bcache: avoid oversize memory allocation by small stripe_size
[platform/kernel/linux-starfive.git] / drivers / md / bcache / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17
18 #include <linux/blkdev.h>
19 #include <linux/pagemap.h>
20 #include <linux/debugfs.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31
32 static const char bcache_magic[] = {
33         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36
37 static const char invalid_uuid[] = {
38         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_flush_wq;
53 struct workqueue_struct *bch_journal_wq;
54
55
56 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS           128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
61
62 /* Superblock */
63
64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 {
66         unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67
68         if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69                 if (bch_has_feature_large_bucket(sb)) {
70                         unsigned int max, order;
71
72                         max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73                         order = le16_to_cpu(s->bucket_size);
74                         /*
75                          * bcache tool will make sure the overflow won't
76                          * happen, an error message here is enough.
77                          */
78                         if (order > max)
79                                 pr_err("Bucket size (1 << %u) overflows\n",
80                                         order);
81                         bucket_size = 1 << order;
82                 } else if (bch_has_feature_obso_large_bucket(sb)) {
83                         bucket_size +=
84                                 le16_to_cpu(s->obso_bucket_size_hi) << 16;
85                 }
86         }
87
88         return bucket_size;
89 }
90
91 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
92                                      struct cache_sb_disk *s)
93 {
94         const char *err;
95         unsigned int i;
96
97         sb->first_bucket= le16_to_cpu(s->first_bucket);
98         sb->nbuckets    = le64_to_cpu(s->nbuckets);
99         sb->bucket_size = get_bucket_size(sb, s);
100
101         sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
102         sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
103
104         err = "Too many journal buckets";
105         if (sb->keys > SB_JOURNAL_BUCKETS)
106                 goto err;
107
108         err = "Too many buckets";
109         if (sb->nbuckets > LONG_MAX)
110                 goto err;
111
112         err = "Not enough buckets";
113         if (sb->nbuckets < 1 << 7)
114                 goto err;
115
116         err = "Bad block size (not power of 2)";
117         if (!is_power_of_2(sb->block_size))
118                 goto err;
119
120         err = "Bad block size (larger than page size)";
121         if (sb->block_size > PAGE_SECTORS)
122                 goto err;
123
124         err = "Bad bucket size (not power of 2)";
125         if (!is_power_of_2(sb->bucket_size))
126                 goto err;
127
128         err = "Bad bucket size (smaller than page size)";
129         if (sb->bucket_size < PAGE_SECTORS)
130                 goto err;
131
132         err = "Invalid superblock: device too small";
133         if (get_capacity(bdev->bd_disk) <
134             sb->bucket_size * sb->nbuckets)
135                 goto err;
136
137         err = "Bad UUID";
138         if (bch_is_zero(sb->set_uuid, 16))
139                 goto err;
140
141         err = "Bad cache device number in set";
142         if (!sb->nr_in_set ||
143             sb->nr_in_set <= sb->nr_this_dev ||
144             sb->nr_in_set > MAX_CACHES_PER_SET)
145                 goto err;
146
147         err = "Journal buckets not sequential";
148         for (i = 0; i < sb->keys; i++)
149                 if (sb->d[i] != sb->first_bucket + i)
150                         goto err;
151
152         err = "Too many journal buckets";
153         if (sb->first_bucket + sb->keys > sb->nbuckets)
154                 goto err;
155
156         err = "Invalid superblock: first bucket comes before end of super";
157         if (sb->first_bucket * sb->bucket_size < 16)
158                 goto err;
159
160         err = NULL;
161 err:
162         return err;
163 }
164
165
166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167                               struct cache_sb_disk **res)
168 {
169         const char *err;
170         struct cache_sb_disk *s;
171         struct page *page;
172         unsigned int i;
173
174         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
175                                    SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176         if (IS_ERR(page))
177                 return "IO error";
178         s = page_address(page) + offset_in_page(SB_OFFSET);
179
180         sb->offset              = le64_to_cpu(s->offset);
181         sb->version             = le64_to_cpu(s->version);
182
183         memcpy(sb->magic,       s->magic, 16);
184         memcpy(sb->uuid,        s->uuid, 16);
185         memcpy(sb->set_uuid,    s->set_uuid, 16);
186         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
187
188         sb->flags               = le64_to_cpu(s->flags);
189         sb->seq                 = le64_to_cpu(s->seq);
190         sb->last_mount          = le32_to_cpu(s->last_mount);
191         sb->keys                = le16_to_cpu(s->keys);
192
193         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194                 sb->d[i] = le64_to_cpu(s->d[i]);
195
196         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197                  sb->version, sb->flags, sb->seq, sb->keys);
198
199         err = "Not a bcache superblock (bad offset)";
200         if (sb->offset != SB_SECTOR)
201                 goto err;
202
203         err = "Not a bcache superblock (bad magic)";
204         if (memcmp(sb->magic, bcache_magic, 16))
205                 goto err;
206
207         err = "Bad checksum";
208         if (s->csum != csum_set(s))
209                 goto err;
210
211         err = "Bad UUID";
212         if (bch_is_zero(sb->uuid, 16))
213                 goto err;
214
215         sb->block_size  = le16_to_cpu(s->block_size);
216
217         err = "Superblock block size smaller than device block size";
218         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219                 goto err;
220
221         switch (sb->version) {
222         case BCACHE_SB_VERSION_BDEV:
223                 sb->data_offset = BDEV_DATA_START_DEFAULT;
224                 break;
225         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226         case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227                 sb->data_offset = le64_to_cpu(s->data_offset);
228
229                 err = "Bad data offset";
230                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231                         goto err;
232
233                 break;
234         case BCACHE_SB_VERSION_CDEV:
235         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236                 err = read_super_common(sb, bdev, s);
237                 if (err)
238                         goto err;
239                 break;
240         case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241                 /*
242                  * Feature bits are needed in read_super_common(),
243                  * convert them firstly.
244                  */
245                 sb->feature_compat = le64_to_cpu(s->feature_compat);
246                 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247                 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248
249                 /* Check incompatible features */
250                 err = "Unsupported compatible feature found";
251                 if (bch_has_unknown_compat_features(sb))
252                         goto err;
253
254                 err = "Unsupported read-only compatible feature found";
255                 if (bch_has_unknown_ro_compat_features(sb))
256                         goto err;
257
258                 err = "Unsupported incompatible feature found";
259                 if (bch_has_unknown_incompat_features(sb))
260                         goto err;
261
262                 err = read_super_common(sb, bdev, s);
263                 if (err)
264                         goto err;
265                 break;
266         default:
267                 err = "Unsupported superblock version";
268                 goto err;
269         }
270
271         sb->last_mount = (u32)ktime_get_real_seconds();
272         *res = s;
273         return NULL;
274 err:
275         put_page(page);
276         return err;
277 }
278
279 static void write_bdev_super_endio(struct bio *bio)
280 {
281         struct cached_dev *dc = bio->bi_private;
282
283         if (bio->bi_status)
284                 bch_count_backing_io_errors(dc, bio);
285
286         closure_put(&dc->sb_write);
287 }
288
289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290                 struct bio *bio)
291 {
292         unsigned int i;
293
294         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295         bio->bi_iter.bi_sector  = SB_SECTOR;
296         __bio_add_page(bio, virt_to_page(out), SB_SIZE,
297                         offset_in_page(out));
298
299         out->offset             = cpu_to_le64(sb->offset);
300
301         memcpy(out->uuid,       sb->uuid, 16);
302         memcpy(out->set_uuid,   sb->set_uuid, 16);
303         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
304
305         out->flags              = cpu_to_le64(sb->flags);
306         out->seq                = cpu_to_le64(sb->seq);
307
308         out->last_mount         = cpu_to_le32(sb->last_mount);
309         out->first_bucket       = cpu_to_le16(sb->first_bucket);
310         out->keys               = cpu_to_le16(sb->keys);
311
312         for (i = 0; i < sb->keys; i++)
313                 out->d[i] = cpu_to_le64(sb->d[i]);
314
315         if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
316                 out->feature_compat    = cpu_to_le64(sb->feature_compat);
317                 out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
318                 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
319         }
320
321         out->version            = cpu_to_le64(sb->version);
322         out->csum = csum_set(out);
323
324         pr_debug("ver %llu, flags %llu, seq %llu\n",
325                  sb->version, sb->flags, sb->seq);
326
327         submit_bio(bio);
328 }
329
330 static void bch_write_bdev_super_unlock(struct closure *cl)
331 {
332         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
333
334         up(&dc->sb_write_mutex);
335 }
336
337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
338 {
339         struct closure *cl = &dc->sb_write;
340         struct bio *bio = &dc->sb_bio;
341
342         down(&dc->sb_write_mutex);
343         closure_init(cl, parent);
344
345         bio_init(bio, dc->bdev, dc->sb_bv, 1, 0);
346         bio->bi_end_io  = write_bdev_super_endio;
347         bio->bi_private = dc;
348
349         closure_get(cl);
350         /* I/O request sent to backing device */
351         __write_super(&dc->sb, dc->sb_disk, bio);
352
353         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
354 }
355
356 static void write_super_endio(struct bio *bio)
357 {
358         struct cache *ca = bio->bi_private;
359
360         /* is_read = 0 */
361         bch_count_io_errors(ca, bio->bi_status, 0,
362                             "writing superblock");
363         closure_put(&ca->set->sb_write);
364 }
365
366 static void bcache_write_super_unlock(struct closure *cl)
367 {
368         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
369
370         up(&c->sb_write_mutex);
371 }
372
373 void bcache_write_super(struct cache_set *c)
374 {
375         struct closure *cl = &c->sb_write;
376         struct cache *ca = c->cache;
377         struct bio *bio = &ca->sb_bio;
378         unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
379
380         down(&c->sb_write_mutex);
381         closure_init(cl, &c->cl);
382
383         ca->sb.seq++;
384
385         if (ca->sb.version < version)
386                 ca->sb.version = version;
387
388         bio_init(bio, ca->bdev, ca->sb_bv, 1, 0);
389         bio->bi_end_io  = write_super_endio;
390         bio->bi_private = ca;
391
392         closure_get(cl);
393         __write_super(&ca->sb, ca->sb_disk, bio);
394
395         closure_return_with_destructor(cl, bcache_write_super_unlock);
396 }
397
398 /* UUID io */
399
400 static void uuid_endio(struct bio *bio)
401 {
402         struct closure *cl = bio->bi_private;
403         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
404
405         cache_set_err_on(bio->bi_status, c, "accessing uuids");
406         bch_bbio_free(bio, c);
407         closure_put(cl);
408 }
409
410 static void uuid_io_unlock(struct closure *cl)
411 {
412         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
413
414         up(&c->uuid_write_mutex);
415 }
416
417 static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k,
418                     struct closure *parent)
419 {
420         struct closure *cl = &c->uuid_write;
421         struct uuid_entry *u;
422         unsigned int i;
423         char buf[80];
424
425         BUG_ON(!parent);
426         down(&c->uuid_write_mutex);
427         closure_init(cl, parent);
428
429         for (i = 0; i < KEY_PTRS(k); i++) {
430                 struct bio *bio = bch_bbio_alloc(c);
431
432                 bio->bi_opf = opf | REQ_SYNC | REQ_META;
433                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
434
435                 bio->bi_end_io  = uuid_endio;
436                 bio->bi_private = cl;
437                 bch_bio_map(bio, c->uuids);
438
439                 bch_submit_bbio(bio, c, k, i);
440
441                 if ((opf & REQ_OP_MASK) != REQ_OP_WRITE)
442                         break;
443         }
444
445         bch_extent_to_text(buf, sizeof(buf), k);
446         pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ?
