1 // SPDX-License-Identifier: GPL-2.0
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
15 #include "writeback.h"
17 #include <linux/blkdev.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/workqueue.h>
23 #include <linux/module.h>
24 #include <linux/random.h>
25 #include <linux/reboot.h>
26 #include <linux/sysfs.h>
28 unsigned int bch_cutoff_writeback;
29 unsigned int bch_cutoff_writeback_sync;
31 static const char bcache_magic[] = {
32 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
33 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
36 static const char invalid_uuid[] = {
37 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
38 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
41 static struct kobject *bcache_kobj;
42 struct mutex bch_register_lock;
43 bool bcache_is_reboot;
44 LIST_HEAD(bch_cache_sets);
45 static LIST_HEAD(uncached_devices);
47 static int bcache_major;
48 static DEFINE_IDA(bcache_device_idx);
49 static wait_queue_head_t unregister_wait;
50 struct workqueue_struct *bcache_wq;
51 struct workqueue_struct *bch_journal_wq;
54 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
55 /* limitation of partitions number on single bcache device */
56 #define BCACHE_MINORS 128
57 /* limitation of bcache devices number on single system */
58 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
62 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
63 struct cache_sb_disk **res)
66 struct cache_sb_disk *s;
70 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
71 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
74 s = page_address(page) + offset_in_page(SB_OFFSET);
76 sb->offset = le64_to_cpu(s->offset);
77 sb->version = le64_to_cpu(s->version);
79 memcpy(sb->magic, s->magic, 16);
80 memcpy(sb->uuid, s->uuid, 16);
81 memcpy(sb->set_uuid, s->set_uuid, 16);
82 memcpy(sb->label, s->label, SB_LABEL_SIZE);
84 sb->flags = le64_to_cpu(s->flags);
85 sb->seq = le64_to_cpu(s->seq);
86 sb->last_mount = le32_to_cpu(s->last_mount);
87 sb->first_bucket = le16_to_cpu(s->first_bucket);
88 sb->keys = le16_to_cpu(s->keys);
90 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
91 sb->d[i] = le64_to_cpu(s->d[i]);
93 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
94 sb->version, sb->flags, sb->seq, sb->keys);
96 err = "Not a bcache superblock (bad offset)";
97 if (sb->offset != SB_SECTOR)
100 err = "Not a bcache superblock (bad magic)";
101 if (memcmp(sb->magic, bcache_magic, 16))
104 err = "Too many journal buckets";
105 if (sb->keys > SB_JOURNAL_BUCKETS)
108 err = "Bad checksum";
109 if (s->csum != csum_set(s))
113 if (bch_is_zero(sb->uuid, 16))
116 sb->block_size = le16_to_cpu(s->block_size);
118 err = "Superblock block size smaller than device block size";
119 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
122 switch (sb->version) {
123 case BCACHE_SB_VERSION_BDEV:
124 sb->data_offset = BDEV_DATA_START_DEFAULT;
126 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127 sb->data_offset = le64_to_cpu(s->data_offset);
129 err = "Bad data offset";
130 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
134 case BCACHE_SB_VERSION_CDEV:
135 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136 sb->nbuckets = le64_to_cpu(s->nbuckets);
137 sb->bucket_size = le16_to_cpu(s->bucket_size);
139 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
140 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
142 err = "Too many buckets";
143 if (sb->nbuckets > LONG_MAX)
146 err = "Not enough buckets";
147 if (sb->nbuckets < 1 << 7)
150 err = "Bad block/bucket size";
151 if (!is_power_of_2(sb->block_size) ||
152 sb->block_size > PAGE_SECTORS ||
153 !is_power_of_2(sb->bucket_size) ||
154 sb->bucket_size < PAGE_SECTORS)
157 err = "Invalid superblock: device too small";
158 if (get_capacity(bdev->bd_disk) <
159 sb->bucket_size * sb->nbuckets)
163 if (bch_is_zero(sb->set_uuid, 16))
166 err = "Bad cache device number in set";
167 if (!sb->nr_in_set ||
168 sb->nr_in_set <= sb->nr_this_dev ||
169 sb->nr_in_set > MAX_CACHES_PER_SET)
172 err = "Journal buckets not sequential";
173 for (i = 0; i < sb->keys; i++)
174 if (sb->d[i] != sb->first_bucket + i)
177 err = "Too many journal buckets";
178 if (sb->first_bucket + sb->keys > sb->nbuckets)
181 err = "Invalid superblock: first bucket comes before end of super";
182 if (sb->first_bucket * sb->bucket_size < 16)
187 err = "Unsupported superblock version";
191 sb->last_mount = (u32)ktime_get_real_seconds();
199 static void write_bdev_super_endio(struct bio *bio)
201 struct cached_dev *dc = bio->bi_private;
204 bch_count_backing_io_errors(dc, bio);
206 closure_put(&dc->sb_write);
209 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
214 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
215 bio->bi_iter.bi_sector = SB_SECTOR;
216 __bio_add_page(bio, virt_to_page(out), SB_SIZE,
217 offset_in_page(out));
219 out->offset = cpu_to_le64(sb->offset);
220 out->version = cpu_to_le64(sb->version);
222 memcpy(out->uuid, sb->uuid, 16);
223 memcpy(out->set_uuid, sb->set_uuid, 16);
224 memcpy(out->label, sb->label, SB_LABEL_SIZE);
226 out->flags = cpu_to_le64(sb->flags);
227 out->seq = cpu_to_le64(sb->seq);
229 out->last_mount = cpu_to_le32(sb->last_mount);
230 out->first_bucket = cpu_to_le16(sb->first_bucket);
231 out->keys = cpu_to_le16(sb->keys);
233 for (i = 0; i < sb->keys; i++)
234 out->d[i] = cpu_to_le64(sb->d[i]);
236 out->csum = csum_set(out);
238 pr_debug("ver %llu, flags %llu, seq %llu\n",
239 sb->version, sb->flags, sb->seq);
244 static void bch_write_bdev_super_unlock(struct closure *cl)
246 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
248 up(&dc->sb_write_mutex);
251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
253 struct closure *cl = &dc->sb_write;
254 struct bio *bio = &dc->sb_bio;
256 down(&dc->sb_write_mutex);
257 closure_init(cl, parent);
259 bio_init(bio, dc->sb_bv, 1);
260 bio_set_dev(bio, dc->bdev);
261 bio->bi_end_io = write_bdev_super_endio;
262 bio->bi_private = dc;
265 /* I/O request sent to backing device */
266 __write_super(&dc->sb, dc->sb_disk, bio);
268 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
271 static void write_super_endio(struct bio *bio)
273 struct cache *ca = bio->bi_private;
276 bch_count_io_errors(ca, bio->bi_status, 0,
277 "writing superblock");
278 closure_put(&ca->set->sb_write);
281 static void bcache_write_super_unlock(struct closure *cl)
283 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
285 up(&c->sb_write_mutex);
288 void bcache_write_super(struct cache_set *c)
290 struct closure *cl = &c->sb_write;
294 down(&c->sb_write_mutex);
295 closure_init(cl, &c->cl);
299 for_each_cache(ca, c, i) {
300 struct bio *bio = &ca->sb_bio;
302 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
303 ca->sb.seq = c->sb.seq;
304 ca->sb.last_mount = c->sb.last_mount;
306 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
308 bio_init(bio, ca->sb_bv, 1);
309 bio_set_dev(bio, ca->bdev);
310 bio->bi_end_io = write_super_endio;
311 bio->bi_private = ca;
314 __write_super(&ca->sb, ca->sb_disk, bio);
317 closure_return_with_destructor(cl, bcache_write_super_unlock);
322 static void uuid_endio(struct bio *bio)
324 struct closure *cl = bio->bi_private;
325 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
327 cache_set_err_on(bio->bi_status, c, "accessing uuids");
328 bch_bbio_free(bio, c);
332 static void uuid_io_unlock(struct closure *cl)
334 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
336 up(&c->uuid_write_mutex);
339 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
340 struct bkey *k, struct closure *parent)
342 struct closure *cl = &c->uuid_write;
343 struct uuid_entry *u;
