Merge tag 'nfsd-5.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[platform/kernel/linux-starfive.git] / drivers / md / bcache / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17
18 #include <linux/blkdev.h>
19 #include <linux/pagemap.h>
20 #include <linux/debugfs.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31
32 static const char bcache_magic[] = {
33         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36
37 static const char invalid_uuid[] = {
38         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_flush_wq;
53 struct workqueue_struct *bch_journal_wq;
54
55
56 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS           128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
61
62 /* Superblock */
63
64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 {
66         unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67
68         if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69                 if (bch_has_feature_large_bucket(sb)) {
70                         unsigned int max, order;
71
72                         max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73                         order = le16_to_cpu(s->bucket_size);
74                         /*
75                          * bcache tool will make sure the overflow won't
76                          * happen, an error message here is enough.
77                          */
78                         if (order > max)
79                                 pr_err("Bucket size (1 << %u) overflows\n",
80                                         order);
81                         bucket_size = 1 << order;
82                 } else if (bch_has_feature_obso_large_bucket(sb)) {
83                         bucket_size +=
84                                 le16_to_cpu(s->obso_bucket_size_hi) << 16;
85                 }
86         }
87
88         return bucket_size;
89 }
90
91 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
92                                      struct cache_sb_disk *s)
93 {
94         const char *err;
95         unsigned int i;
96
97         sb->first_bucket= le16_to_cpu(s->first_bucket);
98         sb->nbuckets    = le64_to_cpu(s->nbuckets);
99         sb->bucket_size = get_bucket_size(sb, s);
100
101         sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
102         sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
103
104         err = "Too many journal buckets";
105         if (sb->keys > SB_JOURNAL_BUCKETS)
106                 goto err;
107
108         err = "Too many buckets";
109         if (sb->nbuckets > LONG_MAX)
110                 goto err;
111
112         err = "Not enough buckets";
113         if (sb->nbuckets < 1 << 7)
114                 goto err;
115
116         err = "Bad block size (not power of 2)";
117         if (!is_power_of_2(sb->block_size))
118                 goto err;
119
120         err = "Bad block size (larger than page size)";
121         if (sb->block_size > PAGE_SECTORS)
122                 goto err;
123
124         err = "Bad bucket size (not power of 2)";
125         if (!is_power_of_2(sb->bucket_size))
126                 goto err;
127
128         err = "Bad bucket size (smaller than page size)";
129         if (sb->bucket_size < PAGE_SECTORS)
130                 goto err;
131
132         err = "Invalid superblock: device too small";
133         if (get_capacity(bdev->bd_disk) <
134             sb->bucket_size * sb->nbuckets)
135                 goto err;
136
137         err = "Bad UUID";
138         if (bch_is_zero(sb->set_uuid, 16))
139                 goto err;
140
141         err = "Bad cache device number in set";
142         if (!sb->nr_in_set ||
143             sb->nr_in_set <= sb->nr_this_dev ||
144             sb->nr_in_set > MAX_CACHES_PER_SET)
145                 goto err;
146
147         err = "Journal buckets not sequential";
148         for (i = 0; i < sb->keys; i++)
149                 if (sb->d[i] != sb->first_bucket + i)
150                         goto err;
151
152         err = "Too many journal buckets";
153         if (sb->first_bucket + sb->keys > sb->nbuckets)
154                 goto err;
155
156         err = "Invalid superblock: first bucket comes before end of super";
157         if (sb->first_bucket * sb->bucket_size < 16)
158                 goto err;
159
160         err = NULL;
161 err:
162         return err;
163 }
164
165
166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167                               struct cache_sb_disk **res)
168 {
169         const char *err;
170         struct cache_sb_disk *s;
171         struct page *page;
172         unsigned int i;
173
174         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
175                                    SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176         if (IS_ERR(page))
177                 return "IO error";
178         s = page_address(page) + offset_in_page(SB_OFFSET);
179
180         sb->offset              = le64_to_cpu(s->offset);
181         sb->version             = le64_to_cpu(s->version);
182
183         memcpy(sb->magic,       s->magic, 16);
184         memcpy(sb->uuid,        s->uuid, 16);
185         memcpy(sb->set_uuid,    s->set_uuid, 16);
186         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
187
188         sb->flags               = le64_to_cpu(s->flags);
189         sb->seq                 = le64_to_cpu(s->seq);
190         sb->last_mount          = le32_to_cpu(s->last_mount);
191         sb->keys                = le16_to_cpu(s->keys);
192
193         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194                 sb->d[i] = le64_to_cpu(s->d[i]);
195
196         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197                  sb->version, sb->flags, sb->seq, sb->keys);
198
199         err = "Not a bcache superblock (bad offset)";
200         if (sb->offset != SB_SECTOR)
201                 goto err;
202
203         err = "Not a bcache superblock (bad magic)";
204         if (memcmp(sb->magic, bcache_magic, 16))
205                 goto err;
206
207         err = "Bad checksum";
208         if (s->csum != csum_set(s))
209                 goto err;
210
211         err = "Bad UUID";
212         if (bch_is_zero(sb->uuid, 16))
213                 goto err;
214
215         sb->block_size  = le16_to_cpu(s->block_size);
216
217         err = "Superblock block size smaller than device block size";
218         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219                 goto err;
220
221         switch (sb->version) {
222         case BCACHE_SB_VERSION_BDEV:
223                 sb->data_offset = BDEV_DATA_START_DEFAULT;
224                 break;
225         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226         case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227                 sb->data_offset = le64_to_cpu(s->data_offset);
228
229                 err = "Bad data offset";
230                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231                         goto err;
232
233                 break;
234         case BCACHE_SB_VERSION_CDEV:
235         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236                 err = read_super_common(sb, bdev, s);
237                 if (err)
238                         goto err;
239                 break;
240         case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241                 /*
242                  * Feature bits are needed in read_super_common(),
243                  * convert them firstly.
244                  */
245                 sb->feature_compat = le64_to_cpu(s->feature_compat);
246                 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247                 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248
249                 /* Check incompatible features */
250                 err = "Unsupported compatible feature found";
251                 if (bch_has_unknown_compat_features(sb))
252                         goto err;
253
254                 err = "Unsupported read-only compatible feature found";
255                 if (bch_has_unknown_ro_compat_features(sb))
256                         goto err;
257
258                 err = "Unsupported incompatible feature found";
259                 if (bch_has_unknown_incompat_features(sb))
260                         goto err;
261
262                 err = read_super_common(sb, bdev, s);
263                 if (err)
264                         goto err;
265                 break;
266         default:
267                 err = "Unsupported superblock version";
268                 goto err;
269         }
270
271         sb->last_mount = (u32)ktime_get_real_seconds();
272         *res = s;
273         return NULL;
274 err:
275         put_page(page);
276         return err;
277 }
278
279 static void write_bdev_super_endio(struct bio *bio)
280 {
281         struct cached_dev *dc = bio->bi_private;
282
283         if (bio->bi_status)
284                 bch_count_backing_io_errors(dc, bio);
285
286         closure_put(&dc->sb_write);
287 }
288
289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290                 struct bio *bio)
291 {
292         unsigned int i;
293
294         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295         bio->bi_iter.bi_sector  = SB_SECTOR;
296         __bio_add_page(bio, virt_to_page(out), SB_SIZE,
297                         offset_in_page(out));
298
299         out->offset             = cpu_to_le64(sb->offset);
300
301         memcpy(out->uuid,       sb->uuid, 16);
302         memcpy(out->set_uuid,   sb->set_uuid, 16);
303         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
304
305         out->flags              = cpu_to_le64(sb->flags);
306         out->seq                = cpu_to_le64(sb->seq);
307
308         out->last_mount         = cpu_to_le32(sb->last_mount);
309         out->first_bucket       = cpu_to_le16(sb->first_bucket);
310         out->keys               = cpu_to_le16(sb->keys);
311
312         for (i = 0; i < sb->keys; i++)
313                 out->d[i] = cpu_to_le64(sb->d[i]);
314
315         if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
316                 out->feature_compat    = cpu_to_le64(sb->feature_compat);
317                 out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
318                 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
319         }
320
321         out->version            = cpu_to_le64(sb->version);
322         out->csum = csum_set(out);
323
324         pr_debug("ver %llu, flags %llu, seq %llu\n",
325                  sb->version, sb->flags, sb->seq);
326
327         submit_bio(bio);
328 }
329
330 static void bch_write_bdev_super_unlock(struct closure *cl)
331 {
332         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
333
334         up(&dc->sb_write_mutex);
335 }
336
337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
338 {
339         struct closure *cl = &dc->sb_write;
340         struct bio *bio = &dc->sb_bio;
341
342         down(&dc->sb_write_mutex);
343         closure_init(cl, parent);
344
345         bio_init(bio, dc->bdev, dc->sb_bv, 1, 0);
346         bio->bi_end_io  = write_bdev_super_endio;
347         bio->bi_private = dc;
348
349         closure_get(cl);
350         /* I/O request sent to backing device */
351         __write_super(&dc->sb, dc->sb_disk, bio);
352
353         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
354 }
355
356 static void write_super_endio(struct bio *bio)
357 {
358         struct cache *ca = bio->bi_private;
359
360         /* is_read = 0 */
361         bch_count_io_errors(ca, bio->bi_status, 0,
362                             "writing superblock");
363         closure_put(&ca->set->sb_write);
364 }
365
366 static void bcache_write_super_unlock(struct closure *cl)
367 {
368         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
369
370         up(&c->sb_write_mutex);
371 }
372
373 void bcache_write_super(struct cache_set *c)
374 {
375         struct closure *cl = &c->sb_write;
376         struct cache *ca = c->cache;
377         struct bio *bio = &ca->sb_bio;
378         unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
379
380         down(&c->sb_write_mutex);
381         closure_init(cl, &c->cl);
382
383         ca->sb.seq++;
384
385         if (ca->sb.version < version)
386                 ca->sb.version = version;
387
388         bio_init(bio, ca->bdev, ca->sb_bv, 1, 0);
389         bio->bi_end_io  = write_super_endio;
390         bio->bi_private = ca;
391
392         closure_get(cl);
393         __write_super(&ca->sb, ca->sb_disk, bio);
394
395         closure_return_with_destructor(cl, bcache_write_super_unlock);
396 }
397
398 /* UUID io */
399
