *io = w->private;
313
314         if (bio->bi_status) {
315                 SET_KEY_DIRTY(&w->key, false);
316                 bch_count_backing_io_errors(io->dc, bio);
317         }
318
319         closure_put(&io->cl);
320 }
321
322 static void write_dirty(struct closure *cl)
323 {
324         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
325         struct keybuf_key *w = io->bio.bi_private;
326         struct cached_dev *dc = io->dc;
327
328         uint16_t next_sequence;
329
330         if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
331                 /* Not our turn to write; wait for a write to complete */
332                 closure_wait(&dc->writeback_ordering_wait, cl);
333
334                 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
335                         /*
336                          * Edge case-- it happened in indeterminate order
337                          * relative to when we were added to wait list..
338                          */
339                         closure_wake_up(&dc->writeback_ordering_wait);
340                 }
341
342                 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
343                 return;
344         }
345
346         next_sequence = io->sequence + 1;
347
348         /*
349          * IO errors are signalled using the dirty bit on the key.
350          * If we failed to read, we should not attempt to write to the
351          * backing device.  Instead, immediately go to write_dirty_finish
352          * to clean up.
353          */
354         if (KEY_DIRTY(&w->key)) {
355                 dirty_init(w);
356                 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
357                 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
358                 bio_set_dev(&io->bio, io->dc->bdev);
359                 io->bio.bi_end_io       = dirty_endio;
360
361                 /* I/O request sent to backing device */
362                 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
363         }
364
365         atomic_set(&dc->writeback_sequence_next, next_sequence);
366         closure_wake_up(&dc->writeback_ordering_wait);
367
368         continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
369 }
370
371 static void read_dirty_endio(struct bio *bio)
372 {
373         struct keybuf_key *w = bio->bi_private;
374         struct dirty_io *io = w->private;
375
376         /* is_read = 1 */
377         bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
378                             bio->bi_status, 1,
379                             "reading dirty data from cache");
380
381         dirty_endio(bio);
382 }
383
384 static void read_dirty_submit(struct closure *cl)
385 {
386         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
387
388         closure_bio_submit(io->dc->disk.c, &io->bio, cl);
389
390         continue_at(cl, write_dirty, io->dc->writeback_write_wq);
391 }
392
393 static void read_dirty(struct cached_dev *dc)
394 {
395         unsigned int delay = 0;
396         struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
397         size_t size;
398         int nk, i;
399         struct dirty_io *io;
400         struct closure cl;
401         uint16_t sequence = 0;
402
403         BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
404         atomic_set(&dc->writeback_sequence_next, sequence);
405         closure_init_stack(&cl);
406
407         /*
408          * XXX: if we error, background writeback just spins. Should use some
409          * mempools.
410          */
411
412         next = bch_keybuf_next(&dc->writeback_keys);
413
414         while (!kthread_should_stop() &&
415                !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
416                next) {
417                 size = 0;
418                 nk = 0;
419
420                 do {
421                         BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
422
423                         /*
424                          * Don't combine too many operations, even if they
425                          * are all small.
426                          */
427                         if (nk >= MAX_WRITEBACKS_IN_PASS)
428                                 break;
429
430                         /*
431                          * If the current operation is very large, don't
432                          * further combine operations.
433                          */
434                         if (size >= MAX_WRITESIZE_IN_PASS)
435                                 break;
436
437                         /*
438                          * Operations are only eligible to be combined
439                          * if they are contiguous.
440                          *
441                          * TODO: add a heuristic willing to fire a
442                          * certain amount of non-contiguous IO per pass,
443                          * so that we can benefit from backing device
444                          * command queueing.
