1 // SPDX-License-Identifier: GPL-2.0
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
14 #include "writeback.h"
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
21 #include <trace/events/bcache.h>
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
26 struct kmem_cache *bch_search_cache;
28 static void bch_data_insert_start(struct closure *cl);
30 static unsigned int cache_mode(struct cached_dev *dc)
32 return BDEV_CACHE_MODE(&dc->sb);
35 static bool verify(struct cached_dev *dc)
40 static void bio_csum(struct bio *bio, struct bkey *k)
43 struct bvec_iter iter;
46 bio_for_each_segment(bv, bio, iter) {
47 void *d = kmap(bv.bv_page) + bv.bv_offset;
49 csum = bch_crc64_update(csum, d, bv.bv_len);
53 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
56 /* Insert data into cache */
58 static void bch_data_insert_keys(struct closure *cl)
60 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61 atomic_t *journal_ref = NULL;
62 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
66 journal_ref = bch_journal(op->c, &op->insert_keys,
67 op->flush_journal ? cl : NULL);
69 ret = bch_btree_insert(op->c, &op->insert_keys,
70 journal_ref, replace_key);
72 op->replace_collision = true;
74 op->status = BLK_STS_RESOURCE;
75 op->insert_data_done = true;
79 atomic_dec_bug(journal_ref);
81 if (!op->insert_data_done) {
82 continue_at(cl, bch_data_insert_start, op->wq);
86 bch_keylist_free(&op->insert_keys);
90 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
93 size_t oldsize = bch_keylist_nkeys(l);
94 size_t newsize = oldsize + u64s;
97 * The journalling code doesn't handle the case where the keys to insert
98 * is bigger than an empty write: If we just return -ENOMEM here,
99 * bch_data_insert_keys() will insert the keys created so far
100 * and finish the rest when the keylist is empty.
102 if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset))
105 return __bch_keylist_realloc(l, u64s);
108 static void bch_data_invalidate(struct closure *cl)
110 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
111 struct bio *bio = op->bio;
113 pr_debug("invalidating %i sectors from %llu\n",
114 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
116 while (bio_sectors(bio)) {
117 unsigned int sectors = min(bio_sectors(bio),
118 1U << (KEY_SIZE_BITS - 1));
120 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
123 bio->bi_iter.bi_sector += sectors;
124 bio->bi_iter.bi_size -= sectors << 9;
126 bch_keylist_add(&op->insert_keys,
128 bio->bi_iter.bi_sector,
132 op->insert_data_done = true;
133 /* get in bch_data_insert() */
136 continue_at(cl, bch_data_insert_keys, op->wq);
139 static void bch_data_insert_error(struct closure *cl)
141 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
144 * Our data write just errored, which means we've got a bunch of keys to
145 * insert that point to data that wasn't successfully written.
147 * We don't have to insert those keys but we still have to invalidate
148 * that region of the cache - so, if we just strip off all the pointers
149 * from the keys we'll accomplish just that.
152 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
154 while (src != op->insert_keys.top) {
155 struct bkey *n = bkey_next(src);
157 SET_KEY_PTRS(src, 0);
158 memmove(dst, src, bkey_bytes(src));
160 dst = bkey_next(dst);
164 op->insert_keys.top = dst;
166 bch_data_insert_keys(cl);
169 static void bch_data_insert_endio(struct bio *bio)
171 struct closure *cl = bio->bi_private;
172 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
174 if (bio->bi_status) {
175 /* TODO: We could try to recover from this. */
177 op->status = bio->bi_status;
178 else if (!op->replace)
179 set_closure_fn(cl, bch_data_insert_error, op->wq);
181 set_closure_fn(cl, NULL, NULL);
184 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
187 static void bch_data_insert_start(struct closure *cl)
189 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
190 struct bio *bio = op->bio, *n;
193 return bch_data_invalidate(cl);
195 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
199 * Journal writes are marked REQ_PREFLUSH; if the original write was a
200 * flush, it'll wait on the journal write.