348 down(&c->uuid_write_mutex);
349 closure_init(cl, parent);
351 for (i = 0; i < KEY_PTRS(k); i++) {
352 struct bio *bio = bch_bbio_alloc(c);
354 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
355 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
357 bio->bi_end_io = uuid_endio;
358 bio->bi_private = cl;
359 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
360 bch_bio_map(bio, c->uuids);
362 bch_submit_bbio(bio, c, k, i);
364 if (op != REQ_OP_WRITE)
368 bch_extent_to_text(buf, sizeof(buf), k);
369 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
371 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
372 if (!bch_is_zero(u->uuid, 16))
373 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
374 u - c->uuids, u->uuid, u->label,
375 u->first_reg, u->last_reg, u->invalidated);
377 closure_return_with_destructor(cl, uuid_io_unlock);
380 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
382 struct bkey *k = &j->uuid_bucket;
384 if (__bch_btree_ptr_invalid(c, k))
385 return "bad uuid pointer";
387 bkey_copy(&c->uuid_bucket, k);
388 uuid_io(c, REQ_OP_READ, 0, k, cl);
390 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
391 struct uuid_entry_v0 *u0 = (void *) c->uuids;
392 struct uuid_entry *u1 = (void *) c->uuids;
398 * Since the new uuid entry is bigger than the old, we have to
399 * convert starting at the highest memory address and work down
400 * in order to do it in place
403 for (i = c->nr_uuids - 1;
406 memcpy(u1[i].uuid, u0[i].uuid, 16);
407 memcpy(u1[i].label, u0[i].label, 32);
409 u1[i].first_reg = u0[i].first_reg;
410 u1[i].last_reg = u0[i].last_reg;
411 u1[i].invalidated = u0[i].invalidated;
421 static int __uuid_write(struct cache_set *c)
427 closure_init_stack(&cl);
428 lockdep_assert_held(&bch_register_lock);
430 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
433 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
434 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
437 /* Only one bucket used for uuid write */
438 ca = PTR_CACHE(c, &k.key, 0);
439 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
441 bkey_copy(&c->uuid_bucket, &k.key);
446 int bch_uuid_write(struct cache_set *c)
448 int ret = __uuid_write(c);
451 bch_journal_meta(c, NULL);
456 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
458 struct uuid_entry *u;
461 u < c->uuids + c->nr_uuids; u++)
462 if (!memcmp(u->uuid, uuid, 16))
468 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
470 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
472 return uuid_find(c, zero_uuid);
476 * Bucket priorities/gens:
478 * For each bucket, we store on disk its
482 * See alloc.c for an explanation of the gen. The priority is used to implement
483 * lru (and in the future other) cache replacement policies; for most purposes
484 * it's just an opaque integer.
486 * The gens and the priorities don't have a whole lot to do with each other, and
487 * it's actually the gens that must be written out at specific times - it's no
488 * big deal if the priorities don't get written, if we lose them we just reuse
489 * buckets in suboptimal order.
491 * On disk they're stored in a packed array, and in as many buckets are required
492 * to fit them all. The buckets we use to store them form a list; the journal
493 * header points to the first bucket, the first bucket points to the second
496 * This code is used by the allocation code; periodically (whenever it runs out
497 * of buckets to allocate from) the allocation code will invalidate some
498 * buckets, but it can't use those buckets until their new gens are safely on
502 static void prio_endio(struct bio *bio)
504 struct cache *ca = bio->bi_private;
506 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
507 bch_bbio_free(bio, ca->set);
508 closure_put(&ca->prio);
511 static void prio_io(struct cache *ca, uint64_t bucket, int op,
512 unsigned long op_flags)
514 struct closure *cl = &ca->prio;
515 struct bio *bio = bch_bbio_alloc(ca->set);
517 closure_init_stack(cl);
519 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
520 bio_set_dev(bio, ca->bdev);
521 bio->bi_iter.bi_size = bucket_bytes(ca);
523 bio->bi_end_io = prio_endio;
524 bio->bi_private = ca;
525 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
526 bch_bio_map(bio, ca->disk_buckets);
528 closure_bio_submit(ca->set, bio, &ca->prio);
532 int bch_prio_write(struct cache *ca, bool wait)
538 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
539 fifo_used(&ca->free[RESERVE_PRIO]),
540 fifo_used(&ca->free[RESERVE_NONE]),
541 fifo_used(&ca->free_inc));
544 * Pre-check if there are enough free buckets. In the non-blocking
545 * scenario it's better to fail early rather than starting to allocate
546 * buckets and do a cleanup later in case of failure.
549 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
550 fifo_used(&ca->free[RESERVE_NONE]);
551 if (prio_buckets(ca) > avail)
555 closure_init_stack(&cl);
557 lockdep_assert_held(&ca->set->bucket_lock);
559 ca->disk_buckets->seq++;
561 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
562 &ca->meta_sectors_written);
564 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
566 struct prio_set *p = ca->disk_buckets;
567 struct bucket_disk *d = p->data;
568 struct bucket_disk *end = d + prios_per_bucket(ca);
570 for (b = ca->buckets + i * prios_per_bucket(ca);
571 b < ca->buckets + ca->sb.nbuckets && d < end;
573 d->prio = cpu_to_le16(b->prio);
577 p->next_bucket = ca->prio_buckets[i + 1];
578 p->magic = pset_magic(&ca->sb);
579 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
581 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
582 BUG_ON(bucket == -1);
584 mutex_unlock(&ca->set->bucket_lock);
585 prio_io(ca, bucket, REQ_OP_WRITE, 0);
586 mutex_lock(&ca->set->bucket_lock);
588 ca->prio_buckets[i] = bucket;
589 atomic_dec_bug(&ca->buckets[bucket].pin);
592 mutex_unlock(&ca->set->bucket_lock);
594 bch_journal_meta(ca->set, &cl);
597 mutex_lock(&ca->set->bucket_lock);
600 * Don't want the old priorities to get garbage collected until after we
601 * finish writing the new ones, and they're journalled
603 for (i = 0; i < prio_buckets(ca); i++) {
604 if (ca->prio_last_buckets[i])
605 __bch_bucket_free(ca,
606 &ca->buckets[ca->prio_last_buckets[i]]);
608 ca->prio_last_buckets[i] = ca->prio_buckets[i];
613 static int prio_read(struct cache *ca, uint64_t bucket)
615 struct prio_set *p = ca->disk_buckets;
616 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
618 unsigned int bucket_nr = 0;
621 for (b = ca->buckets;
622 b < ca->buckets + ca->sb.nbuckets;
625 ca->prio_buckets[bucket_nr] = bucket;
626 ca->prio_last_buckets[bucket_nr] = bucket;
629 prio_io(ca, bucket, REQ_OP_READ, 0);
632 bch_crc64(&p->magic, bucket_bytes(ca) - 8)) {
633 pr_warn("bad csum reading priorities\n");
637 if (p->magic != pset_magic(&ca->sb)) {
638 pr_warn("bad magic reading priorities\n");
642 bucket = p->next_bucket;
646 b->prio = le16_to_cpu(d->prio);
647 b->gen = b->last_gc = d->gen;
657 static int open_dev(struct block_device *b, fmode_t mode)
659 struct bcache_device *d = b->bd_disk->private_data;
661 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
668 static void release_dev(struct gendisk *b, fmode_t mode)
670 struct bcache_device *d = b->private_data;
675 static int ioctl_dev(struct block_device *b, fmode_t mode,
676 unsigned int cmd, unsigned long arg)
678 struct bcache_device *d = b->bd_disk->private_data;
680 return d->ioctl(d, mode, cmd, arg);
683 static const struct block_device_operations bcache_ops = {
685 .release = release_dev,
687 .owner = THIS_MODULE,
690 void bcache_device_stop(struct bcache_device *d)
692 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