447                  "wrote" : "read", buf);
448
449         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
450                 if (!bch_is_zero(u->uuid, 16))
451                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
452                                  u - c->uuids, u->uuid, u->label,
453                                  u->first_reg, u->last_reg, u->invalidated);
454
455         closure_return_with_destructor(cl, uuid_io_unlock);
456 }
457
458 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
459 {
460         struct bkey *k = &j->uuid_bucket;
461
462         if (__bch_btree_ptr_invalid(c, k))
463                 return "bad uuid pointer";
464
465         bkey_copy(&c->uuid_bucket, k);
466         uuid_io(c, REQ_OP_READ, k, cl);
467
468         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
469                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
470                 struct uuid_entry       *u1 = (void *) c->uuids;
471                 int i;
472
473                 closure_sync(cl);
474
475                 /*
476                  * Since the new uuid entry is bigger than the old, we have to
477                  * convert starting at the highest memory address and work down
478                  * in order to do it in place
479                  */
480
481                 for (i = c->nr_uuids - 1;
482                      i >= 0;
483                      --i) {
484                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
485                         memcpy(u1[i].label,     u0[i].label, 32);
486
487                         u1[i].first_reg         = u0[i].first_reg;
488                         u1[i].last_reg          = u0[i].last_reg;
489                         u1[i].invalidated       = u0[i].invalidated;
490
491                         u1[i].flags     = 0;
492                         u1[i].sectors   = 0;
493                 }
494         }
495
496         return NULL;
497 }
498
499 static int __uuid_write(struct cache_set *c)
500 {
501         BKEY_PADDED(key) k;
502         struct closure cl;
503         struct cache *ca = c->cache;
504         unsigned int size;
505
506         closure_init_stack(&cl);
507         lockdep_assert_held(&bch_register_lock);
508
509         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
510                 return 1;
511
512         size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
513         SET_KEY_SIZE(&k.key, size);
514         uuid_io(c, REQ_OP_WRITE, &k.key, &cl);
515         closure_sync(&cl);
516
517         /* Only one bucket used for uuid write */
518         atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
519
520         bkey_copy(&c->uuid_bucket, &k.key);
521         bkey_put(c, &k.key);
522         return 0;
523 }
524
525 int bch_uuid_write(struct cache_set *c)
526 {
527         int ret = __uuid_write(c);
528
529         if (!ret)
530                 bch_journal_meta(c, NULL);
531
532         return ret;
533 }
534
535 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
536 {
537         struct uuid_entry *u;
538
539         for (u = c->uuids;
540              u < c->uuids + c->nr_uuids; u++)
541                 if (!memcmp(u->uuid, uuid, 16))
542                         return u;
543
544         return NULL;
545 }
546
547 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
548 {
549         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
550
551         return uuid_find(c, zero_uuid);
552 }
553
554 /*
555  * Bucket priorities/gens:
556  *
557  * For each bucket, we store on disk its
558  *   8 bit gen
559  *  16 bit priority
560  *
561  * See alloc.c for an explanation of the gen. The priority is used to implement
562  * lru (and in the future other) cache replacement policies; for most purposes
563  * it's just an opaque integer.
564  *
565  * The gens and the priorities don't have a whole lot to do with each other, and
566  * it's actually the gens that must be written out at specific times - it's no
567  * big deal if the priorities don't get written, if we lose them we just reuse
568  * buckets in suboptimal order.
569  *
570  * On disk they're stored in a packed array, and in as many buckets are required
571  * to fit them all. The buckets we use to store them form a list; the journal
572  * header points to the first bucket, the first bucket points to the second
573  * bucket, et cetera.
574  *
575  * This code is used by the allocation code; periodically (whenever it runs out
576  * of buckets to allocate from) the allocation code will invalidate some
577  * buckets, but it can't use those buckets until their new gens are safely on
578  * disk.
579  */
580
581 static void prio_endio(struct bio *bio)
582 {
583         struct cache *ca = bio->bi_private;
584
585         cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
586         bch_bbio_free(bio, ca->set);
587         closure_put(&ca->prio);
588 }
589
590 static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf)
591 {
592         struct closure *cl = &ca->prio;
593         struct bio *bio = bch_bbio_alloc(ca->set);
594
595         closure_init_stack(cl);
596
597         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
598         bio_set_dev(bio, ca->bdev);
599         bio->bi_iter.bi_size    = meta_bucket_bytes(&ca->sb);
600
601         bio->bi_end_io  = prio_endio;
602         bio->bi_private = ca;
603         bio->bi_opf = opf | REQ_SYNC | REQ_META;
604         bch_bio_map(bio, ca->disk_buckets);
605
606         closure_bio_submit(ca->set, bio, &ca->prio);
607         closure_sync(cl);
608 }
609
610 int bch_prio_write(struct cache *ca, bool wait)
611 {
612         int i;
613         struct bucket *b;
614         struct closure cl;
615
616         pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
617                  fifo_used(&ca->free[RESERVE_PRIO]),
618                  fifo_used(&ca->free[RESERVE_NONE]),
619                  fifo_used(&ca->free_inc));
620
621         /*
622          * Pre-check if there are enough free buckets. In the non-blocking
623          * scenario it's better to fail early rather than starting to allocate
624          * buckets and do a cleanup later in case of failure.
625          */
626         if (!wait) {
627                 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
628                                fifo_used(&ca->free[RESERVE_NONE]);
629                 if (prio_buckets(ca) > avail)
630                         return -ENOMEM;
631         }
632
633         closure_init_stack(&cl);
634
635         lockdep_assert_held(&ca->set->bucket_lock);
636
637         ca->disk_buckets->seq++;
638
639         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
640                         &ca->meta_sectors_written);
641
642         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
643                 long bucket;
644                 struct prio_set *p = ca->disk_buckets;
645                 struct bucket_disk *d = p->data;
646                 struct bucket_disk *end = d + prios_per_bucket(ca);
647
648                 for (b = ca->buckets + i * prios_per_bucket(ca);
649                      b < ca->buckets + ca->sb.nbuckets && d < end;
650                      b++, d++) {
651                         d->prio = cpu_to_le16(b->prio);
652                         d->gen = b->gen;
653                 }
654
655                 p->next_bucket  = ca->prio_buckets[i + 1];
656                 p->magic        = pset_magic(&ca->sb);
657                 p->csum         = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
658
659                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
660                 BUG_ON(bucket == -1);
661
662                 mutex_unlock(&ca->set->bucket_lock);
663                 prio_io(ca, bucket, REQ_OP_WRITE);
664                 mutex_lock(&ca->set->bucket_lock);
665
666                 ca->prio_buckets[i] = bucket;
667                 atomic_dec_bug(&ca->buckets[bucket].pin);
668         }
669
670         mutex_unlock(&ca->set->bucket_lock);
671
672         bch_journal_meta(ca->set, &cl);
673         closure_sync(&cl);
674
675         mutex_lock(&ca->set->bucket_lock);
676
677         /*
678          * Don't want the old priorities to get garbage collected until after we
679          * finish writing the new ones, and they're journalled
680          */
681         for (i = 0; i < prio_buckets(ca); i++) {
682                 if (ca->prio_last_buckets[i])
683                         __bch_bucket_free(ca,
684                                 &ca->buckets[ca->prio_last_buckets[i]]);
685
686                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
687         }
688         return 0;
689 }
690
691 static int prio_read(struct cache *ca, uint64_t bucket)
692 {
693         struct prio_set *p = ca->disk_buckets;
694         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
695         struct bucket *b;
696         unsigned int bucket_nr = 0;
697         int ret = -EIO;
698
699         for (b = ca->buckets;
700              b < ca->buckets + ca->sb.nbuckets;
701              b++, d++) {
702                 if (d == end) {
703                         ca->prio_buckets[bucket_nr] = bucket;
704                         ca->prio_last_buckets[bucket_nr] = bucket;
705                         bucket_nr++;
706
707                         prio_io(ca, bucket, REQ_OP_READ);
708
709                         if (p->csum !=
710                             bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
711                                 pr_warn("bad csum reading priorities\n");
712                                 goto out;
713                         }
714
715                         if (p->magic != pset_magic(&ca->sb)) {
716                                 pr_warn("bad magic reading priorities\n");
717                                 goto out;
718                         }
719
720                         bucket = p->next_bucket;
721                         d = p->data;
722                 }
723
724                 b->prio = le16_to_cpu(d->prio);
725                 b->gen = b->last_gc = d->gen;
726         }
727
728         ret = 0;
729 out:
730         return ret;
731 }
732
733 /* Bcache device */
734
735 static int open_dev(struct gendisk *disk, blk_mode_t mode)
736 {
737         struct bcache_device *d = disk->private_data;
738
739         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
740                 return -ENXIO;
741
742         closure_get(&d->cl);
743         return 0;
744 }
745
746 static void release_dev(struct gendisk *b)
747 {
748         struct bcache_device *d = b->private_data;
749
750         closure_put(&d->cl);
751 }
752
753 static int ioctl_dev(struct block_device *b, blk_mode_t mode,
754                      unsigned int cmd, unsigned long arg)
755 {
756         struct bcache_device *d = b->bd_disk->private_data;
757
758         return d->ioctl(d, mode, cmd, arg);
759 }
760
761 static const struct block_device_operations bcache_cached_ops = {
762         .submit_bio     = cached_dev_submit_bio,
763         .open           = open_dev,
764         .release        = release_dev,
765         .ioctl          = ioctl_dev,
766         .owner          = THIS_MODULE,
767 };
768
769 static const struct block_device_operations bcache_flash_ops = {
770         .submit_bio     = flash_dev_submit_bio,
771         .open           = open_dev,
772         .release        = release_dev,
773         .ioctl          = ioctl_dev,
774         .owner          = THIS_MODULE,
775 };
776
777 void bcache_device_stop(struct bcache_device *d)
778 {
779         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
780                 /*
781                  * closure_fn set to
782                  * - cached device: cached_dev_flush()
783                  * - flash dev: flash_dev_flush()
784                  */
785                 closure_queue(&d->cl);
786 }
787