445                          */
446                         if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
447                                                 &START_KEY(&next->key)))
448                                 break;
449
450                         size += KEY_SIZE(&next->key);
451                         keys[nk++] = next;
452                 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
453
454                 /* Now we have gathered a set of 1..5 keys to write back. */
455                 for (i = 0; i < nk; i++) {
456                         w = keys[i];
457
458                         io = kzalloc(sizeof(struct dirty_io) +
459                                      sizeof(struct bio_vec) *
460                                      DIV_ROUND_UP(KEY_SIZE(&w->key),
461                                                   PAGE_SECTORS),
462                                      GFP_KERNEL);
463                         if (!io)
464                                 goto err;
465
466                         w->private      = io;
467                         io->dc          = dc;
468                         io->sequence    = sequence++;
469
470                         dirty_init(w);
471                         bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
472                         io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
473                         bio_set_dev(&io->bio,
474                                     PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
475                         io->bio.bi_end_io       = read_dirty_endio;
476
477                         if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
478                                 goto err_free;
479
480                         trace_bcache_writeback(&w->key);
481
482                         down(&dc->in_flight);
483
484                         /*
485                          * We've acquired a semaphore for the maximum
486                          * simultaneous number of writebacks; from here
487                          * everything happens asynchronously.
488                          */
489                         closure_call(&io->cl, read_dirty_submit, NULL, &cl);
490                 }
491
492                 delay = writeback_delay(dc, size);
493
494                 while (!kthread_should_stop() &&
495                        !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
496                        delay) {
497                         schedule_timeout_interruptible(delay);
498                         delay = writeback_delay(dc, 0);
499                 }
500         }
501
502         if (0) {
503 err_free:
504                 kfree(w->private);
505 err:
506                 bch_keybuf_del(&dc->writeback_keys, w);
507         }
508
509         /*
510          * Wait for outstanding writeback IOs to finish (and keybuf slots to be
511          * freed) before refilling again
512          */
513         closure_sync(&cl);
514 }
515
516 /* Scan for dirty data */
517
518 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
519                                   uint64_t offset, int nr_sectors)
520 {
521         struct bcache_device *d = c->devices[inode];
522         unsigned int stripe_offset, stripe, sectors_dirty;
523
524         if (!d)
525                 return;
526
527         if (UUID_FLASH_ONLY(&c->uuids[inode]))
528                 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
529
530         stripe = offset_to_stripe(d, offset);
531         stripe_offset = offset & (d->stripe_size - 1);
532
533         while (nr_sectors) {
534                 int s = min_t(unsigned int, abs(nr_sectors),
535                               d->stripe_size - stripe_offset);
536
537                 if (nr_sectors < 0)
538                         s = -s;
539
540                 if (stripe >= d->nr_stripes)
541                         return;
542
543                 sectors_dirty = atomic_add_return(s,
544                                         d->stripe_sectors_dirty + stripe);
545                 if (sectors_dirty == d->stripe_size)
546                         set_bit(stripe, d->full_dirty_stripes);
547                 else
548                         clear_bit(stripe, d->full_dirty_stripes);
549
550                 nr_sectors -= s;
551                 stripe_offset = 0;
552                 stripe++;
553         }
554 }
555
556 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
557 {
558         struct cached_dev *dc = container_of(buf,
559                                              struct cached_dev,
560                                              writeback_keys);
561
562         BUG_ON(KEY_INODE(k) != dc->disk.id);
563
564         return KEY_DIRTY(k);
565 }
566
567 static void refill_full_stripes(struct cached_dev *dc)
568 {
569         struct keybuf *buf = &dc->writeback_keys;
570         unsigned int start_stripe, stripe, next_stripe;
571         bool wrapped = false;
572
573         stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
574
575         if (stripe >= dc->disk.nr_stripes)
576                 stripe = 0;
577
578         start_stripe = stripe;
579
580         while (1) {
581                 stripe = find_next_bit(dc->disk.full_dirty_stripes,
582                                        dc->disk.nr_stripes, stripe);
583
584                 if (stripe == dc->disk.nr_stripes)
585                         goto next;
586
587                 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
588                                                  dc->disk.nr_stripes, stripe);
589
