Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42         "default",
43         "writethrough",
44         "writeback",
45         "writearound",
46         "none",
47         NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
61
62 static void bio_split_pool_free(struct bio_split_pool *p)
63 {
64         if (p->bio_split_hook)
65                 mempool_destroy(p->bio_split_hook);
66
67         if (p->bio_split)
68                 bioset_free(p->bio_split);
69 }
70
71 static int bio_split_pool_init(struct bio_split_pool *p)
72 {
73         p->bio_split = bioset_create(4, 0);
74         if (!p->bio_split)
75                 return -ENOMEM;
76
77         p->bio_split_hook = mempool_create_kmalloc_pool(4,
78                                 sizeof(struct bio_split_hook));
79         if (!p->bio_split_hook)
80                 return -ENOMEM;
81
82         return 0;
83 }
84
85 /* Superblock */
86
87 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
88                               struct page **res)
89 {
90         const char *err;
91         struct cache_sb *s;
92         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
93         unsigned i;
94
95         if (!bh)
96                 return "IO error";
97
98         s = (struct cache_sb *) bh->b_data;
99
100         sb->offset              = le64_to_cpu(s->offset);
101         sb->version             = le64_to_cpu(s->version);
102
103         memcpy(sb->magic,       s->magic, 16);
104         memcpy(sb->uuid,        s->uuid, 16);
105         memcpy(sb->set_uuid,    s->set_uuid, 16);
106         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
107
108         sb->flags               = le64_to_cpu(s->flags);
109         sb->seq                 = le64_to_cpu(s->seq);
110         sb->last_mount          = le32_to_cpu(s->last_mount);
111         sb->first_bucket        = le16_to_cpu(s->first_bucket);
112         sb->keys                = le16_to_cpu(s->keys);
113
114         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
115                 sb->d[i] = le64_to_cpu(s->d[i]);
116
117         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
118                  sb->version, sb->flags, sb->seq, sb->keys);
119
120         err = "Not a bcache superblock";
121         if (sb->offset != SB_SECTOR)
122                 goto err;
123
124         if (memcmp(sb->magic, bcache_magic, 16))
125                 goto err;
126
127         err = "Too many journal buckets";
128         if (sb->keys > SB_JOURNAL_BUCKETS)
129                 goto err;
130
131         err = "Bad checksum";
132         if (s->csum != csum_set(s))
133                 goto err;
134
135         err = "Bad UUID";
136         if (bch_is_zero(sb->uuid, 16))
137                 goto err;
138
139         sb->block_size  = le16_to_cpu(s->block_size);
140
141         err = "Superblock block size smaller than device block size";
142         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
143                 goto err;
144
145         switch (sb->version) {
146         case BCACHE_SB_VERSION_BDEV:
147                 sb->data_offset = BDEV_DATA_START_DEFAULT;
148                 break;
149         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
150                 sb->data_offset = le64_to_cpu(s->data_offset);
151
152                 err = "Bad data offset";
153                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
154                         goto err;
155
156                 break;
157         case BCACHE_SB_VERSION_CDEV:
158         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
159                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
160                 sb->block_size  = le16_to_cpu(s->block_size);
161                 sb->bucket_size = le16_to_cpu(s->bucket_size);
162
163                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
164                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
165
166                 err = "Too many buckets";
167                 if (sb->nbuckets > LONG_MAX)
168                         goto err;
169
170                 err = "Not enough buckets";
171                 if (sb->nbuckets < 1 << 7)
172                         goto err;
173
174                 err = "Bad block/bucket size";
175                 if (!is_power_of_2(sb->block_size) ||
176                     sb->block_size > PAGE_SECTORS ||
177                     !is_power_of_2(sb->bucket_size) ||
178                     sb->bucket_size < PAGE_SECTORS)
179                         goto err;
180
181                 err = "Invalid superblock: device too small";
182                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
183                         goto err;
184
185                 err = "Bad UUID";
186                 if (bch_is_zero(sb->set_uuid, 16))
187                         goto err;
188
189                 err = "Bad cache device number in set";
190                 if (!sb->nr_in_set ||
191                     sb->nr_in_set <= sb->nr_this_dev ||
192                     sb->nr_in_set > MAX_CACHES_PER_SET)
193                         goto err;
194
195                 err = "Journal buckets not sequential";
196                 for (i = 0; i < sb->keys; i++)
197                         if (sb->d[i] != sb->first_bucket + i)
198                                 goto err;
199
200                 err = "Too many journal buckets";
201                 if (sb->first_bucket + sb->keys > sb->nbuckets)
202                         goto err;
203
204                 err = "Invalid superblock: first bucket comes before end of super";
205                 if (sb->first_bucket * sb->bucket_size < 16)
206                         goto err;
207
208                 break;
209         default:
210                 err = "Unsupported superblock version";
211                 goto err;
212         }
213
214         sb->last_mount = get_seconds();
215         err = NULL;
216
217         get_page(bh->b_page);
218         *res = bh->b_page;
219 err:
220         put_bh(bh);
221         return err;
222 }
223
224 static void write_bdev_super_endio(struct bio *bio, int error)
225 {
226         struct cached_dev *dc = bio->bi_private;
227         /* XXX: error checking */
228
229         closure_put(&dc->sb_write);
230 }
231
232 static void __write_super(struct cache_sb *sb, struct bio *bio)
233 {
234         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
235         unsigned i;
236
237         bio->bi_iter.bi_sector  = SB_SECTOR;
238         bio->bi_rw              = REQ_SYNC|REQ_META;
239         bio->bi_iter.bi_size    = SB_SIZE;
240         bch_bio_map(bio, NULL);
241
242         out->offset             = cpu_to_le64(sb->offset);
243         out->version            = cpu_to_le64(sb->version);
244
245         memcpy(out->uuid,       sb->uuid, 16);
246         memcpy(out->set_uuid,   sb->set_uuid, 16);
247         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
248
249         out->flags              = cpu_to_le64(sb->flags);
250         out->seq                = cpu_to_le64(sb->seq);
251
252         out->last_mount         = cpu_to_le32(sb->last_mount);
253         out->first_bucket       = cpu_to_le16(sb->first_bucket);
254         out->keys               = cpu_to_le16(sb->keys);
255
256         for (i = 0; i < sb->keys; i++)
257                 out->d[i] = cpu_to_le64(sb->d[i]);
258
259         out->csum = csum_set(out);
260
261         pr_debug("ver %llu, flags %llu, seq %llu",
262                  sb->version, sb->flags, sb->seq);
263
264         submit_bio(REQ_WRITE, bio);
265 }
266
267 static void bch_write_bdev_super_unlock(struct closure *cl)
268 {
269         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
270
271         up(&dc->sb_write_mutex);
272 }
273
274 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