788 static void bcache_device_unlink(struct bcache_device *d)
789 {
790         lockdep_assert_held(&bch_register_lock);
791
792         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
793                 struct cache *ca = d->c->cache;
794
795                 sysfs_remove_link(&d->c->kobj, d->name);
796                 sysfs_remove_link(&d->kobj, "cache");
797
798                 bd_unlink_disk_holder(ca->bdev, d->disk);
799         }
800 }
801
802 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
803                                const char *name)
804 {
805         struct cache *ca = c->cache;
806         int ret;
807
808         bd_link_disk_holder(ca->bdev, d->disk);
809
810         snprintf(d->name, BCACHEDEVNAME_SIZE,
811                  "%s%u", name, d->id);
812
813         ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
814         if (ret < 0)
815                 pr_err("Couldn't create device -> cache set symlink\n");
816
817         ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
818         if (ret < 0)
819                 pr_err("Couldn't create cache set -> device symlink\n");
820
821         clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
822 }
823
824 static void bcache_device_detach(struct bcache_device *d)
825 {
826         lockdep_assert_held(&bch_register_lock);
827
828         atomic_dec(&d->c->attached_dev_nr);
829
830         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
831                 struct uuid_entry *u = d->c->uuids + d->id;
832
833                 SET_UUID_FLASH_ONLY(u, 0);
834                 memcpy(u->uuid, invalid_uuid, 16);
835                 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
836                 bch_uuid_write(d->c);
837         }
838
839         bcache_device_unlink(d);
840
841         d->c->devices[d->id] = NULL;
842         closure_put(&d->c->caching);
843         d->c = NULL;
844 }
845
846 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
847                                  unsigned int id)
848 {
849         d->id = id;
850         d->c = c;
851         c->devices[id] = d;
852
853         if (id >= c->devices_max_used)
854                 c->devices_max_used = id + 1;
855
856         closure_get(&c->caching);
857 }
858
859 static inline int first_minor_to_idx(int first_minor)
860 {
861         return (first_minor/BCACHE_MINORS);
862 }
863
864 static inline int idx_to_first_minor(int idx)
865 {
866         return (idx * BCACHE_MINORS);
867 }
868
869 static void bcache_device_free(struct bcache_device *d)
870 {
871         struct gendisk *disk = d->disk;
872
873         lockdep_assert_held(&bch_register_lock);
874
875         if (disk)
876                 pr_info("%s stopped\n", disk->disk_name);
877         else
878                 pr_err("bcache device (NULL gendisk) stopped\n");
879
880         if (d->c)
881                 bcache_device_detach(d);
882
883         if (disk) {
884                 ida_simple_remove(&bcache_device_idx,
885                                   first_minor_to_idx(disk->first_minor));
886                 put_disk(disk);
887         }
888
889         bioset_exit(&d->bio_split);
890         kvfree(d->full_dirty_stripes);
891         kvfree(d->stripe_sectors_dirty);
892
893         closure_debug_destroy(&d->cl);
894 }
895
896 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
897                 sector_t sectors, struct block_device *cached_bdev,
898                 const struct block_device_operations *ops)
899 {
900         struct request_queue *q;
901         const size_t max_stripes = min_t(size_t, INT_MAX,
902                                          SIZE_MAX / sizeof(atomic_t));
903         uint64_t n;
904         int idx;
905
906         if (!d->stripe_size)
907                 d->stripe_size = 1 << 31;
908         else if (d->stripe_size < BCH_MIN_STRIPE_SZ)
909                 d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size);
910
911         n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
912         if (!n || n > max_stripes) {
913                 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
914                         n);
915                 return -ENOMEM;
916         }
917         d->nr_stripes = n;
918
919         n = d->nr_stripes * sizeof(atomic_t);
920         d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
921         if (!d->stripe_sectors_dirty)
922                 return -ENOMEM;
923
924         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
925         d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
926         if (!d->full_dirty_stripes)
927                 goto out_free_stripe_sectors_dirty;
928
929         idx = ida_simple_get(&bcache_device_idx, 0,
930                                 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
931         if (idx < 0)
932                 goto out_free_full_dirty_stripes;
933
934         if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
935                         BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
936                 goto out_ida_remove;
937
938         d->disk = blk_alloc_disk(NUMA_NO_NODE);
939         if (!d->disk)
940                 goto out_bioset_exit;
941
942         set_capacity(d->disk, sectors);
943         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
944
945         d->disk->major          = bcache_major;
946         d->disk->first_minor    = idx_to_first_minor(idx);
947         d->disk->minors         = BCACHE_MINORS;
948         d->disk->fops           = ops;
949         d->disk->private_data   = d;
950
951         q = d->disk->queue;
952         q->limits.max_hw_sectors        = UINT_MAX;
953         q->limits.max_sectors           = UINT_MAX;
954         q->limits.max_segment_size      = UINT_MAX;
955         q->limits.max_segments          = BIO_MAX_VECS;
956         blk_queue_max_discard_sectors(q, UINT_MAX);
957         q->limits.discard_granularity   = 512;
958         q->limits.io_min                = block_size;
959         q->limits.logical_block_size    = block_size;
960         q->limits.physical_block_size   = block_size;
961
962         if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
963                 /*
964                  * This should only happen with BCACHE_SB_VERSION_BDEV.
965                  * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
966                  */
967                 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
968                         d->disk->disk_name, q->limits.logical_block_size,
969                         PAGE_SIZE, bdev_logical_block_size(cached_bdev));
970
971                 /* This also adjusts physical block size/min io size if needed */
972                 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
973         }
974
975         blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
976
977         blk_queue_write_cache(q, true, true);
978
979         return 0;
980
981 out_bioset_exit:
982         bioset_exit(&d->bio_split);
983 out_ida_remove:
984         ida_simple_remove(&bcache_device_idx, idx);
985 out_free_full_dirty_stripes:
986         kvfree(d->full_dirty_stripes);
987 out_free_stripe_sectors_dirty:
988         kvfree(d->stripe_sectors_dirty);
989         return -ENOMEM;
990
991 }
992
993 /* Cached device */
994
995 static void calc_cached_dev_sectors(struct cache_set *c)
996 {
997         uint64_t sectors = 0;
998         struct cached_dev *dc;
999
1000         list_for_each_entry(dc, &c->cached_devs, list)
1001                 sectors += bdev_nr_sectors(dc->bdev);
1002
1003         c->cached_dev_sectors = sectors;
1004 }
1005
1006 #define BACKING_DEV_OFFLINE_TIMEOUT 5
1007 static int cached_dev_status_update(void *arg)
1008 {
1009         struct cached_dev *dc = arg;
1010         struct request_queue *q;
1011
1012         /*
1013          * If this delayed worker is stopping outside, directly quit here.
1014          * dc->io_disable might be set via sysfs interface, so check it
1015          * here too.
1016          */
1017         while (!kthread_should_stop() && !dc->io_disable) {
1018                 q = bdev_get_queue(dc->bdev);
1019                 if (blk_queue_dying(q))
1020                         dc->offline_seconds++;
1021                 else
1022                         dc->offline_seconds = 0;
1023
1024                 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1025                         pr_err("%pg: device offline for %d seconds\n",
1026                                dc->bdev,
1027                                BACKING_DEV_OFFLINE_TIMEOUT);
1028                         pr_err("%s: disable I/O request due to backing device offline\n",
1029                                dc->disk.name);
1030                         dc->io_disable = true;
1031                         /* let others know earlier that io_disable is true */
1032                         smp_mb();
1033                         bcache_device_stop(&dc->disk);
1034                         break;
1035                 }
1036                 schedule_timeout_interruptible(HZ);
1037         }
1038
1039         wait_for_kthread_stop();
1040         return 0;
1041 }
1042
1043
1044 int bch_cached_dev_run(struct cached_dev *dc)
1045 {
1046         int ret = 0;
1047         struct bcache_device *d = &dc->disk;
1048         char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1049         char *env[] = {
1050                 "DRIVER=bcache",
1051                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1052                 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1053                 NULL,
1054         };
1055
1056         if (dc->io_disable) {
1057                 pr_err("I/O disabled on cached dev %pg\n", dc->bdev);
1058                 ret = -EIO;
1059                 goto out;
1060         }
1061
1062         if (atomic_xchg(&dc->running, 1)) {
1063                 pr_info("cached dev %pg is running already\n", dc->bdev);
1064                 ret = -EBUSY;
1065                 goto out;
1066         }
1067
1068         if (!d->c &&
1069             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1070                 struct closure cl;
1071
1072                 closure_init_stack(&cl);
1073
1074                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1075                 bch_write_bdev_super(dc, &cl);
1076                 closure_sync(&cl);
1077         }
1078
1079         ret = add_disk(d->disk);
1080         if (ret)
1081                 goto out;
1082         bd_link_disk_holder(dc->bdev, dc->disk.disk);
1083         /*
1084          * won't show up in the uevent file, use udevadm monitor -e instead
1085          * only class / kset properties are persistent
1086          */
1087         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1088
1089         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1090             sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1091                               &d->kobj, "bcache")) {
1092                 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1093                 ret = -ENOMEM;
1094                 goto out;
1095         }
1096
1097         dc->status_update_thread = kthread_run(cached_dev_status_update,
1098                                                dc, "bcache_status_update");
1099         if (IS_ERR(dc->status_update_thread)) {
1100                 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1101         }
1102
1103 out:
1104         kfree(env[1]);
1105         kfree(env[2]);
1106         kfree(buf);
1107         return ret;
1108 }
1109
1110 /*
1111  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1112  * work dc->writeback_rate_update is running. Wait until the routine
1113  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1114  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1115  * seconds, give up waiting here and continue to cancel it too.