590                 buf->last_scanned = KEY(dc->disk.id,
591                                         stripe * dc->disk.stripe_size, 0);
592
593                 bch_refill_keybuf(dc->disk.c, buf,
594                                   &KEY(dc->disk.id,
595                                        next_stripe * dc->disk.stripe_size, 0),
596                                   dirty_pred);
597
598                 if (array_freelist_empty(&buf->freelist))
599                         return;
600
601                 stripe = next_stripe;
602 next:
603                 if (wrapped && stripe > start_stripe)
604                         return;
605
606                 if (stripe == dc->disk.nr_stripes) {
607                         stripe = 0;
608                         wrapped = true;
609                 }
610         }
611 }
612
613 /*
614  * Returns true if we scanned the entire disk
615  */
616 static bool refill_dirty(struct cached_dev *dc)
617 {
618         struct keybuf *buf = &dc->writeback_keys;
619         struct bkey start = KEY(dc->disk.id, 0, 0);
620         struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
621         struct bkey start_pos;
622
623         /*
624          * make sure keybuf pos is inside the range for this disk - at bringup
625          * we might not be attached yet so this disk's inode nr isn't
626          * initialized then
627          */
628         if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
629             bkey_cmp(&buf->last_scanned, &end) > 0)
630                 buf->last_scanned = start;
631
632         if (dc->partial_stripes_expensive) {
633                 refill_full_stripes(dc);
634                 if (array_freelist_empty(&buf->freelist))
635                         return false;
636         }
637
638         start_pos = buf->last_scanned;
639         bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
640
641         if (bkey_cmp(&buf->last_scanned, &end) < 0)
642                 return false;
643
644         /*
645          * If we get to the end start scanning again from the beginning, and
646          * only scan up to where we initially started scanning from:
647          */
648         buf->last_scanned = start;
649         bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
650
651         return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
652 }
653
654 static int bch_writeback_thread(void *arg)
655 {
656         struct cached_dev *dc = arg;
657         struct cache_set *c = dc->disk.c;
658         bool searched_full_index;
659
660         bch_ratelimit_reset(&dc->writeback_rate);
661
662         while (!kthread_should_stop() &&
663                !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
664                 down_write(&dc->writeback_lock);
665                 set_current_state(TASK_INTERRUPTIBLE);
666                 /*
667                  * If the bache device is detaching, skip here and continue
668                  * to perform writeback. Otherwise, if no dirty data on cache,
669                  * or there is dirty data on cache but writeback is disabled,
670                  * the writeback thread should sleep here and wait for others
671                  * to wake up it.
672                  */
673                 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
674                     (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
675                         up_write(&dc->writeback_lock);
676
677                         if (kthread_should_stop() ||
678                             test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
679                                 set_current_state(TASK_RUNNING);
680                                 break;
681                         }
682
683                         schedule();
684                         continue;
685                 }
686                 set_current_state(TASK_RUNNING);
687
688                 searched_full_index = refill_dirty(dc);
689
690                 if (searched_full_index &&
691                     RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
692                         atomic_set(&dc->has_dirty, 0);
693                         SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
694                         bch_write_bdev_super(dc, NULL);
695                         /*
696                          * If bcache device is detaching via sysfs interface,
697                          * writeback thread should stop after there is no dirty
698                          * data on cache. BCACHE_DEV_DETACHING flag is set in
699                          * bch_cached_dev_detach().
700                          */
701                         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
702                                 up_write(&dc->writeback_lock);
703                                 break;
704                         }
705
706                         /*
707                          * When dirty data rate is high (e.g. 50%+), there might
708                          * be heavy buckets fragmentation after writeback
709                          * finished, which hurts following write performance.
710                          * If users really care about write performance they
711                          * may set BCH_ENABLE_AUTO_GC via sysfs, then when
712                          * BCH_DO_AUTO_GC is set, garbage collection thread
713                          * will be wake up here. After moving gc, the shrunk
714                          * btree and discarded free buckets SSD space may be
715                          * helpful for following write requests.