695 * - cached device: cached_dev_flush()
696 * - flash dev: flash_dev_flush()
698 closure_queue(&d->cl);
701 static void bcache_device_unlink(struct bcache_device *d)
703 lockdep_assert_held(&bch_register_lock);
705 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
709 sysfs_remove_link(&d->c->kobj, d->name);
710 sysfs_remove_link(&d->kobj, "cache");
712 for_each_cache(ca, d->c, i)
713 bd_unlink_disk_holder(ca->bdev, d->disk);
717 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
724 for_each_cache(ca, d->c, i)
725 bd_link_disk_holder(ca->bdev, d->disk);
727 snprintf(d->name, BCACHEDEVNAME_SIZE,
728 "%s%u", name, d->id);
730 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
732 pr_err("Couldn't create device -> cache set symlink\n");
734 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
736 pr_err("Couldn't create cache set -> device symlink\n");
738 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
741 static void bcache_device_detach(struct bcache_device *d)
743 lockdep_assert_held(&bch_register_lock);
745 atomic_dec(&d->c->attached_dev_nr);
747 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
748 struct uuid_entry *u = d->c->uuids + d->id;
750 SET_UUID_FLASH_ONLY(u, 0);
751 memcpy(u->uuid, invalid_uuid, 16);
752 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
753 bch_uuid_write(d->c);
756 bcache_device_unlink(d);
758 d->c->devices[d->id] = NULL;
759 closure_put(&d->c->caching);
763 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
770 if (id >= c->devices_max_used)
771 c->devices_max_used = id + 1;
773 closure_get(&c->caching);
776 static inline int first_minor_to_idx(int first_minor)
778 return (first_minor/BCACHE_MINORS);
781 static inline int idx_to_first_minor(int idx)
783 return (idx * BCACHE_MINORS);
786 static void bcache_device_free(struct bcache_device *d)
788 struct gendisk *disk = d->disk;
790 lockdep_assert_held(&bch_register_lock);
793 pr_info("%s stopped\n", disk->disk_name);
795 pr_err("bcache device (NULL gendisk) stopped\n");
798 bcache_device_detach(d);
801 bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
807 blk_cleanup_queue(disk->queue);
809 ida_simple_remove(&bcache_device_idx,
810 first_minor_to_idx(disk->first_minor));
815 bioset_exit(&d->bio_split);
816 kvfree(d->full_dirty_stripes);
817 kvfree(d->stripe_sectors_dirty);
819 closure_debug_destroy(&d->cl);
822 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
823 sector_t sectors, make_request_fn make_request_fn,
824 struct block_device *cached_bdev)
826 struct request_queue *q;
827 const size_t max_stripes = min_t(size_t, INT_MAX,
828 SIZE_MAX / sizeof(atomic_t));
833 d->stripe_size = 1 << 31;
835 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
837 if (!d->nr_stripes || d->nr_stripes > max_stripes) {
838 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)\n",
839 (unsigned int)d->nr_stripes);
843 n = d->nr_stripes * sizeof(atomic_t);
844 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
845 if (!d->stripe_sectors_dirty)
848 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
849 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
850 if (!d->full_dirty_stripes)
853 idx = ida_simple_get(&bcache_device_idx, 0,
854 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
858 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
859 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
862 d->disk = alloc_disk(BCACHE_MINORS);
866 set_capacity(d->disk, sectors);
867 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
869 d->disk->major = bcache_major;
870 d->disk->first_minor = idx_to_first_minor(idx);
871 d->disk->fops = &bcache_ops;
872 d->disk->private_data = d;
874 q = blk_alloc_queue(make_request_fn, NUMA_NO_NODE);
880 q->backing_dev_info->congested_data = d;
881 q->limits.max_hw_sectors = UINT_MAX;
882 q->limits.max_sectors = UINT_MAX;
883 q->limits.max_segment_size = UINT_MAX;
884 q->limits.max_segments = BIO_MAX_PAGES;
885 blk_queue_max_discard_sectors(q, UINT_MAX);
886 q->limits.discard_granularity = 512;
887 q->limits.io_min = block_size;
888 q->limits.logical_block_size = block_size;
889 q->limits.physical_block_size = block_size;
891 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
893 * This should only happen with BCACHE_SB_VERSION_BDEV.
894 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
896 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
897 d->disk->disk_name, q->limits.logical_block_size,
898 PAGE_SIZE, bdev_logical_block_size(cached_bdev));
900 /* This also adjusts physical block size/min io size if needed */
901 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
904 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
905 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
906 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
908 blk_queue_write_cache(q, true, true);
913 ida_simple_remove(&bcache_device_idx, idx);
920 static void calc_cached_dev_sectors(struct cache_set *c)
922 uint64_t sectors = 0;
923 struct cached_dev *dc;
925 list_for_each_entry(dc, &c->cached_devs, list)
926 sectors += bdev_sectors(dc->bdev);
928 c->cached_dev_sectors = sectors;
931 #define BACKING_DEV_OFFLINE_TIMEOUT 5
932 static int cached_dev_status_update(void *arg)
934 struct cached_dev *dc = arg;
935 struct request_queue *q;
938 * If this delayed worker is stopping outside, directly quit here.
939 * dc->io_disable might be set via sysfs interface, so check it
942 while (!kthread_should_stop() && !dc->io_disable) {
943 q = bdev_get_queue(dc->bdev);
944 if (blk_queue_dying(q))
945 dc->offline_seconds++;
947 dc->offline_seconds = 0;
949 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
950 pr_err("%s: device offline for %d seconds\n",
951 dc->backing_dev_name,
952 BACKING_DEV_OFFLINE_TIMEOUT);
953 pr_err("%s: disable I/O request due to backing device offline\n",
955 dc->io_disable = true;
956 /* let others know earlier that io_disable is true */
958 bcache_device_stop(&dc->disk);
961 schedule_timeout_interruptible(HZ);
964 wait_for_kthread_stop();
969 int bch_cached_dev_run(struct cached_dev *dc)
971 struct bcache_device *d = &dc->disk;
972 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
975 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
976 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
980 if (dc->io_disable) {
981 pr_err("I/O disabled on cached dev %s\n",
982 dc->backing_dev_name);
989 if (atomic_xchg(&dc->running, 1)) {
993 pr_info("cached dev %s is running already\n",
994 dc->backing_dev_name);
999 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1002 closure_init_stack(&cl);
1004 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1005 bch_write_bdev_super(dc, &cl);
1010 bd_link_disk_holder(dc->bdev, dc->disk.disk);
1012 * won't show up in the uevent file, use udevadm monitor -e instead
1013 * only class / kset properties are persistent
1015 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1020 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1021 sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1022 &d->kobj, "bcache")) {
1023 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1027 dc->status_update_thread = kthread_run(cached_dev_status_update,
1028 dc, "bcache_status_update");
1029 if (IS_ERR(dc->status_update_thread)) {
1030 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1037 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1038 * work dc->writeback_rate_update is running. Wait until the routine
1039 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1040 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1041 * seconds, give up waiting here and continue to cancel it too.