1116  */
1117 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1118 {
1119         int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1120
1121         do {
1122                 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1123                               &dc->disk.flags))
1124                         break;
1125                 time_out--;
1126                 schedule_timeout_interruptible(1);
1127         } while (time_out > 0);
1128
1129         if (time_out == 0)
1130                 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1131
1132         cancel_delayed_work_sync(&dc->writeback_rate_update);
1133 }
1134
1135 static void cached_dev_detach_finish(struct work_struct *w)
1136 {
1137         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1138         struct cache_set *c = dc->disk.c;
1139
1140         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1141         BUG_ON(refcount_read(&dc->count));
1142
1143
1144         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1145                 cancel_writeback_rate_update_dwork(dc);
1146
1147         if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1148                 kthread_stop(dc->writeback_thread);
1149                 dc->writeback_thread = NULL;
1150         }
1151
1152         mutex_lock(&bch_register_lock);
1153
1154         bcache_device_detach(&dc->disk);
1155         list_move(&dc->list, &uncached_devices);
1156         calc_cached_dev_sectors(c);
1157
1158         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1159         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1160
1161         mutex_unlock(&bch_register_lock);
1162
1163         pr_info("Caching disabled for %pg\n", dc->bdev);
1164
1165         /* Drop ref we took in cached_dev_detach() */
1166         closure_put(&dc->disk.cl);
1167 }
1168
1169 void bch_cached_dev_detach(struct cached_dev *dc)
1170 {
1171         lockdep_assert_held(&bch_register_lock);
1172
1173         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1174                 return;
1175
1176         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1177                 return;
1178
1179         /*
1180          * Block the device from being closed and freed until we're finished
1181          * detaching
1182          */
1183         closure_get(&dc->disk.cl);
1184
1185         bch_writeback_queue(dc);
1186
1187         cached_dev_put(dc);
1188 }
1189
1190 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1191                           uint8_t *set_uuid)
1192 {
1193         uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1194         struct uuid_entry *u;
1195         struct cached_dev *exist_dc, *t;
1196         int ret = 0;
1197
1198         if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1199             (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1200                 return -ENOENT;
1201
1202         if (dc->disk.c) {
1203                 pr_err("Can't attach %pg: already attached\n", dc->bdev);
1204                 return -EINVAL;
1205         }
1206
1207         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1208                 pr_err("Can't attach %pg: shutting down\n", dc->bdev);
1209                 return -EINVAL;
1210         }
1211
1212         if (dc->sb.block_size < c->cache->sb.block_size) {
1213                 /* Will die */
1214                 pr_err("Couldn't attach %pg: block size less than set's block size\n",
1215                        dc->bdev);
1216                 return -EINVAL;
1217         }
1218
1219         /* Check whether already attached */
1220         list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1221                 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1222                         pr_err("Tried to attach %pg but duplicate UUID already attached\n",
1223                                 dc->bdev);
1224
1225                         return -EINVAL;
1226                 }
1227         }
1228
1229         u = uuid_find(c, dc->sb.uuid);
1230
1231         if (u &&
1232             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1233              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1234                 memcpy(u->uuid, invalid_uuid, 16);
1235                 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1236                 u = NULL;
1237         }
1238
1239         if (!u) {
1240                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1241                         pr_err("Couldn't find uuid for %pg in set\n", dc->bdev);
1242                         return -ENOENT;
1243                 }
1244
1245                 u = uuid_find_empty(c);
1246                 if (!u) {
1247                         pr_err("Not caching %pg, no room for UUID\n", dc->bdev);
1248                         return -EINVAL;
1249                 }
1250         }
1251
1252         /*
1253          * Deadlocks since we're called via sysfs...
1254          * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1255          */
1256
1257         if (bch_is_zero(u->uuid, 16)) {
1258                 struct closure cl;
1259
1260                 closure_init_stack(&cl);
1261
1262                 memcpy(u->uuid, dc->sb.uuid, 16);
1263                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1264                 u->first_reg = u->last_reg = rtime;
1265                 bch_uuid_write(c);
1266
1267                 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1268                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1269
1270                 bch_write_bdev_super(dc, &cl);
1271                 closure_sync(&cl);
1272         } else {
1273                 u->last_reg = rtime;
1274                 bch_uuid_write(c);
1275         }
1276
1277         bcache_device_attach(&dc->disk, c, u - c->uuids);
1278         list_move(&dc->list, &c->cached_devs);
1279         calc_cached_dev_sectors(c);
1280
1281         /*
1282          * dc->c must be set before dc->count != 0 - paired with the mb in
1283          * cached_dev_get()
1284          */
1285         smp_wmb();
1286         refcount_set(&dc->count, 1);
1287
1288         /* Block writeback thread, but spawn it */
1289         down_write(&dc->writeback_lock);
1290         if (bch_cached_dev_writeback_start(dc)) {
1291                 up_write(&dc->writeback_lock);
1292                 pr_err("Couldn't start writeback facilities for %s\n",
1293                        dc->disk.disk->disk_name);
1294                 return -ENOMEM;
1295         }
1296
1297         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1298                 atomic_set(&dc->has_dirty, 1);
1299                 bch_writeback_queue(dc);
1300         }
1301
1302         bch_sectors_dirty_init(&dc->disk);
1303
1304         ret = bch_cached_dev_run(dc);
1305         if (ret && (ret != -EBUSY)) {
1306                 up_write(&dc->writeback_lock);
1307                 /*
1308                  * bch_register_lock is held, bcache_device_stop() is not
1309                  * able to be directly called. The kthread and kworker
1310                  * created previously in bch_cached_dev_writeback_start()
1311                  * have to be stopped manually here.
1312                  */
1313                 kthread_stop(dc->writeback_thread);
1314                 cancel_writeback_rate_update_dwork(dc);
1315                 pr_err("Couldn't run cached device %pg\n", dc->bdev);
1316                 return ret;
1317         }
1318
1319         bcache_device_link(&dc->disk, c, "bdev");
1320         atomic_inc(&c->attached_dev_nr);
1321
1322         if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1323                 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1324                 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1325                 set_disk_ro(dc->disk.disk, 1);
1326         }
1327
1328         /* Allow the writeback thread to proceed */
1329         up_write(&dc->writeback_lock);
1330
1331         pr_info("Caching %pg as %s on set %pU\n",
1332                 dc->bdev,
1333                 dc->disk.disk->disk_name,
1334                 dc->disk.c->set_uuid);
1335         return 0;
1336 }
1337
1338 /* when dc->disk.kobj released */
1339 void bch_cached_dev_release(struct kobject *kobj)
1340 {
1341         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1342                                              disk.kobj);
1343         kfree(dc);
1344         module_put(THIS_MODULE);
1345 }
1346
1347 static void cached_dev_free(struct closure *cl)
1348 {
1349         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1350
1351         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1352                 cancel_writeback_rate_update_dwork(dc);
1353
1354         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1355                 kthread_stop(dc->writeback_thread);
1356         if (!IS_ERR_OR_NULL(dc->status_update_thread))
1357                 kthread_stop(dc->status_update_thread);
1358
1359         mutex_lock(&bch_register_lock);
1360
1361         if (atomic_read(&dc->running)) {
1362                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1363                 del_gendisk(dc->disk.disk);
1364         }
1365         bcache_device_free(&dc->disk);
1366         list_del(&dc->list);
1367
1368         mutex_unlock(&bch_register_lock);
1369
1370         if (dc->sb_disk)
1371                 put_page(virt_to_page(dc->sb_disk));
1372
1373         if (!IS_ERR_OR_NULL(dc->bdev))
1374                 blkdev_put(dc->bdev, dc);
1375
1376         wake_up(&unregister_wait);
1377
1378         kobject_put(&dc->disk.kobj);
1379 }
1380
1381 static void cached_dev_flush(struct closure *cl)
1382 {
1383         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1384         struct bcache_device *d = &dc->disk;
1385
1386         mutex_lock(&bch_register_lock);
1387         bcache_device_unlink(d);
1388         mutex_unlock(&bch_register_lock);
1389
1390         bch_cache_accounting_destroy(&dc->accounting);
1391         kobject_del(&d->kobj);
1392
1393         continue_at(cl, cached_dev_free, system_wq);
1394 }
1395
1396 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1397 {
1398         int ret;
1399         struct io *io;
1400         struct request_queue *q = bdev_get_queue(dc->bdev);
1401
1402         __module_get(THIS_MODULE);
1403         INIT_LIST_HEAD(&dc->list);
1404         closure_init(&dc->disk.cl, NULL);
1405         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1406         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1407         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1408         sema_init(&dc->sb_write_mutex, 1);
1409         INIT_LIST_HEAD(&dc->io_lru);
1410         spin_lock_init(&dc->io_lock);
1411         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1412
1413         dc->sequential_cutoff           = 4 << 20;
1414
1415         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1416                 list_add(&io->lru, &dc->io_lru);
1417                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1418         }
1419
1420         dc->disk.stripe_size = q->limits.io_opt >> 9;
1421
1422         if (dc->disk.stripe_size)
1423                 dc->partial_stripes_expensive =
1424                         q->limits.raid_partial_stripes_expensive;
1425
1426         ret = bcache_device_init(&dc->disk, block_size,
1427                          bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1428                          dc->bdev, &bcache_cached_ops);
1429         if (ret)
1430                 return ret;
1431
1432         blk_queue_io_opt(dc->disk.disk->queue,
1433                 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1434
1435         atomic_set(&dc->io_errors, 0);
1436         dc->io_disable = false;
1437         dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1438         /* default to auto */
1439         dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1440
1441         bch_cached_dev_request_init(dc);
1442         bch_cached_dev_writeback_init(dc);
1443         return 0;
1444 }
1445
1446 /* Cached device - bcache superblock */
1447