400 static void uuid_endio(struct bio *bio)
401 {
402         struct closure *cl = bio->bi_private;
403         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
404
405         cache_set_err_on(bio->bi_status, c, "accessing uuids");
406         bch_bbio_free(bio, c);
407         closure_put(cl);
408 }
409
410 static void uuid_io_unlock(struct closure *cl)
411 {
412         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
413
414         up(&c->uuid_write_mutex);
415 }
416
417 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
418                     struct bkey *k, struct closure *parent)
419 {
420         struct closure *cl = &c->uuid_write;
421         struct uuid_entry *u;
422         unsigned int i;
423         char buf[80];
424
425         BUG_ON(!parent);
426         down(&c->uuid_write_mutex);
427         closure_init(cl, parent);
428
429         for (i = 0; i < KEY_PTRS(k); i++) {
430                 struct bio *bio = bch_bbio_alloc(c);
431
432                 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
433                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
434
435                 bio->bi_end_io  = uuid_endio;
436                 bio->bi_private = cl;
437                 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
438                 bch_bio_map(bio, c->uuids);
439
440                 bch_submit_bbio(bio, c, k, i);
441
442                 if (op != REQ_OP_WRITE)
443                         break;
444         }
445
446         bch_extent_to_text(buf, sizeof(buf), k);
447         pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
448
449         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
450                 if (!bch_is_zero(u->uuid, 16))
451                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
452                                  u - c->uuids, u->uuid, u->label,
453                                  u->first_reg, u->last_reg, u->invalidated);
454
455         closure_return_with_destructor(cl, uuid_io_unlock);
456 }
457
458 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
459 {
460         struct bkey *k = &j->uuid_bucket;
461
462         if (__bch_btree_ptr_invalid(c, k))
463                 return "bad uuid pointer";
464
465         bkey_copy(&c->uuid_bucket, k);
466         uuid_io(c, REQ_OP_READ, 0, k, cl);
467
468         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
469                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
470                 struct uuid_entry       *u1 = (void *) c->uuids;
471                 int i;
472
473                 closure_sync(cl);
474
475                 /*
476                  * Since the new uuid entry is bigger than the old, we have to
477                  * convert starting at the highest memory address and work down
478                  * in order to do it in place
479                  */
480
481                 for (i = c->nr_uuids - 1;
482                      i >= 0;
483                      --i) {
484                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
485                         memcpy(u1[i].label,     u0[i].label, 32);
486
487                         u1[i].first_reg         = u0[i].first_reg;
488                         u1[i].last_reg          = u0[i].last_reg;
489                         u1[i].invalidated       = u0[i].invalidated;
490
491                         u1[i].flags     = 0;
492                         u1[i].sectors   = 0;
493                 }
494         }
495
496         return NULL;
497 }
498
499 static int __uuid_write(struct cache_set *c)
500 {
501         BKEY_PADDED(key) k;
502         struct closure cl;
503         struct cache *ca = c->cache;
504         unsigned int size;
505
506         closure_init_stack(&cl);
507         lockdep_assert_held(&bch_register_lock);
508
509         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
510                 return 1;
511
512         size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
513         SET_KEY_SIZE(&k.key, size);
514         uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
515         closure_sync(&cl);
516
517         /* Only one bucket used for uuid write */
518         atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
519
520         bkey_copy(&c->uuid_bucket, &k.key);
521         bkey_put(c, &k.key);
522         return 0;
523 }
524
525 int bch_uuid_write(struct cache_set *c)
526 {
527         int ret = __uuid_write(c);
528
529         if (!ret)
530                 bch_journal_meta(c, NULL);
531
532         return ret;
533 }
534
535 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
536 {
537         struct uuid_entry *u;
538
539         for (u = c->uuids;
540              u < c->uuids + c->nr_uuids; u++)
541                 if (!memcmp(u->uuid, uuid, 16))
542                         return u;
543
544         return NULL;
545 }
546
547 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
548 {
549         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
550
551         return uuid_find(c, zero_uuid);
552 }
553
554 /*
555  * Bucket priorities/gens:
556  *
557  * For each bucket, we store on disk its
558  *   8 bit gen
559  *  16 bit priority
560  *
561  * See alloc.c for an explanation of the gen. The priority is used to implement
562  * lru (and in the future other) cache replacement policies; for most purposes
563  * it's just an opaque integer.
564  *
565  * The gens and the priorities don't have a whole lot to do with each other, and
566  * it's actually the gens that must be written out at specific times - it's no
567  * big deal if the priorities don't get written, if we lose them we just reuse
568  * buckets in suboptimal order.
569  *
570  * On disk they're stored in a packed array, and in as many buckets are required
571  * to fit them all. The buckets we use to store them form a list; the journal
572  * header points to the first bucket, the first bucket points to the second
573  * bucket, et cetera.
574  *
575  * This code is used by the allocation code; periodically (whenever it runs out
576  * of buckets to allocate from) the allocation code will invalidate some
577  * buckets, but it can't use those buckets until their new gens are safely on
578  * disk.
579  */
580
581 static void prio_endio(struct bio *bio)
582 {
583         struct cache *ca = bio->bi_private;
584
585         cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
586         bch_bbio_free(bio, ca->set);
587         closure_put(&ca->prio);
588 }
589
590 static void prio_io(struct cache *ca, uint64_t bucket, int op,
591                     unsigned long op_flags)
592 {
593         struct closure *cl = &ca->prio;
594         struct bio *bio = bch_bbio_alloc(ca->set);
595
596         closure_init_stack(cl);
597
598         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
599         bio_set_dev(bio, ca->bdev);
600         bio->bi_iter.bi_size    = meta_bucket_bytes(&ca->sb);
601
602         bio->bi_end_io  = prio_endio;
603         bio->bi_private = ca;
604         bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
605         bch_bio_map(bio, ca->disk_buckets);
606
607         closure_bio_submit(ca->set, bio, &ca->prio);
608         closure_sync(cl);
609 }
610
611 int bch_prio_write(struct cache *ca, bool wait)
612 {
613         int i;
614         struct bucket *b;
615         struct closure cl;
616
617         pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
618                  fifo_used(&ca->free[RESERVE_PRIO]),
619                  fifo_used(&ca->free[RESERVE_NONE]),
620                  fifo_used(&ca->free_inc));
621
622         /*
623          * Pre-check if there are enough free buckets. In the non-blocking
624          * scenario it's better to fail early rather than starting to allocate
625          * buckets and do a cleanup later in case of failure.
626          */
627         if (!wait) {
628                 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
629                                fifo_used(&ca->free[RESERVE_NONE]);
630                 if (prio_buckets(ca) > avail)
631                         return -ENOMEM;
632         }
633
634         closure_init_stack(&cl);
635
636         lockdep_assert_held(&ca->set->bucket_lock);
637
638         ca->disk_buckets->seq++;
639
640         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
641                         &ca->meta_sectors_written);
642
643         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
644                 long bucket;
645                 struct prio_set *p = ca->disk_buckets;
646                 struct bucket_disk *d = p->data;
647                 struct bucket_disk *end = d + prios_per_bucket(ca);
648
649                 for (b = ca->buckets + i * prios_per_bucket(ca);
650                      b < ca->buckets + ca->sb.nbuckets && d < end;
651                      b++, d++) {
652                         d->prio = cpu_to_le16(b->prio);
653                         d->gen = b->gen;
654                 }
655
656                 p->next_bucket  = ca->prio_buckets[i + 1];
657                 p->magic        = pset_magic(&ca->sb);
658                 p->csum         = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
659
660                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
661                 BUG_ON(bucket == -1);
662
663                 mutex_unlock(&ca->set->bucket_lock);
664                 prio_io(ca, bucket, REQ_OP_WRITE, 0);
665                 mutex_lock(&ca->set->bucket_lock);
666
667                 ca->prio_buckets[i] = bucket;
668                 atomic_dec_bug(&ca->buckets[bucket].pin);
669         }
670
671         mutex_unlock(&ca->set->bucket_lock);
672
673         bch_journal_meta(ca->set, &cl);
674         closure_sync(&cl);
675
676         mutex_lock(&ca->set->bucket_lock);
677
678         /*
679          * Don't want the old priorities to get garbage collected until after we
680          * finish writing the new ones, and they're journalled
681          */
682         for (i = 0; i < prio_buckets(ca); i++) {
683                 if (ca->prio_last_buckets[i])
684                         __bch_bucket_free(ca,
685                                 &ca->buckets[ca->prio_last_buckets[i]]);
686
687                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
688         }
689         return 0;
690 }
691
692 static int prio_read(struct cache *ca, uint64_t bucket)
693 {
694         struct prio_set *p = ca->disk_buckets;
695         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
696         struct bucket *b;
697         unsigned int bucket_nr = 0;
698         int ret = -EIO;
699
700         for (b = ca->buckets;
701              b < ca->buckets + ca->sb.nbuckets;
702              b++, d++) {
703                 if (d == end) {
704                         ca->prio_buckets[bucket_nr] = bucket;
705                         ca->prio_last_buckets[bucket_nr] = bucket;
706                         bucket_nr++;
707
708                         prio_io(ca, bucket, REQ_OP_READ, 0);
709
710                         if (p->csum !=
711                             bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
712                                 pr_warn("bad csum reading priorities\n");
713                                 goto out;
714                         }
715
716                         if (p->magic != pset_magic(&ca->sb)) {
717                                 pr_warn("bad magic reading priorities\n");
718                                 goto out;
719                         }
720
721                         bucket = p->next_bucket;
722                         d = p->data;
723                 }
724
725                 b->prio = le16_to_cpu(d->prio);
726                 b->gen = b->last_gc = d->gen;
727         }
728
729         ret = 0;
730 out:
731         return ret;
732 }
733
734 /* Bcache device */
735
736 static int open_dev(struct block_device *b, fmode_t mode)
737 {
738         struct bcache_device *d = b->bd_disk->private_data;
739
740         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
741                 return -ENXIO;
742
743         closure_get(&d->cl);
744         return 0;
745 }
746
747 static void release_dev(struct gendisk *b, fmode_t mode)
748 {
749         struct bcache_device *d = b->private_data;
750
751         closure_put(&d->cl);
752 }
753
754 static int ioctl_dev(struct block_device *b, fmode_t mode,
755                      unsigned int cmd, unsigned long arg)
756 {
757         struct bcache_device *d = b->bd_disk->private_data;
758
759         return d->ioctl(d, mode, cmd, arg);
760 }
761
762 static const struct block_device_operations bcache_cached_ops = {
763         .submit_bio     = cached_dev_submit_bio,
764         .open           = open_dev,