1043 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1045 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1048 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1052 schedule_timeout_interruptible(1);
1053 } while (time_out > 0);
1056 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1058 cancel_delayed_work_sync(&dc->writeback_rate_update);
1061 static void cached_dev_detach_finish(struct work_struct *w)
1063 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1066 closure_init_stack(&cl);
1068 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1069 BUG_ON(refcount_read(&dc->count));
1072 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1073 cancel_writeback_rate_update_dwork(dc);
1075 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1076 kthread_stop(dc->writeback_thread);
1077 dc->writeback_thread = NULL;
1080 memset(&dc->sb.set_uuid, 0, 16);
1081 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1083 bch_write_bdev_super(dc, &cl);
1086 mutex_lock(&bch_register_lock);
1088 calc_cached_dev_sectors(dc->disk.c);
1089 bcache_device_detach(&dc->disk);
1090 list_move(&dc->list, &uncached_devices);
1092 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1093 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1095 mutex_unlock(&bch_register_lock);
1097 pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1099 /* Drop ref we took in cached_dev_detach() */
1100 closure_put(&dc->disk.cl);
1103 void bch_cached_dev_detach(struct cached_dev *dc)
1105 lockdep_assert_held(&bch_register_lock);
1107 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1110 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1114 * Block the device from being closed and freed until we're finished
1117 closure_get(&dc->disk.cl);
1119 bch_writeback_queue(dc);
1124 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1127 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1128 struct uuid_entry *u;
1129 struct cached_dev *exist_dc, *t;
1132 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1133 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1137 pr_err("Can't attach %s: already attached\n",
1138 dc->backing_dev_name);
1142 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1143 pr_err("Can't attach %s: shutting down\n",
1144 dc->backing_dev_name);
1148 if (dc->sb.block_size < c->sb.block_size) {
1150 pr_err("Couldn't attach %s: block size less than set's block size\n",
1151 dc->backing_dev_name);
1155 /* Check whether already attached */
1156 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1157 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1158 pr_err("Tried to attach %s but duplicate UUID already attached\n",
1159 dc->backing_dev_name);
1165 u = uuid_find(c, dc->sb.uuid);
1168 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1169 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1170 memcpy(u->uuid, invalid_uuid, 16);
1171 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1176 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1177 pr_err("Couldn't find uuid for %s in set\n",
1178 dc->backing_dev_name);
1182 u = uuid_find_empty(c);
1184 pr_err("Not caching %s, no room for UUID\n",
1185 dc->backing_dev_name);
1191 * Deadlocks since we're called via sysfs...
1192 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1195 if (bch_is_zero(u->uuid, 16)) {
1198 closure_init_stack(&cl);
1200 memcpy(u->uuid, dc->sb.uuid, 16);
1201 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1202 u->first_reg = u->last_reg = rtime;
1205 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1206 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1208 bch_write_bdev_super(dc, &cl);
1211 u->last_reg = rtime;
1215 bcache_device_attach(&dc->disk, c, u - c->uuids);
1216 list_move(&dc->list, &c->cached_devs);
1217 calc_cached_dev_sectors(c);
1220 * dc->c must be set before dc->count != 0 - paired with the mb in
1224 refcount_set(&dc->count, 1);
1226 /* Block writeback thread, but spawn it */
1227 down_write(&dc->writeback_lock);
1228 if (bch_cached_dev_writeback_start(dc)) {
1229 up_write(&dc->writeback_lock);
1230 pr_err("Couldn't start writeback facilities for %s\n",
1231 dc->disk.disk->disk_name);
1235 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1236 atomic_set(&dc->has_dirty, 1);
1237 bch_writeback_queue(dc);
1240 bch_sectors_dirty_init(&dc->disk);
1242 ret = bch_cached_dev_run(dc);
1243 if (ret && (ret != -EBUSY)) {
1244 up_write(&dc->writeback_lock);
1246 * bch_register_lock is held, bcache_device_stop() is not
1247 * able to be directly called. The kthread and kworker
1248 * created previously in bch_cached_dev_writeback_start()
1249 * have to be stopped manually here.
1251 kthread_stop(dc->writeback_thread);
1252 cancel_writeback_rate_update_dwork(dc);
1253 pr_err("Couldn't run cached device %s\n",
1254 dc->backing_dev_name);
1258 bcache_device_link(&dc->disk, c, "bdev");
1259 atomic_inc(&c->attached_dev_nr);
1261 /* Allow the writeback thread to proceed */
1262 up_write(&dc->writeback_lock);
1264 pr_info("Caching %s as %s on set %pU\n",
1265 dc->backing_dev_name,
1266 dc->disk.disk->disk_name,
1267 dc->disk.c->sb.set_uuid);
1271 /* when dc->disk.kobj released */
1272 void bch_cached_dev_release(struct kobject *kobj)
1274 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1277 module_put(THIS_MODULE);
1280 static void cached_dev_free(struct closure *cl)
1282 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1284 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1285 cancel_writeback_rate_update_dwork(dc);
1287 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1288 kthread_stop(dc->writeback_thread);
1289 if (!IS_ERR_OR_NULL(dc->status_update_thread))
1290 kthread_stop(dc->status_update_thread);
1292 mutex_lock(&bch_register_lock);
1294 if (atomic_read(&dc->running))
1295 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1296 bcache_device_free(&dc->disk);
1297 list_del(&dc->list);
1299 mutex_unlock(&bch_register_lock);
1302 put_page(virt_to_page(dc->sb_disk));
1304 if (!IS_ERR_OR_NULL(dc->bdev))
1305 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1307 wake_up(&unregister_wait);
1309 kobject_put(&dc->disk.kobj);
1312 static void cached_dev_flush(struct closure *cl)
1314 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1315 struct bcache_device *d = &dc->disk;
1317 mutex_lock(&bch_register_lock);
1318 bcache_device_unlink(d);
1319 mutex_unlock(&bch_register_lock);
1321 bch_cache_accounting_destroy(&dc->accounting);
1322 kobject_del(&d->kobj);
1324 continue_at(cl, cached_dev_free, system_wq);
1327 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1331 struct request_queue *q = bdev_get_queue(dc->bdev);
1333 __module_get(THIS_MODULE);
1334 INIT_LIST_HEAD(&dc->list);
1335 closure_init(&dc->disk.cl, NULL);
1336 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1337 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1338 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1339 sema_init(&dc->sb_write_mutex, 1);
1340 INIT_LIST_HEAD(&dc->io_lru);
1341 spin_lock_init(&dc->io_lock);
1342 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1344 dc->sequential_cutoff = 4 << 20;
1346 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1347 list_add(&io->lru, &dc->io_lru);
1348 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1351 dc->disk.stripe_size = q->limits.io_opt >> 9;
1353 if (dc->disk.stripe_size)
1354 dc->partial_stripes_expensive =
1355 q->limits.raid_partial_stripes_expensive;
1357 ret = bcache_device_init(&dc->disk, block_size,
1358 dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1359 cached_dev_make_request, dc->bdev);
1363 dc->disk.disk->queue->backing_dev_info->ra_pages =
1364 max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1365 q->backing_dev_info->ra_pages);
1367 atomic_set(&dc->io_errors, 0);
1368 dc->io_disable = false;
1369 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1370 /* default to auto */
1371 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1373 bch_cached_dev_request_init(dc);
