bcache: improve multithreaded bch_sectors_dirty_init()
[platform/kernel/linux-starfive.git] / drivers / md / bcache / util.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 #ifndef _BCACHE_UTIL_H
4 #define _BCACHE_UTIL_H
5
6 #include <linux/blkdev.h>
7 #include <linux/errno.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/clock.h>
10 #include <linux/llist.h>
11 #include <linux/ratelimit.h>
12 #include <linux/vmalloc.h>
13 #include <linux/workqueue.h>
14 #include <linux/crc64.h>
15
16 #include "closure.h"
17
18 struct closure;
19
20 #ifdef CONFIG_BCACHE_DEBUG
21
22 #define EBUG_ON(cond)                   BUG_ON(cond)
23 #define atomic_dec_bug(v)       BUG_ON(atomic_dec_return(v) < 0)
24 #define atomic_inc_bug(v, i)    BUG_ON(atomic_inc_return(v) <= i)
25
26 #else /* DEBUG */
27
28 #define EBUG_ON(cond)           do { if (cond) do {} while (0); } while (0)
29 #define atomic_dec_bug(v)       atomic_dec(v)
30 #define atomic_inc_bug(v, i)    atomic_inc(v)
31
32 #endif
33
34 #define DECLARE_HEAP(type, name)                                        \
35         struct {                                                        \
36                 size_t size, used;                                      \
37                 type *data;                                             \
38         } name
39
40 #define init_heap(heap, _size, gfp)                                     \
41 ({                                                                      \
42         size_t _bytes;                                                  \
43         (heap)->used = 0;                                               \
44         (heap)->size = (_size);                                         \
45         _bytes = (heap)->size * sizeof(*(heap)->data);                  \
46         (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);            \
47         (heap)->data;                                                   \
48 })
49
50 #define free_heap(heap)                                                 \
51 do {                                                                    \
52         kvfree((heap)->data);                                           \
53         (heap)->data = NULL;                                            \
54 } while (0)
55
56 #define heap_swap(h, i, j)      swap((h)->data[i], (h)->data[j])
57
58 #define heap_sift(h, i, cmp)                                            \
59 do {                                                                    \
60         size_t _r, _j = i;                                              \
61                                                                         \
62         for (; _j * 2 + 1 < (h)->used; _j = _r) {                       \
63                 _r = _j * 2 + 1;                                        \
64                 if (_r + 1 < (h)->used &&                               \
65                     cmp((h)->data[_r], (h)->data[_r + 1]))              \
66                         _r++;                                           \
67                                                                         \
68                 if (cmp((h)->data[_r], (h)->data[_j]))                  \
69                         break;                                          \
70                 heap_swap(h, _r, _j);                                   \
71         }                                                               \
72 } while (0)
73
74 #define heap_sift_down(h, i, cmp)                                       \
75 do {                                                                    \
76         while (i) {                                                     \
77                 size_t p = (i - 1) / 2;                                 \
78                 if (cmp((h)->data[i], (h)->data[p]))                    \
79                         break;                                          \
80                 heap_swap(h, i, p);                                     \
81                 i = p;                                                  \
82         }                                                               \
83 } while (0)
84
85 #define heap_add(h, d, cmp)                                             \
86 ({                                                                      \
87         bool _r = !heap_full(h);                                        \
88         if (_r) {                                                       \
89                 size_t _i = (h)->used++;                                \
90                 (h)->data[_i] = d;                                      \
91                                                                         \
92                 heap_sift_down(h, _i, cmp);                             \
93                 heap_sift(h, _i, cmp);                                  \
94         }                                                               \
95         _r;                                                             \
96 })
97
98 #define heap_pop(h, d, cmp)                                             \
99 ({                                                                      \
100         bool _r = (h)->used;                                            \
101         if (_r) {                                                       \
102                 (d) = (h)->data[0];                                     \
103                 (h)->used--;                                            \
104                 heap_swap(h, 0, (h)->used);                             \
105                 heap_sift(h, 0, cmp);                                   \
106         }                                                               \
107         _r;                                                             \
108 })
109
110 #define heap_peek(h)    ((h)->used ? (h)->data[0] : NULL)
111
112 #define heap_full(h)    ((h)->used == (h)->size)
113
114 #define DECLARE_FIFO(type, name)                                        \
115         struct {                                                        \
116                 size_t front, back, size, mask;                         \
117                 type *data;                                             \
118         } name
119
120 #define fifo_for_each(c, fifo, iter)                                    \
121         for (iter = (fifo)->front;                                      \
122              c = (fifo)->data[iter], iter != (fifo)->back;              \
123              iter = (iter + 1) & (fifo)->mask)
124
125 #define __init_fifo(fifo, gfp)                                          \