765         .release        = release_dev,
766         .ioctl          = ioctl_dev,
767         .owner          = THIS_MODULE,
768 };
769
770 static const struct block_device_operations bcache_flash_ops = {
771         .submit_bio     = flash_dev_submit_bio,
772         .open           = open_dev,
773         .release        = release_dev,
774         .ioctl          = ioctl_dev,
775         .owner          = THIS_MODULE,
776 };
777
778 void bcache_device_stop(struct bcache_device *d)
779 {
780         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
781                 /*
782                  * closure_fn set to
783                  * - cached device: cached_dev_flush()
784                  * - flash dev: flash_dev_flush()
785                  */
786                 closure_queue(&d->cl);
787 }
788
789 static void bcache_device_unlink(struct bcache_device *d)
790 {
791         lockdep_assert_held(&bch_register_lock);
792
793         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
794                 struct cache *ca = d->c->cache;
795
796                 sysfs_remove_link(&d->c->kobj, d->name);
797                 sysfs_remove_link(&d->kobj, "cache");
798
799                 bd_unlink_disk_holder(ca->bdev, d->disk);
800         }
801 }
802
803 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
804                                const char *name)
805 {
806         struct cache *ca = c->cache;
807         int ret;
808
809         bd_link_disk_holder(ca->bdev, d->disk);
810
811         snprintf(d->name, BCACHEDEVNAME_SIZE,
812                  "%s%u", name, d->id);
813
814         ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
815         if (ret < 0)
816                 pr_err("Couldn't create device -> cache set symlink\n");
817
818         ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
819         if (ret < 0)
820                 pr_err("Couldn't create cache set -> device symlink\n");
821
822         clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
823 }
824
825 static void bcache_device_detach(struct bcache_device *d)
826 {
827         lockdep_assert_held(&bch_register_lock);
828
829         atomic_dec(&d->c->attached_dev_nr);
830
831         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
832                 struct uuid_entry *u = d->c->uuids + d->id;
833
834                 SET_UUID_FLASH_ONLY(u, 0);
835                 memcpy(u->uuid, invalid_uuid, 16);
836                 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
837                 bch_uuid_write(d->c);
838         }
839
840         bcache_device_unlink(d);
841
842         d->c->devices[d->id] = NULL;
843         closure_put(&d->c->caching);
844         d->c = NULL;
845 }
846
847 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
848                                  unsigned int id)
849 {
850         d->id = id;
851         d->c = c;
852         c->devices[id] = d;
853
854         if (id >= c->devices_max_used)
855                 c->devices_max_used = id + 1;
856
857         closure_get(&c->caching);
858 }
859
860 static inline int first_minor_to_idx(int first_minor)
861 {
862         return (first_minor/BCACHE_MINORS);
863 }
864
865 static inline int idx_to_first_minor(int idx)
866 {
867         return (idx * BCACHE_MINORS);
868 }
869
870 static void bcache_device_free(struct bcache_device *d)
871 {
872         struct gendisk *disk = d->disk;
873
874         lockdep_assert_held(&bch_register_lock);
875
876         if (disk)
877                 pr_info("%s stopped\n", disk->disk_name);
878         else
879                 pr_err("bcache device (NULL gendisk) stopped\n");
880
881         if (d->c)
882                 bcache_device_detach(d);
883
884         if (disk) {
885                 ida_simple_remove(&bcache_device_idx,
886                                   first_minor_to_idx(disk->first_minor));
887                 blk_cleanup_disk(disk);
888         }
889
890         bioset_exit(&d->bio_split);
891         kvfree(d->full_dirty_stripes);
892         kvfree(d->stripe_sectors_dirty);
893
894         closure_debug_destroy(&d->cl);
895 }
896
897 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
898                 sector_t sectors, struct block_device *cached_bdev,
899                 const struct block_device_operations *ops)
900 {
901         struct request_queue *q;
902         const size_t max_stripes = min_t(size_t, INT_MAX,
903                                          SIZE_MAX / sizeof(atomic_t));
904         uint64_t n;
905         int idx;
906
907         if (!d->stripe_size)
908                 d->stripe_size = 1 << 31;
909
910         n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
911         if (!n || n > max_stripes) {
912                 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
913                         n);
914                 return -ENOMEM;
915         }
916         d->nr_stripes = n;
917
918         n = d->nr_stripes * sizeof(atomic_t);
919         d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
920         if (!d->stripe_sectors_dirty)
921                 return -ENOMEM;
922
923         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
924         d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
925         if (!d->full_dirty_stripes)
926                 goto out_free_stripe_sectors_dirty;
927
928         idx = ida_simple_get(&bcache_device_idx, 0,
929                                 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
930         if (idx < 0)
931                 goto out_free_full_dirty_stripes;
932
933         if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
934                         BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
935                 goto out_ida_remove;
936
937         d->disk = blk_alloc_disk(NUMA_NO_NODE);
938         if (!d->disk)
939                 goto out_bioset_exit;
940
941         set_capacity(d->disk, sectors);
942         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
943
944         d->disk->major          = bcache_major;
945         d->disk->first_minor    = idx_to_first_minor(idx);
946         d->disk->minors         = BCACHE_MINORS;
947         d->disk->fops           = ops;
948         d->disk->private_data   = d;
949
950         q = d->disk->queue;
951         q->limits.max_hw_sectors        = UINT_MAX;
952         q->limits.max_sectors           = UINT_MAX;
953         q->limits.max_segment_size      = UINT_MAX;
954         q->limits.max_segments          = BIO_MAX_VECS;
955         blk_queue_max_discard_sectors(q, UINT_MAX);
956         q->limits.discard_granularity   = 512;
957         q->limits.io_min                = block_size;
958         q->limits.logical_block_size    = block_size;
959         q->limits.physical_block_size   = block_size;
960
961         if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
962                 /*
963                  * This should only happen with BCACHE_SB_VERSION_BDEV.
964                  * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
965                  */
966                 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
967                         d->disk->disk_name, q->limits.logical_block_size,
968                         PAGE_SIZE, bdev_logical_block_size(cached_bdev));
969
970                 /* This also adjusts physical block size/min io size if needed */
971                 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
972         }
973
974         blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
975         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
976         blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
977
978         blk_queue_write_cache(q, true, true);
979
980         return 0;
981
982 out_bioset_exit:
983         bioset_exit(&d->bio_split);
984 out_ida_remove:
985         ida_simple_remove(&bcache_device_idx, idx);
986 out_free_full_dirty_stripes:
987         kvfree(d->full_dirty_stripes);
988 out_free_stripe_sectors_dirty:
989         kvfree(d->stripe_sectors_dirty);
990         return -ENOMEM;
991
992 }
993
994 /* Cached device */
995
996 static void calc_cached_dev_sectors(struct cache_set *c)
997 {
998         uint64_t sectors = 0;
999         struct cached_dev *dc;
1000
1001         list_for_each_entry(dc, &c->cached_devs, list)
1002                 sectors += bdev_nr_sectors(dc->bdev);
1003
1004         c->cached_dev_sectors = sectors;
1005 }
1006
1007 #define BACKING_DEV_OFFLINE_TIMEOUT 5
1008 static int cached_dev_status_update(void *arg)
1009 {
1010         struct cached_dev *dc = arg;
1011         struct request_queue *q;
1012
1013         /*
1014          * If this delayed worker is stopping outside, directly quit here.
1015          * dc->io_disable might be set via sysfs interface, so check it
1016          * here too.
1017          */
1018         while (!kthread_should_stop() && !dc->io_disable) {
1019                 q = bdev_get_queue(dc->bdev);
1020                 if (blk_queue_dying(q))
1021                         dc->offline_seconds++;
1022                 else
1023                         dc->offline_seconds = 0;
1024
1025                 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1026                         pr_err("%pg: device offline for %d seconds\n",
1027                                dc->bdev,
1028                                BACKING_DEV_OFFLINE_TIMEOUT);
1029                         pr_err("%s: disable I/O request due to backing device offline\n",
1030                                dc->disk.name);
1031                         dc->io_disable = true;
1032                         /* let others know earlier that io_disable is true */
1033                         smp_mb();
1034                         bcache_device_stop(&dc->disk);
1035                         break;
1036                 }
1037                 schedule_timeout_interruptible(HZ);
1038         }
1039
1040         wait_for_kthread_stop();
1041         return 0;
1042 }
1043
1044
1045 int bch_cached_dev_run(struct cached_dev *dc)
1046 {
1047         int ret = 0;
1048         struct bcache_device *d = &dc->disk;
1049         char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1050         char *env[] = {
1051                 "DRIVER=bcache",
1052                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1053                 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1054                 NULL,
1055         };
1056
1057         if (dc->io_disable) {
1058                 pr_err("I/O disabled on cached dev %pg\n", dc->bdev);
1059                 ret = -EIO;
1060                 goto out;
1061         }
1062
1063         if (atomic_xchg(&dc->running, 1)) {
1064                 pr_info("cached dev %pg is running already\n", dc->bdev);
1065                 ret = -EBUSY;
1066                 goto out;
1067         }
1068
1069         if (!d->c &&
1070             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1071                 struct closure cl;
1072
1073                 closure_init_stack(&cl);
1074
1075                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1076                 bch_write_bdev_super(dc, &cl);
1077                 closure_sync(&cl);
1078         }
1079
1080         ret = add_disk(d->disk);
1081         if (ret)
1082                 goto out;
1083         bd_link_disk_holder(dc->bdev, dc->disk.disk);
1084         /*
1085          * won't show up in the uevent file, use udevadm monitor -e instead
1086          * only class / kset properties are persistent
1087          */
1088         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1089
1090         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1091             sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1092                               &d->kobj, "bcache")) {
1093                 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1094                 ret = -ENOMEM;
1095                 goto out;
1096         }
1097
1098         dc->status_update_thread = kthread_run(cached_dev_status_update,
1099                                                dc, "bcache_status_update");
1100         if (IS_ERR(dc->status_update_thread)) {
1101                 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1102         }
1103
1104 out:
1105         kfree(env[1]);
1106         kfree(env[2]);
1107         kfree(buf);
1108         return ret;
1109 }
1110
1111 /*
1112  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1113  * work dc->writeback_rate_update is running. Wait until the routine
1114  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1115  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1116  * seconds, give up waiting here and continue to cancel it too.