1374 bch_cached_dev_writeback_init(dc);
1378 /* Cached device - bcache superblock */
1380 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1381 struct block_device *bdev,
1382 struct cached_dev *dc)
1384 const char *err = "cannot allocate memory";
1385 struct cache_set *c;
1388 bdevname(bdev, dc->backing_dev_name);
1389 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1391 dc->bdev->bd_holder = dc;
1392 dc->sb_disk = sb_disk;
1394 if (cached_dev_init(dc, sb->block_size << 9))
1397 err = "error creating kobject";
1398 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1401 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1404 pr_info("registered backing device %s\n", dc->backing_dev_name);
1406 list_add(&dc->list, &uncached_devices);
1407 /* attach to a matched cache set if it exists */
1408 list_for_each_entry(c, &bch_cache_sets, list)
1409 bch_cached_dev_attach(dc, c, NULL);
1411 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1412 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1413 err = "failed to run cached device";
1414 ret = bch_cached_dev_run(dc);
1421 pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1422 bcache_device_stop(&dc->disk);
1426 /* Flash only volumes */
1428 /* When d->kobj released */
1429 void bch_flash_dev_release(struct kobject *kobj)
1431 struct bcache_device *d = container_of(kobj, struct bcache_device,
1436 static void flash_dev_free(struct closure *cl)
1438 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1440 mutex_lock(&bch_register_lock);
1441 atomic_long_sub(bcache_dev_sectors_dirty(d),
1442 &d->c->flash_dev_dirty_sectors);
1443 bcache_device_free(d);
1444 mutex_unlock(&bch_register_lock);
1445 kobject_put(&d->kobj);
1448 static void flash_dev_flush(struct closure *cl)
1450 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1452 mutex_lock(&bch_register_lock);
1453 bcache_device_unlink(d);
1454 mutex_unlock(&bch_register_lock);
1455 kobject_del(&d->kobj);
1456 continue_at(cl, flash_dev_free, system_wq);
1459 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1461 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1466 closure_init(&d->cl, NULL);
1467 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1469 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1471 if (bcache_device_init(d, block_bytes(c), u->sectors,
1472 flash_dev_make_request, NULL))
1475 bcache_device_attach(d, c, u - c->uuids);
1476 bch_sectors_dirty_init(d);
1477 bch_flash_dev_request_init(d);
1480 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1483 bcache_device_link(d, c, "volume");
1487 kobject_put(&d->kobj);
1491 static int flash_devs_run(struct cache_set *c)
1494 struct uuid_entry *u;
1497 u < c->uuids + c->nr_uuids && !ret;
1499 if (UUID_FLASH_ONLY(u))
1500 ret = flash_dev_run(c, u);
1505 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1507 struct uuid_entry *u;
1509 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1512 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1515 u = uuid_find_empty(c);
1517 pr_err("Can't create volume, no room for UUID\n");
1521 get_random_bytes(u->uuid, 16);
1522 memset(u->label, 0, 32);
1523 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1525 SET_UUID_FLASH_ONLY(u, 1);
1526 u->sectors = size >> 9;
1530 return flash_dev_run(c, u);
1533 bool bch_cached_dev_error(struct cached_dev *dc)
1535 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1538 dc->io_disable = true;
1539 /* make others know io_disable is true earlier */
1542 pr_err("stop %s: too many IO errors on backing device %s\n",
1543 dc->disk.disk->disk_name, dc->backing_dev_name);
1545 bcache_device_stop(&dc->disk);
1552 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1554 struct va_format vaf;
1557 if (c->on_error != ON_ERROR_PANIC &&
1558 test_bit(CACHE_SET_STOPPING, &c->flags))
1561 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1562 pr_info("CACHE_SET_IO_DISABLE already set\n");
1565 * XXX: we can be called from atomic context
1566 * acquire_console_sem();
1569 va_start(args, fmt);
1574 pr_err("error on %pU: %pV, disabling caching\n",
1575 c->sb.set_uuid, &vaf);
1579 if (c->on_error == ON_ERROR_PANIC)
1580 panic("panic forced after error\n");
1582 bch_cache_set_unregister(c);
1586 /* When c->kobj released */
1587 void bch_cache_set_release(struct kobject *kobj)
1589 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1592 module_put(THIS_MODULE);
1595 static void cache_set_free(struct closure *cl)
1597 struct cache_set *c = container_of(cl, struct cache_set, cl);
1601 debugfs_remove(c->debug);
1603 bch_open_buckets_free(c);
1604 bch_btree_cache_free(c);
1605 bch_journal_free(c);
1607 mutex_lock(&bch_register_lock);
1608 for_each_cache(ca, c, i)
1611 c->cache[ca->sb.nr_this_dev] = NULL;
1612 kobject_put(&ca->kobj);
1615 bch_bset_sort_state_free(&c->sort);
1616 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1618 if (c->moving_gc_wq)
1619 destroy_workqueue(c->moving_gc_wq);
1620 bioset_exit(&c->bio_split);
1621 mempool_exit(&c->fill_iter);
1622 mempool_exit(&c->bio_meta);
1623 mempool_exit(&c->search);
1627 mutex_unlock(&bch_register_lock);
1629 pr_info("Cache set %pU unregistered\n", c->sb.set_uuid);
1630 wake_up(&unregister_wait);
1632 closure_debug_destroy(&c->cl);
1633 kobject_put(&c->kobj);
1636 static void cache_set_flush(struct closure *cl)
1638 struct cache_set *c = container_of(cl, struct cache_set, caching);
1643 bch_cache_accounting_destroy(&c->accounting);
1645 kobject_put(&c->internal);
1646 kobject_del(&c->kobj);
1648 if (!IS_ERR_OR_NULL(c->gc_thread))
1649 kthread_stop(c->gc_thread);
1651 if (!IS_ERR_OR_NULL(c->root))
1652 list_add(&c->root->list, &c->btree_cache);
1655 * Avoid flushing cached nodes if cache set is retiring
1656 * due to too many I/O errors detected.
1658 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1659 list_for_each_entry(b, &c->btree_cache, list) {
1660 mutex_lock(&b->write_lock);
1661 if (btree_node_dirty(b))
1662 __bch_btree_node_write(b, NULL);
1663 mutex_unlock(&b->write_lock);
1666 for_each_cache(ca, c, i)
1667 if (ca->alloc_thread)
1668 kthread_stop(ca->alloc_thread);
1670 if (c->journal.cur) {
1671 cancel_delayed_work_sync(&c->journal.work);
1672 /* flush last journal entry if needed */
1673 c->journal.work.work.func(&c->journal.work.work);
1680 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1681 * cache set is unregistering due to too many I/O errors. In this condition,
1682 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1683 * value and whether the broken cache has dirty data:
1685 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1686 * BCH_CACHED_STOP_AUTO 0 NO
1687 * BCH_CACHED_STOP_AUTO 1 YES
1688 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1689 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1691 * The expected behavior is, if stop_when_cache_set_failed is configured to
1692 * "auto" via sysfs interface, the bcache device will not be stopped if the
1693 * backing device is clean on the broken cache device.
1695 static void conditional_stop_bcache_device(struct cache_set *c,
1696 struct bcache_device *d,
1697 struct cached_dev *dc)
1699 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1700 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1701 d->disk->disk_name, c->sb.set_uuid);
1702 bcache_device_stop(d);
1703 } else if (atomic_read(&dc->has_dirty)) {
1705 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1706 * and dc->has_dirty == 1
1708 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1709 d->disk->disk_name);
1711 * There might be a small time gap that cache set is
1712 * released but bcache device is not. Inside this time
1713 * gap, regular I/O requests will directly go into
1714 * backing device as no cache set attached to. This
1715 * behavior may also introduce potential inconsistence
1716 * data in writeback mode while cache is dirty.
1717 * Therefore before calling bcache_device_stop() due
1718 * to a broken cache device, dc->io_disable should be
1719 * explicitly set to true.