126 ({                                                                      \
127         size_t _allocated_size, _bytes;                                 \
128         BUG_ON(!(fifo)->size);                                          \
129                                                                         \
130         _allocated_size = roundup_pow_of_two((fifo)->size + 1);         \
131         _bytes = _allocated_size * sizeof(*(fifo)->data);               \
132                                                                         \
133         (fifo)->mask = _allocated_size - 1;                             \
134         (fifo)->front = (fifo)->back = 0;                               \
135                                                                         \
136         (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);            \
137         (fifo)->data;                                                   \
138 })
139
140 #define init_fifo_exact(fifo, _size, gfp)                               \
141 ({                                                                      \
142         (fifo)->size = (_size);                                         \
143         __init_fifo(fifo, gfp);                                         \
144 })
145
146 #define init_fifo(fifo, _size, gfp)                                     \
147 ({                                                                      \
148         (fifo)->size = (_size);                                         \
149         if ((fifo)->size > 4)                                           \
150                 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1;    \
151         __init_fifo(fifo, gfp);                                         \
152 })
153
154 #define free_fifo(fifo)                                                 \
155 do {                                                                    \
156         kvfree((fifo)->data);                                           \
157         (fifo)->data = NULL;                                            \
158 } while (0)
159
160 #define fifo_used(fifo)         (((fifo)->back - (fifo)->front) & (fifo)->mask)
161 #define fifo_free(fifo)         ((fifo)->size - fifo_used(fifo))
162
163 #define fifo_empty(fifo)        (!fifo_used(fifo))
164 #define fifo_full(fifo)         (!fifo_free(fifo))
165
166 #define fifo_front(fifo)        ((fifo)->data[(fifo)->front])
167 #define fifo_back(fifo)                                                 \
168         ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
169
170 #define fifo_idx(fifo, p)       (((p) - &fifo_front(fifo)) & (fifo)->mask)
171
172 #define fifo_push_back(fifo, i)                                         \
173 ({                                                                      \
174         bool _r = !fifo_full((fifo));                                   \
175         if (_r) {                                                       \
176                 (fifo)->data[(fifo)->back++] = (i);                     \
177                 (fifo)->back &= (fifo)->mask;                           \
178         }                                                               \
179         _r;                                                             \
180 })
181
182 #define fifo_pop_front(fifo, i)                                         \
183 ({                                                                      \
184         bool _r = !fifo_empty((fifo));                                  \
185         if (_r) {                                                       \
186                 (i) = (fifo)->data[(fifo)->front++];                    \
187                 (fifo)->front &= (fifo)->mask;                          \
188         }                                                               \
189         _r;                                                             \
190 })
191
192 #define fifo_push_front(fifo, i)                                        \
193 ({                                                                      \
194         bool _r = !fifo_full((fifo));                                   \
195         if (_r) {                                                       \
196                 --(fifo)->front;                                        \
197                 (fifo)->front &= (fifo)->mask;                          \
198                 (fifo)->data[(fifo)->front] = (i);                      \
199         }                                                               \
200         _r;                                                             \
201 })
202
203 #define fifo_pop_back(fifo, i)                                          \
204 ({                                                                      \
205         bool _r = !fifo_empty((fifo));                                  \
206         if (_r) {                                                       \
207                 --(fifo)->back;                                         \
208                 (fifo)->back &= (fifo)->mask;                           \
209                 (i) = (fifo)->data[(fifo)->back]                        \
210         }                                                               \
211         _r;                                                             \
212 })
213
214 #define fifo_push(fifo, i)      fifo_push_back(fifo, (i))
215 #define fifo_pop(fifo, i)       fifo_pop_front(fifo, (i))
216
217 #define fifo_swap(l, r)                                                 \
218 do {                                                                    \
219         swap((l)->front, (r)->front);                                   \
220         swap((l)->back, (r)->back);                                     \
221         swap((l)->size, (r)->size);                                     \
222         swap((l)->mask, (r)->mask);                                     \
223         swap((l)->data, (r)->data);                                     \
224 } while (0)
225
226 #define fifo_move(dest, src)                                            \
227 do {                                                                    \
228         typeof(*((dest)->data)) _t;                                     \
229         while (!fifo_full(dest) &&                                      \
230                fifo_pop(src, _t))                                       \
231                 fifo_push(dest, _t);                                    \
232 } while (0)
233
234 /*
235  * Simple array based allocator - preallocates a number of elements and you can
236  * never allocate more than that, also has no locking.