202 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
207 struct bio_set *split = &op->c->bio_split;
209 /* 1 for the device pointer and 1 for the chksum */
210 if (bch_keylist_realloc(&op->insert_keys,
211 3 + (op->csum ? 1 : 0),
213 continue_at(cl, bch_data_insert_keys, op->wq);
217 k = op->insert_keys.top;
219 SET_KEY_INODE(k, op->inode);
220 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
222 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
223 op->write_point, op->write_prio,
227 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
229 n->bi_end_io = bch_data_insert_endio;
233 SET_KEY_DIRTY(k, true);
235 for (i = 0; i < KEY_PTRS(k); i++)
236 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
240 SET_KEY_CSUM(k, op->csum);
244 trace_bcache_cache_insert(k);
245 bch_keylist_push(&op->insert_keys);
247 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
248 bch_submit_bbio(n, op->c, k, 0);
251 op->insert_data_done = true;
252 continue_at(cl, bch_data_insert_keys, op->wq);
255 /* bch_alloc_sectors() blocks if s->writeback = true */
256 BUG_ON(op->writeback);
259 * But if it's not a writeback write we'd rather just bail out if
260 * there aren't any buckets ready to write to - it might take awhile and
261 * we might be starving btree writes for gc or something.
266 * Writethrough write: We can't complete the write until we've
267 * updated the index. But we don't want to delay the write while
268 * we wait for buckets to be freed up, so just invalidate the
272 return bch_data_invalidate(cl);
275 * From a cache miss, we can just insert the keys for the data
276 * we have written or bail out if we didn't do anything.
278 op->insert_data_done = true;
281 if (!bch_keylist_empty(&op->insert_keys))
282 continue_at(cl, bch_data_insert_keys, op->wq);
289 * bch_data_insert - stick some data in the cache
290 * @cl: closure pointer.
292 * This is the starting point for any data to end up in a cache device; it could
293 * be from a normal write, or a writeback write, or a write to a flash only
294 * volume - it's also used by the moving garbage collector to compact data in
295 * mostly empty buckets.
297 * It first writes the data to the cache, creating a list of keys to be inserted
298 * (if the data had to be fragmented there will be multiple keys); after the
299 * data is written it calls bch_journal, and after the keys have been added to
300 * the next journal write they're inserted into the btree.
302 * It inserts the data in op->bio; bi_sector is used for the key offset,
303 * and op->inode is used for the key inode.
305 * If op->bypass is true, instead of inserting the data it invalidates the
306 * region of the cache represented by op->bio and op->inode.
308 void bch_data_insert(struct closure *cl)
310 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
312 trace_bcache_write(op->c, op->inode, op->bio,
313 op->writeback, op->bypass);
315 bch_keylist_init(&op->insert_keys);
317 bch_data_insert_start(cl);
321 * Congested? Return 0 (not congested) or the limit (in sectors)
322 * beyond which we should bypass the cache due to congestion.
324 unsigned int bch_get_congested(const struct cache_set *c)
328 if (!c->congested_read_threshold_us &&
329 !c->congested_write_threshold_us)
332 i = (local_clock_us() - c->congested_last_us) / 1024;
336 i += atomic_read(&c->congested);
343 i = fract_exp_two(i, 6);
345 i -= hweight32(get_random_u32());
347 return i > 0 ? i : 1;
350 static void add_sequential(struct task_struct *t)
352 ewma_add(t->sequential_io_avg,
353 t->sequential_io, 8, 0);
355 t->sequential_io = 0;
358 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
360 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
363 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
365 struct cache_set *c = dc->disk.c;
366 unsigned int mode = cache_mode(dc);
367 unsigned int sectors, congested;
368 struct task_struct *task = current;
371 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
372 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
373 (bio_op(bio) == REQ_OP_DISCARD))
376 if (mode == CACHE_MODE_NONE ||
377 (mode == CACHE_MODE_WRITEAROUND &&
378 op_is_write(bio_op(bio))))
382 * If the bio is for read-ahead or background IO, bypass it or
383 * not depends on the following situations,
384 * - If the IO is for meta data, always cache it and no bypass
385 * - If the IO is not meta data, check dc->cache_reada_policy,
386 * BCH_CACHE_READA_ALL: cache it and not bypass
387 * BCH_CACHE_READA_META_ONLY: not cache it and bypass
388 * That is, read-ahead request for metadata always get cached
389 * (eg, for gfs2 or xfs).