275 {
276         struct closure *cl = &dc->sb_write;
277         struct bio *bio = &dc->sb_bio;
278
279         down(&dc->sb_write_mutex);
280         closure_init(cl, parent);
281
282         bio_reset(bio);
283         bio->bi_bdev    = dc->bdev;
284         bio->bi_end_io  = write_bdev_super_endio;
285         bio->bi_private = dc;
286
287         closure_get(cl);
288         __write_super(&dc->sb, bio);
289
290         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
291 }
292
293 static void write_super_endio(struct bio *bio, int error)
294 {
295         struct cache *ca = bio->bi_private;
296
297         bch_count_io_errors(ca, error, "writing superblock");
298         closure_put(&ca->set->sb_write);
299 }
300
301 static void bcache_write_super_unlock(struct closure *cl)
302 {
303         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
304
305         up(&c->sb_write_mutex);
306 }
307
308 void bcache_write_super(struct cache_set *c)
309 {
310         struct closure *cl = &c->sb_write;
311         struct cache *ca;
312         unsigned i;
313
314         down(&c->sb_write_mutex);
315         closure_init(cl, &c->cl);
316
317         c->sb.seq++;
318
319         for_each_cache(ca, c, i) {
320                 struct bio *bio = &ca->sb_bio;
321
322                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
323                 ca->sb.seq              = c->sb.seq;
324                 ca->sb.last_mount       = c->sb.last_mount;
325
326                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
327
328                 bio_reset(bio);
329                 bio->bi_bdev    = ca->bdev;
330                 bio->bi_end_io  = write_super_endio;
331                 bio->bi_private = ca;
332
333                 closure_get(cl);
334                 __write_super(&ca->sb, bio);
335         }
336
337         closure_return_with_destructor(cl, bcache_write_super_unlock);
338 }
339
340 /* UUID io */
341
342 static void uuid_endio(struct bio *bio, int error)
343 {
344         struct closure *cl = bio->bi_private;
345         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
346
347         cache_set_err_on(error, c, "accessing uuids");
348         bch_bbio_free(bio, c);
349         closure_put(cl);
350 }
351
352 static void uuid_io_unlock(struct closure *cl)
353 {
354         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
355
356         up(&c->uuid_write_mutex);
357 }
358
359 static void uuid_io(struct cache_set *c, unsigned long rw,
360                     struct bkey *k, struct closure *parent)
361 {
362         struct closure *cl = &c->uuid_write;
363         struct uuid_entry *u;
364         unsigned i;
365         char buf[80];
366
367         BUG_ON(!parent);
368         down(&c->uuid_write_mutex);
369         closure_init(cl, parent);
370
371         for (i = 0; i < KEY_PTRS(k); i++) {
372                 struct bio *bio = bch_bbio_alloc(c);
373
374                 bio->bi_rw      = REQ_SYNC|REQ_META|rw;
375                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
376
377                 bio->bi_end_io  = uuid_endio;
378                 bio->bi_private = cl;
379                 bch_bio_map(bio, c->uuids);
380
381                 bch_submit_bbio(bio, c, k, i);
382
383                 if (!(rw & WRITE))
384                         break;
385         }
386
387         bch_extent_to_text(buf, sizeof(buf), k);
388         pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
389
390         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
391                 if (!bch_is_zero(u->uuid, 16))
392                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
393                                  u - c->uuids, u->uuid, u->label,
394                                  u->first_reg, u->last_reg, u->invalidated);
395
396         closure_return_with_destructor(cl, uuid_io_unlock);
397 }
398
399 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
400 {
401         struct bkey *k = &j->uuid_bucket;
402
403         if (__bch_btree_ptr_invalid(c, k))
404                 return "bad uuid pointer";
405
406         bkey_copy(&c->uuid_bucket, k);
407         uuid_io(c, READ_SYNC, k, cl);
408
409         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
410                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
411                 struct uuid_entry       *u1 = (void *) c->uuids;
412                 int i;
413
414                 closure_sync(cl);
415
416                 /*
417                  * Since the new uuid entry is bigger than the old, we have to
418                  * convert starting at the highest memory address and work down
419                  * in order to do it in place
420                  */
421
422                 for (i = c->nr_uuids - 1;
423                      i >= 0;
424                      --i) {
425                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
426                         memcpy(u1[i].label,     u0[i].label, 32);
427
428                         u1[i].first_reg         = u0[i].first_reg;
429                         u1[i].last_reg          = u0[i].last_reg;
430                         u1[i].invalidated       = u0[i].invalidated;
431
432                         u1[i].flags     = 0;
433                         u1[i].sectors   = 0;
434                 }
435         }
436
437         return NULL;
438 }
439
440 static int __uuid_write(struct cache_set *c)
441 {
442         BKEY_PADDED(key) k;
443         struct closure cl;
444         closure_init_stack(&cl);
445
446         lockdep_assert_held(&bch_register_lock);
447
448         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
449                 return 1;
450
451         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
452         uuid_io(c, REQ_WRITE, &k.key, &cl);
453         closure_sync(&cl);
454
455         bkey_copy(&c->uuid_bucket, &k.key);
456         bkey_put(c, &k.key);
457         return 0;
458 }
459
460 int bch_uuid_write(struct cache_set *c)
461 {
462         int ret = __uuid_write(c);
463
464         if (!ret)
465                 bch_journal_meta(c, NULL);
466
467         return ret;
468 }
469
470 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
471 {
472         struct uuid_entry *u;
473
474         for (u = c->uuids;
475              u < c->uuids + c->nr_uuids; u++)
476                 if (!memcmp(u->uuid, uuid, 16))
477                         return u;
478
479         return NULL;
480 }
481
482 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
483 {
484         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
485         return uuid_find(c, zero_uuid);
486 }
487
488 /*
489  * Bucket priorities/gens:
490  *
491  * For each bucket, we store on disk its
492    * 8 bit gen
493    * 16 bit priority
494  *
495  * See alloc.c for an explanation of the gen. The priority is used to implement
496  * lru (and in the future other) cache replacement policies; for most purposes
497  * it's just an opaque integer.
498  *
499  * The gens and the priorities don't have a whole lot to do with each other, and
500  * it's actually the gens that must be written out at specific times - it's no
501  * big deal if the priorities don't get written, if we lose them we just reuse
502  * buckets in suboptimal order.
503  *
504  * On disk they're stored in a packed array, and in as many buckets are required
505  * to fit them all. The buckets we use to store them form a list; the journal
506  * header points to the first bucket, the first bucket points to the second
507  * bucket, et cetera.
508  *
509  * This code is used by the allocation code; periodically (whenever it runs out
510  * of buckets to allocate from) the allocation code will invalidate some
511  * buckets, but it can't use those buckets until their new gens are safely on
512  * disk.