237  *
238  * Handy because if you know you only need a fixed number of elements you don't
239  * have to worry about memory allocation failure, and sometimes a mempool isn't
240  * what you want.
241  *
242  * We treat the free elements as entries in a singly linked list, and the
243  * freelist as a stack - allocating and freeing push and pop off the freelist.
244  */
245
246 #define DECLARE_ARRAY_ALLOCATOR(type, name, size)                       \
247         struct {                                                        \
248                 type    *freelist;                                      \
249                 type    data[size];                                     \
250         } name
251
252 #define array_alloc(array)                                              \
253 ({                                                                      \
254         typeof((array)->freelist) _ret = (array)->freelist;             \
255                                                                         \
256         if (_ret)                                                       \
257                 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
258                                                                         \
259         _ret;                                                           \
260 })
261
262 #define array_free(array, ptr)                                          \
263 do {                                                                    \
264         typeof((array)->freelist) _ptr = ptr;                           \
265                                                                         \
266         *((typeof((array)->freelist) *) _ptr) = (array)->freelist;      \
267         (array)->freelist = _ptr;                                       \
268 } while (0)
269
270 #define array_allocator_init(array)                                     \
271 do {                                                                    \
272         typeof((array)->freelist) _i;                                   \
273                                                                         \
274         BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));        \
275         (array)->freelist = NULL;                                       \
276                                                                         \
277         for (_i = (array)->data;                                        \
278              _i < (array)->data + ARRAY_SIZE((array)->data);            \
279              _i++)                                                      \
280                 array_free(array, _i);                                  \
281 } while (0)
282
283 #define array_freelist_empty(array)     ((array)->freelist == NULL)
284
285 #define ANYSINT_MAX(t)                                                  \
286         ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
287
288 int bch_strtoint_h(const char *cp, int *res);
289 int bch_strtouint_h(const char *cp, unsigned int *res);
290 int bch_strtoll_h(const char *cp, long long *res);
291 int bch_strtoull_h(const char *cp, unsigned long long *res);
292
293 static inline int bch_strtol_h(const char *cp, long *res)
294 {
295 #if BITS_PER_LONG == 32
296         return bch_strtoint_h(cp, (int *) res);
297 #else
298         return bch_strtoll_h(cp, (long long *) res);
299 #endif
300 }
301
302 static inline int bch_strtoul_h(const char *cp, long *res)
303 {
304 #if BITS_PER_LONG == 32
305         return bch_strtouint_h(cp, (unsigned int *) res);
306 #else
307         return bch_strtoull_h(cp, (unsigned long long *) res);
308 #endif
309 }
310
311 #define strtoi_h(cp, res)                                               \
312         (__builtin_types_compatible_p(typeof(*res), int)                \
313         ? bch_strtoint_h(cp, (void *) res)                              \
314         : __builtin_types_compatible_p(typeof(*res), long)              \
315         ? bch_strtol_h(cp, (void *) res)                                \
316         : __builtin_types_compatible_p(typeof(*res), long long)         \
317         ? bch_strtoll_h(cp, (void *) res)                               \
318         : __builtin_types_compatible_p(typeof(*res), unsigned int)      \
319         ? bch_strtouint_h(cp, (void *) res)                             \
320         : __builtin_types_compatible_p(typeof(*res), unsigned long)     \
321         ? bch_strtoul_h(cp, (void *) res)                               \
322         : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
323         ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
324
325 #define strtoul_safe(cp, var)                                           \
326 ({                                                                      \
327         unsigned long _v;                                               \
328         int _r = kstrtoul(cp, 10, &_v);                                 \
329         if (!_r)                                                        \
330                 var = _v;                                               \
331         _r;                                                             \
332 })
333
334 #define strtoul_safe_clamp(cp, var, min, max)                           \
335 ({                                                                      \
336         unsigned long _v;                                               \
337         int _r = kstrtoul(cp, 10, &_v);                                 \
338         if (!_r)                                                        \
339                 var = clamp_t(typeof(var), _v, min, max);               \
340         _r;                                                             \
341 })
342
343 ssize_t bch_hprint(char *buf, int64_t v);
344
345 bool bch_is_zero(const char *p, size_t n);