1448 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1449                                  struct block_device *bdev,
1450                                  struct cached_dev *dc)
1451 {
1452         const char *err = "cannot allocate memory";
1453         struct cache_set *c;
1454         int ret = -ENOMEM;
1455
1456         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1457         dc->bdev = bdev;
1458         dc->sb_disk = sb_disk;
1459
1460         if (cached_dev_init(dc, sb->block_size << 9))
1461                 goto err;
1462
1463         err = "error creating kobject";
1464         if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
1465                 goto err;
1466         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1467                 goto err;
1468
1469         pr_info("registered backing device %pg\n", dc->bdev);
1470
1471         list_add(&dc->list, &uncached_devices);
1472         /* attach to a matched cache set if it exists */
1473         list_for_each_entry(c, &bch_cache_sets, list)
1474                 bch_cached_dev_attach(dc, c, NULL);
1475
1476         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1477             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1478                 err = "failed to run cached device";
1479                 ret = bch_cached_dev_run(dc);
1480                 if (ret)
1481                         goto err;
1482         }
1483
1484         return 0;
1485 err:
1486         pr_notice("error %pg: %s\n", dc->bdev, err);
1487         bcache_device_stop(&dc->disk);
1488         return ret;
1489 }
1490
1491 /* Flash only volumes */
1492
1493 /* When d->kobj released */
1494 void bch_flash_dev_release(struct kobject *kobj)
1495 {
1496         struct bcache_device *d = container_of(kobj, struct bcache_device,
1497                                                kobj);
1498         kfree(d);
1499 }
1500
1501 static void flash_dev_free(struct closure *cl)
1502 {
1503         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1504
1505         mutex_lock(&bch_register_lock);
1506         atomic_long_sub(bcache_dev_sectors_dirty(d),
1507                         &d->c->flash_dev_dirty_sectors);
1508         del_gendisk(d->disk);
1509         bcache_device_free(d);
1510         mutex_unlock(&bch_register_lock);
1511         kobject_put(&d->kobj);
1512 }
1513
1514 static void flash_dev_flush(struct closure *cl)
1515 {
1516         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1517
1518         mutex_lock(&bch_register_lock);
1519         bcache_device_unlink(d);
1520         mutex_unlock(&bch_register_lock);
1521         kobject_del(&d->kobj);
1522         continue_at(cl, flash_dev_free, system_wq);
1523 }
1524
1525 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1526 {
1527         int err = -ENOMEM;
1528         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1529                                           GFP_KERNEL);
1530         if (!d)
1531                 goto err_ret;
1532
1533         closure_init(&d->cl, NULL);
1534         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1535
1536         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1537
1538         if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1539                         NULL, &bcache_flash_ops))
1540                 goto err;
1541
1542         bcache_device_attach(d, c, u - c->uuids);
1543         bch_sectors_dirty_init(d);
1544         bch_flash_dev_request_init(d);
1545         err = add_disk(d->disk);
1546         if (err)
1547                 goto err;
1548
1549         err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache");
1550         if (err)
1551                 goto err;
1552
1553         bcache_device_link(d, c, "volume");
1554
1555         if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1556                 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1557                 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1558                 set_disk_ro(d->disk, 1);
1559         }
1560
1561         return 0;
1562 err:
1563         kobject_put(&d->kobj);
1564 err_ret:
1565         return err;
1566 }
1567
1568 static int flash_devs_run(struct cache_set *c)
1569 {
1570         int ret = 0;
1571         struct uuid_entry *u;
1572
1573         for (u = c->uuids;
1574              u < c->uuids + c->nr_uuids && !ret;
1575              u++)
1576                 if (UUID_FLASH_ONLY(u))
1577                         ret = flash_dev_run(c, u);
1578
1579         return ret;
1580 }
1581
1582 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1583 {
1584         struct uuid_entry *u;
1585
1586         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1587                 return -EINTR;
1588
1589         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1590                 return -EPERM;
1591
1592         u = uuid_find_empty(c);
1593         if (!u) {
1594                 pr_err("Can't create volume, no room for UUID\n");
1595                 return -EINVAL;
1596         }
1597
1598         get_random_bytes(u->uuid, 16);
1599         memset(u->label, 0, 32);
1600         u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1601
1602         SET_UUID_FLASH_ONLY(u, 1);
1603         u->sectors = size >> 9;
1604
1605         bch_uuid_write(c);
1606
1607         return flash_dev_run(c, u);
1608 }
1609
1610 bool bch_cached_dev_error(struct cached_dev *dc)
1611 {
1612         if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1613                 return false;
1614
1615         dc->io_disable = true;
1616         /* make others know io_disable is true earlier */
1617         smp_mb();
1618
1619         pr_err("stop %s: too many IO errors on backing device %pg\n",
1620                dc->disk.disk->disk_name, dc->bdev);
1621
1622         bcache_device_stop(&dc->disk);
1623         return true;
1624 }
1625
1626 /* Cache set */
1627
1628 __printf(2, 3)
1629 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1630 {
1631         struct va_format vaf;
1632         va_list args;
1633
1634         if (c->on_error != ON_ERROR_PANIC &&
1635             test_bit(CACHE_SET_STOPPING, &c->flags))
1636                 return false;
1637
1638         if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1639                 pr_info("CACHE_SET_IO_DISABLE already set\n");
1640
1641         /*
1642          * XXX: we can be called from atomic context
1643          * acquire_console_sem();
1644          */
1645
1646         va_start(args, fmt);
1647
1648         vaf.fmt = fmt;
1649         vaf.va = &args;
1650
1651         pr_err("error on %pU: %pV, disabling caching\n",
1652                c->set_uuid, &vaf);
1653
1654         va_end(args);
1655
1656         if (c->on_error == ON_ERROR_PANIC)
1657                 panic("panic forced after error\n");
1658
1659         bch_cache_set_unregister(c);
1660         return true;
1661 }
1662
1663 /* When c->kobj released */
1664 void bch_cache_set_release(struct kobject *kobj)
1665 {
1666         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1667
1668         kfree(c);
1669         module_put(THIS_MODULE);
1670 }
1671
1672 static void cache_set_free(struct closure *cl)
1673 {
1674         struct cache_set *c = container_of(cl, struct cache_set, cl);
1675         struct cache *ca;
1676
1677         debugfs_remove(c->debug);
1678
1679         bch_open_buckets_free(c);
1680         bch_btree_cache_free(c);
1681         bch_journal_free(c);
1682
1683         mutex_lock(&bch_register_lock);
1684         bch_bset_sort_state_free(&c->sort);
1685         free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1686
1687         ca = c->cache;
1688         if (ca) {
1689                 ca->set = NULL;
1690                 c->cache = NULL;
1691                 kobject_put(&ca->kobj);
1692         }
1693
1694
1695         if (c->moving_gc_wq)
1696                 destroy_workqueue(c->moving_gc_wq);
1697         bioset_exit(&c->bio_split);
1698         mempool_exit(&c->fill_iter);
1699         mempool_exit(&c->bio_meta);
1700         mempool_exit(&c->search);
1701         kfree(c->devices);
1702
1703         list_del(&c->list);
1704         mutex_unlock(&bch_register_lock);
1705
1706         pr_info("Cache set %pU unregistered\n", c->set_uuid);
1707         wake_up(&unregister_wait);
1708
1709         closure_debug_destroy(&c->cl);
1710         kobject_put(&c->kobj);
1711 }
1712
1713 static void cache_set_flush(struct closure *cl)
1714 {
1715         struct cache_set *c = container_of(cl, struct cache_set, caching);
1716         struct cache *ca = c->cache;
1717         struct btree *b;
1718
1719         bch_cache_accounting_destroy(&c->accounting);
1720
1721         kobject_put(&c->internal);
1722         kobject_del(&c->kobj);
1723
1724         if (!IS_ERR_OR_NULL(c->gc_thread))
1725                 kthread_stop(c->gc_thread);
1726
1727         if (!IS_ERR(c->root))
1728                 list_add(&c->root->list, &c->btree_cache);
1729
1730         /*
1731          * Avoid flushing cached nodes if cache set is retiring
1732          * due to too many I/O errors detected.
1733          */
1734         if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1735                 list_for_each_entry(b, &c->btree_cache, list) {
1736                         mutex_lock(&b->write_lock);
1737                         if (btree_node_dirty(b))
1738                                 __bch_btree_node_write(b, NULL);
1739                         mutex_unlock(&b->write_lock);
1740                 }
1741
1742         if (ca->alloc_thread)
1743                 kthread_stop(ca->alloc_thread);
1744
1745         if (c->journal.cur) {
1746                 cancel_delayed_work_sync(&c->journal.work);
1747                 /* flush last journal entry if needed */
1748                 c->journal.work.work.func(&c->journal.work.work);
1749         }
1750
1751         closure_return(cl);
1752 }
1753
1754 /*
1755  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1756  * cache set is unregistering due to too many I/O errors. In this condition,
1757  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1758  * value and whether the broken cache has dirty data:
1759  *
1760  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1761  *  BCH_CACHED_STOP_AUTO               0               NO
1762  *  BCH_CACHED_STOP_AUTO               1               YES
1763  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1764  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1765  *
1766  * The expected behavior is, if stop_when_cache_set_failed is configured to
1767  * "auto" via sysfs interface, the bcache device will not be stopped if the
1768  * backing device is clean on the broken cache device.
1769  */
1770 static void conditional_stop_bcache_device(struct cache_set *c,
1771                                            struct bcache_device *d,
1772                                            struct cached_dev *dc)
1773 {
1774         if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1775                 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1776                         d->disk->disk_name, c->set_uuid);
1777                 bcache_device_stop(d);
1778         } else if (atomic_read(&dc->has_dirty)) {
1779                 /*
1780                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1781                  * and dc->has_dirty == 1
1782                  */
1783                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1784                         d->disk->disk_name);
1785                 /*
1786                  * There might be a small time gap that cache set is
1787                  * released but bcache device is not. Inside this time
1788                  * gap, regular I/O requests will directly go into
1789                  * backing device as no cache set attached to. This
1790                  * behavior may also introduce potential inconsistence
1791                  * data in writeback mode while cache is dirty.
1792                  * Therefore before calling bcache_device_stop() due
1793                  * to a broken cache device, dc->io_disable should be
1794                  * explicitly set to true.