1117  */
1118 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1119 {
1120         int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1121
1122         do {
1123                 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1124                               &dc->disk.flags))
1125                         break;
1126                 time_out--;
1127                 schedule_timeout_interruptible(1);
1128         } while (time_out > 0);
1129
1130         if (time_out == 0)
1131                 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1132
1133         cancel_delayed_work_sync(&dc->writeback_rate_update);
1134 }
1135
1136 static void cached_dev_detach_finish(struct work_struct *w)
1137 {
1138         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1139         struct cache_set *c = dc->disk.c;
1140
1141         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1142         BUG_ON(refcount_read(&dc->count));
1143
1144
1145         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1146                 cancel_writeback_rate_update_dwork(dc);
1147
1148         if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1149                 kthread_stop(dc->writeback_thread);
1150                 dc->writeback_thread = NULL;
1151         }
1152
1153         mutex_lock(&bch_register_lock);
1154
1155         bcache_device_detach(&dc->disk);
1156         list_move(&dc->list, &uncached_devices);
1157         calc_cached_dev_sectors(c);
1158
1159         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1160         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1161
1162         mutex_unlock(&bch_register_lock);
1163
1164         pr_info("Caching disabled for %pg\n", dc->bdev);
1165
1166         /* Drop ref we took in cached_dev_detach() */
1167         closure_put(&dc->disk.cl);
1168 }
1169
1170 void bch_cached_dev_detach(struct cached_dev *dc)
1171 {
1172         lockdep_assert_held(&bch_register_lock);
1173
1174         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1175                 return;
1176
1177         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1178                 return;
1179
1180         /*
1181          * Block the device from being closed and freed until we're finished
1182          * detaching
1183          */
1184         closure_get(&dc->disk.cl);
1185
1186         bch_writeback_queue(dc);
1187
1188         cached_dev_put(dc);
1189 }
1190
1191 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1192                           uint8_t *set_uuid)
1193 {
1194         uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1195         struct uuid_entry *u;
1196         struct cached_dev *exist_dc, *t;
1197         int ret = 0;
1198
1199         if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1200             (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1201                 return -ENOENT;
1202
1203         if (dc->disk.c) {
1204                 pr_err("Can't attach %pg: already attached\n", dc->bdev);
1205                 return -EINVAL;
1206         }
1207
1208         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1209                 pr_err("Can't attach %pg: shutting down\n", dc->bdev);
1210                 return -EINVAL;
1211         }
1212
1213         if (dc->sb.block_size < c->cache->sb.block_size) {
1214                 /* Will die */
1215                 pr_err("Couldn't attach %pg: block size less than set's block size\n",
1216                        dc->bdev);
1217                 return -EINVAL;
1218         }
1219
1220         /* Check whether already attached */
1221         list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1222                 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1223                         pr_err("Tried to attach %pg but duplicate UUID already attached\n",
1224                                 dc->bdev);
1225
1226                         return -EINVAL;
1227                 }
1228         }
1229
1230         u = uuid_find(c, dc->sb.uuid);
1231
1232         if (u &&
1233             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1234              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1235                 memcpy(u->uuid, invalid_uuid, 16);
1236                 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1237                 u = NULL;
1238         }
1239
1240         if (!u) {
1241                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1242                         pr_err("Couldn't find uuid for %pg in set\n", dc->bdev);
1243                         return -ENOENT;
1244                 }
1245
1246                 u = uuid_find_empty(c);
1247                 if (!u) {
1248                         pr_err("Not caching %pg, no room for UUID\n", dc->bdev);
1249                         return -EINVAL;
1250                 }
1251         }
1252
1253         /*
1254          * Deadlocks since we're called via sysfs...
1255          * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1256          */
1257
1258         if (bch_is_zero(u->uuid, 16)) {
1259                 struct closure cl;
1260
1261                 closure_init_stack(&cl);
1262
1263                 memcpy(u->uuid, dc->sb.uuid, 16);
1264                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1265                 u->first_reg = u->last_reg = rtime;
1266                 bch_uuid_write(c);
1267
1268                 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1269                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1270
1271                 bch_write_bdev_super(dc, &cl);
1272                 closure_sync(&cl);
1273         } else {
1274                 u->last_reg = rtime;
1275                 bch_uuid_write(c);
1276         }
1277
1278         bcache_device_attach(&dc->disk, c, u - c->uuids);
1279         list_move(&dc->list, &c->cached_devs);
1280         calc_cached_dev_sectors(c);
1281
1282         /*
1283          * dc->c must be set before dc->count != 0 - paired with the mb in
1284          * cached_dev_get()
1285          */
1286         smp_wmb();
1287         refcount_set(&dc->count, 1);
1288
1289         /* Block writeback thread, but spawn it */
1290         down_write(&dc->writeback_lock);
1291         if (bch_cached_dev_writeback_start(dc)) {
1292                 up_write(&dc->writeback_lock);
1293                 pr_err("Couldn't start writeback facilities for %s\n",
1294                        dc->disk.disk->disk_name);
1295                 return -ENOMEM;
1296         }
1297
1298         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1299                 atomic_set(&dc->has_dirty, 1);
1300                 bch_writeback_queue(dc);
1301         }
1302
1303         bch_sectors_dirty_init(&dc->disk);
1304
1305         ret = bch_cached_dev_run(dc);
1306         if (ret && (ret != -EBUSY)) {
1307                 up_write(&dc->writeback_lock);
1308                 /*
1309                  * bch_register_lock is held, bcache_device_stop() is not
1310                  * able to be directly called. The kthread and kworker
1311                  * created previously in bch_cached_dev_writeback_start()
1312                  * have to be stopped manually here.
1313                  */
1314                 kthread_stop(dc->writeback_thread);
1315                 cancel_writeback_rate_update_dwork(dc);
1316                 pr_err("Couldn't run cached device %pg\n", dc->bdev);
1317                 return ret;
1318         }
1319
1320         bcache_device_link(&dc->disk, c, "bdev");
1321         atomic_inc(&c->attached_dev_nr);
1322
1323         if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1324                 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1325                 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1326                 set_disk_ro(dc->disk.disk, 1);
1327         }
1328
1329         /* Allow the writeback thread to proceed */
1330         up_write(&dc->writeback_lock);
1331
1332         pr_info("Caching %pg as %s on set %pU\n",
1333                 dc->bdev,
1334                 dc->disk.disk->disk_name,
1335                 dc->disk.c->set_uuid);
1336         return 0;
1337 }
1338
1339 /* when dc->disk.kobj released */
1340 void bch_cached_dev_release(struct kobject *kobj)
1341 {
1342         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1343                                              disk.kobj);
1344         kfree(dc);
1345         module_put(THIS_MODULE);
1346 }
1347
1348 static void cached_dev_free(struct closure *cl)
1349 {
1350         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1351
1352         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1353                 cancel_writeback_rate_update_dwork(dc);
1354
1355         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1356                 kthread_stop(dc->writeback_thread);
1357         if (!IS_ERR_OR_NULL(dc->status_update_thread))
1358                 kthread_stop(dc->status_update_thread);
1359
1360         mutex_lock(&bch_register_lock);
1361
1362         if (atomic_read(&dc->running)) {
1363                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1364                 del_gendisk(dc->disk.disk);
1365         }
1366         bcache_device_free(&dc->disk);
1367         list_del(&dc->list);
1368
1369         mutex_unlock(&bch_register_lock);
1370
1371         if (dc->sb_disk)
1372                 put_page(virt_to_page(dc->sb_disk));
1373
1374         if (!IS_ERR_OR_NULL(dc->bdev))
1375                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1376
1377         wake_up(&unregister_wait);
1378
1379         kobject_put(&dc->disk.kobj);
1380 }
1381
1382 static void cached_dev_flush(struct closure *cl)
1383 {
1384         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1385         struct bcache_device *d = &dc->disk;
1386
1387         mutex_lock(&bch_register_lock);
1388         bcache_device_unlink(d);
1389         mutex_unlock(&bch_register_lock);
1390
1391         bch_cache_accounting_destroy(&dc->accounting);
1392         kobject_del(&d->kobj);
1393
1394         continue_at(cl, cached_dev_free, system_wq);
1395 }
1396
1397 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1398 {
1399         int ret;
1400         struct io *io;
1401         struct request_queue *q = bdev_get_queue(dc->bdev);
1402
1403         __module_get(THIS_MODULE);
1404         INIT_LIST_HEAD(&dc->list);
1405         closure_init(&dc->disk.cl, NULL);
1406         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1407         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1408         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1409         sema_init(&dc->sb_write_mutex, 1);
1410         INIT_LIST_HEAD(&dc->io_lru);
1411         spin_lock_init(&dc->io_lock);
1412         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1413
1414         dc->sequential_cutoff           = 4 << 20;
1415
1416         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1417                 list_add(&io->lru, &dc->io_lru);
1418                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1419         }
1420
1421         dc->disk.stripe_size = q->limits.io_opt >> 9;
1422
1423         if (dc->disk.stripe_size)
1424                 dc->partial_stripes_expensive =
1425                         q->limits.raid_partial_stripes_expensive;
1426
1427         ret = bcache_device_init(&dc->disk, block_size,
1428                          bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1429                          dc->bdev, &bcache_cached_ops);
1430         if (ret)
1431                 return ret;
1432
1433         blk_queue_io_opt(dc->disk.disk->queue,
1434                 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1435
1436         atomic_set(&dc->io_errors, 0);
1437         dc->io_disable = false;
1438         dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1439         /* default to auto */
1440         dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1441
1442         bch_cached_dev_request_init(dc);
1443         bch_cached_dev_writeback_init(dc);
1444         return 0;
1445 }
1446
1447 /* Cached device - bcache superblock */
1448