391 if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
392 if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
393 (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
397 if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) ||
398 bio_sectors(bio) & (c->cache->sb.block_size - 1)) {
399 pr_debug("skipping unaligned io\n");
403 if (bypass_torture_test(dc)) {
404 if ((get_random_int() & 3) == 3)
410 congested = bch_get_congested(c);
411 if (!congested && !dc->sequential_cutoff)
414 spin_lock(&dc->io_lock);
416 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
417 if (i->last == bio->bi_iter.bi_sector &&
418 time_before(jiffies, i->jiffies))
421 i = list_first_entry(&dc->io_lru, struct io, lru);
423 add_sequential(task);
426 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
427 i->sequential += bio->bi_iter.bi_size;
429 i->last = bio_end_sector(bio);
430 i->jiffies = jiffies + msecs_to_jiffies(5000);
431 task->sequential_io = i->sequential;
434 hlist_add_head(&i->hash, iohash(dc, i->last));
435 list_move_tail(&i->lru, &dc->io_lru);
437 spin_unlock(&dc->io_lock);
439 sectors = max(task->sequential_io,
440 task->sequential_io_avg) >> 9;
442 if (dc->sequential_cutoff &&
443 sectors >= dc->sequential_cutoff >> 9) {
444 trace_bcache_bypass_sequential(bio);
448 if (congested && sectors >= congested) {
449 trace_bcache_bypass_congested(bio);
454 bch_rescale_priorities(c, bio_sectors(bio));
457 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
464 /* Stack frame for bio_complete */
468 struct bio *orig_bio;
469 struct bio *cache_miss;
470 struct bcache_device *d;
472 unsigned int insert_bio_sectors;
473 unsigned int recoverable:1;
474 unsigned int write:1;
475 unsigned int read_dirty_data:1;
476 unsigned int cache_missed:1;
478 struct block_device *orig_bdev;
479 unsigned long start_time;
482 struct data_insert_op iop;
485 static void bch_cache_read_endio(struct bio *bio)
487 struct bbio *b = container_of(bio, struct bbio, bio);
488 struct closure *cl = bio->bi_private;
489 struct search *s = container_of(cl, struct search, cl);
492 * If the bucket was reused while our bio was in flight, we might have
493 * read the wrong data. Set s->error but not error so it doesn't get
494 * counted against the cache device, but we'll still reread the data
495 * from the backing device.
499 s->iop.status = bio->bi_status;
500 else if (!KEY_DIRTY(&b->key) &&
501 ptr_stale(s->iop.c, &b->key, 0)) {
502 atomic_long_inc(&s->iop.c->cache_read_races);
503 s->iop.status = BLK_STS_IOERR;
506 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
510 * Read from a single key, handling the initial cache miss if the key starts in
511 * the middle of the bio
513 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
515 struct search *s = container_of(op, struct search, op);
516 struct bio *n, *bio = &s->bio.bio;
517 struct bkey *bio_key;
520 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
523 if (KEY_INODE(k) != s->iop.inode ||
524 KEY_START(k) > bio->bi_iter.bi_sector) {
525 unsigned int bio_sectors = bio_sectors(bio);
526 unsigned int sectors = KEY_INODE(k) == s->iop.inode
527 ? min_t(uint64_t, INT_MAX,
528 KEY_START(k) - bio->bi_iter.bi_sector)
530 int ret = s->d->cache_miss(b, s, bio, sectors);
532 if (ret != MAP_CONTINUE)
535 /* if this was a complete miss we shouldn't get here */
536 BUG_ON(bio_sectors <= sectors);
542 /* XXX: figure out best pointer - for multiple cache devices */
545 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
548 s->read_dirty_data = true;
550 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
551 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
552 GFP_NOIO, &s->d->bio_split);
554 bio_key = &container_of(n, struct bbio, bio)->key;
555 bch_bkey_copy_single_ptr(bio_key, k, ptr);
557 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
558 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
560 n->bi_end_io = bch_cache_read_endio;
561 n->bi_private = &s->cl;
564 * The bucket we're reading from might be reused while our bio
565 * is in flight, and we could then end up reading the wrong
568 * We guard against this by checking (in cache_read_endio()) if
569 * the pointer is stale again; if so, we treat it as an error
570 * and reread from the backing device (but we don't pass that
571 * error up anywhere).