513  */
514
515 static void prio_endio(struct bio *bio, int error)
516 {
517         struct cache *ca = bio->bi_private;
518
519         cache_set_err_on(error, ca->set, "accessing priorities");
520         bch_bbio_free(bio, ca->set);
521         closure_put(&ca->prio);
522 }
523
524 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
525 {
526         struct closure *cl = &ca->prio;
527         struct bio *bio = bch_bbio_alloc(ca->set);
528
529         closure_init_stack(cl);
530
531         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
532         bio->bi_bdev            = ca->bdev;
533         bio->bi_rw              = REQ_SYNC|REQ_META|rw;
534         bio->bi_iter.bi_size    = bucket_bytes(ca);
535
536         bio->bi_end_io  = prio_endio;
537         bio->bi_private = ca;
538         bch_bio_map(bio, ca->disk_buckets);
539
540         closure_bio_submit(bio, &ca->prio, ca);
541         closure_sync(cl);
542 }
543
544 #define buckets_free(c) "free %zu, free_inc %zu, unused %zu",           \
545         fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
546
547 void bch_prio_write(struct cache *ca)
548 {
549         int i;
550         struct bucket *b;
551         struct closure cl;
552
553         closure_init_stack(&cl);
554
555         lockdep_assert_held(&ca->set->bucket_lock);
556
557         for (b = ca->buckets;
558              b < ca->buckets + ca->sb.nbuckets; b++)
559                 b->disk_gen = b->gen;
560
561         ca->disk_buckets->seq++;
562
563         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
564                         &ca->meta_sectors_written);
565
566         //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
567         //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
568
569         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
570                 long bucket;
571                 struct prio_set *p = ca->disk_buckets;
572                 struct bucket_disk *d = p->data;
573                 struct bucket_disk *end = d + prios_per_bucket(ca);
574
575                 for (b = ca->buckets + i * prios_per_bucket(ca);
576                      b < ca->buckets + ca->sb.nbuckets && d < end;
577                      b++, d++) {
578                         d->prio = cpu_to_le16(b->prio);
579                         d->gen = b->gen;
580                 }
581
582                 p->next_bucket  = ca->prio_buckets[i + 1];
583                 p->magic        = pset_magic(&ca->sb);
584                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
585
586                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
587                 BUG_ON(bucket == -1);
588
589                 mutex_unlock(&ca->set->bucket_lock);
590                 prio_io(ca, bucket, REQ_WRITE);
591                 mutex_lock(&ca->set->bucket_lock);
592
593                 ca->prio_buckets[i] = bucket;
594                 atomic_dec_bug(&ca->buckets[bucket].pin);
595         }
596
597         mutex_unlock(&ca->set->bucket_lock);
598
599         bch_journal_meta(ca->set, &cl);
600         closure_sync(&cl);
601
602         mutex_lock(&ca->set->bucket_lock);
603
604         ca->need_save_prio = 0;
605
606         /*
607          * Don't want the old priorities to get garbage collected until after we
608          * finish writing the new ones, and they're journalled
609          */
610         for (i = 0; i < prio_buckets(ca); i++)
611                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
612 }
613
614 static void prio_read(struct cache *ca, uint64_t bucket)
615 {
616         struct prio_set *p = ca->disk_buckets;
617         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
618         struct bucket *b;
619         unsigned bucket_nr = 0;
620
621         for (b = ca->buckets;
622              b < ca->buckets + ca->sb.nbuckets;
623              b++, d++) {
624                 if (d == end) {
625                         ca->prio_buckets[bucket_nr] = bucket;
626                         ca->prio_last_buckets[bucket_nr] = bucket;
627                         bucket_nr++;
628
629                         prio_io(ca, bucket, READ_SYNC);
630
631                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
632                                 pr_warn("bad csum reading priorities");
633
634                         if (p->magic != pset_magic(&ca->sb))
635                                 pr_warn("bad magic reading priorities");
636
637                         bucket = p->next_bucket;
638                         d = p->data;
639                 }
640
641                 b->prio = le16_to_cpu(d->prio);
642                 b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
643         }
644 }
645
646 /* Bcache device */
647
648 static int open_dev(struct block_device *b, fmode_t mode)
649 {
650         struct bcache_device *d = b->bd_disk->private_data;
651         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
652                 return -ENXIO;
653
654         closure_get(&d->cl);
655         return 0;
656 }
657
658 static void release_dev(struct gendisk *b, fmode_t mode)
659 {
660         struct bcache_device *d = b->private_data;
661         closure_put(&d->cl);
662 }
663
664 static int ioctl_dev(struct block_device *b, fmode_t mode,
665                      unsigned int cmd, unsigned long arg)
666 {
667         struct bcache_device *d = b->bd_disk->private_data;
668         return d->ioctl(d, mode, cmd, arg);
669 }
670
671 static const struct block_device_operations bcache_ops = {
672         .open           = open_dev,
673         .release        = release_dev,
674         .ioctl          = ioctl_dev,
675         .owner          = THIS_MODULE,
676 };
677
678 void bcache_device_stop(struct bcache_device *d)
679 {
680         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
681                 closure_queue(&d->cl);
682 }
683
684 static void bcache_device_unlink(struct bcache_device *d)
685 {
686         lockdep_assert_held(&bch_register_lock);
687
688         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
689                 unsigned i;
690                 struct cache *ca;
691
692                 sysfs_remove_link(&d->c->kobj, d->name);
693                 sysfs_remove_link(&d->kobj, "cache");
694
695                 for_each_cache(ca, d->c, i)
696                         bd_unlink_disk_holder(ca->bdev, d->disk);
697         }
698 }
699
700 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
701                                const char *name)
702 {
703         unsigned i;
704         struct cache *ca;
705
706         for_each_cache(ca, d->c, i)
707                 bd_link_disk_holder(ca->bdev, d->disk);
708
709         snprintf(d->name, BCACHEDEVNAME_SIZE,
710                  "%s%u", name, d->id);
711
712         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
713              sysfs_create_link(&c->kobj, &d->kobj, d->name),
714              "Couldn't create device <-> cache set symlinks");
715 }
716
717 static void bcache_device_detach(struct bcache_device *d)
718 {
719         lockdep_assert_held(&bch_register_lock);
720
721         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
722                 struct uuid_entry *u = d->c->uuids + d->id;
723
724                 SET_UUID_FLASH_ONLY(u, 0);
725                 memcpy(u->uuid, invalid_uuid, 16);
726                 u->invalidated = cpu_to_le32(get_seconds());
727                 bch_uuid_write(d->c);
728         }
729
730         bcache_device_unlink(d);
731
732         d->c->devices[d->id] = NULL;
733         closure_put(&d->c->caching);
734         d->c = NULL;
735 }
736
737 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
738                                  unsigned id)
739 {
740         BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
741
742         d->id = id;
743         d->c = c;
744         c->devices[id] = d;
745
746         closure_get(&c->caching);
747 }
748
749 static void bcache_device_free(struct bcache_device *d)
750 {
751         lockdep_assert_held(&bch_register_lock);
752
753         pr_info("%s stopped", d->disk->disk_name);
754
755         if (d->c)
756                 bcache_device_detach(d);
757         if (d->disk && d->disk->flags & GENHD_FL_UP)
758                 del_gendisk(d->disk);
759         if (d->disk && d->disk->queue)
760                 blk_cleanup_queue(d->disk->queue);
761         if (d->disk) {
762                 ida_simple_remove(&bcache_minor, d->disk->first_minor);
763                 put_disk(d->disk);
764         }
765
766         bio_split_pool_free(&d->bio_split_hook);
767         if (d->bio_split)
768                 bioset_free(d->bio_split);
769         if (is_vmalloc_addr(d->full_dirty_stripes))
770                 vfree(d->full_dirty_stripes);
771         else
772                 kfree(d->full_dirty_stripes);
773         if (is_vmalloc_addr(d->stripe_sectors_dirty))
774                 vfree(d->stripe_sectors_dirty);
775         else
776                 kfree(d->stripe_sectors_dirty);
777
778         closure_debug_destroy(&d->cl);
779 }
780
781 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
782                               sector_t sectors)
783 {
784         struct request_queue *q;
785         size_t n;
786         int minor;
787
788         if (!d->stripe_size)
789                 d->stripe_size = 1 << 31;
790
791         d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
792
793         if (!d->nr_stripes ||
794             d->nr_stripes > INT_MAX ||