1449 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1450                                  struct block_device *bdev,
1451                                  struct cached_dev *dc)
1452 {
1453         const char *err = "cannot allocate memory";
1454         struct cache_set *c;
1455         int ret = -ENOMEM;
1456
1457         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1458         dc->bdev = bdev;
1459         dc->bdev->bd_holder = dc;
1460         dc->sb_disk = sb_disk;
1461
1462         if (cached_dev_init(dc, sb->block_size << 9))
1463                 goto err;
1464
1465         err = "error creating kobject";
1466         if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
1467                 goto err;
1468         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1469                 goto err;
1470
1471         pr_info("registered backing device %pg\n", dc->bdev);
1472
1473         list_add(&dc->list, &uncached_devices);
1474         /* attach to a matched cache set if it exists */
1475         list_for_each_entry(c, &bch_cache_sets, list)
1476                 bch_cached_dev_attach(dc, c, NULL);
1477
1478         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1479             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1480                 err = "failed to run cached device";
1481                 ret = bch_cached_dev_run(dc);
1482                 if (ret)
1483                         goto err;
1484         }
1485
1486         return 0;
1487 err:
1488         pr_notice("error %pg: %s\n", dc->bdev, err);
1489         bcache_device_stop(&dc->disk);
1490         return ret;
1491 }
1492
1493 /* Flash only volumes */
1494
1495 /* When d->kobj released */
1496 void bch_flash_dev_release(struct kobject *kobj)
1497 {
1498         struct bcache_device *d = container_of(kobj, struct bcache_device,
1499                                                kobj);
1500         kfree(d);
1501 }
1502
1503 static void flash_dev_free(struct closure *cl)
1504 {
1505         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1506
1507         mutex_lock(&bch_register_lock);
1508         atomic_long_sub(bcache_dev_sectors_dirty(d),
1509                         &d->c->flash_dev_dirty_sectors);
1510         del_gendisk(d->disk);
1511         bcache_device_free(d);
1512         mutex_unlock(&bch_register_lock);
1513         kobject_put(&d->kobj);
1514 }
1515
1516 static void flash_dev_flush(struct closure *cl)
1517 {
1518         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1519
1520         mutex_lock(&bch_register_lock);
1521         bcache_device_unlink(d);
1522         mutex_unlock(&bch_register_lock);
1523         kobject_del(&d->kobj);
1524         continue_at(cl, flash_dev_free, system_wq);
1525 }
1526
1527 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1528 {
1529         int err = -ENOMEM;
1530         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1531                                           GFP_KERNEL);
1532         if (!d)
1533                 goto err_ret;
1534
1535         closure_init(&d->cl, NULL);
1536         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1537
1538         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1539
1540         if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1541                         NULL, &bcache_flash_ops))
1542                 goto err;
1543
1544         bcache_device_attach(d, c, u - c->uuids);
1545         bch_sectors_dirty_init(d);
1546         bch_flash_dev_request_init(d);
1547         err = add_disk(d->disk);
1548         if (err)
1549                 goto err;
1550
1551         err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache");
1552         if (err)
1553                 goto err;
1554
1555         bcache_device_link(d, c, "volume");
1556
1557         if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1558                 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1559                 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1560                 set_disk_ro(d->disk, 1);
1561         }
1562
1563         return 0;
1564 err:
1565         kobject_put(&d->kobj);
1566 err_ret:
1567         return err;
1568 }
1569
1570 static int flash_devs_run(struct cache_set *c)
1571 {
1572         int ret = 0;
1573         struct uuid_entry *u;
1574
1575         for (u = c->uuids;
1576              u < c->uuids + c->nr_uuids && !ret;
1577              u++)
1578                 if (UUID_FLASH_ONLY(u))
1579                         ret = flash_dev_run(c, u);
1580
1581         return ret;
1582 }
1583
1584 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1585 {
1586         struct uuid_entry *u;
1587
1588         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1589                 return -EINTR;
1590
1591         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1592                 return -EPERM;
1593
1594         u = uuid_find_empty(c);
1595         if (!u) {
1596                 pr_err("Can't create volume, no room for UUID\n");
1597                 return -EINVAL;
1598         }
1599
1600         get_random_bytes(u->uuid, 16);
1601         memset(u->label, 0, 32);
1602         u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1603
1604         SET_UUID_FLASH_ONLY(u, 1);
1605         u->sectors = size >> 9;
1606
1607         bch_uuid_write(c);
1608
1609         return flash_dev_run(c, u);
1610 }
1611
1612 bool bch_cached_dev_error(struct cached_dev *dc)
1613 {
1614         if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1615                 return false;
1616
1617         dc->io_disable = true;
1618         /* make others know io_disable is true earlier */
1619         smp_mb();
1620
1621         pr_err("stop %s: too many IO errors on backing device %pg\n",
1622                dc->disk.disk->disk_name, dc->bdev);
1623
1624         bcache_device_stop(&dc->disk);
1625         return true;
1626 }
1627
1628 /* Cache set */
1629
1630 __printf(2, 3)
1631 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1632 {
1633         struct va_format vaf;
1634         va_list args;
1635
1636         if (c->on_error != ON_ERROR_PANIC &&
1637             test_bit(CACHE_SET_STOPPING, &c->flags))
1638                 return false;
1639
1640         if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1641                 pr_info("CACHE_SET_IO_DISABLE already set\n");
1642
1643         /*
1644          * XXX: we can be called from atomic context
1645          * acquire_console_sem();
1646          */
1647
1648         va_start(args, fmt);
1649
1650         vaf.fmt = fmt;
1651         vaf.va = &args;
1652
1653         pr_err("error on %pU: %pV, disabling caching\n",
1654                c->set_uuid, &vaf);
1655
1656         va_end(args);
1657
1658         if (c->on_error == ON_ERROR_PANIC)
1659                 panic("panic forced after error\n");
1660
1661         bch_cache_set_unregister(c);
1662         return true;
1663 }
1664
1665 /* When c->kobj released */
1666 void bch_cache_set_release(struct kobject *kobj)
1667 {
1668         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1669
1670         kfree(c);
1671         module_put(THIS_MODULE);
1672 }
1673
1674 static void cache_set_free(struct closure *cl)
1675 {
1676         struct cache_set *c = container_of(cl, struct cache_set, cl);
1677         struct cache *ca;
1678
1679         debugfs_remove(c->debug);
1680
1681         bch_open_buckets_free(c);
1682         bch_btree_cache_free(c);
1683         bch_journal_free(c);
1684
1685         mutex_lock(&bch_register_lock);
1686         bch_bset_sort_state_free(&c->sort);
1687         free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1688
1689         ca = c->cache;
1690         if (ca) {
1691                 ca->set = NULL;
1692                 c->cache = NULL;
1693                 kobject_put(&ca->kobj);
1694         }
1695
1696
1697         if (c->moving_gc_wq)
1698                 destroy_workqueue(c->moving_gc_wq);
1699         bioset_exit(&c->bio_split);
1700         mempool_exit(&c->fill_iter);
1701         mempool_exit(&c->bio_meta);
1702         mempool_exit(&c->search);
1703         kfree(c->devices);
1704
1705         list_del(&c->list);
1706         mutex_unlock(&bch_register_lock);
1707
1708         pr_info("Cache set %pU unregistered\n", c->set_uuid);
1709         wake_up(&unregister_wait);
1710
1711         closure_debug_destroy(&c->cl);
1712         kobject_put(&c->kobj);
1713 }
1714
1715 static void cache_set_flush(struct closure *cl)
1716 {
1717         struct cache_set *c = container_of(cl, struct cache_set, caching);
1718         struct cache *ca = c->cache;
1719         struct btree *b;
1720
1721         bch_cache_accounting_destroy(&c->accounting);
1722
1723         kobject_put(&c->internal);
1724         kobject_del(&c->kobj);
1725
1726         if (!IS_ERR_OR_NULL(c->gc_thread))
1727                 kthread_stop(c->gc_thread);
1728
1729         if (!IS_ERR_OR_NULL(c->root))
1730                 list_add(&c->root->list, &c->btree_cache);
1731
1732         /*
1733          * Avoid flushing cached nodes if cache set is retiring
1734          * due to too many I/O errors detected.
1735          */
1736         if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1737                 list_for_each_entry(b, &c->btree_cache, list) {
1738                         mutex_lock(&b->write_lock);
1739                         if (btree_node_dirty(b))
1740                                 __bch_btree_node_write(b, NULL);
1741                         mutex_unlock(&b->write_lock);
1742                 }
1743
1744         if (ca->alloc_thread)
1745                 kthread_stop(ca->alloc_thread);
1746
1747         if (c->journal.cur) {
1748                 cancel_delayed_work_sync(&c->journal.work);
1749                 /* flush last journal entry if needed */
1750                 c->journal.work.work.func(&c->journal.work.work);
1751         }
1752
1753         closure_return(cl);
1754 }
1755
1756 /*
1757  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1758  * cache set is unregistering due to too many I/O errors. In this condition,
1759  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1760  * value and whether the broken cache has dirty data:
1761  *
1762  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1763  *  BCH_CACHED_STOP_AUTO               0               NO
1764  *  BCH_CACHED_STOP_AUTO               1               YES
1765  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1766  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1767  *
1768  * The expected behavior is, if stop_when_cache_set_failed is configured to
1769  * "auto" via sysfs interface, the bcache device will not be stopped if the
1770  * backing device is clean on the broken cache device.
1771  */
1772 static void conditional_stop_bcache_device(struct cache_set *c,
1773                                            struct bcache_device *d,
1774                                            struct cached_dev *dc)
1775 {
1776         if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1777                 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1778                         d->disk->disk_name, c->set_uuid);
1779                 bcache_device_stop(d);
1780         } else if (atomic_read(&dc->has_dirty)) {
1781                 /*
1782                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1783                  * and dc->has_dirty == 1
1784                  */
1785                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1786                         d->disk->disk_name);
1787                 /*
1788                  * There might be a small time gap that cache set is
1789                  * released but bcache device is not. Inside this time
1790                  * gap, regular I/O requests will directly go into
1791                  * backing device as no cache set attached to. This
1792                  * behavior may also introduce potential inconsistence
1793                  * data in writeback mode while cache is dirty.
1794                  * Therefore before calling bcache_device_stop() due
1795                  * to a broken cache device, dc->io_disable should be
1796                  * explicitly set to true.