1721 dc->io_disable = true;
1722 /* make others know io_disable is true earlier */
1724 bcache_device_stop(d);
1727 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1728 * and dc->has_dirty == 0
1730 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1731 d->disk->disk_name);
1735 static void __cache_set_unregister(struct closure *cl)
1737 struct cache_set *c = container_of(cl, struct cache_set, caching);
1738 struct cached_dev *dc;
1739 struct bcache_device *d;
1742 mutex_lock(&bch_register_lock);
1744 for (i = 0; i < c->devices_max_used; i++) {
1749 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1750 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1751 dc = container_of(d, struct cached_dev, disk);
1752 bch_cached_dev_detach(dc);
1753 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1754 conditional_stop_bcache_device(c, d, dc);
1756 bcache_device_stop(d);
1760 mutex_unlock(&bch_register_lock);
1762 continue_at(cl, cache_set_flush, system_wq);
1765 void bch_cache_set_stop(struct cache_set *c)
1767 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1768 /* closure_fn set to __cache_set_unregister() */
1769 closure_queue(&c->caching);
1772 void bch_cache_set_unregister(struct cache_set *c)
1774 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1775 bch_cache_set_stop(c);
1778 #define alloc_bucket_pages(gfp, c) \
1779 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1781 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1784 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1789 __module_get(THIS_MODULE);
1790 closure_init(&c->cl, NULL);
1791 set_closure_fn(&c->cl, cache_set_free, system_wq);
1793 closure_init(&c->caching, &c->cl);
1794 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1796 /* Maybe create continue_at_noreturn() and use it here? */
1797 closure_set_stopped(&c->cl);
1798 closure_put(&c->cl);
1800 kobject_init(&c->kobj, &bch_cache_set_ktype);
1801 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1803 bch_cache_accounting_init(&c->accounting, &c->cl);
1805 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1806 c->sb.block_size = sb->block_size;
1807 c->sb.bucket_size = sb->bucket_size;
1808 c->sb.nr_in_set = sb->nr_in_set;
1809 c->sb.last_mount = sb->last_mount;
1810 c->bucket_bits = ilog2(sb->bucket_size);
1811 c->block_bits = ilog2(sb->block_size);
1812 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1813 c->devices_max_used = 0;
1814 atomic_set(&c->attached_dev_nr, 0);
1815 c->btree_pages = bucket_pages(c);
1816 if (c->btree_pages > BTREE_MAX_PAGES)
1817 c->btree_pages = max_t(int, c->btree_pages / 4,
1820 sema_init(&c->sb_write_mutex, 1);
1821 mutex_init(&c->bucket_lock);
1822 init_waitqueue_head(&c->btree_cache_wait);
1823 spin_lock_init(&c->btree_cannibalize_lock);
1824 init_waitqueue_head(&c->bucket_wait);
1825 init_waitqueue_head(&c->gc_wait);
1826 sema_init(&c->uuid_write_mutex, 1);
1828 spin_lock_init(&c->btree_gc_time.lock);
1829 spin_lock_init(&c->btree_split_time.lock);
1830 spin_lock_init(&c->btree_read_time.lock);
1832 bch_moving_init_cache_set(c);
1834 INIT_LIST_HEAD(&c->list);
1835 INIT_LIST_HEAD(&c->cached_devs);
1836 INIT_LIST_HEAD(&c->btree_cache);
1837 INIT_LIST_HEAD(&c->btree_cache_freeable);
1838 INIT_LIST_HEAD(&c->btree_cache_freed);
1839 INIT_LIST_HEAD(&c->data_buckets);
1841 iter_size = (sb->bucket_size / sb->block_size + 1) *
1842 sizeof(struct btree_iter_set);
1844 if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1845 mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1846 mempool_init_kmalloc_pool(&c->bio_meta, 2,
1847 sizeof(struct bbio) + sizeof(struct bio_vec) *
1849 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1850 bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1851 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1852 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1853 !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1854 WQ_MEM_RECLAIM, 0)) ||
1855 bch_journal_alloc(c) ||
1856 bch_btree_cache_alloc(c) ||
1857 bch_open_buckets_alloc(c) ||
1858 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1861 c->congested_read_threshold_us = 2000;
1862 c->congested_write_threshold_us = 20000;
1863 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1864 c->idle_max_writeback_rate_enabled = 1;
1865 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1869 bch_cache_set_unregister(c);
1873 static int run_cache_set(struct cache_set *c)
1875 const char *err = "cannot allocate memory";
1876 struct cached_dev *dc, *t;
1881 struct journal_replay *l;
1883 closure_init_stack(&cl);
1885 for_each_cache(ca, c, i)
1886 c->nbuckets += ca->sb.nbuckets;
1889 if (CACHE_SYNC(&c->sb)) {
1893 err = "cannot allocate memory for journal";
1894 if (bch_journal_read(c, &journal))
1897 pr_debug("btree_journal_read() done\n");
1899 err = "no journal entries found";
1900 if (list_empty(&journal))
1903 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1905 err = "IO error reading priorities";
1906 for_each_cache(ca, c, i) {
1907 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
1912 * If prio_read() fails it'll call cache_set_error and we'll
1913 * tear everything down right away, but if we perhaps checked
1914 * sooner we could avoid journal replay.
1919 err = "bad btree root";
1920 if (__bch_btree_ptr_invalid(c, k))
1923 err = "error reading btree root";
1924 c->root = bch_btree_node_get(c, NULL, k,
1927 if (IS_ERR_OR_NULL(c->root))
1930 list_del_init(&c->root->list);
1931 rw_unlock(true, c->root);
1933 err = uuid_read(c, j, &cl);
1937 err = "error in recovery";
1938 if (bch_btree_check(c))
1941 bch_journal_mark(c, &journal);
1942 bch_initial_gc_finish(c);
1943 pr_debug("btree_check() done\n");
1946 * bcache_journal_next() can't happen sooner, or
1947 * btree_gc_finish() will give spurious errors about last_gc >
1948 * gc_gen - this is a hack but oh well.
1950 bch_journal_next(&c->journal);
1952 err = "error starting allocator thread";
1953 for_each_cache(ca, c, i)
1954 if (bch_cache_allocator_start(ca))
1958 * First place it's safe to allocate: btree_check() and
1959 * btree_gc_finish() have to run before we have buckets to
1960 * allocate, and bch_bucket_alloc_set() might cause a journal
1961 * entry to be written so bcache_journal_next() has to be called
1964 * If the uuids were in the old format we have to rewrite them
1965 * before the next journal entry is written:
1967 if (j->version < BCACHE_JSET_VERSION_UUID)
1970 err = "bcache: replay journal failed";
1971 if (bch_journal_replay(c, &journal))
1974 pr_notice("invalidating existing data\n");
1976 for_each_cache(ca, c, i) {
1979 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1980 2, SB_JOURNAL_BUCKETS);
1982 for (j = 0; j < ca->sb.keys; j++)
1983 ca->sb.d[j] = ca->sb.first_bucket + j;
1986 bch_initial_gc_finish(c);
1988 err = "error starting allocator thread";
1989 for_each_cache(ca, c, i)
1990 if (bch_cache_allocator_start(ca))
1993 mutex_lock(&c->bucket_lock);
1994 for_each_cache(ca, c, i)
1995 bch_prio_write(ca, true);
1996 mutex_unlock(&c->bucket_lock);
1998 err = "cannot allocate new UUID bucket";
1999 if (__uuid_write(c))
2002 err = "cannot allocate new btree root";
2003 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2004 if (IS_ERR_OR_NULL(c->root))
2007 mutex_lock(&c->root->write_lock);
2008 bkey_copy_key(&c->root->key, &MAX_KEY);
2009 bch_btree_node_write(c->root, &cl);
2010 mutex_unlock(&c->root->write_lock);
2012 bch_btree_set_root(c->root);
2013 rw_unlock(true, c->root);
2016 * We don't want to write the first journal entry until
2017 * everything is set up - fortunately journal entries won't be
2018 * written until the SET_CACHE_SYNC() here:
2020 SET_CACHE_SYNC(&c->sb, true);
2022 bch_journal_next(&c->journal);
2023 bch_journal_meta(c, &cl);
2026 err = "error starting gc thread";
2027 if (bch_gc_thread_start(c))
2031 c->sb.last_mount = (u32)ktime_get_real_seconds();
2032 bcache_write_super(c);
2034 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2035 bch_cached_dev_attach(dc, c, NULL);
2039 set_bit(CACHE_SET_RUNNING, &c->flags);
2042 while (!list_empty(&journal)) {
2043 l = list_first_entry(&journal, struct journal_replay, list);
2050 bch_cache_set_error(c, "%s", err);
2055 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
2057 return ca->sb.block_size == c->sb.block_size &&
2058 ca->sb.bucket_size == c->sb.bucket_size &&
2059 ca->sb.nr_in_set == c->sb.nr_in_set;