795             d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
796                 pr_err("nr_stripes too large");
797                 return -ENOMEM;
798         }
799
800         n = d->nr_stripes * sizeof(atomic_t);
801         d->stripe_sectors_dirty = n < PAGE_SIZE << 6
802                 ? kzalloc(n, GFP_KERNEL)
803                 : vzalloc(n);
804         if (!d->stripe_sectors_dirty)
805                 return -ENOMEM;
806
807         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
808         d->full_dirty_stripes = n < PAGE_SIZE << 6
809                 ? kzalloc(n, GFP_KERNEL)
810                 : vzalloc(n);
811         if (!d->full_dirty_stripes)
812                 return -ENOMEM;
813
814         minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
815         if (minor < 0)
816                 return minor;
817
818         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
819             bio_split_pool_init(&d->bio_split_hook) ||
820             !(d->disk = alloc_disk(1))) {
821                 ida_simple_remove(&bcache_minor, minor);
822                 return -ENOMEM;
823         }
824
825         set_capacity(d->disk, sectors);
826         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
827
828         d->disk->major          = bcache_major;
829         d->disk->first_minor    = minor;
830         d->disk->fops           = &bcache_ops;
831         d->disk->private_data   = d;
832
833         q = blk_alloc_queue(GFP_KERNEL);
834         if (!q)
835                 return -ENOMEM;
836
837         blk_queue_make_request(q, NULL);
838         d->disk->queue                  = q;
839         q->queuedata                    = d;
840         q->backing_dev_info.congested_data = d;
841         q->limits.max_hw_sectors        = UINT_MAX;
842         q->limits.max_sectors           = UINT_MAX;
843         q->limits.max_segment_size      = UINT_MAX;
844         q->limits.max_segments          = BIO_MAX_PAGES;
845         q->limits.max_discard_sectors   = UINT_MAX;
846         q->limits.io_min                = block_size;
847         q->limits.logical_block_size    = block_size;
848         q->limits.physical_block_size   = block_size;
849         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
850         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
851
852         blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
853
854         return 0;
855 }
856
857 /* Cached device */
858
859 static void calc_cached_dev_sectors(struct cache_set *c)
860 {
861         uint64_t sectors = 0;
862         struct cached_dev *dc;
863
864         list_for_each_entry(dc, &c->cached_devs, list)
865                 sectors += bdev_sectors(dc->bdev);
866
867         c->cached_dev_sectors = sectors;
868 }
869
870 void bch_cached_dev_run(struct cached_dev *dc)
871 {
872         struct bcache_device *d = &dc->disk;
873         char buf[SB_LABEL_SIZE + 1];
874         char *env[] = {
875                 "DRIVER=bcache",
876                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
877                 NULL,
878                 NULL,
879         };
880
881         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
882         buf[SB_LABEL_SIZE] = '\0';
883         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
884
885         if (atomic_xchg(&dc->running, 1))
886                 return;
887
888         if (!d->c &&
889             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
890                 struct closure cl;
891                 closure_init_stack(&cl);
892
893                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
894                 bch_write_bdev_super(dc, &cl);
895                 closure_sync(&cl);
896         }
897
898         add_disk(d->disk);
899         bd_link_disk_holder(dc->bdev, dc->disk.disk);
900         /* won't show up in the uevent file, use udevadm monitor -e instead
901          * only class / kset properties are persistent */
902         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
903         kfree(env[1]);
904         kfree(env[2]);
905
906         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
907             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
908                 pr_debug("error creating sysfs link");
909 }
910
911 static void cached_dev_detach_finish(struct work_struct *w)
912 {
913         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
914         char buf[BDEVNAME_SIZE];
915         struct closure cl;
916         closure_init_stack(&cl);
917
918         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
919         BUG_ON(atomic_read(&dc->count));
920
921         mutex_lock(&bch_register_lock);
922
923         memset(&dc->sb.set_uuid, 0, 16);
924         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
925
926         bch_write_bdev_super(dc, &cl);
927         closure_sync(&cl);
928
929         bcache_device_detach(&dc->disk);
930         list_move(&dc->list, &uncached_devices);
931
932         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
933
934         mutex_unlock(&bch_register_lock);
935
936         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
937
938         /* Drop ref we took in cached_dev_detach() */
939         closure_put(&dc->disk.cl);
940 }
941
942 void bch_cached_dev_detach(struct cached_dev *dc)
943 {
944         lockdep_assert_held(&bch_register_lock);
945
946         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
947                 return;
948
949         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
950                 return;
951
952         /*
953          * Block the device from being closed and freed until we're finished
954          * detaching
955          */
956         closure_get(&dc->disk.cl);
957
958         bch_writeback_queue(dc);
959         cached_dev_put(dc);
960 }
961
962 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
963 {
964         uint32_t rtime = cpu_to_le32(get_seconds());
965         struct uuid_entry *u;
966         char buf[BDEVNAME_SIZE];
967
968         bdevname(dc->bdev, buf);
969
970         if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
971                 return -ENOENT;
972
973         if (dc->disk.c) {
974                 pr_err("Can't attach %s: already attached", buf);
975                 return -EINVAL;
976         }
977
978         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
979                 pr_err("Can't attach %s: shutting down", buf);
980                 return -EINVAL;
981         }
982
983         if (dc->sb.block_size < c->sb.block_size) {
984                 /* Will die */
985                 pr_err("Couldn't attach %s: block size less than set's block size",
986                        buf);
987                 return -EINVAL;
988         }
989
990         u = uuid_find(c, dc->sb.uuid);
991
992         if (u &&
993             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
994              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
995                 memcpy(u->uuid, invalid_uuid, 16);
996                 u->invalidated = cpu_to_le32(get_seconds());
997                 u = NULL;
998         }
999
1000         if (!u) {
1001                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1002                         pr_err("Couldn't find uuid for %s in set", buf);
1003                         return -ENOENT;
1004                 }
1005
1006                 u = uuid_find_empty(c);
1007                 if (!u) {
1008                         pr_err("Not caching %s, no room for UUID", buf);
1009                         return -EINVAL;
1010                 }
1011         }
1012
1013         /* Deadlocks since we're called via sysfs...
1014         sysfs_remove_file(&dc->kobj, &sysfs_attach);
1015          */
1016
1017         if (bch_is_zero(u->uuid, 16)) {
1018                 struct closure cl;
1019                 closure_init_stack(&cl);
1020
1021                 memcpy(u->uuid, dc->sb.uuid, 16);
1022                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1023                 u->first_reg = u->last_reg = rtime;
1024                 bch_uuid_write(c);
1025
1026                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1027                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1028
1029                 bch_write_bdev_super(dc, &cl);
1030                 closure_sync(&cl);
1031         } else {
1032                 u->last_reg = rtime;
1033                 bch_uuid_write(c);
1034         }
1035
1036         bcache_device_attach(&dc->disk, c, u - c->uuids);
1037         list_move(&dc->list, &c->cached_devs);
1038         calc_cached_dev_sectors(c);
1039
1040         smp_wmb();
1041         /*
1042          * dc->c must be set before dc->count != 0 - paired with the mb in
1043          * cached_dev_get()
1044          */
1045         atomic_set(&dc->count, 1);
1046
1047         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1048                 bch_sectors_dirty_init(dc);
1049                 atomic_set(&dc->has_dirty, 1);
1050                 atomic_inc(&dc->count);
1051                 bch_writeback_queue(dc);
1052         }
1053
1054         bch_cached_dev_run(dc);
1055         bcache_device_link(&dc->disk, c, "bdev");
1056
1057         pr_info("Caching %s as %s on set %pU",
1058                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1059                 dc->disk.c->sb.set_uuid);
1060         return 0;
1061 }
1062
1063 void bch_cached_dev_release(struct kobject *kobj)