574 __bch_submit_bbio(n, b->c);
575 return n == bio ? MAP_DONE : MAP_CONTINUE;
578 static void cache_lookup(struct closure *cl)
580 struct search *s = container_of(cl, struct search, iop.cl);
581 struct bio *bio = &s->bio.bio;
582 struct cached_dev *dc;
585 bch_btree_op_init(&s->op, -1);
587 ret = bch_btree_map_keys(&s->op, s->iop.c,
588 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
589 cache_lookup_fn, MAP_END_KEY);
590 if (ret == -EAGAIN) {
591 continue_at(cl, cache_lookup, bcache_wq);
596 * We might meet err when searching the btree, If that happens, we will
597 * get negative ret, in this scenario we should not recover data from
598 * backing device (when cache device is dirty) because we don't know
599 * whether bkeys the read request covered are all clean.
601 * And after that happened, s->iop.status is still its initial value
602 * before we submit s->bio.bio
605 BUG_ON(ret == -EINTR);
606 if (s->d && s->d->c &&
607 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
608 dc = container_of(s->d, struct cached_dev, disk);
609 if (dc && atomic_read(&dc->has_dirty))
610 s->recoverable = false;
613 s->iop.status = BLK_STS_IOERR;
619 /* Common code for the make_request functions */
621 static void request_endio(struct bio *bio)
623 struct closure *cl = bio->bi_private;
625 if (bio->bi_status) {
626 struct search *s = container_of(cl, struct search, cl);
628 s->iop.status = bio->bi_status;
629 /* Only cache read errors are recoverable */
630 s->recoverable = false;
637 static void backing_request_endio(struct bio *bio)
639 struct closure *cl = bio->bi_private;
641 if (bio->bi_status) {
642 struct search *s = container_of(cl, struct search, cl);
643 struct cached_dev *dc = container_of(s->d,
644 struct cached_dev, disk);
646 * If a bio has REQ_PREFLUSH for writeback mode, it is
647 * speically assembled in cached_dev_write() for a non-zero
648 * write request which has REQ_PREFLUSH. we don't set
649 * s->iop.status by this failure, the status will be decided
650 * by result of bch_data_insert() operation.
652 if (unlikely(s->iop.writeback &&
653 bio->bi_opf & REQ_PREFLUSH)) {
654 pr_err("Can't flush %s: returned bi_status %i\n",
655 dc->backing_dev_name, bio->bi_status);
657 /* set to orig_bio->bi_status in bio_complete() */
658 s->iop.status = bio->bi_status;
660 s->recoverable = false;
661 /* should count I/O error for backing device here */
662 bch_count_backing_io_errors(dc, bio);
669 static void bio_complete(struct search *s)
672 /* Count on bcache device */
673 bio_end_io_acct_remapped(s->orig_bio, s->start_time,
675 trace_bcache_request_end(s->d, s->orig_bio);
676 s->orig_bio->bi_status = s->iop.status;
677 bio_endio(s->orig_bio);
682 static void do_bio_hook(struct search *s,
683 struct bio *orig_bio,
684 bio_end_io_t *end_io_fn)
686 struct bio *bio = &s->bio.bio;
688 bio_init(bio, NULL, 0);
689 __bio_clone_fast(bio, orig_bio);
691 * bi_end_io can be set separately somewhere else, e.g. the
693 * - cache_bio->bi_end_io from cached_dev_cache_miss()
694 * - n->bi_end_io from cache_lookup_fn()
696 bio->bi_end_io = end_io_fn;
697 bio->bi_private = &s->cl;
702 static void search_free(struct closure *cl)
704 struct search *s = container_of(cl, struct search, cl);
706 atomic_dec(&s->iop.c->search_inflight);
712 closure_debug_destroy(cl);
713 mempool_free(s, &s->iop.c->search);
716 static inline struct search *search_alloc(struct bio *bio,
717 struct bcache_device *d, struct block_device *orig_bdev,