1797                  */
1798                 dc->io_disable = true;
1799                 /* make others know io_disable is true earlier */
1800                 smp_mb();
1801                 bcache_device_stop(d);
1802         } else {
1803                 /*
1804                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1805                  * and dc->has_dirty == 0
1806                  */
1807                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1808                         d->disk->disk_name);
1809         }
1810 }
1811
1812 static void __cache_set_unregister(struct closure *cl)
1813 {
1814         struct cache_set *c = container_of(cl, struct cache_set, caching);
1815         struct cached_dev *dc;
1816         struct bcache_device *d;
1817         size_t i;
1818
1819         mutex_lock(&bch_register_lock);
1820
1821         for (i = 0; i < c->devices_max_used; i++) {
1822                 d = c->devices[i];
1823                 if (!d)
1824                         continue;
1825
1826                 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1827                     test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1828                         dc = container_of(d, struct cached_dev, disk);
1829                         bch_cached_dev_detach(dc);
1830                         if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1831                                 conditional_stop_bcache_device(c, d, dc);
1832                 } else {
1833                         bcache_device_stop(d);
1834                 }
1835         }
1836
1837         mutex_unlock(&bch_register_lock);
1838
1839         continue_at(cl, cache_set_flush, system_wq);
1840 }
1841
1842 void bch_cache_set_stop(struct cache_set *c)
1843 {
1844         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1845                 /* closure_fn set to __cache_set_unregister() */
1846                 closure_queue(&c->caching);
1847 }
1848
1849 void bch_cache_set_unregister(struct cache_set *c)
1850 {
1851         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1852         bch_cache_set_stop(c);
1853 }
1854
1855 #define alloc_meta_bucket_pages(gfp, sb)                \
1856         ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1857
1858 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1859 {
1860         int iter_size;
1861         struct cache *ca = container_of(sb, struct cache, sb);
1862         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1863
1864         if (!c)
1865                 return NULL;
1866
1867         __module_get(THIS_MODULE);
1868         closure_init(&c->cl, NULL);
1869         set_closure_fn(&c->cl, cache_set_free, system_wq);
1870
1871         closure_init(&c->caching, &c->cl);
1872         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1873
1874         /* Maybe create continue_at_noreturn() and use it here? */
1875         closure_set_stopped(&c->cl);
1876         closure_put(&c->cl);
1877
1878         kobject_init(&c->kobj, &bch_cache_set_ktype);
1879         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1880
1881         bch_cache_accounting_init(&c->accounting, &c->cl);
1882
1883         memcpy(c->set_uuid, sb->set_uuid, 16);
1884
1885         c->cache                = ca;
1886         c->cache->set           = c;
1887         c->bucket_bits          = ilog2(sb->bucket_size);
1888         c->block_bits           = ilog2(sb->block_size);
1889         c->nr_uuids             = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1890         c->devices_max_used     = 0;
1891         atomic_set(&c->attached_dev_nr, 0);
1892         c->btree_pages          = meta_bucket_pages(sb);
1893         if (c->btree_pages > BTREE_MAX_PAGES)
1894                 c->btree_pages = max_t(int, c->btree_pages / 4,
1895                                        BTREE_MAX_PAGES);
1896
1897         sema_init(&c->sb_write_mutex, 1);
1898         mutex_init(&c->bucket_lock);
1899         init_waitqueue_head(&c->btree_cache_wait);
1900         spin_lock_init(&c->btree_cannibalize_lock);
1901         init_waitqueue_head(&c->bucket_wait);
1902         init_waitqueue_head(&c->gc_wait);
1903         sema_init(&c->uuid_write_mutex, 1);
1904
1905         spin_lock_init(&c->btree_gc_time.lock);
1906         spin_lock_init(&c->btree_split_time.lock);
1907         spin_lock_init(&c->btree_read_time.lock);
1908
1909         bch_moving_init_cache_set(c);
1910
1911         INIT_LIST_HEAD(&c->list);
1912         INIT_LIST_HEAD(&c->cached_devs);
1913         INIT_LIST_HEAD(&c->btree_cache);
1914         INIT_LIST_HEAD(&c->btree_cache_freeable);
1915         INIT_LIST_HEAD(&c->btree_cache_freed);
1916         INIT_LIST_HEAD(&c->data_buckets);
1917
1918         iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1919                 sizeof(struct btree_iter_set);
1920
1921         c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1922         if (!c->devices)
1923                 goto err;
1924
1925         if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1926                 goto err;
1927
1928         if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1929                         sizeof(struct bbio) +
1930                         sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1931                 goto err;
1932
1933         if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1934                 goto err;
1935
1936         if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1937                         BIOSET_NEED_RESCUER))
1938                 goto err;
1939
1940         c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1941         if (!c->uuids)
1942                 goto err;
1943
1944         c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1945         if (!c->moving_gc_wq)
1946                 goto err;
1947
1948         if (bch_journal_alloc(c))
1949                 goto err;
1950
1951         if (bch_btree_cache_alloc(c))
1952                 goto err;
1953
1954         if (bch_open_buckets_alloc(c))
1955                 goto err;
1956
1957         if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1958                 goto err;
1959
1960         c->congested_read_threshold_us  = 2000;
1961         c->congested_write_threshold_us = 20000;
1962         c->error_limit  = DEFAULT_IO_ERROR_LIMIT;
1963         c->idle_max_writeback_rate_enabled = 1;
1964         WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1965
1966         return c;
1967 err:
1968         bch_cache_set_unregister(c);
1969         return NULL;
1970 }
1971
1972 static int run_cache_set(struct cache_set *c)
1973 {
1974         const char *err = "cannot allocate memory";
1975         struct cached_dev *dc, *t;
1976         struct cache *ca = c->cache;
1977         struct closure cl;
1978         LIST_HEAD(journal);
1979         struct journal_replay *l;
1980
1981         closure_init_stack(&cl);
1982
1983         c->nbuckets = ca->sb.nbuckets;
1984         set_gc_sectors(c);
1985
1986         if (CACHE_SYNC(&c->cache->sb)) {
1987                 struct bkey *k;
1988                 struct jset *j;
1989
1990                 err = "cannot allocate memory for journal";
1991                 if (bch_journal_read(c, &journal))
1992                         goto err;
1993
1994                 pr_debug("btree_journal_read() done\n");
1995
1996                 err = "no journal entries found";
1997                 if (list_empty(&journal))
1998                         goto err;
1999
2000                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
2001
2002                 err = "IO error reading priorities";
2003                 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2004                         goto err;
2005
2006                 /*
2007                  * If prio_read() fails it'll call cache_set_error and we'll
2008                  * tear everything down right away, but if we perhaps checked
2009                  * sooner we could avoid journal replay.
2010                  */
2011
2012                 k = &j->btree_root;
2013
2014                 err = "bad btree root";
2015                 if (__bch_btree_ptr_invalid(c, k))
2016                         goto err;
2017
2018                 err = "error reading btree root";
2019                 c->root = bch_btree_node_get(c, NULL, k,
2020                                              j->btree_level,
2021                                              true, NULL);
2022                 if (IS_ERR_OR_NULL(c->root))
2023                         goto err;
2024
2025                 list_del_init(&c->root->list);
2026                 rw_unlock(true, c->root);
2027
2028                 err = uuid_read(c, j, &cl);
2029                 if (err)
2030                         goto err;
2031
2032                 err = "error in recovery";
2033                 if (bch_btree_check(c))
2034                         goto err;
2035
2036                 bch_journal_mark(c, &journal);
2037                 bch_initial_gc_finish(c);
2038                 pr_debug("btree_check() done\n");
2039
2040                 /*
2041                  * bcache_journal_next() can't happen sooner, or
2042                  * btree_gc_finish() will give spurious errors about last_gc >
2043                  * gc_gen - this is a hack but oh well.
2044                  */
2045                 bch_journal_next(&c->journal);
2046
2047                 err = "error starting allocator thread";
2048                 if (bch_cache_allocator_start(ca))
2049                         goto err;
2050
2051                 /*
2052                  * First place it's safe to allocate: btree_check() and
2053                  * btree_gc_finish() have to run before we have buckets to
2054                  * allocate, and bch_bucket_alloc_set() might cause a journal
2055                  * entry to be written so bcache_journal_next() has to be called
2056                  * first.
2057                  *
2058                  * If the uuids were in the old format we have to rewrite them
2059                  * before the next journal entry is written:
2060                  */
2061                 if (j->version < BCACHE_JSET_VERSION_UUID)
2062                         __uuid_write(c);
2063
2064                 err = "bcache: replay journal failed";
2065                 if (bch_journal_replay(c, &journal))
2066                         goto err;
2067         } else {
2068                 unsigned int j;
2069
2070                 pr_notice("invalidating existing data\n");
2071                 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2072                                         2, SB_JOURNAL_BUCKETS);
2073
2074                 for (j = 0; j < ca->sb.keys; j++)
2075                         ca->sb.d[j] = ca->sb.first_bucket + j;
2076
2077                 bch_initial_gc_finish(c);
2078
2079                 err = "error starting allocator thread";
2080                 if (bch_cache_allocator_start(ca))
2081                         goto err;
2082
2083                 mutex_lock(&c->bucket_lock);
2084                 bch_prio_write(ca, true);
2085                 mutex_unlock(&c->bucket_lock);
2086
2087                 err = "cannot allocate new UUID bucket";
2088                 if (__uuid_write(c))
2089                         goto err;
2090
2091                 err = "cannot allocate new btree root";
2092                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2093                 if (IS_ERR_OR_NULL(c->root))
2094                         goto err;
2095
2096                 mutex_lock(&c->root->write_lock);
2097                 bkey_copy_key(&c->root->key, &MAX_KEY);
2098                 bch_btree_node_write(c->root, &cl);
2099                 mutex_unlock(&c->root->write_lock);
2100
2101                 bch_btree_set_root(c->root);
2102                 rw_unlock(true, c->root);
2103
2104                 /*
2105                  * We don't want to write the first journal entry until
2106                  * everything is set up - fortunately journal entries won't be
2107                  * written until the SET_CACHE_SYNC() here:
2108                  */
2109                 SET_CACHE_SYNC(&c->cache->sb, true);
2110
2111                 bch_journal_next(&c->journal);
2112                 bch_journal_meta(c, &cl);
2113         }
2114
2115         err = "error starting gc thread";
2116         if (bch_gc_thread_start(c))
2117                 goto err;
2118
2119         closure_sync(&cl);
2120         c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2121         bcache_write_super(c);
2122
2123         if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2124                 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2125
2126         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2127                 bch_cached_dev_attach(dc, c, NULL);
2128
2129         flash_devs_run(c);
2130
2131         set_bit(CACHE_SET_RUNNING, &c->flags);
2132         return 0;
2133 err:
2134         while (!list_empty(&journal)) {
2135                 l = list_first_entry(&journal, struct journal_replay, list);
2136                 list_del(&l->list);
2137                 kfree(l);
2138         }
2139
2140         closure_sync(&cl);
2141
2142         bch_cache_set_error(c, "%s", err);
2143
2144         return -EIO;
2145 }
2146
2147 static const char *register_cache_set(struct cache *ca)
2148 {
2149         char buf[12];
2150         const char *err = "cannot allocate memory";
2151         struct cache_set *c;
2152
2153         list_for_each_entry(c, &bch_cache_sets, list)
2154                 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2155                         if (c->cache)
2156                                 return "duplicate cache set member";
2157
2158                         goto found;
2159                 }
2160
2161         c = bch_cache_set_alloc(&ca->sb);
2162         if (!c)
2163                 return err;
2164
2165         err = "error creating kobject";