1064 {
1065         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1066                                              disk.kobj);
1067         kfree(dc);
1068         module_put(THIS_MODULE);
1069 }
1070
1071 static void cached_dev_free(struct closure *cl)
1072 {
1073         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1074
1075         cancel_delayed_work_sync(&dc->writeback_rate_update);
1076         kthread_stop(dc->writeback_thread);
1077
1078         mutex_lock(&bch_register_lock);
1079
1080         if (atomic_read(&dc->running))
1081                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1082         bcache_device_free(&dc->disk);
1083         list_del(&dc->list);
1084
1085         mutex_unlock(&bch_register_lock);
1086
1087         if (!IS_ERR_OR_NULL(dc->bdev)) {
1088                 if (dc->bdev->bd_disk)
1089                         blk_sync_queue(bdev_get_queue(dc->bdev));
1090
1091                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1092         }
1093
1094         wake_up(&unregister_wait);
1095
1096         kobject_put(&dc->disk.kobj);
1097 }
1098
1099 static void cached_dev_flush(struct closure *cl)
1100 {
1101         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1102         struct bcache_device *d = &dc->disk;
1103
1104         mutex_lock(&bch_register_lock);
1105         bcache_device_unlink(d);
1106         mutex_unlock(&bch_register_lock);
1107
1108         bch_cache_accounting_destroy(&dc->accounting);
1109         kobject_del(&d->kobj);
1110
1111         continue_at(cl, cached_dev_free, system_wq);
1112 }
1113
1114 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1115 {
1116         int ret;
1117         struct io *io;
1118         struct request_queue *q = bdev_get_queue(dc->bdev);
1119
1120         __module_get(THIS_MODULE);
1121         INIT_LIST_HEAD(&dc->list);
1122         closure_init(&dc->disk.cl, NULL);
1123         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1124         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1125         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1126         sema_init(&dc->sb_write_mutex, 1);
1127         INIT_LIST_HEAD(&dc->io_lru);
1128         spin_lock_init(&dc->io_lock);
1129         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1130
1131         dc->sequential_cutoff           = 4 << 20;
1132
1133         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1134                 list_add(&io->lru, &dc->io_lru);
1135                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1136         }
1137
1138         dc->disk.stripe_size = q->limits.io_opt >> 9;
1139
1140         if (dc->disk.stripe_size)
1141                 dc->partial_stripes_expensive =
1142                         q->limits.raid_partial_stripes_expensive;
1143
1144         ret = bcache_device_init(&dc->disk, block_size,
1145                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1146         if (ret)
1147                 return ret;
1148
1149         set_capacity(dc->disk.disk,
1150                      dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1151
1152         dc->disk.disk->queue->backing_dev_info.ra_pages =
1153                 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1154                     q->backing_dev_info.ra_pages);
1155
1156         bch_cached_dev_request_init(dc);
1157         bch_cached_dev_writeback_init(dc);
1158         return 0;
1159 }
1160
1161 /* Cached device - bcache superblock */
1162
1163 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1164                                  struct block_device *bdev,
1165                                  struct cached_dev *dc)
1166 {
1167         char name[BDEVNAME_SIZE];
1168         const char *err = "cannot allocate memory";
1169         struct cache_set *c;
1170
1171         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1172         dc->bdev = bdev;
1173         dc->bdev->bd_holder = dc;
1174
1175         bio_init(&dc->sb_bio);
1176         dc->sb_bio.bi_max_vecs  = 1;
1177         dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1178         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1179         get_page(sb_page);
1180
1181         if (cached_dev_init(dc, sb->block_size << 9))
1182                 goto err;
1183
1184         err = "error creating kobject";
1185         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1186                         "bcache"))
1187                 goto err;
1188         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1189                 goto err;
1190
1191         pr_info("registered backing device %s", bdevname(bdev, name));
1192
1193         list_add(&dc->list, &uncached_devices);
1194         list_for_each_entry(c, &bch_cache_sets, list)
1195                 bch_cached_dev_attach(dc, c);
1196
1197         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1198             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1199                 bch_cached_dev_run(dc);
1200
1201         return;
1202 err:
1203         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1204         bcache_device_stop(&dc->disk);
1205 }
1206
1207 /* Flash only volumes */
1208
1209 void bch_flash_dev_release(struct kobject *kobj)
1210 {
1211         struct bcache_device *d = container_of(kobj, struct bcache_device,
1212                                                kobj);
1213         kfree(d);
1214 }
1215
1216 static void flash_dev_free(struct closure *cl)
1217 {
1218         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1219         bcache_device_free(d);
1220         kobject_put(&d->kobj);
1221 }
1222
1223 static void flash_dev_flush(struct closure *cl)
1224 {
1225         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1226
1227         bcache_device_unlink(d);
1228         kobject_del(&d->kobj);
1229         continue_at(cl, flash_dev_free, system_wq);
1230 }
1231
1232 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1233 {
1234         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1235                                           GFP_KERNEL);
1236         if (!d)
1237                 return -ENOMEM;
1238
1239         closure_init(&d->cl, NULL);
1240         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1241
1242         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1243
1244         if (bcache_device_init(d, block_bytes(c), u->sectors))
1245                 goto err;
1246
1247         bcache_device_attach(d, c, u - c->uuids);
1248         bch_flash_dev_request_init(d);
1249         add_disk(d->disk);
1250
1251         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1252                 goto err;
1253
1254         bcache_device_link(d, c, "volume");
1255
1256         return 0;
1257 err:
1258         kobject_put(&d->kobj);
1259         return -ENOMEM;
1260 }
1261
1262 static int flash_devs_run(struct cache_set *c)
1263 {
1264         int ret = 0;
1265         struct uuid_entry *u;
1266
1267         for (u = c->uuids;
1268              u < c->uuids + c->nr_uuids && !ret;
1269              u++)
1270                 if (UUID_FLASH_ONLY(u))
1271                         ret = flash_dev_run(c, u);
1272
1273         return ret;
1274 }
1275
1276 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1277 {
1278         struct uuid_entry *u;
1279
1280         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1281                 return -EINTR;
1282
1283         u = uuid_find_empty(c);
1284         if (!u) {
1285                 pr_err("Can't create volume, no room for UUID");
1286                 return -EINVAL;
1287         }
1288
1289         get_random_bytes(u->uuid, 16);
1290         memset(u->label, 0, 32);
1291         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1292
1293         SET_UUID_FLASH_ONLY(u, 1);
1294         u->sectors = size >> 9;
1295
1296         bch_uuid_write(c);
1297
1298         return flash_dev_run(c, u);
1299 }
1300
1301 /* Cache set */
1302
1303 __printf(2, 3)
1304 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1305 {
1306         va_list args;
1307
1308         if (c->on_error != ON_ERROR_PANIC &&
1309             test_bit(CACHE_SET_STOPPING, &c->flags))
1310                 return false;
1311
1312         /* XXX: we can be called from atomic context
1313         acquire_console_sem();
1314         */
1315
1316         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1317
1318         va_start(args, fmt);
1319         vprintk(fmt, args);
1320         va_end(args);
1321
1322         printk(", disabling caching\n");
1323
1324         if (c->on_error == ON_ERROR_PANIC)
1325                 panic("panic forced after error\n");
1326
1327         bch_cache_set_unregister(c);
1328         return true;
1329 }
1330
1331 void bch_cache_set_release(struct kobject *kobj)
1332 {
1333         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1334         kfree(c);
1335         module_put(THIS_MODULE);
1336 }
1337
1338 static void cache_set_free(struct closure *cl)
1339 {
1340         struct cache_set *c = container_of(cl, struct cache_set, cl);
1341         struct cache *ca;
1342         unsigned i;
1343
1344         if (!IS_ERR_OR_NULL(c->debug))
1345                 debugfs_remove(c->debug);
1346
1347         bch_open_buckets_free(c);
1348         bch_btree_cache_free(c);
1349         bch_journal_free(c);
1350
1351         for_each_cache(ca, c, i)
1352                 if (ca)
1353                         kobject_put(&ca->kobj);
1354