718 unsigned long start_time)
722 s = mempool_alloc(&d->c->search, GFP_NOIO);
724 closure_init(&s->cl, NULL);
725 do_bio_hook(s, bio, request_endio);
726 atomic_inc(&d->c->search_inflight);
729 s->cache_miss = NULL;
733 s->write = op_is_write(bio_op(bio));
734 s->read_dirty_data = 0;
735 /* Count on the bcache device */
736 s->orig_bdev = orig_bdev;
737 s->start_time = start_time;
740 s->iop.inode = d->id;
741 s->iop.write_point = hash_long((unsigned long) current, 16);
742 s->iop.write_prio = 0;
745 s->iop.flush_journal = op_is_flush(bio->bi_opf);
746 s->iop.wq = bcache_wq;
753 static void cached_dev_bio_complete(struct closure *cl)
755 struct search *s = container_of(cl, struct search, cl);
756 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
764 static void cached_dev_read_error_done(struct closure *cl)
766 struct search *s = container_of(cl, struct search, cl);
768 if (s->iop.replace_collision)
769 bch_mark_cache_miss_collision(s->iop.c, s->d);
772 bio_free_pages(s->iop.bio);
774 cached_dev_bio_complete(cl);
777 static void cached_dev_read_error(struct closure *cl)
779 struct search *s = container_of(cl, struct search, cl);
780 struct bio *bio = &s->bio.bio;
783 * If read request hit dirty data (s->read_dirty_data is true),
784 * then recovery a failed read request from cached device may
785 * get a stale data back. So read failure recovery is only
786 * permitted when read request hit clean data in cache device,
787 * or when cache read race happened.
789 if (s->recoverable && !s->read_dirty_data) {
790 /* Retry from the backing device: */
791 trace_bcache_read_retry(s->orig_bio);
794 do_bio_hook(s, s->orig_bio, backing_request_endio);
796 /* XXX: invalidate cache */
798 /* I/O request sent to backing device */
799 closure_bio_submit(s->iop.c, bio, cl);
802 continue_at(cl, cached_dev_read_error_done, NULL);
805 static void cached_dev_cache_miss_done(struct closure *cl)
807 struct search *s = container_of(cl, struct search, cl);
808 struct bcache_device *d = s->d;
810 if (s->iop.replace_collision)
811 bch_mark_cache_miss_collision(s->iop.c, s->d);
814 bio_free_pages(s->iop.bio);
816 cached_dev_bio_complete(cl);
820 static void cached_dev_read_done(struct closure *cl)
822 struct search *s = container_of(cl, struct search, cl);
823 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
826 * We had a cache miss; cache_bio now contains data ready to be inserted
829 * First, we copy the data we just read from cache_bio's bounce buffers
830 * to the buffers the original bio pointed to:
834 bio_reset(s->iop.bio);
835 s->iop.bio->bi_iter.bi_sector =
836 s->cache_miss->bi_iter.bi_sector;
837 bio_copy_dev(s->iop.bio, s->cache_miss);
838 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
839 bch_bio_map(s->iop.bio, NULL);
841 bio_copy_data(s->cache_miss, s->iop.bio);
843 bio_put(s->cache_miss);
844 s->cache_miss = NULL;
847 if (verify(dc) && s->recoverable && !s->read_dirty_data)
848 bch_data_verify(dc, s->orig_bio);
850 closure_get(&dc->disk.cl);
854 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
855 BUG_ON(!s->iop.replace);
856 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
859 continue_at(cl, cached_dev_cache_miss_done, NULL);
862 static void cached_dev_read_done_bh(struct closure *cl)
864 struct search *s = container_of(cl, struct search, cl);
865 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
867 bch_mark_cache_accounting(s->iop.c, s->d,