1795                  */
1796                 dc->io_disable = true;
1797                 /* make others know io_disable is true earlier */
1798                 smp_mb();
1799                 bcache_device_stop(d);
1800         } else {
1801                 /*
1802                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1803                  * and dc->has_dirty == 0
1804                  */
1805                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1806                         d->disk->disk_name);
1807         }
1808 }
1809
1810 static void __cache_set_unregister(struct closure *cl)
1811 {
1812         struct cache_set *c = container_of(cl, struct cache_set, caching);
1813         struct cached_dev *dc;
1814         struct bcache_device *d;
1815         size_t i;
1816
1817         mutex_lock(&bch_register_lock);
1818
1819         for (i = 0; i < c->devices_max_used; i++) {
1820                 d = c->devices[i];
1821                 if (!d)
1822                         continue;
1823
1824                 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1825                     test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1826                         dc = container_of(d, struct cached_dev, disk);
1827                         bch_cached_dev_detach(dc);
1828                         if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1829                                 conditional_stop_bcache_device(c, d, dc);
1830                 } else {
1831                         bcache_device_stop(d);
1832                 }
1833         }
1834
1835         mutex_unlock(&bch_register_lock);
1836
1837         continue_at(cl, cache_set_flush, system_wq);
1838 }
1839
1840 void bch_cache_set_stop(struct cache_set *c)
1841 {
1842         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1843                 /* closure_fn set to __cache_set_unregister() */
1844                 closure_queue(&c->caching);
1845 }
1846
1847 void bch_cache_set_unregister(struct cache_set *c)
1848 {
1849         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1850         bch_cache_set_stop(c);
1851 }
1852
1853 #define alloc_meta_bucket_pages(gfp, sb)                \
1854         ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1855
1856 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1857 {
1858         int iter_size;
1859         struct cache *ca = container_of(sb, struct cache, sb);
1860         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1861
1862         if (!c)
1863                 return NULL;
1864
1865         __module_get(THIS_MODULE);
1866         closure_init(&c->cl, NULL);
1867         set_closure_fn(&c->cl, cache_set_free, system_wq);
1868
1869         closure_init(&c->caching, &c->cl);
1870         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1871
1872         /* Maybe create continue_at_noreturn() and use it here? */
1873         closure_set_stopped(&c->cl);
1874         closure_put(&c->cl);
1875
1876         kobject_init(&c->kobj, &bch_cache_set_ktype);
1877         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1878
1879         bch_cache_accounting_init(&c->accounting, &c->cl);
1880
1881         memcpy(c->set_uuid, sb->set_uuid, 16);
1882
1883         c->cache                = ca;
1884         c->cache->set           = c;
1885         c->bucket_bits          = ilog2(sb->bucket_size);
1886         c->block_bits           = ilog2(sb->block_size);
1887         c->nr_uuids             = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1888         c->devices_max_used     = 0;
1889         atomic_set(&c->attached_dev_nr, 0);
1890         c->btree_pages          = meta_bucket_pages(sb);
1891         if (c->btree_pages > BTREE_MAX_PAGES)
1892                 c->btree_pages = max_t(int, c->btree_pages / 4,
1893                                        BTREE_MAX_PAGES);
1894
1895         sema_init(&c->sb_write_mutex, 1);
1896         mutex_init(&c->bucket_lock);
1897         init_waitqueue_head(&c->btree_cache_wait);
1898         spin_lock_init(&c->btree_cannibalize_lock);
1899         init_waitqueue_head(&c->bucket_wait);
1900         init_waitqueue_head(&c->gc_wait);
1901         sema_init(&c->uuid_write_mutex, 1);
1902
1903         spin_lock_init(&c->btree_gc_time.lock);
1904         spin_lock_init(&c->btree_split_time.lock);
1905         spin_lock_init(&c->btree_read_time.lock);
1906
1907         bch_moving_init_cache_set(c);
1908
1909         INIT_LIST_HEAD(&c->list);
1910         INIT_LIST_HEAD(&c->cached_devs);
1911         INIT_LIST_HEAD(&c->btree_cache);
1912         INIT_LIST_HEAD(&c->btree_cache_freeable);
1913         INIT_LIST_HEAD(&c->btree_cache_freed);
1914         INIT_LIST_HEAD(&c->data_buckets);
1915
1916         iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1917                 sizeof(struct btree_iter_set);
1918
1919         c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1920         if (!c->devices)
1921                 goto err;
1922
1923         if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1924                 goto err;
1925
1926         if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1927                         sizeof(struct bbio) +
1928                         sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1929                 goto err;
1930
1931         if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1932                 goto err;
1933
1934         if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1935                         BIOSET_NEED_RESCUER))
1936                 goto err;
1937
1938         c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1939         if (!c->uuids)
1940                 goto err;
1941
1942         c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1943         if (!c->moving_gc_wq)
1944                 goto err;
1945
1946         if (bch_journal_alloc(c))
1947                 goto err;
1948
1949         if (bch_btree_cache_alloc(c))
1950                 goto err;
1951
1952         if (bch_open_buckets_alloc(c))
1953                 goto err;
1954
1955         if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1956                 goto err;
1957
1958         c->congested_read_threshold_us  = 2000;
1959         c->congested_write_threshold_us = 20000;
1960         c->error_limit  = DEFAULT_IO_ERROR_LIMIT;
1961         c->idle_max_writeback_rate_enabled = 1;
1962         WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1963
1964         return c;
1965 err:
1966         bch_cache_set_unregister(c);
1967         return NULL;
1968 }
1969
1970 static int run_cache_set(struct cache_set *c)
1971 {
1972         const char *err = "cannot allocate memory";
1973         struct cached_dev *dc, *t;
1974         struct cache *ca = c->cache;
1975         struct closure cl;
1976         LIST_HEAD(journal);
1977         struct journal_replay *l;
1978
1979         closure_init_stack(&cl);
1980
1981         c->nbuckets = ca->sb.nbuckets;
1982         set_gc_sectors(c);
1983
1984         if (CACHE_SYNC(&c->cache->sb)) {
1985                 struct bkey *k;
1986                 struct jset *j;
1987
1988                 err = "cannot allocate memory for journal";
1989                 if (bch_journal_read(c, &journal))
1990                         goto err;
1991
1992                 pr_debug("btree_journal_read() done\n");
1993
1994                 err = "no journal entries found";
1995                 if (list_empty(&journal))
1996                         goto err;
1997
1998                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1999
2000                 err = "IO error reading priorities";
2001                 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2002                         goto err;
2003
2004                 /*
2005                  * If prio_read() fails it'll call cache_set_error and we'll
2006                  * tear everything down right away, but if we perhaps checked
2007                  * sooner we could avoid journal replay.
2008                  */
2009
2010                 k = &j->btree_root;
2011
2012                 err = "bad btree root";
2013                 if (__bch_btree_ptr_invalid(c, k))
2014                         goto err;
2015
2016                 err = "error reading btree root";
2017                 c->root = bch_btree_node_get(c, NULL, k,
2018                                              j->btree_level,
2019                                              true, NULL);
2020                 if (IS_ERR_OR_NULL(c->root))
2021                         goto err;
2022
2023                 list_del_init(&c->root->list);
2024                 rw_unlock(true, c->root);
2025
2026                 err = uuid_read(c, j, &cl);
2027                 if (err)
2028                         goto err;
2029
2030                 err = "error in recovery";
2031                 if (bch_btree_check(c))
2032                         goto err;
2033
2034                 bch_journal_mark(c, &journal);
2035                 bch_initial_gc_finish(c);
2036                 pr_debug("btree_check() done\n");
2037
2038                 /*
2039                  * bcache_journal_next() can't happen sooner, or
2040                  * btree_gc_finish() will give spurious errors about last_gc >
2041                  * gc_gen - this is a hack but oh well.
2042                  */
2043                 bch_journal_next(&c->journal);
2044
2045                 err = "error starting allocator thread";
2046                 if (bch_cache_allocator_start(ca))
2047                         goto err;
2048
2049                 /*
2050                  * First place it's safe to allocate: btree_check() and
2051                  * btree_gc_finish() have to run before we have buckets to
2052                  * allocate, and bch_bucket_alloc_set() might cause a journal
2053                  * entry to be written so bcache_journal_next() has to be called
2054                  * first.
2055                  *
2056                  * If the uuids were in the old format we have to rewrite them
2057                  * before the next journal entry is written:
2058                  */
2059                 if (j->version < BCACHE_JSET_VERSION_UUID)
2060                         __uuid_write(c);
2061
2062                 err = "bcache: replay journal failed";
2063                 if (bch_journal_replay(c, &journal))
2064                         goto err;
2065         } else {
2066                 unsigned int j;
2067
2068                 pr_notice("invalidating existing data\n");
2069                 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2070                                         2, SB_JOURNAL_BUCKETS);
2071
2072                 for (j = 0; j < ca->sb.keys; j++)
2073                         ca->sb.d[j] = ca->sb.first_bucket + j;
2074
2075                 bch_initial_gc_finish(c);
2076
2077                 err = "error starting allocator thread";
2078                 if (bch_cache_allocator_start(ca))
2079                         goto err;
2080
2081                 mutex_lock(&c->bucket_lock);
2082                 bch_prio_write(ca, true);
2083                 mutex_unlock(&c->bucket_lock);
2084
2085                 err = "cannot allocate new UUID bucket";
2086                 if (__uuid_write(c))
2087                         goto err;
2088
2089                 err = "cannot allocate new btree root";
2090                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2091                 if (IS_ERR(c->root))
2092                         goto err;
2093
2094                 mutex_lock(&c->root->write_lock);
2095                 bkey_copy_key(&c->root->key, &MAX_KEY);
2096                 bch_btree_node_write(c->root, &cl);
2097                 mutex_unlock(&c->root->write_lock);
2098
2099                 bch_btree_set_root(c->root);
2100                 rw_unlock(true, c->root);
2101
2102                 /*
2103                  * We don't want to write the first journal entry until
2104                  * everything is set up - fortunately journal entries won't be
2105                  * written until the SET_CACHE_SYNC() here:
2106                  */
2107                 SET_CACHE_SYNC(&c->cache->sb, true);
2108
2109                 bch_journal_next(&c->journal);
2110                 bch_journal_meta(c, &cl);
2111         }
2112
2113         err = "error starting gc thread";
2114         if (bch_gc_thread_start(c))
2115                 goto err;
2116
2117         closure_sync(&cl);
2118         c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2119         bcache_write_super(c);
2120
2121         if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2122                 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2123
2124         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2125                 bch_cached_dev_attach(dc, c, NULL);
2126
2127         flash_devs_run(c);
2128
2129         bch_journal_space_reserve(&c->journal);
2130         set_bit(CACHE_SET_RUNNING, &c->flags);
2131         return 0;
2132 err:
2133         while (!list_empty(&journal)) {
2134                 l = list_first_entry(&journal, struct journal_replay, list);
2135                 list_del(&l->list);
2136                 kfree(l);
2137         }
2138
2139         closure_sync(&cl);
2140
2141         bch_cache_set_error(c, "%s", err);
2142
2143         return -EIO;
2144 }
2145
2146 static const char *register_cache_set(struct cache *ca)
2147 {
2148         char buf[12];
2149         const char *err = "cannot allocate memory";
2150         struct cache_set *c;
2151
2152         list_for_each_entry(c, &bch_cache_sets, list)
2153                 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2154                         if (c->cache)
2155                                 return "duplicate cache set member";
2156
2157                         goto found;
2158                 }
2159
2160         c = bch_cache_set_alloc(&ca->sb);
2161         if (!c)
