brcmfmac: change from brcmf_dbg to brcmf_info
[platform/kernel/linux-rpi.git] / drivers / macintosh / windfarm_rm31.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Windfarm PowerMac thermal control.
4  * Control loops for RackMack3,1 (Xserve G5)
5  *
6  * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp.
7  */
8 #include <linux/types.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/device.h>
12 #include <linux/platform_device.h>
13 #include <linux/reboot.h>
14 #include <asm/prom.h>
15 #include <asm/smu.h>
16
17 #include "windfarm.h"
18 #include "windfarm_pid.h"
19 #include "windfarm_mpu.h"
20
21 #define VERSION "1.0"
22
23 #undef DEBUG
24 #undef LOTSA_DEBUG
25
26 #ifdef DEBUG
27 #define DBG(args...)    printk(args)
28 #else
29 #define DBG(args...)    do { } while(0)
30 #endif
31
32 #ifdef LOTSA_DEBUG
33 #define DBG_LOTS(args...)       printk(args)
34 #else
35 #define DBG_LOTS(args...)       do { } while(0)
36 #endif
37
38 /* define this to force CPU overtemp to 60 degree, useful for testing
39  * the overtemp code
40  */
41 #undef HACKED_OVERTEMP
42
43 /* We currently only handle 2 chips */
44 #define NR_CHIPS        2
45 #define NR_CPU_FANS     3 * NR_CHIPS
46
47 /* Controls and sensors */
48 static struct wf_sensor *sens_cpu_temp[NR_CHIPS];
49 static struct wf_sensor *sens_cpu_volts[NR_CHIPS];
50 static struct wf_sensor *sens_cpu_amps[NR_CHIPS];
51 static struct wf_sensor *backside_temp;
52 static struct wf_sensor *slots_temp;
53 static struct wf_sensor *dimms_temp;
54
55 static struct wf_control *cpu_fans[NR_CHIPS][3];
56 static struct wf_control *backside_fan;
57 static struct wf_control *slots_fan;
58 static struct wf_control *cpufreq_clamp;
59
60 /* We keep a temperature history for average calculation of 180s */
61 #define CPU_TEMP_HIST_SIZE      180
62
63 /* PID loop state */
64 static const struct mpu_data *cpu_mpu_data[NR_CHIPS];
65 static struct wf_cpu_pid_state cpu_pid[NR_CHIPS];
66 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
67 static int cpu_thist_pt;
68 static s64 cpu_thist_total;
69 static s32 cpu_all_tmax = 100 << 16;
70 static struct wf_pid_state backside_pid;
71 static int backside_tick;
72 static struct wf_pid_state slots_pid;
73 static int slots_tick;
74 static int slots_speed;
75 static struct wf_pid_state dimms_pid;
76 static int dimms_output_clamp;
77
78 static int nr_chips;
79 static bool have_all_controls;
80 static bool have_all_sensors;
81 static bool started;
82
83 static int failure_state;
84 #define FAILURE_SENSOR          1
85 #define FAILURE_FAN             2
86 #define FAILURE_PERM            4
87 #define FAILURE_LOW_OVERTEMP    8
88 #define FAILURE_HIGH_OVERTEMP   16
89
90 /* Overtemp values */
91 #define LOW_OVER_AVERAGE        0
92 #define LOW_OVER_IMMEDIATE      (10 << 16)
93 #define LOW_OVER_CLEAR          ((-10) << 16)
94 #define HIGH_OVER_IMMEDIATE     (14 << 16)
95 #define HIGH_OVER_AVERAGE       (10 << 16)
96 #define HIGH_OVER_IMMEDIATE     (14 << 16)
97
98
99 static void cpu_max_all_fans(void)
100 {
101         int i;
102
103         /* We max all CPU fans in case of a sensor error. We also do the
104          * cpufreq clamping now, even if it's supposedly done later by the
105          * generic code anyway, we do it earlier here to react faster
106          */
107         if (cpufreq_clamp)
108                 wf_control_set_max(cpufreq_clamp);
109         for (i = 0; i < nr_chips; i++) {
110                 if (cpu_fans[i][0])
111                         wf_control_set_max(cpu_fans[i][0]);
112                 if (cpu_fans[i][1])
113                         wf_control_set_max(cpu_fans[i][1]);
114                 if (cpu_fans[i][2])
115                         wf_control_set_max(cpu_fans[i][2]);
116         }
117 }
118
119 static int cpu_check_overtemp(s32 temp)
120 {
121         int new_state = 0;
122         s32 t_avg, t_old;
123         static bool first = true;
124
125         /* First check for immediate overtemps */
126         if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
127                 new_state |= FAILURE_LOW_OVERTEMP;
128                 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
129                         printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
130                                " temperature !\n");
131         }
132         if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
133                 new_state |= FAILURE_HIGH_OVERTEMP;
134                 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
135                         printk(KERN_ERR "windfarm: Critical overtemp due to"
136                                " immediate CPU temperature !\n");
137         }
138
139         /*
140          * The first time around, initialize the array with the first
141          * temperature reading
142          */
143         if (first) {
144                 int i;