868 !s->cache_missed, s->iop.bypass);
869 trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
872 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
873 else if (s->iop.bio || verify(dc))
874 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
876 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
879 static int cached_dev_cache_miss(struct btree *b, struct search *s,
880 struct bio *bio, unsigned int sectors)
882 int ret = MAP_CONTINUE;
883 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
884 struct bio *miss, *cache_bio;
885 unsigned int size_limit;
889 if (s->cache_miss || s->iop.bypass) {
890 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
891 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
895 /* Limitation for valid replace key size and cache_bio bvecs number */
896 size_limit = min_t(unsigned int, BIO_MAX_VECS * PAGE_SECTORS,
897 (1 << KEY_SIZE_BITS) - 1);
898 s->insert_bio_sectors = min3(size_limit, sectors, bio_sectors(bio));
900 s->iop.replace_key = KEY(s->iop.inode,
901 bio->bi_iter.bi_sector + s->insert_bio_sectors,
902 s->insert_bio_sectors);
904 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
908 s->iop.replace = true;
910 miss = bio_next_split(bio, s->insert_bio_sectors, GFP_NOIO,
913 /* btree_search_recurse()'s btree iterator is no good anymore */
914 ret = miss == bio ? MAP_DONE : -EINTR;
916 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
917 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
918 &dc->disk.bio_split);
922 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
923 bio_copy_dev(cache_bio, miss);
924 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
926 cache_bio->bi_end_io = backing_request_endio;
927 cache_bio->bi_private = &s->cl;
929 bch_bio_map(cache_bio, NULL);
930 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
933 s->cache_miss = miss;
934 s->iop.bio = cache_bio;
936 /* I/O request sent to backing device */
937 closure_bio_submit(s->iop.c, cache_bio, &s->cl);
943 miss->bi_end_io = backing_request_endio;
944 miss->bi_private = &s->cl;
945 /* I/O request sent to backing device */
946 closure_bio_submit(s->iop.c, miss, &s->cl);
950 static void cached_dev_read(struct cached_dev *dc, struct search *s)
952 struct closure *cl = &s->cl;
954 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
955 continue_at(cl, cached_dev_read_done_bh, NULL);
960 static void cached_dev_write_complete(struct closure *cl)
962 struct search *s = container_of(cl, struct search, cl);
963 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
965 up_read_non_owner(&dc->writeback_lock);
966 cached_dev_bio_complete(cl);
969 static void cached_dev_write(struct cached_dev *dc, struct search *s)
971 struct closure *cl = &s->cl;
972 struct bio *bio = &s->bio.bio;
973 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
974 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
976 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
978 down_read_non_owner(&dc->writeback_lock);
979 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
981 * We overlap with some dirty data undergoing background
982 * writeback, force this write to writeback
984 s->iop.bypass = false;
985 s->iop.writeback = true;
989 * Discards aren't _required_ to do anything, so skipping if
990 * check_overlapping returned true is ok
992 * But check_overlapping drops dirty keys for which io hasn't started,
993 * so we still want to call it.