1355         bch_bset_sort_state_free(&c->sort);
1356         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1357
1358         if (c->bio_split)
1359                 bioset_free(c->bio_split);
1360         if (c->fill_iter)
1361                 mempool_destroy(c->fill_iter);
1362         if (c->bio_meta)
1363                 mempool_destroy(c->bio_meta);
1364         if (c->search)
1365                 mempool_destroy(c->search);
1366         kfree(c->devices);
1367
1368         mutex_lock(&bch_register_lock);
1369         list_del(&c->list);
1370         mutex_unlock(&bch_register_lock);
1371
1372         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1373         wake_up(&unregister_wait);
1374
1375         closure_debug_destroy(&c->cl);
1376         kobject_put(&c->kobj);
1377 }
1378
1379 static void cache_set_flush(struct closure *cl)
1380 {
1381         struct cache_set *c = container_of(cl, struct cache_set, caching);
1382         struct cache *ca;
1383         struct btree *b;
1384         unsigned i;
1385
1386         bch_cache_accounting_destroy(&c->accounting);
1387
1388         kobject_put(&c->internal);
1389         kobject_del(&c->kobj);
1390
1391         if (c->gc_thread)
1392                 kthread_stop(c->gc_thread);
1393
1394         if (!IS_ERR_OR_NULL(c->root))
1395                 list_add(&c->root->list, &c->btree_cache);
1396
1397         /* Should skip this if we're unregistering because of an error */
1398         list_for_each_entry(b, &c->btree_cache, list)
1399                 if (btree_node_dirty(b))
1400                         bch_btree_node_write(b, NULL);
1401
1402         for_each_cache(ca, c, i)
1403                 if (ca->alloc_thread)
1404                         kthread_stop(ca->alloc_thread);
1405
1406         closure_return(cl);
1407 }
1408
1409 static void __cache_set_unregister(struct closure *cl)
1410 {
1411         struct cache_set *c = container_of(cl, struct cache_set, caching);
1412         struct cached_dev *dc;
1413         size_t i;
1414
1415         mutex_lock(&bch_register_lock);
1416
1417         for (i = 0; i < c->nr_uuids; i++)
1418                 if (c->devices[i]) {
1419                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1420                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1421                                 dc = container_of(c->devices[i],
1422                                                   struct cached_dev, disk);
1423                                 bch_cached_dev_detach(dc);
1424                         } else {
1425                                 bcache_device_stop(c->devices[i]);
1426                         }
1427                 }
1428
1429         mutex_unlock(&bch_register_lock);
1430
1431         continue_at(cl, cache_set_flush, system_wq);
1432 }
1433
1434 void bch_cache_set_stop(struct cache_set *c)
1435 {
1436         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1437                 closure_queue(&c->caching);
1438 }
1439
1440 void bch_cache_set_unregister(struct cache_set *c)
1441 {
1442         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1443         bch_cache_set_stop(c);
1444 }
1445
1446 #define alloc_bucket_pages(gfp, c)                      \
1447         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1448
1449 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1450 {
1451         int iter_size;
1452         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1453         if (!c)
1454                 return NULL;
1455
1456         __module_get(THIS_MODULE);
1457         closure_init(&c->cl, NULL);
1458         set_closure_fn(&c->cl, cache_set_free, system_wq);
1459
1460         closure_init(&c->caching, &c->cl);
1461         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1462
1463         /* Maybe create continue_at_noreturn() and use it here? */
1464         closure_set_stopped(&c->cl);
1465         closure_put(&c->cl);
1466
1467         kobject_init(&c->kobj, &bch_cache_set_ktype);
1468         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1469
1470         bch_cache_accounting_init(&c->accounting, &c->cl);
1471
1472         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1473         c->sb.block_size        = sb->block_size;
1474         c->sb.bucket_size       = sb->bucket_size;
1475         c->sb.nr_in_set         = sb->nr_in_set;
1476         c->sb.last_mount        = sb->last_mount;
1477         c->bucket_bits          = ilog2(sb->bucket_size);
1478         c->block_bits           = ilog2(sb->block_size);
1479         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1480
1481         c->btree_pages          = bucket_pages(c);
1482         if (c->btree_pages > BTREE_MAX_PAGES)
1483                 c->btree_pages = max_t(int, c->btree_pages / 4,
1484                                        BTREE_MAX_PAGES);
1485
1486         sema_init(&c->sb_write_mutex, 1);
1487         mutex_init(&c->bucket_lock);
1488         init_waitqueue_head(&c->try_wait);
1489         init_waitqueue_head(&c->bucket_wait);
1490         sema_init(&c->uuid_write_mutex, 1);
1491
1492         spin_lock_init(&c->btree_gc_time.lock);
1493         spin_lock_init(&c->btree_split_time.lock);
1494         spin_lock_init(&c->btree_read_time.lock);
1495         spin_lock_init(&c->try_harder_time.lock);
1496
1497         bch_moving_init_cache_set(c);
1498
1499         INIT_LIST_HEAD(&c->list);
1500         INIT_LIST_HEAD(&c->cached_devs);
1501         INIT_LIST_HEAD(&c->btree_cache);
1502         INIT_LIST_HEAD(&c->btree_cache_freeable);
1503         INIT_LIST_HEAD(&c->btree_cache_freed);
1504         INIT_LIST_HEAD(&c->data_buckets);
1505
1506         c->search = mempool_create_slab_pool(32, bch_search_cache);
1507         if (!c->search)
1508                 goto err;
1509
1510         iter_size = (sb->bucket_size / sb->block_size + 1) *
1511                 sizeof(struct btree_iter_set);
1512
1513         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1514             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1515                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1516                                 bucket_pages(c))) ||
1517             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1518             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1519             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1520             bch_journal_alloc(c) ||
1521             bch_btree_cache_alloc(c) ||
1522             bch_open_buckets_alloc(c) ||
1523             bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1524                 goto err;
1525
1526         c->congested_read_threshold_us  = 2000;
1527         c->congested_write_threshold_us = 20000;
1528         c->error_limit  = 8 << IO_ERROR_SHIFT;
1529
1530         return c;
1531 err:
1532         bch_cache_set_unregister(c);
1533         return NULL;
1534 }
1535
1536 static void run_cache_set(struct cache_set *c)
1537 {
1538         const char *err = "cannot allocate memory";
1539         struct cached_dev *dc, *t;
1540         struct cache *ca;
1541         struct closure cl;
1542         unsigned i;
1543
1544         closure_init_stack(&cl);
1545
1546         for_each_cache(ca, c, i)
1547                 c->nbuckets += ca->sb.nbuckets;
1548
1549         if (CACHE_SYNC(&c->sb)) {
1550                 LIST_HEAD(journal);
1551                 struct bkey *k;
1552                 struct jset *j;
1553
1554                 err = "cannot allocate memory for journal";
1555                 if (bch_journal_read(c, &journal))
1556                         goto err;
1557
1558                 pr_debug("btree_journal_read() done");
1559
1560                 err = "no journal entries found";
1561                 if (list_empty(&journal))
1562                         goto err;
1563
1564                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1565
1566                 err = "IO error reading priorities";
1567                 for_each_cache(ca, c, i)
1568                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1569
1570                 /*
1571                  * If prio_read() fails it'll call cache_set_error and we'll
1572                  * tear everything down right away, but if we perhaps checked
1573                  * sooner we could avoid journal replay.
1574                  */
1575
1576                 k = &j->btree_root;
1577
1578                 err = "bad btree root";
1579                 if (__bch_btree_ptr_invalid(c, k))
1580                         goto err;
1581
1582                 err = "error reading btree root";
1583                 c->root = bch_btree_node_get(c, k, j->btree_level, true);
1584                 if (IS_ERR_OR_NULL(c->root))
1585                         goto err;
1586
1587                 list_del_init(&c->root->list);
1588                 rw_unlock(true, c->root);
1589
1590                 err = uuid_read(c, j, &cl);
1591                 if (err)
1592                         goto err;
1593
1594                 err = "error in recovery";
1595                 if (bch_btree_check(c))
1596                         goto err;
1597
1598                 bch_journal_mark(c, &journal);
1599                 bch_btree_gc_finish(c);
1600                 pr_debug("btree_check() done");
1601
1602                 /*
1603                  * bcache_journal_next() can't happen sooner, or
1604                  * btree_gc_finish() will give spurious errors about last_gc >
1605                  * gc_gen - this is a hack but oh well.