2166         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2167             kobject_add(&c->internal, &c->kobj, "internal"))
2168                 goto err;
2169
2170         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2171                 goto err;
2172
2173         bch_debug_init_cache_set(c);
2174
2175         list_add(&c->list, &bch_cache_sets);
2176 found:
2177         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2178         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2179             sysfs_create_link(&c->kobj, &ca->kobj, buf))
2180                 goto err;
2181
2182         kobject_get(&ca->kobj);
2183         ca->set = c;
2184         ca->set->cache = ca;
2185
2186         err = "failed to run cache set";
2187         if (run_cache_set(c) < 0)
2188                 goto err;
2189
2190         return NULL;
2191 err:
2192         bch_cache_set_unregister(c);
2193         return err;
2194 }
2195
2196 /* Cache device */
2197
2198 /* When ca->kobj released */
2199 void bch_cache_release(struct kobject *kobj)
2200 {
2201         struct cache *ca = container_of(kobj, struct cache, kobj);
2202         unsigned int i;
2203
2204         if (ca->set) {
2205                 BUG_ON(ca->set->cache != ca);
2206                 ca->set->cache = NULL;
2207         }
2208
2209         free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2210         kfree(ca->prio_buckets);
2211         vfree(ca->buckets);
2212
2213         free_heap(&ca->heap);
2214         free_fifo(&ca->free_inc);
2215
2216         for (i = 0; i < RESERVE_NR; i++)
2217                 free_fifo(&ca->free[i]);
2218
2219         if (ca->sb_disk)
2220                 put_page(virt_to_page(ca->sb_disk));
2221
2222         if (!IS_ERR_OR_NULL(ca->bdev))
2223                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2224
2225         kfree(ca);
2226         module_put(THIS_MODULE);
2227 }
2228
2229 static int cache_alloc(struct cache *ca)
2230 {
2231         size_t free;
2232         size_t btree_buckets;
2233         struct bucket *b;
2234         int ret = -ENOMEM;
2235         const char *err = NULL;
2236
2237         __module_get(THIS_MODULE);
2238         kobject_init(&ca->kobj, &bch_cache_ktype);
2239
2240         bio_init(&ca->journal.bio, NULL, ca->journal.bio.bi_inline_vecs, 8, 0);
2241
2242         /*
2243          * when ca->sb.njournal_buckets is not zero, journal exists,
2244          * and in bch_journal_replay(), tree node may split,
2245          * so bucket of RESERVE_BTREE type is needed,
2246          * the worst situation is all journal buckets are valid journal,
2247          * and all the keys need to replay,
2248          * so the number of  RESERVE_BTREE type buckets should be as much
2249          * as journal buckets
2250          */
2251         btree_buckets = ca->sb.njournal_buckets ?: 8;
2252         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2253         if (!free) {
2254                 ret = -EPERM;
2255                 err = "ca->sb.nbuckets is too small";
2256                 goto err_free;
2257         }
2258
2259         if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2260                                                 GFP_KERNEL)) {
2261                 err = "ca->free[RESERVE_BTREE] alloc failed";
2262                 goto err_btree_alloc;
2263         }
2264
2265         if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2266                                                         GFP_KERNEL)) {
2267                 err = "ca->free[RESERVE_PRIO] alloc failed";
2268                 goto err_prio_alloc;
2269         }
2270
2271         if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2272                 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2273                 goto err_movinggc_alloc;
2274         }
2275
2276         if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2277                 err = "ca->free[RESERVE_NONE] alloc failed";
2278                 goto err_none_alloc;
2279         }
2280
2281         if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2282                 err = "ca->free_inc alloc failed";
2283                 goto err_free_inc_alloc;
2284         }
2285
2286         if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2287                 err = "ca->heap alloc failed";
2288                 goto err_heap_alloc;
2289         }
2290
2291         ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2292                               ca->sb.nbuckets));
2293         if (!ca->buckets) {
2294                 err = "ca->buckets alloc failed";
2295                 goto err_buckets_alloc;
2296         }
2297
2298         ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2299                                    prio_buckets(ca), 2),
2300                                    GFP_KERNEL);
2301         if (!ca->prio_buckets) {
2302                 err = "ca->prio_buckets alloc failed";
2303                 goto err_prio_buckets_alloc;
2304         }
2305
2306         ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2307         if (!ca->disk_buckets) {
2308                 err = "ca->disk_buckets alloc failed";
2309                 goto err_disk_buckets_alloc;
2310         }
2311
2312         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2313
2314         for_each_bucket(b, ca)
2315                 atomic_set(&b->pin, 0);
2316         return 0;
2317
2318 err_disk_buckets_alloc:
2319         kfree(ca->prio_buckets);
2320 err_prio_buckets_alloc:
2321         vfree(ca->buckets);
2322 err_buckets_alloc:
2323         free_heap(&ca->heap);
2324 err_heap_alloc:
2325         free_fifo(&ca->free_inc);
2326 err_free_inc_alloc:
2327         free_fifo(&ca->free[RESERVE_NONE]);
2328 err_none_alloc:
2329         free_fifo(&ca->free[RESERVE_MOVINGGC]);
2330 err_movinggc_alloc:
2331         free_fifo(&ca->free[RESERVE_PRIO]);
2332 err_prio_alloc:
2333         free_fifo(&ca->free[RESERVE_BTREE]);
2334 err_btree_alloc:
2335 err_free:
2336         module_put(THIS_MODULE);
2337         if (err)
2338                 pr_notice("error %pg: %s\n", ca->bdev, err);
2339         return ret;
2340 }
2341
2342 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2343                                 struct block_device *bdev, struct cache *ca)
2344 {
2345         const char *err = NULL; /* must be set for any error case */
2346         int ret = 0;
2347
2348         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2349         ca->bdev = bdev;
2350         ca->bdev->bd_holder = ca;
2351         ca->sb_disk = sb_disk;
2352
2353         if (blk_queue_discard(bdev_get_queue(bdev)))
2354                 ca->discard = CACHE_DISCARD(&ca->sb);
2355
2356         ret = cache_alloc(ca);
2357         if (ret != 0) {
2358                 /*
2359                  * If we failed here, it means ca->kobj is not initialized yet,
2360                  * kobject_put() won't be called and there is no chance to
2361                  * call blkdev_put() to bdev in bch_cache_release(). So we
2362                  * explicitly call blkdev_put() here.
2363                  */
2364                 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2365                 if (ret == -ENOMEM)
2366                         err = "cache_alloc(): -ENOMEM";
2367                 else if (ret == -EPERM)
2368                         err = "cache_alloc(): cache device is too small";
2369                 else
2370                         err = "cache_alloc(): unknown error";
2371                 goto err;
2372         }
2373
2374         if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
2375                 err = "error calling kobject_add";
2376                 ret = -ENOMEM;
2377                 goto out;
2378         }
2379
2380         mutex_lock(&bch_register_lock);
2381         err = register_cache_set(ca);
2382         mutex_unlock(&bch_register_lock);
2383
2384         if (err) {
2385                 ret = -ENODEV;
2386                 goto out;
2387         }
2388
2389         pr_info("registered cache device %pg\n", ca->bdev);
2390
2391 out:
2392         kobject_put(&ca->kobj);
2393
2394 err:
2395         if (err)
2396                 pr_notice("error %pg: %s\n", ca->bdev, err);
2397
2398         return ret;
2399 }
2400
2401 /* Global interfaces/init */
2402
2403 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2404                                const char *buffer, size_t size);
2405 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2406                                          struct kobj_attribute *attr,
2407                                          const char *buffer, size_t size);
2408
2409 kobj_attribute_write(register,          register_bcache);
2410 kobj_attribute_write(register_quiet,    register_bcache);
2411 kobj_attribute_write(pendings_cleanup,  bch_pending_bdevs_cleanup);
2412
2413 static bool bch_is_open_backing(dev_t dev)
2414 {
2415         struct cache_set *c, *tc;
2416         struct cached_dev *dc, *t;
2417
2418         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2419                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2420                         if (dc->bdev->bd_dev == dev)
2421                                 return true;
2422         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2423                 if (dc->bdev->bd_dev == dev)
2424                         return true;
2425         return false;
2426 }
2427
2428 static bool bch_is_open_cache(dev_t dev)
2429 {
2430         struct cache_set *c, *tc;
2431
2432         list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2433                 struct cache *ca = c->cache;
2434
2435                 if (ca->bdev->bd_dev == dev)
2436                         return true;
2437         }
2438
2439         return false;
2440 }
2441
2442 static bool bch_is_open(dev_t dev)
2443 {
2444         return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2445 }
2446
2447 struct async_reg_args {
2448         struct delayed_work reg_work;
2449         char *path;
2450         struct cache_sb *sb;
2451         struct cache_sb_disk *sb_disk;
2452         struct block_device *bdev;
2453 };
2454
2455 static void register_bdev_worker(struct work_struct *work)
2456 {
2457         int fail = false;
2458         struct async_reg_args *args =
2459                 container_of(work, struct async_reg_args, reg_work.work);
2460         struct cached_dev *dc;
2461
2462         dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2463         if (!dc) {
2464                 fail = true;
2465                 put_page(virt_to_page(args->sb_disk));
2466                 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2467                 goto out;
2468         }
2469
2470         mutex_lock(&bch_register_lock);
2471         if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2472                 fail = true;
2473         mutex_unlock(&bch_register_lock);
2474
2475 out:
2476         if (fail)
2477                 pr_info("error %s: fail to register backing device\n",
2478                         args->path);
2479         kfree(args->sb);
2480         kfree(args->path);
2481         kfree(args);
2482         module_put(THIS_MODULE);
2483 }
2484
2485 static void register_cache_worker(struct work_struct *work)
2486 {
2487         int fail = false;
2488         struct async_reg_args *args =
2489                 container_of(work, struct async_reg_args, reg_work.work);
2490         struct cache *ca;
2491
2492         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2493         if (!ca) {
2494                 fail = true;
2495                 put_page(virt_to_page(args->sb_disk));
2496                 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2497                 goto out;
2498         }
2499
2500         /* blkdev_put() will be called in bch_cache_release() */
2501         if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2502                 fail = true;
2503
2504 out:
2505         if (fail)
2506                 pr_info("error %s: fail to register cache device\n",
2507                         args->path);
2508         kfree(args->sb);
2509         kfree(args->path);
2510         kfree(args);
2511         module_put(THIS_MODULE);
2512 }
2513
2514 static void register_device_async(struct async_reg_args *args)
2515 {
2516         if (SB_IS_BDEV(args->sb))
2517                 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2518         else
2519                 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2520
2521         /* 10 jiffies is enough for a delay */
2522         queue_delayed_work(system_wq, &args->reg_work, 10);
2523 }
2524
2525 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2526                                const char *buffer, size_t size)
2527 {
2528         const char *err;
2529         char *path = NULL;
2530         struct cache_sb *sb;
2531         struct cache_sb_disk *sb_disk;
2532         struct block_device *bdev;
2533         ssize_t ret;
2534         bool async_registration = false;
2535
2536 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2537         async_registration = true;
2538 #endif
2539
2540         ret = -EBUSY;
2541         err = "failed to reference bcache module";
2542         if (!try_module_get(THIS_MODULE))
2543                 goto out;
2544
2545         /* For latest state of bcache_is_reboot */
2546         smp_mb();
2547         err = "bcache is in reboot";
2548         if (bcache_is_reboot)
2549                 goto out_module_put;
2550
2551         ret = -ENOMEM;
2552         err = "cannot allocate memory";
2553         path = kstrndup(buffer, size, GFP_KERNEL);
2554         if (!path)
2555                 goto out_module_put;
2556
2557         sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2558         if (!sb)
2559                 goto out_free_path;
2560
2561         ret = -EINVAL;
2562         err = "failed to open device";
2563         bdev = blkdev_get_by_path(strim(path),
2564                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2565                                   sb);