995 if (bio_op(bio) == REQ_OP_DISCARD)
996 s->iop.bypass = true;
998 if (should_writeback(dc, s->orig_bio,
1001 s->iop.bypass = false;
1002 s->iop.writeback = true;
1005 if (s->iop.bypass) {
1006 s->iop.bio = s->orig_bio;
1007 bio_get(s->iop.bio);
1009 if (bio_op(bio) == REQ_OP_DISCARD &&
1010 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1013 /* I/O request sent to backing device */
1014 bio->bi_end_io = backing_request_endio;
1015 closure_bio_submit(s->iop.c, bio, cl);
1017 } else if (s->iop.writeback) {
1018 bch_writeback_add(dc);
1021 if (bio->bi_opf & REQ_PREFLUSH) {
1023 * Also need to send a flush to the backing
1028 flush = bio_alloc_bioset(GFP_NOIO, 0,
1029 &dc->disk.bio_split);
1031 s->iop.status = BLK_STS_RESOURCE;
1034 bio_copy_dev(flush, bio);
1035 flush->bi_end_io = backing_request_endio;
1036 flush->bi_private = cl;
1037 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1038 /* I/O request sent to backing device */
1039 closure_bio_submit(s->iop.c, flush, cl);
1042 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1043 /* I/O request sent to backing device */
1044 bio->bi_end_io = backing_request_endio;
1045 closure_bio_submit(s->iop.c, bio, cl);
1049 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1050 continue_at(cl, cached_dev_write_complete, NULL);
1053 static void cached_dev_nodata(struct closure *cl)
1055 struct search *s = container_of(cl, struct search, cl);
1056 struct bio *bio = &s->bio.bio;
1058 if (s->iop.flush_journal)
1059 bch_journal_meta(s->iop.c, cl);
1061 /* If it's a flush, we send the flush to the backing device too */
1062 bio->bi_end_io = backing_request_endio;
1063 closure_bio_submit(s->iop.c, bio, cl);
1065 continue_at(cl, cached_dev_bio_complete, NULL);
1068 struct detached_dev_io_private {
1069 struct bcache_device *d;
1070 unsigned long start_time;
1071 bio_end_io_t *bi_end_io;
1073 struct block_device *orig_bdev;
1076 static void detached_dev_end_io(struct bio *bio)
1078 struct detached_dev_io_private *ddip;
1080 ddip = bio->bi_private;
1081 bio->bi_end_io = ddip->bi_end_io;
1082 bio->bi_private = ddip->bi_private;
1084 /* Count on the bcache device */
1085 bio_end_io_acct_remapped(bio, ddip->start_time, ddip->orig_bdev);
1087 if (bio->bi_status) {
1088 struct cached_dev *dc = container_of(ddip->d,
1089 struct cached_dev, disk);
1090 /* should count I/O error for backing device here */
1091 bch_count_backing_io_errors(dc, bio);
1095 bio->bi_end_io(bio);
1098 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio,
1099 struct block_device *orig_bdev, unsigned long start_time)
1101 struct detached_dev_io_private *ddip;
1102 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1105 * no need to call closure_get(&dc->disk.cl),
1106 * because upper layer had already opened bcache device,
1107 * which would call closure_get(&dc->disk.cl)
1109 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1111 /* Count on the bcache device */
1112 ddip->orig_bdev = orig_bdev;
1113 ddip->start_time = start_time;
1114 ddip->bi_end_io = bio->bi_end_io;
1115 ddip->bi_private = bio->bi_private;
1116 bio->bi_end_io = detached_dev_end_io;
1117 bio->bi_private = ddip;
1119 if ((bio_op(bio) == REQ_OP_DISCARD) &&
1120 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1121 bio->bi_end_io(bio);
1123 submit_bio_noacct(bio);
1126 static void quit_max_writeback_rate(struct cache_set *c,
1127 struct cached_dev *this_dc)
1130 struct bcache_device *d;
1131 struct cached_dev *dc;
1134 * mutex bch_register_lock may compete with other parallel requesters,
1135 * or attach/detach operations on other backing device. Waiting to
1136 * the mutex lock may increase I/O request latency for seconds or more.
1137 * To avoid such situation, if mutext_trylock() failed, only writeback
1138 * rate of current cached device is set to 1, and __update_write_back()
1139 * will decide writeback rate of other cached devices (remember now
1140 * c->idle_counter is 0 already).