346 int bch_parse_uuid(const char *s, char *uuid);
347
348 struct time_stats {
349         spinlock_t      lock;
350         /*
351          * all fields are in nanoseconds, averages are ewmas stored left shifted
352          * by 8
353          */
354         uint64_t        max_duration;
355         uint64_t        average_duration;
356         uint64_t        average_frequency;
357         uint64_t        last;
358 };
359
360 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
361
362 static inline unsigned int local_clock_us(void)
363 {
364         return local_clock() >> 10;
365 }
366
367 #define NSEC_PER_ns                     1L
368 #define NSEC_PER_us                     NSEC_PER_USEC
369 #define NSEC_PER_ms                     NSEC_PER_MSEC
370 #define NSEC_PER_sec                    NSEC_PER_SEC
371
372 #define __print_time_stat(stats, name, stat, units)                     \
373         sysfs_print(name ## _ ## stat ## _ ## units,                    \
374                     div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
375
376 #define sysfs_print_time_stats(stats, name,                             \
377                                frequency_units,                         \
378                                duration_units)                          \
379 do {                                                                    \
380         __print_time_stat(stats, name,                                  \
381                           average_frequency,    frequency_units);       \
382         __print_time_stat(stats, name,                                  \
383                           average_duration,     duration_units);        \
384         sysfs_print(name ## _ ##max_duration ## _ ## duration_units,    \
385                         div_u64((stats)->max_duration,                  \
386                                 NSEC_PER_ ## duration_units));          \
387                                                                         \
388         sysfs_print(name ## _last_ ## frequency_units, (stats)->last    \
389                     ? div_s64(local_clock() - (stats)->last,            \
390                               NSEC_PER_ ## frequency_units)             \
391                     : -1LL);                                            \
392 } while (0)
393
394 #define sysfs_time_stats_attribute(name,                                \
395                                    frequency_units,                     \
396                                    duration_units)                      \
397 read_attribute(name ## _average_frequency_ ## frequency_units);         \
398 read_attribute(name ## _average_duration_ ## duration_units);           \
399 read_attribute(name ## _max_duration_ ## duration_units);               \
400 read_attribute(name ## _last_ ## frequency_units)
401
402 #define sysfs_time_stats_attribute_list(name,                           \
403                                         frequency_units,                \
404                                         duration_units)                 \
405 &sysfs_ ## name ## _average_frequency_ ## frequency_units,              \
406 &sysfs_ ## name ## _average_duration_ ## duration_units,                \
407 &sysfs_ ## name ## _max_duration_ ## duration_units,                    \
408 &sysfs_ ## name ## _last_ ## frequency_units,
409
410 #define ewma_add(ewma, val, weight, factor)                             \
411 ({                                                                      \
412         (ewma) *= (weight) - 1;                                         \
413         (ewma) += (val) << factor;                                      \
414         (ewma) /= (weight);                                             \
415         (ewma) >> factor;                                               \
416 })
417
418 struct bch_ratelimit {
419         /* Next time we want to do some work, in nanoseconds */
420         uint64_t                next;
421
422         /*
423          * Rate at which we want to do work, in units per second
424          * The units here correspond to the units passed to bch_next_delay()
425          */
426         atomic_long_t           rate;
427 };
428
429 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
430 {
431         d->next = local_clock();
432 }
433
434 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
435
436 #define __DIV_SAFE(n, d, zero)                                          \
437 ({                                                                      \
438         typeof(n) _n = (n);                                             \
439         typeof(d) _d = (d);                                             \
440         _d ? _n / _d : zero;                                            \
441 })
442
443 #define DIV_SAFE(n, d)  __DIV_SAFE(n, d, 0)
444
445 #define container_of_or_null(ptr, type, member)                         \
446 ({                                                                      \
447         typeof(ptr) _ptr = ptr;                                         \
448         _ptr ? container_of(_ptr, type, member) : NULL;                 \
449 })
450
451 #define RB_INSERT(root, new, member, cmp)                               \
452 ({                                                                      \
453         __label__ dup;                                                  \
454         struct rb_node **n = &(root)->rb_node, *parent = NULL;          \
455         typeof(new) this;                                               \
456         int res, ret = -1;                                              \
457                                                                         \
458         while (*n) {                                                    \