145
146                 cpu_thist_total = 0;
147                 for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) {
148                         cpu_thist[i] = temp;
149                         cpu_thist_total += temp;
150                 }
151                 first = false;
152         }
153
154         /*
155          * We calculate a history of max temperatures and use that for the
156          * overtemp management
157          */
158         t_old = cpu_thist[cpu_thist_pt];
159         cpu_thist[cpu_thist_pt] = temp;
160         cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
161         cpu_thist_total -= t_old;
162         cpu_thist_total += temp;
163         t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
164
165         DBG_LOTS("  t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
166                  FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
167
168         /* Now check for average overtemps */
169         if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
170                 new_state |= FAILURE_LOW_OVERTEMP;
171                 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
172                         printk(KERN_ERR "windfarm: Overtemp due to average CPU"
173                                " temperature !\n");
174         }
175         if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
176                 new_state |= FAILURE_HIGH_OVERTEMP;
177                 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
178                         printk(KERN_ERR "windfarm: Critical overtemp due to"
179                                " average CPU temperature !\n");
180         }
181
182         /* Now handle overtemp conditions. We don't currently use the windfarm
183          * overtemp handling core as it's not fully suited to the needs of those
184          * new machine. This will be fixed later.
185          */
186         if (new_state) {
187                 /* High overtemp -> immediate shutdown */
188                 if (new_state & FAILURE_HIGH_OVERTEMP)
189                         machine_power_off();
190                 if ((failure_state & new_state) != new_state)
191                         cpu_max_all_fans();
192                 failure_state |= new_state;
193         } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
194                    (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
195                 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
196                 failure_state &= ~FAILURE_LOW_OVERTEMP;
197         }
198
199         return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
200 }
201
202 static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power)
203 {
204         s32 dtemp, volts, amps;
205         int rc;
206
207         /* Get diode temperature */
208         rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp);
209         if (rc) {
210                 DBG("  CPU%d: temp reading error !\n", cpu);
211                 return -EIO;
212         }
213         DBG_LOTS("  CPU%d: temp   = %d.%03d\n", cpu, FIX32TOPRINT((dtemp)));
214         *temp = dtemp;
215
216         /* Get voltage */
217         rc = wf_sensor_get(sens_cpu_volts[cpu], &volts);
218         if (rc) {
219                 DBG("  CPU%d, volts reading error !\n", cpu);
220                 return -EIO;
221         }
222         DBG_LOTS("  CPU%d: volts  = %d.%03d\n", cpu, FIX32TOPRINT((volts)));
223
224         /* Get current */
225         rc = wf_sensor_get(sens_cpu_amps[cpu], &amps);
226         if (rc) {
227                 DBG("  CPU%d, current reading error !\n", cpu);
228                 return -EIO;
229         }
230         DBG_LOTS("  CPU%d: amps   = %d.%03d\n", cpu, FIX32TOPRINT((amps)));
231
232         /* Calculate power */
233
234         /* Scale voltage and current raw sensor values according to fixed scales
235          * obtained in Darwin and calculate power from I and V
236          */
237         *power = (((u64)volts) * ((u64)amps)) >> 16;
238
239         DBG_LOTS("  CPU%d: power  = %d.%03d\n", cpu, FIX32TOPRINT((*power)));
240
241         return 0;
242
243 }
244
245 static void cpu_fans_tick(void)
246 {
247         int err, cpu, i;
248         s32 speed, temp, power, t_max = 0;
249
250         DBG_LOTS("* cpu fans_tick_split()\n");
251
252         for (cpu = 0; cpu < nr_chips; ++cpu) {
253                 struct wf_cpu_pid_state *sp = &cpu_pid[cpu];
254
255                 /* Read current speed */
256                 wf_control_get(cpu_fans[cpu][0], &sp->target);
257
258                 err = read_one_cpu_vals(cpu, &temp, &power);
259                 if (err) {
260                         failure_state |= FAILURE_SENSOR;
261                         cpu_max_all_fans();
262                         return;
263                 }
264
265                 /* Keep track of highest temp */