2062 static const char *register_cache_set(struct cache *ca)
2065 const char *err = "cannot allocate memory";
2066 struct cache_set *c;
2068 list_for_each_entry(c, &bch_cache_sets, list)
2069 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
2070 if (c->cache[ca->sb.nr_this_dev])
2071 return "duplicate cache set member";
2073 if (!can_attach_cache(ca, c))
2074 return "cache sb does not match set";
2076 if (!CACHE_SYNC(&ca->sb))
2077 SET_CACHE_SYNC(&c->sb, false);
2082 c = bch_cache_set_alloc(&ca->sb);
2086 err = "error creating kobject";
2087 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
2088 kobject_add(&c->internal, &c->kobj, "internal"))
2091 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2094 bch_debug_init_cache_set(c);
2096 list_add(&c->list, &bch_cache_sets);
2098 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2099 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2100 sysfs_create_link(&c->kobj, &ca->kobj, buf))
2103 if (ca->sb.seq > c->sb.seq) {
2104 c->sb.version = ca->sb.version;
2105 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
2106 c->sb.flags = ca->sb.flags;
2107 c->sb.seq = ca->sb.seq;
2108 pr_debug("set version = %llu\n", c->sb.version);
2111 kobject_get(&ca->kobj);
2113 ca->set->cache[ca->sb.nr_this_dev] = ca;
2114 c->cache_by_alloc[c->caches_loaded++] = ca;
2116 if (c->caches_loaded == c->sb.nr_in_set) {
2117 err = "failed to run cache set";
2118 if (run_cache_set(c) < 0)
2124 bch_cache_set_unregister(c);
2130 /* When ca->kobj released */
2131 void bch_cache_release(struct kobject *kobj)
2133 struct cache *ca = container_of(kobj, struct cache, kobj);
2137 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2138 ca->set->cache[ca->sb.nr_this_dev] = NULL;
2141 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
2142 kfree(ca->prio_buckets);
2145 free_heap(&ca->heap);
2146 free_fifo(&ca->free_inc);
2148 for (i = 0; i < RESERVE_NR; i++)
2149 free_fifo(&ca->free[i]);
2152 put_page(virt_to_page(ca->sb_disk));
2154 if (!IS_ERR_OR_NULL(ca->bdev))
2155 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2158 module_put(THIS_MODULE);
2161 static int cache_alloc(struct cache *ca)
2164 size_t btree_buckets;
2167 const char *err = NULL;
2169 __module_get(THIS_MODULE);
2170 kobject_init(&ca->kobj, &bch_cache_ktype);
2172 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2175 * when ca->sb.njournal_buckets is not zero, journal exists,
2176 * and in bch_journal_replay(), tree node may split,
2177 * so bucket of RESERVE_BTREE type is needed,
2178 * the worst situation is all journal buckets are valid journal,
2179 * and all the keys need to replay,
2180 * so the number of RESERVE_BTREE type buckets should be as much
2181 * as journal buckets
2183 btree_buckets = ca->sb.njournal_buckets ?: 8;
2184 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2187 err = "ca->sb.nbuckets is too small";
2191 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2193 err = "ca->free[RESERVE_BTREE] alloc failed";
2194 goto err_btree_alloc;
2197 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2199 err = "ca->free[RESERVE_PRIO] alloc failed";
2200 goto err_prio_alloc;
2203 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2204 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2205 goto err_movinggc_alloc;
2208 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2209 err = "ca->free[RESERVE_NONE] alloc failed";
2210 goto err_none_alloc;
2213 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2214 err = "ca->free_inc alloc failed";
2215 goto err_free_inc_alloc;
2218 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2219 err = "ca->heap alloc failed";
2220 goto err_heap_alloc;
2223 ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2226 err = "ca->buckets alloc failed";
2227 goto err_buckets_alloc;
2230 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2231 prio_buckets(ca), 2),
2233 if (!ca->prio_buckets) {
2234 err = "ca->prio_buckets alloc failed";
2235 goto err_prio_buckets_alloc;
2238 ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca);
2239 if (!ca->disk_buckets) {
2240 err = "ca->disk_buckets alloc failed";
2241 goto err_disk_buckets_alloc;
2244 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2246 for_each_bucket(b, ca)
2247 atomic_set(&b->pin, 0);
2250 err_disk_buckets_alloc:
2251 kfree(ca->prio_buckets);
2252 err_prio_buckets_alloc:
2255 free_heap(&ca->heap);
2257 free_fifo(&ca->free_inc);
2259 free_fifo(&ca->free[RESERVE_NONE]);
2261 free_fifo(&ca->free[RESERVE_MOVINGGC]);
2263 free_fifo(&ca->free[RESERVE_PRIO]);
2265 free_fifo(&ca->free[RESERVE_BTREE]);
2268 module_put(THIS_MODULE);
2270 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2274 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2275 struct block_device *bdev, struct cache *ca)
2277 const char *err = NULL; /* must be set for any error case */
2280 bdevname(bdev, ca->cache_dev_name);
2281 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2283 ca->bdev->bd_holder = ca;
2284 ca->sb_disk = sb_disk;
2286 if (blk_queue_discard(bdev_get_queue(bdev)))
2287 ca->discard = CACHE_DISCARD(&ca->sb);
2289 ret = cache_alloc(ca);
2292 * If we failed here, it means ca->kobj is not initialized yet,
2293 * kobject_put() won't be called and there is no chance to
2294 * call blkdev_put() to bdev in bch_cache_release(). So we
2295 * explicitly call blkdev_put() here.
2297 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2299 err = "cache_alloc(): -ENOMEM";
2300 else if (ret == -EPERM)
2301 err = "cache_alloc(): cache device is too small";
2303 err = "cache_alloc(): unknown error";
2307 if (kobject_add(&ca->kobj,
2308 &part_to_dev(bdev->bd_part)->kobj,
2310 err = "error calling kobject_add";
2315 mutex_lock(&bch_register_lock);
2316 err = register_cache_set(ca);
2317 mutex_unlock(&bch_register_lock);
2324 pr_info("registered cache device %s\n", ca->cache_dev_name);
2327 kobject_put(&ca->kobj);
2331 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2336 /* Global interfaces/init */
2338 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2339 const char *buffer, size_t size);
2340 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2341 struct kobj_attribute *attr,
2342 const char *buffer, size_t size);
2344 kobj_attribute_write(register, register_bcache);
2345 kobj_attribute_write(register_quiet, register_bcache);
2346 kobj_attribute_write(register_async, register_bcache);
2347 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
2349 static bool bch_is_open_backing(struct block_device *bdev)
2351 struct cache_set *c, *tc;
2352 struct cached_dev *dc, *t;
2354 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2355 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2356 if (dc->bdev == bdev)
2358 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2359 if (dc->bdev == bdev)
2364 static bool bch_is_open_cache(struct block_device *bdev)
2366 struct cache_set *c, *tc;
2370 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2371 for_each_cache(ca, c, i)
2372 if (ca->bdev == bdev)
2377 static bool bch_is_open(struct block_device *bdev)
2379 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2382 struct async_reg_args {
2383 struct delayed_work reg_work;
2385 struct cache_sb *sb;
2386 struct cache_sb_disk *sb_disk;
2387 struct block_device *bdev;
2390 static void register_bdev_worker(struct work_struct *work)
2393 struct async_reg_args *args =
2394 container_of(work, struct async_reg_args, reg_work.work);
2395 struct cached_dev *dc;
2397 dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2400 put_page(virt_to_page(args->sb_disk));
2401 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2405 mutex_lock(&bch_register_lock);
2406 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2408 mutex_unlock(&bch_register_lock);
2412 pr_info("error %s: fail to register backing device\n",
2417 module_put(THIS_MODULE);
2420 static void register_cache_worker(struct work_struct *work)
2423 struct async_reg_args *args =
2424 container_of(work, struct async_reg_args, reg_work.work);
2427 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2430 put_page(virt_to_page(args->sb_disk));
2431 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2435 /* blkdev_put() will be called in bch_cache_release() */
2436 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2441 pr_info("error %s: fail to register cache device\n",
2446 module_put(THIS_MODULE);