1606                  */
1607                 bch_journal_next(&c->journal);
1608
1609                 err = "error starting allocator thread";
1610                 for_each_cache(ca, c, i)
1611                         if (bch_cache_allocator_start(ca))
1612                                 goto err;
1613
1614                 /*
1615                  * First place it's safe to allocate: btree_check() and
1616                  * btree_gc_finish() have to run before we have buckets to
1617                  * allocate, and bch_bucket_alloc_set() might cause a journal
1618                  * entry to be written so bcache_journal_next() has to be called
1619                  * first.
1620                  *
1621                  * If the uuids were in the old format we have to rewrite them
1622                  * before the next journal entry is written:
1623                  */
1624                 if (j->version < BCACHE_JSET_VERSION_UUID)
1625                         __uuid_write(c);
1626
1627                 bch_journal_replay(c, &journal);
1628         } else {
1629                 pr_notice("invalidating existing data");
1630
1631                 for_each_cache(ca, c, i) {
1632                         unsigned j;
1633
1634                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1635                                               2, SB_JOURNAL_BUCKETS);
1636
1637                         for (j = 0; j < ca->sb.keys; j++)
1638                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1639                 }
1640
1641                 bch_btree_gc_finish(c);
1642
1643                 err = "error starting allocator thread";
1644                 for_each_cache(ca, c, i)
1645                         if (bch_cache_allocator_start(ca))
1646                                 goto err;
1647
1648                 mutex_lock(&c->bucket_lock);
1649                 for_each_cache(ca, c, i)
1650                         bch_prio_write(ca);
1651                 mutex_unlock(&c->bucket_lock);
1652
1653                 err = "cannot allocate new UUID bucket";
1654                 if (__uuid_write(c))
1655                         goto err;
1656
1657                 err = "cannot allocate new btree root";
1658                 c->root = bch_btree_node_alloc(c, 0, true);
1659                 if (IS_ERR_OR_NULL(c->root))
1660                         goto err;
1661
1662                 bkey_copy_key(&c->root->key, &MAX_KEY);
1663                 bch_btree_node_write(c->root, &cl);
1664
1665                 bch_btree_set_root(c->root);
1666                 rw_unlock(true, c->root);
1667
1668                 /*
1669                  * We don't want to write the first journal entry until
1670                  * everything is set up - fortunately journal entries won't be
1671                  * written until the SET_CACHE_SYNC() here:
1672                  */
1673                 SET_CACHE_SYNC(&c->sb, true);
1674
1675                 bch_journal_next(&c->journal);
1676                 bch_journal_meta(c, &cl);
1677         }
1678
1679         err = "error starting gc thread";
1680         if (bch_gc_thread_start(c))
1681                 goto err;
1682
1683         closure_sync(&cl);
1684         c->sb.last_mount = get_seconds();
1685         bcache_write_super(c);
1686
1687         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1688                 bch_cached_dev_attach(dc, c);
1689
1690         flash_devs_run(c);
1691
1692         return;
1693 err:
1694         closure_sync(&cl);
1695         /* XXX: test this, it's broken */
1696         bch_cache_set_error(c, "%s", err);
1697 }
1698
1699 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1700 {
1701         return ca->sb.block_size        == c->sb.block_size &&
1702                 ca->sb.bucket_size      == c->sb.bucket_size &&
1703                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1704 }
1705
1706 static const char *register_cache_set(struct cache *ca)
1707 {
1708         char buf[12];
1709         const char *err = "cannot allocate memory";
1710         struct cache_set *c;
1711
1712         list_for_each_entry(c, &bch_cache_sets, list)
1713                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1714                         if (c->cache[ca->sb.nr_this_dev])
1715                                 return "duplicate cache set member";
1716
1717                         if (!can_attach_cache(ca, c))
1718                                 return "cache sb does not match set";
1719
1720                         if (!CACHE_SYNC(&ca->sb))
1721                                 SET_CACHE_SYNC(&c->sb, false);
1722
1723                         goto found;
1724                 }
1725
1726         c = bch_cache_set_alloc(&ca->sb);
1727         if (!c)
1728                 return err;
1729
1730         err = "error creating kobject";
1731         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1732             kobject_add(&c->internal, &c->kobj, "internal"))
1733                 goto err;
1734
1735         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1736                 goto err;
1737
1738         bch_debug_init_cache_set(c);
1739
1740         list_add(&c->list, &bch_cache_sets);
1741 found:
1742         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1743         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1744             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1745                 goto err;
1746
1747         if (ca->sb.seq > c->sb.seq) {
1748                 c->sb.version           = ca->sb.version;
1749                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1750                 c->sb.flags             = ca->sb.flags;
1751                 c->sb.seq               = ca->sb.seq;
1752                 pr_debug("set version = %llu", c->sb.version);
1753         }
1754
1755         ca->set = c;
1756         ca->set->cache[ca->sb.nr_this_dev] = ca;
1757         c->cache_by_alloc[c->caches_loaded++] = ca;
1758
1759         if (c->caches_loaded == c->sb.nr_in_set)
1760                 run_cache_set(c);
1761
1762         return NULL;
1763 err:
1764         bch_cache_set_unregister(c);
1765         return err;
1766 }
1767
1768 /* Cache device */
1769
1770 void bch_cache_release(struct kobject *kobj)
1771 {
1772         struct cache *ca = container_of(kobj, struct cache, kobj);
1773         unsigned i;
1774
1775         if (ca->set)
1776                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1777
1778         bio_split_pool_free(&ca->bio_split_hook);
1779
1780         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1781         kfree(ca->prio_buckets);
1782         vfree(ca->buckets);
1783
1784         free_heap(&ca->heap);
1785         free_fifo(&ca->unused);
1786         free_fifo(&ca->free_inc);
1787
1788         for (i = 0; i < RESERVE_NR; i++)
1789                 free_fifo(&ca->free[i]);
1790
1791         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1792                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1793
1794         if (!IS_ERR_OR_NULL(ca->bdev)) {
1795                 blk_sync_queue(bdev_get_queue(ca->bdev));
1796                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1797         }
1798
1799         kfree(ca);
1800         module_put(THIS_MODULE);
1801 }
1802
1803 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1804 {
1805         size_t free;
1806         struct bucket *b;
1807
1808         __module_get(THIS_MODULE);
1809         kobject_init(&ca->kobj, &bch_cache_ktype);
1810
1811         bio_init(&ca->journal.bio);
1812         ca->journal.bio.bi_max_vecs = 8;
1813         ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1814
1815         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1816
1817         if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1818             !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1819             !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1820             !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1821             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1822             !init_fifo(&ca->unused,     free << 2, GFP_KERNEL) ||
1823             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1824             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1825                                           ca->sb.nbuckets)) ||
1826             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1827                                           2, GFP_KERNEL)) ||
1828             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1829             bio_split_pool_init(&ca->bio_split_hook))
1830                 return -ENOMEM;
1831
1832         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1833
1834         for_each_bucket(b, ca)
1835                 atomic_set(&b->pin, 0);
1836
1837         if (bch_cache_allocator_init(ca))
1838                 goto err;
1839
1840         return 0;
1841 err:
1842         kobject_put(&ca->kobj);
1843         return -ENOMEM;
1844 }
1845