2162                 return err;
2163
2164         err = "error creating kobject";
2165         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2166             kobject_add(&c->internal, &c->kobj, "internal"))
2167                 goto err;
2168
2169         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2170                 goto err;
2171
2172         bch_debug_init_cache_set(c);
2173
2174         list_add(&c->list, &bch_cache_sets);
2175 found:
2176         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2177         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2178             sysfs_create_link(&c->kobj, &ca->kobj, buf))
2179                 goto err;
2180
2181         kobject_get(&ca->kobj);
2182         ca->set = c;
2183         ca->set->cache = ca;
2184
2185         err = "failed to run cache set";
2186         if (run_cache_set(c) < 0)
2187                 goto err;
2188
2189         return NULL;
2190 err:
2191         bch_cache_set_unregister(c);
2192         return err;
2193 }
2194
2195 /* Cache device */
2196
2197 /* When ca->kobj released */
2198 void bch_cache_release(struct kobject *kobj)
2199 {
2200         struct cache *ca = container_of(kobj, struct cache, kobj);
2201         unsigned int i;
2202
2203         if (ca->set) {
2204                 BUG_ON(ca->set->cache != ca);
2205                 ca->set->cache = NULL;
2206         }
2207
2208         free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2209         kfree(ca->prio_buckets);
2210         vfree(ca->buckets);
2211
2212         free_heap(&ca->heap);
2213         free_fifo(&ca->free_inc);
2214
2215         for (i = 0; i < RESERVE_NR; i++)
2216                 free_fifo(&ca->free[i]);
2217
2218         if (ca->sb_disk)
2219                 put_page(virt_to_page(ca->sb_disk));
2220
2221         if (!IS_ERR_OR_NULL(ca->bdev))
2222                 blkdev_put(ca->bdev, ca);
2223
2224         kfree(ca);
2225         module_put(THIS_MODULE);
2226 }
2227
2228 static int cache_alloc(struct cache *ca)
2229 {
2230         size_t free;
2231         size_t btree_buckets;
2232         struct bucket *b;
2233         int ret = -ENOMEM;
2234         const char *err = NULL;
2235
2236         __module_get(THIS_MODULE);
2237         kobject_init(&ca->kobj, &bch_cache_ktype);
2238
2239         bio_init(&ca->journal.bio, NULL, ca->journal.bio.bi_inline_vecs, 8, 0);
2240
2241         /*
2242          * when ca->sb.njournal_buckets is not zero, journal exists,
2243          * and in bch_journal_replay(), tree node may split,
2244          * so bucket of RESERVE_BTREE type is needed,
2245          * the worst situation is all journal buckets are valid journal,
2246          * and all the keys need to replay,
2247          * so the number of  RESERVE_BTREE type buckets should be as much
2248          * as journal buckets
2249          */
2250         btree_buckets = ca->sb.njournal_buckets ?: 8;
2251         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2252         if (!free) {
2253                 ret = -EPERM;
2254                 err = "ca->sb.nbuckets is too small";
2255                 goto err_free;
2256         }
2257
2258         if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2259                                                 GFP_KERNEL)) {
2260                 err = "ca->free[RESERVE_BTREE] alloc failed";
2261                 goto err_btree_alloc;
2262         }
2263
2264         if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2265                                                         GFP_KERNEL)) {
2266                 err = "ca->free[RESERVE_PRIO] alloc failed";
2267                 goto err_prio_alloc;
2268         }
2269
2270         if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2271                 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2272                 goto err_movinggc_alloc;
2273         }
2274
2275         if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2276                 err = "ca->free[RESERVE_NONE] alloc failed";
2277                 goto err_none_alloc;
2278         }
2279
2280         if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2281                 err = "ca->free_inc alloc failed";
2282                 goto err_free_inc_alloc;
2283         }
2284
2285         if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2286                 err = "ca->heap alloc failed";
2287                 goto err_heap_alloc;
2288         }
2289
2290         ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2291                               ca->sb.nbuckets));
2292         if (!ca->buckets) {
2293                 err = "ca->buckets alloc failed";
2294                 goto err_buckets_alloc;
2295         }
2296
2297         ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2298                                    prio_buckets(ca), 2),
2299                                    GFP_KERNEL);
2300         if (!ca->prio_buckets) {
2301                 err = "ca->prio_buckets alloc failed";
2302                 goto err_prio_buckets_alloc;
2303         }
2304
2305         ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2306         if (!ca->disk_buckets) {
2307                 err = "ca->disk_buckets alloc failed";
2308                 goto err_disk_buckets_alloc;
2309         }
2310
2311         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2312
2313         for_each_bucket(b, ca)
2314                 atomic_set(&b->pin, 0);
2315         return 0;
2316
2317 err_disk_buckets_alloc:
2318         kfree(ca->prio_buckets);
2319 err_prio_buckets_alloc:
2320         vfree(ca->buckets);
2321 err_buckets_alloc:
2322         free_heap(&ca->heap);
2323 err_heap_alloc:
2324         free_fifo(&ca->free_inc);
2325 err_free_inc_alloc:
2326         free_fifo(&ca->free[RESERVE_NONE]);
2327 err_none_alloc:
2328         free_fifo(&ca->free[RESERVE_MOVINGGC]);
2329 err_movinggc_alloc:
2330         free_fifo(&ca->free[RESERVE_PRIO]);
2331 err_prio_alloc:
2332         free_fifo(&ca->free[RESERVE_BTREE]);
2333 err_btree_alloc:
2334 err_free:
2335         module_put(THIS_MODULE);
2336         if (err)
2337                 pr_notice("error %pg: %s\n", ca->bdev, err);
2338         return ret;
2339 }
2340
2341 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2342                                 struct block_device *bdev, struct cache *ca)
2343 {
2344         const char *err = NULL; /* must be set for any error case */
2345         int ret = 0;
2346
2347         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2348         ca->bdev = bdev;
2349         ca->sb_disk = sb_disk;
2350
2351         if (bdev_max_discard_sectors((bdev)))
2352                 ca->discard = CACHE_DISCARD(&ca->sb);
2353
2354         ret = cache_alloc(ca);
2355         if (ret != 0) {
2356                 /*
2357                  * If we failed here, it means ca->kobj is not initialized yet,
2358                  * kobject_put() won't be called and there is no chance to
2359                  * call blkdev_put() to bdev in bch_cache_release(). So we
2360                  * explicitly call blkdev_put() here.
2361                  */
2362                 blkdev_put(bdev, ca);
2363                 if (ret == -ENOMEM)
2364                         err = "cache_alloc(): -ENOMEM";
2365                 else if (ret == -EPERM)
2366                         err = "cache_alloc(): cache device is too small";
2367                 else
2368                         err = "cache_alloc(): unknown error";
2369                 goto err;
2370         }
2371
2372         if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
2373                 err = "error calling kobject_add";
2374                 ret = -ENOMEM;
2375                 goto out;
2376         }
2377
2378         mutex_lock(&bch_register_lock);
2379         err = register_cache_set(ca);
2380         mutex_unlock(&bch_register_lock);
2381
2382         if (err) {
2383                 ret = -ENODEV;
2384                 goto out;
2385         }
2386
2387         pr_info("registered cache device %pg\n", ca->bdev);
2388
2389 out:
2390         kobject_put(&ca->kobj);
2391
2392 err:
2393         if (err)
2394                 pr_notice("error %pg: %s\n", ca->bdev, err);
2395
2396         return ret;
2397 }
2398
2399 /* Global interfaces/init */
2400
2401 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2402                                const char *buffer, size_t size);
2403 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2404                                          struct kobj_attribute *attr,
2405                                          const char *buffer, size_t size);
2406
2407 kobj_attribute_write(register,          register_bcache);
2408 kobj_attribute_write(register_quiet,    register_bcache);
2409 kobj_attribute_write(pendings_cleanup,  bch_pending_bdevs_cleanup);
2410
2411 static bool bch_is_open_backing(dev_t dev)
2412 {
2413         struct cache_set *c, *tc;
2414         struct cached_dev *dc, *t;
2415
2416         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2417                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2418                         if (dc->bdev->bd_dev == dev)
2419                                 return true;
2420         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2421                 if (dc->bdev->bd_dev == dev)
2422                         return true;
2423         return false;
2424 }
2425
2426 static bool bch_is_open_cache(dev_t dev)
2427 {
2428         struct cache_set *c, *tc;
2429
2430         list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2431                 struct cache *ca = c->cache;
2432
2433                 if (ca->bdev->bd_dev == dev)
2434                         return true;
2435         }
2436
2437         return false;
2438 }
2439
2440 static bool bch_is_open(dev_t dev)
2441 {
2442         return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2443 }
2444
2445 struct async_reg_args {
2446         struct delayed_work reg_work;
2447         char *path;
2448         struct cache_sb *sb;
2449         struct cache_sb_disk *sb_disk;
2450         struct block_device *bdev;
2451         void *holder;
2452 };
2453
2454 static void register_bdev_worker(struct work_struct *work)
2455 {
2456         int fail = false;
2457         struct async_reg_args *args =
2458                 container_of(work, struct async_reg_args, reg_work.work);
2459
2460         mutex_lock(&bch_register_lock);
2461         if (register_bdev(args->sb, args->sb_disk, args->bdev, args->holder)
2462             < 0)
2463                 fail = true;
2464         mutex_unlock(&bch_register_lock);
2465
2466         if (fail)
2467                 pr_info("error %s: fail to register backing device\n",
2468                         args->path);
2469         kfree(args->sb);
2470         kfree(args->path);
2471         kfree(args);
2472         module_put(THIS_MODULE);
2473 }
2474
2475 static void register_cache_worker(struct work_struct *work)
2476 {
2477         int fail = false;
2478         struct async_reg_args *args =
2479                 container_of(work, struct async_reg_args, reg_work.work);
2480
2481         /* blkdev_put() will be called in bch_cache_release() */
2482         if (register_cache(args->sb, args->sb_disk, args->bdev, args->holder))
2483                 fail = true;
2484
2485         if (fail)
2486                 pr_info("error %s: fail to register cache device\n",
2487                         args->path);
2488         kfree(args->sb);
2489         kfree(args->path);
2490         kfree(args);
2491         module_put(THIS_MODULE);
2492 }
2493
2494 static void register_device_async(struct async_reg_args *args)
2495 {
2496         if (SB_IS_BDEV(args->sb))
2497                 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2498         else
2499                 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2500
2501         /* 10 jiffies is enough for a delay */
2502         queue_delayed_work(system_wq, &args->reg_work, 10);
2503 }
2504
2505 static void *alloc_holder_object(struct cache_sb *sb)
2506 {
2507         if (SB_IS_BDEV(sb))
2508                 return kzalloc(sizeof(struct cached_dev), GFP_KERNEL);
2509         return kzalloc(sizeof(struct cache), GFP_KERNEL);
2510 }
2511
2512 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2513                                const char *buffer, size_t size)
2514 {
2515         const char *err;
2516         char *path = NULL;
2517         struct cache_sb *sb;
2518         struct cache_sb_disk *sb_disk;
2519         struct block_device *bdev, *bdev2;
2520         void *holder = NULL;
2521         ssize_t ret;
2522         bool async_registration = false;
2523         bool quiet = false;
2524
2525 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2526         async_registration = true;
2527 #endif
2528
2529         ret = -EBUSY;
2530         err = "failed to reference bcache module";
2531         if (!try_module_get(THIS_MODULE))
2532                 goto out;
2533
2534         /* For latest state of bcache_is_reboot */
2535         smp_mb();
2536         err = "bcache is in reboot";
2537         if (bcache_is_reboot)
2538                 goto out_module_put;
2539
2540         ret = -ENOMEM;
2541         err = "cannot allocate memory";
2542         path = kstrndup(buffer, size, GFP_KERNEL);
2543         if (!path)
2544                 goto out_module_put;
2545
2546         sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2547         if (!sb)
2548                 goto out_free_path;
2549
2550         ret = -EINVAL;
2551         err = "failed to open device";
2552         bdev = blkdev_get_by_path(strim(path), BLK_OPEN_READ, NULL, NULL);
2553         if (IS_ERR(bdev))
2554                 goto out_free_sb;
2555
2556         err = "failed to set blocksize";
2557         if (set_blocksize(bdev, 4096))
2558                 goto out_blkdev_put;
2559
2560         err = read_super(sb, bdev, &sb_disk);
2561         if (err)