2449 static void register_device_aync(struct async_reg_args *args)
2451 if (SB_IS_BDEV(args->sb))
2452 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2454 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2456 /* 10 jiffies is enough for a delay */
2457 queue_delayed_work(system_wq, &args->reg_work, 10);
2460 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2461 const char *buffer, size_t size)
2465 struct cache_sb *sb;
2466 struct cache_sb_disk *sb_disk;
2467 struct block_device *bdev;
2471 err = "failed to reference bcache module";
2472 if (!try_module_get(THIS_MODULE))
2475 /* For latest state of bcache_is_reboot */
2477 err = "bcache is in reboot";
2478 if (bcache_is_reboot)
2479 goto out_module_put;
2482 err = "cannot allocate memory";
2483 path = kstrndup(buffer, size, GFP_KERNEL);
2485 goto out_module_put;
2487 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2492 err = "failed to open device";
2493 bdev = blkdev_get_by_path(strim(path),
2494 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2497 if (bdev == ERR_PTR(-EBUSY)) {
2498 bdev = lookup_bdev(strim(path));
2499 mutex_lock(&bch_register_lock);
2500 if (!IS_ERR(bdev) && bch_is_open(bdev))
2501 err = "device already registered";
2503 err = "device busy";
2504 mutex_unlock(&bch_register_lock);
2507 if (attr == &ksysfs_register_quiet)
2513 err = "failed to set blocksize";
2514 if (set_blocksize(bdev, 4096))
2515 goto out_blkdev_put;
2517 err = read_super(sb, bdev, &sb_disk);
2519 goto out_blkdev_put;
2521 err = "failed to register device";
2522 if (attr == &ksysfs_register_async) {
2523 /* register in asynchronous way */
2524 struct async_reg_args *args =
2525 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2529 err = "cannot allocate memory";
2530 goto out_put_sb_page;
2535 args->sb_disk = sb_disk;
2537 register_device_aync(args);
2538 /* No wait and returns to user space */
2542 if (SB_IS_BDEV(sb)) {
2543 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2546 goto out_put_sb_page;
2548 mutex_lock(&bch_register_lock);
2549 ret = register_bdev(sb, sb_disk, bdev, dc);
2550 mutex_unlock(&bch_register_lock);
2551 /* blkdev_put() will be called in cached_dev_free() */
2555 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2558 goto out_put_sb_page;
2560 /* blkdev_put() will be called in bch_cache_release() */
2561 if (register_cache(sb, sb_disk, bdev, ca) != 0)
2568 module_put(THIS_MODULE);
2573 put_page(virt_to_page(sb_disk));
2575 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2582 module_put(THIS_MODULE);
2584 pr_info("error %s: %s\n", path?path:"", err);
2590 struct list_head list;
2591 struct cached_dev *dc;
2594 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2595 struct kobj_attribute *attr,
2599 LIST_HEAD(pending_devs);
2601 struct cached_dev *dc, *tdc;
2602 struct pdev *pdev, *tpdev;
2603 struct cache_set *c, *tc;
2605 mutex_lock(&bch_register_lock);
2606 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2607 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2611 list_add(&pdev->list, &pending_devs);
2614 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2615 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2616 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2617 char *set_uuid = c->sb.uuid;
2619 if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2620 list_del(&pdev->list);
2626 mutex_unlock(&bch_register_lock);
2628 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2629 pr_info("delete pdev %p\n", pdev);
2630 list_del(&pdev->list);
2631 bcache_device_stop(&pdev->dc->disk);
2638 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2640 if (bcache_is_reboot)
2643 if (code == SYS_DOWN ||
2645 code == SYS_POWER_OFF) {
2647 unsigned long start = jiffies;
2648 bool stopped = false;
2650 struct cache_set *c, *tc;
2651 struct cached_dev *dc, *tdc;
2653 mutex_lock(&bch_register_lock);
2655 if (bcache_is_reboot)
2658 /* New registration is rejected since now */
2659 bcache_is_reboot = true;
2661 * Make registering caller (if there is) on other CPU
2662 * core know bcache_is_reboot set to true earlier
2666 if (list_empty(&bch_cache_sets) &&
2667 list_empty(&uncached_devices))
2670 mutex_unlock(&bch_register_lock);
2672 pr_info("Stopping all devices:\n");
2675 * The reason bch_register_lock is not held to call
2676 * bch_cache_set_stop() and bcache_device_stop() is to
2677 * avoid potential deadlock during reboot, because cache
2678 * set or bcache device stopping process will acqurie
2679 * bch_register_lock too.
2681 * We are safe here because bcache_is_reboot sets to
2682 * true already, register_bcache() will reject new
2683 * registration now. bcache_is_reboot also makes sure
2684 * bcache_reboot() won't be re-entered on by other thread,
2685 * so there is no race in following list iteration by
2686 * list_for_each_entry_safe().
2688 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2689 bch_cache_set_stop(c);
2691 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2692 bcache_device_stop(&dc->disk);
2696 * Give an early chance for other kthreads and
2697 * kworkers to stop themselves
2701 /* What's a condition variable? */
2703 long timeout = start + 10 * HZ - jiffies;
2705 mutex_lock(&bch_register_lock);
2706 stopped = list_empty(&bch_cache_sets) &&
2707 list_empty(&uncached_devices);
2709 if (timeout < 0 || stopped)
2712 prepare_to_wait(&unregister_wait, &wait,
2713 TASK_UNINTERRUPTIBLE);
2715 mutex_unlock(&bch_register_lock);
2716 schedule_timeout(timeout);
2719 finish_wait(&unregister_wait, &wait);
2722 pr_info("All devices stopped\n");
2724 pr_notice("Timeout waiting for devices to be closed\n");
2726 mutex_unlock(&bch_register_lock);
2732 static struct notifier_block reboot = {
2733 .notifier_call = bcache_reboot,
2734 .priority = INT_MAX, /* before any real devices */
2737 static void bcache_exit(void)
2742 kobject_put(bcache_kobj);
2744 destroy_workqueue(bcache_wq);
2746 destroy_workqueue(bch_journal_wq);
2749 unregister_blkdev(bcache_major, "bcache");
2750 unregister_reboot_notifier(&reboot);
2751 mutex_destroy(&bch_register_lock);
2754 /* Check and fixup module parameters */
2755 static void check_module_parameters(void)
2757 if (bch_cutoff_writeback_sync == 0)
2758 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2759 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2760 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2761 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2762 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2765 if (bch_cutoff_writeback == 0)
2766 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2767 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2768 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2769 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2770 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2773 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2774 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2775 bch_cutoff_writeback, bch_cutoff_writeback_sync);
2776 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2780 static int __init bcache_init(void)
2782 static const struct attribute *files[] = {
2783 &ksysfs_register.attr,
2784 &ksysfs_register_quiet.attr,
2785 #ifdef CONFIG_BCACHE_ASYNC_REGISTRAION
2786 &ksysfs_register_async.attr,
2788 &ksysfs_pendings_cleanup.attr,
2792 check_module_parameters();
2794 mutex_init(&bch_register_lock);
2795 init_waitqueue_head(&unregister_wait);
2796 register_reboot_notifier(&reboot);
2798 bcache_major = register_blkdev(0, "bcache");
2799 if (bcache_major < 0) {
2800 unregister_reboot_notifier(&reboot);
2801 mutex_destroy(&bch_register_lock);
2802 return bcache_major;
2805 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2809 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2810 if (!bch_journal_wq)
2813 bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2817 if (bch_request_init() ||
2818 sysfs_create_files(bcache_kobj, files))
2822 closure_debug_init();
2824 bcache_is_reboot = false;
2835 module_exit(bcache_exit);
2836 module_init(bcache_init);
2838 module_param(bch_cutoff_writeback, uint, 0);
2839 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2841 module_param(bch_cutoff_writeback_sync, uint, 0);
2842 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2844 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2845 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2846 MODULE_LICENSE("GPL");