716                          */
717                         if (c->gc_after_writeback ==
718                             (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
719                                 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
720                                 force_wake_up_gc(c);
721                         }
722                 }
723
724                 up_write(&dc->writeback_lock);
725
726                 read_dirty(dc);
727
728                 if (searched_full_index) {
729                         unsigned int delay = dc->writeback_delay * HZ;
730
731                         while (delay &&
732                                !kthread_should_stop() &&
733                                !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
734                                !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
735                                 delay = schedule_timeout_interruptible(delay);
736
737                         bch_ratelimit_reset(&dc->writeback_rate);
738                 }
739         }
740
741         cached_dev_put(dc);
742         wait_for_kthread_stop();
743
744         return 0;
745 }
746
747 /* Init */
748 #define INIT_KEYS_EACH_TIME     500000
749 #define INIT_KEYS_SLEEP_MS      100
750
751 struct sectors_dirty_init {
752         struct btree_op op;
753         unsigned int    inode;
754         size_t          count;
755         struct bkey     start;
756 };
757
758 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
759                                  struct bkey *k)
760 {
761         struct sectors_dirty_init *op = container_of(_op,
762                                                 struct sectors_dirty_init, op);
763         if (KEY_INODE(k) > op->inode)
764                 return MAP_DONE;
765
766         if (KEY_DIRTY(k))
767                 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
768                                              KEY_START(k), KEY_SIZE(k));
769
770         op->count++;
771         if (atomic_read(&b->c->search_inflight) &&
772             !(op->count % INIT_KEYS_EACH_TIME)) {
773                 bkey_copy_key(&op->start, k);
774                 return -EAGAIN;
775         }
776
777         return MAP_CONTINUE;
778 }
779
780 void bch_sectors_dirty_init(struct bcache_device *d)
781 {
782         struct sectors_dirty_init op;
783         int ret;
784
785         bch_btree_op_init(&op.op, -1);
786         op.inode = d->id;
787         op.count = 0;
788         op.start = KEY(op.inode, 0, 0);
789
790         do {
791                 ret = bch_btree_map_keys(&op.op, d->c, &op.start,
792                                          sectors_dirty_init_fn, 0);
793                 if (ret == -EAGAIN)
794                         schedule_timeout_interruptible(
795                                 msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
796                 else if (ret < 0) {
797                         pr_warn("sectors dirty init failed, ret=%d!", ret);
798                         break;
799                 }
800         } while (ret == -EAGAIN);
801 }
802
803 void bch_cached_dev_writeback_init(struct cached_dev *dc)
804 {
805         sema_init(&dc->in_flight, 64);
806         init_rwsem(&dc->writeback_lock);
807         bch_keybuf_init(&dc->writeback_keys);
808
809         dc->writeback_metadata          = true;
810         dc->writeback_running           = false;
811         dc->writeback_percent           = 10;
812         dc->writeback_delay             = 30;
813         atomic_long_set(&dc->writeback_rate.rate, 1024);
814         dc->writeback_rate_minimum      = 8;
815
816         dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
817         dc->writeback_rate_p_term_inverse = 40;
818         dc->writeback_rate_i_term_inverse = 10000;
819
820         WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
821         INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
822 }
823
824 int bch_cached_dev_writeback_start(struct cached_dev *dc)
825 {
826         dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
827                                                 WQ_MEM_RECLAIM, 0);
828         if (!dc->writeback_write_wq)
829                 return -ENOMEM;
830
831         cached_dev_get(dc);
832         dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
833                                               "bcache_writeback");
834         if (IS_ERR(dc->writeback_thread)) {
835                 cached_dev_put(dc);
836                 return PTR_ERR(dc->writeback_thread);
837         }
838         dc->writeback_running = true;
839
840         WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
841         schedule_delayed_work(&dc->writeback_rate_update,
842                               dc->writeback_rate_update_seconds * HZ);
843
844         bch_writeback_queue(dc);
845
846         return 0;
847 }