2566         if (IS_ERR(bdev)) {
2567                 if (bdev == ERR_PTR(-EBUSY)) {
2568                         dev_t dev;
2569
2570                         mutex_lock(&bch_register_lock);
2571                         if (lookup_bdev(strim(path), &dev) == 0 &&
2572                             bch_is_open(dev))
2573                                 err = "device already registered";
2574                         else
2575                                 err = "device busy";
2576                         mutex_unlock(&bch_register_lock);
2577                         if (attr == &ksysfs_register_quiet)
2578                                 goto done;
2579                 }
2580                 goto out_free_sb;
2581         }
2582
2583         err = "failed to set blocksize";
2584         if (set_blocksize(bdev, 4096))
2585                 goto out_blkdev_put;
2586
2587         err = read_super(sb, bdev, &sb_disk);
2588         if (err)
2589                 goto out_blkdev_put;
2590
2591         err = "failed to register device";
2592
2593         if (async_registration) {
2594                 /* register in asynchronous way */
2595                 struct async_reg_args *args =
2596                         kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2597
2598                 if (!args) {
2599                         ret = -ENOMEM;
2600                         err = "cannot allocate memory";
2601                         goto out_put_sb_page;
2602                 }
2603
2604                 args->path      = path;
2605                 args->sb        = sb;
2606                 args->sb_disk   = sb_disk;
2607                 args->bdev      = bdev;
2608                 register_device_async(args);
2609                 /* No wait and returns to user space */
2610                 goto async_done;
2611         }
2612
2613         if (SB_IS_BDEV(sb)) {
2614                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2615
2616                 if (!dc) {
2617                         ret = -ENOMEM;
2618                         err = "cannot allocate memory";
2619                         goto out_put_sb_page;
2620                 }
2621
2622                 mutex_lock(&bch_register_lock);
2623                 ret = register_bdev(sb, sb_disk, bdev, dc);
2624                 mutex_unlock(&bch_register_lock);
2625                 /* blkdev_put() will be called in cached_dev_free() */
2626                 if (ret < 0)
2627                         goto out_free_sb;
2628         } else {
2629                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2630
2631                 if (!ca) {
2632                         ret = -ENOMEM;
2633                         err = "cannot allocate memory";
2634                         goto out_put_sb_page;
2635                 }
2636
2637                 /* blkdev_put() will be called in bch_cache_release() */
2638                 ret = register_cache(sb, sb_disk, bdev, ca);
2639                 if (ret)
2640                         goto out_free_sb;
2641         }
2642
2643 done:
2644         kfree(sb);
2645         kfree(path);
2646         module_put(THIS_MODULE);
2647 async_done:
2648         return size;
2649
2650 out_put_sb_page:
2651         put_page(virt_to_page(sb_disk));
2652 out_blkdev_put:
2653         blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2654 out_free_sb:
2655         kfree(sb);
2656 out_free_path:
2657         kfree(path);
2658         path = NULL;
2659 out_module_put:
2660         module_put(THIS_MODULE);
2661 out:
2662         pr_info("error %s: %s\n", path?path:"", err);
2663         return ret;
2664 }
2665
2666
2667 struct pdev {
2668         struct list_head list;
2669         struct cached_dev *dc;
2670 };
2671
2672 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2673                                          struct kobj_attribute *attr,
2674                                          const char *buffer,
2675                                          size_t size)
2676 {
2677         LIST_HEAD(pending_devs);
2678         ssize_t ret = size;
2679         struct cached_dev *dc, *tdc;
2680         struct pdev *pdev, *tpdev;
2681         struct cache_set *c, *tc;
2682
2683         mutex_lock(&bch_register_lock);
2684         list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2685                 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2686                 if (!pdev)
2687                         break;
2688                 pdev->dc = dc;
2689                 list_add(&pdev->list, &pending_devs);
2690         }
2691
2692         list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2693                 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2694                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2695                         char *set_uuid = c->set_uuid;
2696
2697                         if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2698                                 list_del(&pdev->list);
2699                                 kfree(pdev);
2700                                 break;
2701                         }
2702                 }
2703         }
2704         mutex_unlock(&bch_register_lock);
2705
2706         list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2707                 pr_info("delete pdev %p\n", pdev);
2708                 list_del(&pdev->list);
2709                 bcache_device_stop(&pdev->dc->disk);
2710                 kfree(pdev);
2711         }
2712
2713         return ret;
2714 }
2715
2716 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2717 {
2718         if (bcache_is_reboot)
2719                 return NOTIFY_DONE;
2720
2721         if (code == SYS_DOWN ||
2722             code == SYS_HALT ||
2723             code == SYS_POWER_OFF) {
2724                 DEFINE_WAIT(wait);
2725                 unsigned long start = jiffies;
2726                 bool stopped = false;
2727
2728                 struct cache_set *c, *tc;
2729                 struct cached_dev *dc, *tdc;
2730
2731                 mutex_lock(&bch_register_lock);
2732
2733                 if (bcache_is_reboot)
2734                         goto out;
2735
2736                 /* New registration is rejected since now */
2737                 bcache_is_reboot = true;
2738                 /*
2739                  * Make registering caller (if there is) on other CPU
2740                  * core know bcache_is_reboot set to true earlier
2741                  */
2742                 smp_mb();
2743
2744                 if (list_empty(&bch_cache_sets) &&
2745                     list_empty(&uncached_devices))
2746                         goto out;
2747
2748                 mutex_unlock(&bch_register_lock);
2749
2750                 pr_info("Stopping all devices:\n");
2751
2752                 /*
2753                  * The reason bch_register_lock is not held to call
2754                  * bch_cache_set_stop() and bcache_device_stop() is to
2755                  * avoid potential deadlock during reboot, because cache
2756                  * set or bcache device stopping process will acquire
2757                  * bch_register_lock too.
2758                  *
2759                  * We are safe here because bcache_is_reboot sets to
2760                  * true already, register_bcache() will reject new
2761                  * registration now. bcache_is_reboot also makes sure
2762                  * bcache_reboot() won't be re-entered on by other thread,
2763                  * so there is no race in following list iteration by
2764                  * list_for_each_entry_safe().
2765                  */
2766                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2767                         bch_cache_set_stop(c);
2768
2769                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2770                         bcache_device_stop(&dc->disk);
2771
2772
2773                 /*
2774                  * Give an early chance for other kthreads and
2775                  * kworkers to stop themselves
2776                  */
2777                 schedule();
2778
2779                 /* What's a condition variable? */
2780                 while (1) {
2781                         long timeout = start + 10 * HZ - jiffies;
2782
2783                         mutex_lock(&bch_register_lock);
2784                         stopped = list_empty(&bch_cache_sets) &&
2785                                 list_empty(&uncached_devices);
2786
2787                         if (timeout < 0 || stopped)
2788                                 break;
2789
2790                         prepare_to_wait(&unregister_wait, &wait,
2791                                         TASK_UNINTERRUPTIBLE);
2792
2793                         mutex_unlock(&bch_register_lock);
2794                         schedule_timeout(timeout);
2795                 }
2796
2797                 finish_wait(&unregister_wait, &wait);
2798
2799                 if (stopped)
2800                         pr_info("All devices stopped\n");
2801                 else
2802                         pr_notice("Timeout waiting for devices to be closed\n");
2803 out:
2804                 mutex_unlock(&bch_register_lock);
2805         }
2806
2807         return NOTIFY_DONE;
2808 }
2809
2810 static struct notifier_block reboot = {
2811         .notifier_call  = bcache_reboot,
2812         .priority       = INT_MAX, /* before any real devices */
2813 };
2814
2815 static void bcache_exit(void)
2816 {
2817         bch_debug_exit();
2818         bch_request_exit();
2819         if (bcache_kobj)
2820                 kobject_put(bcache_kobj);
2821         if (bcache_wq)
2822                 destroy_workqueue(bcache_wq);
2823         if (bch_journal_wq)
2824                 destroy_workqueue(bch_journal_wq);
2825         if (bch_flush_wq)
2826                 destroy_workqueue(bch_flush_wq);
2827         bch_btree_exit();
2828
2829         if (bcache_major)
2830                 unregister_blkdev(bcache_major, "bcache");
2831         unregister_reboot_notifier(&reboot);
2832         mutex_destroy(&bch_register_lock);
2833 }
2834
2835 /* Check and fixup module parameters */
2836 static void check_module_parameters(void)
2837 {
2838         if (bch_cutoff_writeback_sync == 0)
2839                 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2840         else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2841                 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2842                         bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2843                 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2844         }
2845
2846         if (bch_cutoff_writeback == 0)
2847                 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2848         else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2849                 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2850                         bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2851                 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2852         }
2853
2854         if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2855                 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2856                         bch_cutoff_writeback, bch_cutoff_writeback_sync);
2857                 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2858         }
2859 }
2860
2861 static int __init bcache_init(void)
2862 {
2863         static const struct attribute *files[] = {
2864                 &ksysfs_register.attr,
2865                 &ksysfs_register_quiet.attr,
2866                 &ksysfs_pendings_cleanup.attr,
2867                 NULL
2868         };
2869
2870         check_module_parameters();
2871
2872         mutex_init(&bch_register_lock);
2873         init_waitqueue_head(&unregister_wait);
2874         register_reboot_notifier(&reboot);
2875
2876         bcache_major = register_blkdev(0, "bcache");
2877         if (bcache_major < 0) {
2878                 unregister_reboot_notifier(&reboot);
2879                 mutex_destroy(&bch_register_lock);
2880                 return bcache_major;
2881         }
2882
2883         if (bch_btree_init())
2884                 goto err;
2885
2886         bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2887         if (!bcache_wq)
2888                 goto err;
2889
2890         /*
2891          * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2892          *
2893          * 1. It used `system_wq` before which also does no memory reclaim.
2894          * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2895          *    reduced throughput can be observed.
2896          *
2897          * We still want to user our own queue to not congest the `system_wq`.
2898          */
2899         bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2900         if (!bch_flush_wq)
2901                 goto err;
2902
2903         bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2904         if (!bch_journal_wq)
2905                 goto err;
2906
2907         bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2908         if (!bcache_kobj)
2909                 goto err;
2910
2911         if (bch_request_init() ||
2912             sysfs_create_files(bcache_kobj, files))
2913                 goto err;
2914
2915         bch_debug_init();
2916         closure_debug_init();
2917
2918         bcache_is_reboot = false;
2919
2920         return 0;
2921 err:
2922         bcache_exit();
2923         return -ENOMEM;
2924 }
2925
2926 /*
2927  * Module hooks
2928  */
2929 module_exit(bcache_exit);
2930 module_init(bcache_init);
2931
2932 module_param(bch_cutoff_writeback, uint, 0);
2933 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2934
2935 module_param(bch_cutoff_writeback_sync, uint, 0);
2936 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2937
2938 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2939 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2940 MODULE_LICENSE("GPL");