1846 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1847                                   struct block_device *bdev, struct cache *ca)
1848 {
1849         char name[BDEVNAME_SIZE];
1850         const char *err = "cannot allocate memory";
1851
1852         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1853         ca->bdev = bdev;
1854         ca->bdev->bd_holder = ca;
1855
1856         bio_init(&ca->sb_bio);
1857         ca->sb_bio.bi_max_vecs  = 1;
1858         ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1859         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1860         get_page(sb_page);
1861
1862         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1863                 ca->discard = CACHE_DISCARD(&ca->sb);
1864
1865         if (cache_alloc(sb, ca) != 0)
1866                 goto err;
1867
1868         err = "error creating kobject";
1869         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1870                 goto err;
1871
1872         err = register_cache_set(ca);
1873         if (err)
1874                 goto err;
1875
1876         pr_info("registered cache device %s", bdevname(bdev, name));
1877         return;
1878 err:
1879         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1880         kobject_put(&ca->kobj);
1881 }
1882
1883 /* Global interfaces/init */
1884
1885 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1886                                const char *, size_t);
1887
1888 kobj_attribute_write(register,          register_bcache);
1889 kobj_attribute_write(register_quiet,    register_bcache);
1890
1891 static bool bch_is_open_backing(struct block_device *bdev) {
1892         struct cache_set *c, *tc;
1893         struct cached_dev *dc, *t;
1894
1895         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1896                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1897                         if (dc->bdev == bdev)
1898                                 return true;
1899         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1900                 if (dc->bdev == bdev)
1901                         return true;
1902         return false;
1903 }
1904
1905 static bool bch_is_open_cache(struct block_device *bdev) {
1906         struct cache_set *c, *tc;
1907         struct cache *ca;
1908         unsigned i;
1909
1910         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1911                 for_each_cache(ca, c, i)
1912                         if (ca->bdev == bdev)
1913                                 return true;
1914         return false;
1915 }
1916
1917 static bool bch_is_open(struct block_device *bdev) {
1918         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1919 }
1920
1921 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1922                                const char *buffer, size_t size)
1923 {
1924         ssize_t ret = size;
1925         const char *err = "cannot allocate memory";
1926         char *path = NULL;
1927         struct cache_sb *sb = NULL;
1928         struct block_device *bdev = NULL;
1929         struct page *sb_page = NULL;
1930
1931         if (!try_module_get(THIS_MODULE))
1932                 return -EBUSY;
1933
1934         mutex_lock(&bch_register_lock);
1935
1936         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1937             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1938                 goto err;
1939
1940         err = "failed to open device";
1941         bdev = blkdev_get_by_path(strim(path),
1942                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1943                                   sb);
1944         if (IS_ERR(bdev)) {
1945                 if (bdev == ERR_PTR(-EBUSY)) {
1946                         bdev = lookup_bdev(strim(path));
1947                         if (!IS_ERR(bdev) && bch_is_open(bdev))
1948                                 err = "device already registered";
1949                         else
1950                                 err = "device busy";
1951                 }
1952                 goto err;
1953         }
1954
1955         err = "failed to set blocksize";
1956         if (set_blocksize(bdev, 4096))
1957                 goto err_close;
1958
1959         err = read_super(sb, bdev, &sb_page);
1960         if (err)
1961                 goto err_close;
1962
1963         if (SB_IS_BDEV(sb)) {
1964                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1965                 if (!dc)
1966                         goto err_close;
1967
1968                 register_bdev(sb, sb_page, bdev, dc);
1969         } else {
1970                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1971                 if (!ca)
1972                         goto err_close;
1973
1974                 register_cache(sb, sb_page, bdev, ca);
1975         }
1976 out:
1977         if (sb_page)
1978                 put_page(sb_page);
1979         kfree(sb);
1980         kfree(path);
1981         mutex_unlock(&bch_register_lock);
1982         module_put(THIS_MODULE);
1983         return ret;
1984
1985 err_close:
1986         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1987 err:
1988         if (attr != &ksysfs_register_quiet)
1989                 pr_info("error opening %s: %s", path, err);
1990         ret = -EINVAL;
1991         goto out;
1992 }
1993
1994 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1995 {
1996         if (code == SYS_DOWN ||
1997             code == SYS_HALT ||
1998             code == SYS_POWER_OFF) {
1999                 DEFINE_WAIT(wait);
2000                 unsigned long start = jiffies;
2001                 bool stopped = false;
2002
2003                 struct cache_set *c, *tc;
2004                 struct cached_dev *dc, *tdc;
2005
2006                 mutex_lock(&bch_register_lock);
2007
2008                 if (list_empty(&bch_cache_sets) &&
2009                     list_empty(&uncached_devices))
2010                         goto out;
2011
2012                 pr_info("Stopping all devices:");
2013
2014                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2015                         bch_cache_set_stop(c);
2016
2017                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2018                         bcache_device_stop(&dc->disk);
2019
2020                 /* What's a condition variable? */
2021                 while (1) {
2022                         long timeout = start + 2 * HZ - jiffies;
2023
2024                         stopped = list_empty(&bch_cache_sets) &&
2025                                 list_empty(&uncached_devices);
2026
2027                         if (timeout < 0 || stopped)
2028                                 break;
2029
2030                         prepare_to_wait(&unregister_wait, &wait,
2031                                         TASK_UNINTERRUPTIBLE);
2032
2033                         mutex_unlock(&bch_register_lock);
2034                         schedule_timeout(timeout);
2035                         mutex_lock(&bch_register_lock);
2036                 }
2037
2038                 finish_wait(&unregister_wait, &wait);
2039
2040                 if (stopped)
2041                         pr_info("All devices stopped");
2042                 else
2043                         pr_notice("Timeout waiting for devices to be closed");
2044 out:
2045                 mutex_unlock(&bch_register_lock);
2046         }
2047
2048         return NOTIFY_DONE;
2049 }
2050
2051 static struct notifier_block reboot = {
2052         .notifier_call  = bcache_reboot,
2053         .priority       = INT_MAX, /* before any real devices */
2054 };
2055
2056 static void bcache_exit(void)
2057 {
2058         bch_debug_exit();
2059         bch_request_exit();
2060         bch_btree_exit();
2061         if (bcache_kobj)
2062                 kobject_put(bcache_kobj);
2063         if (bcache_wq)
2064                 destroy_workqueue(bcache_wq);
2065         if (bcache_major)
2066                 unregister_blkdev(bcache_major, "bcache");
2067         unregister_reboot_notifier(&reboot);
2068 }
2069
2070 static int __init bcache_init(void)
2071 {
2072         static const struct attribute *files[] = {
2073                 &ksysfs_register.attr,
2074                 &ksysfs_register_quiet.attr,
2075                 NULL
2076         };
2077
2078         mutex_init(&bch_register_lock);
2079         init_waitqueue_head(&unregister_wait);
2080         register_reboot_notifier(&reboot);
2081         closure_debug_init();
2082
2083         bcache_major = register_blkdev(0, "bcache");
2084         if (bcache_major < 0)
2085                 return bcache_major;
2086
2087         if (!(bcache_wq = create_workqueue("bcache")) ||
2088             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2089             sysfs_create_files(bcache_kobj, files) ||
2090             bch_btree_init() ||
2091             bch_request_init() ||
2092             bch_debug_init(bcache_kobj))
2093                 goto err;
2094
2095         return 0;
2096 err:
2097         bcache_exit();
2098         return -ENOMEM;
2099 }
2100
2101 module_exit(bcache_exit);
2102 module_init(bcache_init);