2562                 goto out_blkdev_put;
2563
2564         holder = alloc_holder_object(sb);
2565         if (!holder) {
2566                 ret = -ENOMEM;
2567                 err = "cannot allocate memory";
2568                 goto out_put_sb_page;
2569         }
2570
2571         /* Now reopen in exclusive mode with proper holder */
2572         bdev2 = blkdev_get_by_dev(bdev->bd_dev, BLK_OPEN_READ | BLK_OPEN_WRITE,
2573                                   holder, NULL);
2574         blkdev_put(bdev, NULL);
2575         bdev = bdev2;
2576         if (IS_ERR(bdev)) {
2577                 ret = PTR_ERR(bdev);
2578                 bdev = NULL;
2579                 if (ret == -EBUSY) {
2580                         dev_t dev;
2581
2582                         mutex_lock(&bch_register_lock);
2583                         if (lookup_bdev(strim(path), &dev) == 0 &&
2584                             bch_is_open(dev))
2585                                 err = "device already registered";
2586                         else
2587                                 err = "device busy";
2588                         mutex_unlock(&bch_register_lock);
2589                         if (attr == &ksysfs_register_quiet) {
2590                                 quiet = true;
2591                                 ret = size;
2592                         }
2593                 }
2594                 goto out_free_holder;
2595         }
2596
2597         err = "failed to register device";
2598
2599         if (async_registration) {
2600                 /* register in asynchronous way */
2601                 struct async_reg_args *args =
2602                         kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2603
2604                 if (!args) {
2605                         ret = -ENOMEM;
2606                         err = "cannot allocate memory";
2607                         goto out_free_holder;
2608                 }
2609
2610                 args->path      = path;
2611                 args->sb        = sb;
2612                 args->sb_disk   = sb_disk;
2613                 args->bdev      = bdev;
2614                 args->holder    = holder;
2615                 register_device_async(args);
2616                 /* No wait and returns to user space */
2617                 goto async_done;
2618         }
2619
2620         if (SB_IS_BDEV(sb)) {
2621                 mutex_lock(&bch_register_lock);
2622                 ret = register_bdev(sb, sb_disk, bdev, holder);
2623                 mutex_unlock(&bch_register_lock);
2624                 /* blkdev_put() will be called in cached_dev_free() */
2625                 if (ret < 0)
2626                         goto out_free_sb;
2627         } else {
2628                 /* blkdev_put() will be called in bch_cache_release() */
2629                 ret = register_cache(sb, sb_disk, bdev, holder);
2630                 if (ret)
2631                         goto out_free_sb;
2632         }
2633
2634         kfree(sb);
2635         kfree(path);
2636         module_put(THIS_MODULE);
2637 async_done:
2638         return size;
2639
2640 out_free_holder:
2641         kfree(holder);
2642 out_put_sb_page:
2643         put_page(virt_to_page(sb_disk));
2644 out_blkdev_put:
2645         if (bdev)
2646                 blkdev_put(bdev, holder);
2647 out_free_sb:
2648         kfree(sb);
2649 out_free_path:
2650         kfree(path);
2651         path = NULL;
2652 out_module_put:
2653         module_put(THIS_MODULE);
2654 out:
2655         if (!quiet)
2656                 pr_info("error %s: %s\n", path?path:"", err);
2657         return ret;
2658 }
2659
2660
2661 struct pdev {
2662         struct list_head list;
2663         struct cached_dev *dc;
2664 };
2665
2666 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2667                                          struct kobj_attribute *attr,
2668                                          const char *buffer,
2669                                          size_t size)
2670 {
2671         LIST_HEAD(pending_devs);
2672         ssize_t ret = size;
2673         struct cached_dev *dc, *tdc;
2674         struct pdev *pdev, *tpdev;
2675         struct cache_set *c, *tc;
2676
2677         mutex_lock(&bch_register_lock);
2678         list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2679                 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2680                 if (!pdev)
2681                         break;
2682                 pdev->dc = dc;
2683                 list_add(&pdev->list, &pending_devs);
2684         }
2685
2686         list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2687                 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2688                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2689                         char *set_uuid = c->set_uuid;
2690
2691                         if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2692                                 list_del(&pdev->list);
2693                                 kfree(pdev);
2694                                 break;
2695                         }
2696                 }
2697         }
2698         mutex_unlock(&bch_register_lock);
2699
2700         list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2701                 pr_info("delete pdev %p\n", pdev);
2702                 list_del(&pdev->list);
2703                 bcache_device_stop(&pdev->dc->disk);
2704                 kfree(pdev);
2705         }
2706
2707         return ret;
2708 }
2709
2710 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2711 {
2712         if (bcache_is_reboot)
2713                 return NOTIFY_DONE;
2714
2715         if (code == SYS_DOWN ||
2716             code == SYS_HALT ||
2717             code == SYS_POWER_OFF) {
2718                 DEFINE_WAIT(wait);
2719                 unsigned long start = jiffies;
2720                 bool stopped = false;
2721
2722                 struct cache_set *c, *tc;
2723                 struct cached_dev *dc, *tdc;
2724
2725                 mutex_lock(&bch_register_lock);
2726
2727                 if (bcache_is_reboot)
2728                         goto out;
2729
2730                 /* New registration is rejected since now */
2731                 bcache_is_reboot = true;
2732                 /*
2733                  * Make registering caller (if there is) on other CPU
2734                  * core know bcache_is_reboot set to true earlier
2735                  */
2736                 smp_mb();
2737
2738                 if (list_empty(&bch_cache_sets) &&
2739                     list_empty(&uncached_devices))
2740                         goto out;
2741
2742                 mutex_unlock(&bch_register_lock);
2743
2744                 pr_info("Stopping all devices:\n");
2745
2746                 /*
2747                  * The reason bch_register_lock is not held to call
2748                  * bch_cache_set_stop() and bcache_device_stop() is to
2749                  * avoid potential deadlock during reboot, because cache
2750                  * set or bcache device stopping process will acquire
2751                  * bch_register_lock too.
2752                  *
2753                  * We are safe here because bcache_is_reboot sets to
2754                  * true already, register_bcache() will reject new
2755                  * registration now. bcache_is_reboot also makes sure
2756                  * bcache_reboot() won't be re-entered on by other thread,
2757                  * so there is no race in following list iteration by
2758                  * list_for_each_entry_safe().
2759                  */
2760                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2761                         bch_cache_set_stop(c);
2762
2763                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2764                         bcache_device_stop(&dc->disk);
2765
2766
2767                 /*
2768                  * Give an early chance for other kthreads and
2769                  * kworkers to stop themselves
2770                  */
2771                 schedule();
2772
2773                 /* What's a condition variable? */
2774                 while (1) {
2775                         long timeout = start + 10 * HZ - jiffies;
2776
2777                         mutex_lock(&bch_register_lock);
2778                         stopped = list_empty(&bch_cache_sets) &&
2779                                 list_empty(&uncached_devices);
2780
2781                         if (timeout < 0 || stopped)
2782                                 break;
2783
2784                         prepare_to_wait(&unregister_wait, &wait,
2785                                         TASK_UNINTERRUPTIBLE);
2786
2787                         mutex_unlock(&bch_register_lock);
2788                         schedule_timeout(timeout);
2789                 }
2790
2791                 finish_wait(&unregister_wait, &wait);
2792
2793                 if (stopped)
2794                         pr_info("All devices stopped\n");
2795                 else
2796                         pr_notice("Timeout waiting for devices to be closed\n");
2797 out:
2798                 mutex_unlock(&bch_register_lock);
2799         }
2800
2801         return NOTIFY_DONE;
2802 }
2803
2804 static struct notifier_block reboot = {
2805         .notifier_call  = bcache_reboot,
2806         .priority       = INT_MAX, /* before any real devices */
2807 };
2808
2809 static void bcache_exit(void)
2810 {
2811         bch_debug_exit();
2812         bch_request_exit();
2813         if (bcache_kobj)
2814                 kobject_put(bcache_kobj);
2815         if (bcache_wq)
2816                 destroy_workqueue(bcache_wq);
2817         if (bch_journal_wq)
2818                 destroy_workqueue(bch_journal_wq);
2819         if (bch_flush_wq)
2820                 destroy_workqueue(bch_flush_wq);
2821         bch_btree_exit();
2822
2823         if (bcache_major)
2824                 unregister_blkdev(bcache_major, "bcache");
2825         unregister_reboot_notifier(&reboot);
2826         mutex_destroy(&bch_register_lock);
2827 }
2828
2829 /* Check and fixup module parameters */
2830 static void check_module_parameters(void)
2831 {
2832         if (bch_cutoff_writeback_sync == 0)
2833                 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2834         else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2835                 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2836                         bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2837                 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2838         }
2839
2840         if (bch_cutoff_writeback == 0)
2841                 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2842         else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2843                 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2844                         bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2845                 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2846         }
2847
2848         if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2849                 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2850                         bch_cutoff_writeback, bch_cutoff_writeback_sync);
2851                 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2852         }
2853 }
2854
2855 static int __init bcache_init(void)
2856 {
2857         static const struct attribute *files[] = {
2858                 &ksysfs_register.attr,
2859                 &ksysfs_register_quiet.attr,
2860                 &ksysfs_pendings_cleanup.attr,
2861                 NULL
2862         };
2863
2864         check_module_parameters();
2865
2866         mutex_init(&bch_register_lock);
2867         init_waitqueue_head(&unregister_wait);
2868         register_reboot_notifier(&reboot);
2869
2870         bcache_major = register_blkdev(0, "bcache");
2871         if (bcache_major < 0) {
2872                 unregister_reboot_notifier(&reboot);
2873                 mutex_destroy(&bch_register_lock);
2874                 return bcache_major;
2875         }
2876
2877         if (bch_btree_init())
2878                 goto err;
2879
2880         bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2881         if (!bcache_wq)
2882                 goto err;
2883
2884         /*
2885          * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2886          *
2887          * 1. It used `system_wq` before which also does no memory reclaim.
2888          * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2889          *    reduced throughput can be observed.
2890          *
2891          * We still want to user our own queue to not congest the `system_wq`.
2892          */
2893         bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2894         if (!bch_flush_wq)
2895                 goto err;
2896
2897         bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2898         if (!bch_journal_wq)
2899                 goto err;
2900
2901         bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2902         if (!bcache_kobj)
2903                 goto err;
2904
2905         if (bch_request_init() ||
2906             sysfs_create_files(bcache_kobj, files))
2907                 goto err;
2908
2909         bch_debug_init();
2910         closure_debug_init();
2911
2912         bcache_is_reboot = false;
2913
2914         return 0;
2915 err:
2916         bcache_exit();
2917         return -ENOMEM;
2918 }
2919
2920 /*
2921  * Module hooks
2922  */
2923 module_exit(bcache_exit);
2924 module_init(bcache_init);
2925
2926 module_param(bch_cutoff_writeback, uint, 0);
2927 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2928
2929 module_param(bch_cutoff_writeback_sync, uint, 0);
2930 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2931
2932 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2933 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2934 MODULE_LICENSE("GPL");