1142 if (mutex_trylock(&bch_register_lock)) {
1143 for (i = 0; i < c->devices_max_used; i++) {
1147 if (UUID_FLASH_ONLY(&c->uuids[i]))
1151 dc = container_of(d, struct cached_dev, disk);
1153 * set writeback rate to default minimum value,
1154 * then let update_writeback_rate() to decide the
1157 atomic_long_set(&dc->writeback_rate.rate, 1);
1159 mutex_unlock(&bch_register_lock);
1161 atomic_long_set(&this_dc->writeback_rate.rate, 1);
1164 /* Cached devices - read & write stuff */
1166 blk_qc_t cached_dev_submit_bio(struct bio *bio)
1169 struct block_device *orig_bdev = bio->bi_bdev;
1170 struct bcache_device *d = orig_bdev->bd_disk->private_data;
1171 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1172 unsigned long start_time;
1173 int rw = bio_data_dir(bio);
1175 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1177 bio->bi_status = BLK_STS_IOERR;
1179 return BLK_QC_T_NONE;
1183 if (atomic_read(&d->c->idle_counter))
1184 atomic_set(&d->c->idle_counter, 0);
1186 * If at_max_writeback_rate of cache set is true and new I/O
1187 * comes, quit max writeback rate of all cached devices
1188 * attached to this cache set, and set at_max_writeback_rate
1191 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1192 atomic_set(&d->c->at_max_writeback_rate, 0);
1193 quit_max_writeback_rate(d->c, dc);
1197 start_time = bio_start_io_acct(bio);
1199 bio_set_dev(bio, dc->bdev);
1200 bio->bi_iter.bi_sector += dc->sb.data_offset;
1202 if (cached_dev_get(dc)) {
1203 s = search_alloc(bio, d, orig_bdev, start_time);
1204 trace_bcache_request_start(s->d, bio);
1206 if (!bio->bi_iter.bi_size) {
1208 * can't call bch_journal_meta from under
1211 continue_at_nobarrier(&s->cl,
1215 s->iop.bypass = check_should_bypass(dc, bio);
1218 cached_dev_write(dc, s);
1220 cached_dev_read(dc, s);
1223 /* I/O request sent to backing device */
1224 detached_dev_do_request(d, bio, orig_bdev, start_time);
1226 return BLK_QC_T_NONE;
1229 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1230 unsigned int cmd, unsigned long arg)
1232 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1236 if (!dc->bdev->bd_disk->fops->ioctl)
1238 return dc->bdev->bd_disk->fops->ioctl(dc->bdev, mode, cmd, arg);
1241 void bch_cached_dev_request_init(struct cached_dev *dc)
1243 dc->disk.cache_miss = cached_dev_cache_miss;
1244 dc->disk.ioctl = cached_dev_ioctl;
1247 /* Flash backed devices */
1249 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1250 struct bio *bio, unsigned int sectors)
1252 unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1254 swap(bio->bi_iter.bi_size, bytes);
1256 swap(bio->bi_iter.bi_size, bytes);
1258 bio_advance(bio, bytes);
1260 if (!bio->bi_iter.bi_size)
1263 return MAP_CONTINUE;
1266 static void flash_dev_nodata(struct closure *cl)
1268 struct search *s = container_of(cl, struct search, cl);
1270 if (s->iop.flush_journal)
1271 bch_journal_meta(s->iop.c, cl);
1273 continue_at(cl, search_free, NULL);
1276 blk_qc_t flash_dev_submit_bio(struct bio *bio)
1280 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1282 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1283 bio->bi_status = BLK_STS_IOERR;
1285 return BLK_QC_T_NONE;
1288 s = search_alloc(bio, d, bio->bi_bdev, bio_start_io_acct(bio));
1292 trace_bcache_request_start(s->d, bio);
1294 if (!bio->bi_iter.bi_size) {
1296 * can't call bch_journal_meta from under submit_bio_noacct
1298 continue_at_nobarrier(&s->cl,
1301 return BLK_QC_T_NONE;
1302 } else if (bio_data_dir(bio)) {
1303 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1304 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1305 &KEY(d->id, bio_end_sector(bio), 0));
1307 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1308 s->iop.writeback = true;
1311 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1313 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1316 continue_at(cl, search_free, NULL);
1317 return BLK_QC_T_NONE;
1320 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1321 unsigned int cmd, unsigned long arg)
1326 void bch_flash_dev_request_init(struct bcache_device *d)
1328 d->cache_miss = flash_dev_cache_miss;
1329 d->ioctl = flash_dev_ioctl;
1332 void bch_request_exit(void)
1334 kmem_cache_destroy(bch_search_cache);
1337 int __init bch_request_init(void)
1339 bch_search_cache = KMEM_CACHE(search, 0);
1340 if (!bch_search_cache)