459                 parent = *n;                                            \
460                 this = container_of(*n, typeof(*(new)), member);        \
461                 res = cmp(new, this);                                   \
462                 if (!res)                                               \
463                         goto dup;                                       \
464                 n = res < 0                                             \
465                         ? &(*n)->rb_left                                \
466                         : &(*n)->rb_right;                              \
467         }                                                               \
468                                                                         \
469         rb_link_node(&(new)->member, parent, n);                        \
470         rb_insert_color(&(new)->member, root);                          \
471         ret = 0;                                                        \
472 dup:                                                                    \
473         ret;                                                            \
474 })
475
476 #define RB_SEARCH(root, search, member, cmp)                            \
477 ({                                                                      \
478         struct rb_node *n = (root)->rb_node;                            \
479         typeof(&(search)) this, ret = NULL;                             \
480         int res;                                                        \
481                                                                         \
482         while (n) {                                                     \
483                 this = container_of(n, typeof(search), member);         \
484                 res = cmp(&(search), this);                             \
485                 if (!res) {                                             \
486                         ret = this;                                     \
487                         break;                                          \
488                 }                                                       \
489                 n = res < 0                                             \
490                         ? n->rb_left                                    \
491                         : n->rb_right;                                  \
492         }                                                               \
493         ret;                                                            \
494 })
495
496 #define RB_GREATER(root, search, member, cmp)                           \
497 ({                                                                      \
498         struct rb_node *n = (root)->rb_node;                            \
499         typeof(&(search)) this, ret = NULL;                             \
500         int res;                                                        \
501                                                                         \
502         while (n) {                                                     \
503                 this = container_of(n, typeof(search), member);         \
504                 res = cmp(&(search), this);                             \
505                 if (res < 0) {                                          \
506                         ret = this;                                     \
507                         n = n->rb_left;                                 \
508                 } else                                                  \
509                         n = n->rb_right;                                \
510         }                                                               \
511         ret;                                                            \
512 })
513
514 #define RB_FIRST(root, type, member)                                    \
515         container_of_or_null(rb_first(root), type, member)
516
517 #define RB_LAST(root, type, member)                                     \
518         container_of_or_null(rb_last(root), type, member)
519
520 #define RB_NEXT(ptr, member)                                            \
521         container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
522
523 #define RB_PREV(ptr, member)                                            \
524         container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
525
526 static inline uint64_t bch_crc64(const void *p, size_t len)
527 {
528         uint64_t crc = 0xffffffffffffffffULL;
529
530         crc = crc64_be(crc, p, len);
531         return crc ^ 0xffffffffffffffffULL;
532 }
533
534 /*
535  * A stepwise-linear pseudo-exponential.  This returns 1 << (x >>
536  * frac_bits), with the less-significant bits filled in by linear
537  * interpolation.
538  *
539  * This can also be interpreted as a floating-point number format,
540  * where the low frac_bits are the mantissa (with implicit leading
541  * 1 bit), and the more significant bits are the exponent.
542  * The return value is 1.mantissa * 2^exponent.
543  *
544  * The way this is used, fract_bits is 6 and the largest possible
545  * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
546  * so the maximum output is 0x1fc00.
547  */
548 static inline unsigned int fract_exp_two(unsigned int x,
549                                          unsigned int fract_bits)
550 {
551         unsigned int mantissa = 1 << fract_bits;        /* Implicit bit */
552
553         mantissa += x & (mantissa - 1);
554         x >>= fract_bits;       /* The exponent */
555         /* Largest intermediate value 0x7f0000 */
556         return mantissa << x >> fract_bits;
557 }
558
559 void bch_bio_map(struct bio *bio, void *base);
560 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
561
562 #endif /* _BCACHE_UTIL_H */