266                 t_max = max(t_max, temp);
267
268                 /* Handle possible overtemps */
269                 if (cpu_check_overtemp(t_max))
270                         return;
271
272                 /* Run PID */
273                 wf_cpu_pid_run(sp, power, temp);
274
275                 DBG_LOTS("  CPU%d: target = %d RPM\n", cpu, sp->target);
276
277                 /* Apply DIMMs clamp */
278                 speed = max(sp->target, dimms_output_clamp);
279
280                 /* Apply result to all cpu fans */
281                 for (i = 0; i < 3; i++) {
282                         err = wf_control_set(cpu_fans[cpu][i], speed);
283                         if (err) {
284                                 pr_warn("wf_rm31: Fan %s reports error %d\n",
285                                         cpu_fans[cpu][i]->name, err);
286                                 failure_state |= FAILURE_FAN;
287                         }
288                 }
289         }
290 }
291
292 /* Implementation... */
293 static int cpu_setup_pid(int cpu)
294 {
295         struct wf_cpu_pid_param pid;
296         const struct mpu_data *mpu = cpu_mpu_data[cpu];
297         s32 tmax, ttarget, ptarget;
298         int fmin, fmax, hsize;
299
300         /* Get PID params from the appropriate MPU EEPROM */
301         tmax = mpu->tmax << 16;
302         ttarget = mpu->ttarget << 16;
303         ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16;
304
305         DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n",
306             cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax));
307
308         /* We keep a global tmax for overtemp calculations */
309         if (tmax < cpu_all_tmax)
310                 cpu_all_tmax = tmax;
311
312         /* Set PID min/max by using the rear fan min/max */
313         fmin = wf_control_get_min(cpu_fans[cpu][0]);
314         fmax = wf_control_get_max(cpu_fans[cpu][0]);
315         DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax);
316
317         /* History size */
318         hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY);
319         DBG("wf_72: CPU%d history size = %d\n", cpu, hsize);
320
321         /* Initialize PID loop */
322         pid.interval    = 1;    /* seconds */
323         pid.history_len = hsize;
324         pid.gd          = mpu->pid_gd;
325         pid.gp          = mpu->pid_gp;
326         pid.gr          = mpu->pid_gr;
327         pid.tmax        = tmax;
328         pid.ttarget     = ttarget;
329         pid.pmaxadj     = ptarget;
330         pid.min         = fmin;
331         pid.max         = fmax;
332
333         wf_cpu_pid_init(&cpu_pid[cpu], &pid);
334         cpu_pid[cpu].target = 4000;
335         
336         return 0;
337 }
338
339 /* Backside/U3 fan */
340 static const struct wf_pid_param backside_param = {
341         .interval       = 1,
342         .history_len    = 2,
343         .gd             = 0x00500000,
344         .gp             = 0x0004cccc,
345         .gr             = 0,
346         .itarget        = 70 << 16,
347         .additive       = 0,
348         .min            = 20,
349         .max            = 100,
350 };
351
352 /* DIMMs temperature (clamp the backside fan) */
353 static const struct wf_pid_param dimms_param = {
354         .interval       = 1,
355         .history_len    = 20,
356         .gd             = 0,
357         .gp             = 0,
358         .gr             = 0x06553600,
359         .itarget        = 50 << 16,
360         .additive       = 0,
361         .min            = 4000,
362         .max            = 14000,
363 };
364
365 static void backside_fan_tick(void)
366 {
367         s32 temp, dtemp;
368         int speed, dspeed, fan_min;
369         int err;
370
371         if (!backside_fan || !backside_temp || !dimms_temp || !backside_tick)
372                 return;
373         if (--backside_tick > 0)
374                 return;
375         backside_tick = backside_pid.param.interval;
376
377         DBG_LOTS("* backside fans tick\n");
378
379         /* Update fan speed from actual fans */
380         err = wf_control_get(backside_fan, &speed);
381         if (!err)
382                 backside_pid.target = speed;
383
384         err = wf_sensor_get(backside_temp, &temp);
385         if (err) {
386                 printk(KERN_WARNING "windfarm: U3 temp sensor error %d\n",
387                        err);
388                 failure_state |= FAILURE_SENSOR;
389                 wf_control_set_max(backside_fan);
390                 return;
391         }
392         speed = wf_pid_run(&backside_pid, temp);
393
394         DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
395                  FIX32TOPRINT(temp), speed);
396
397         err = wf_sensor_get(dimms_temp, &dtemp);
398         if (err) {
399                 printk(KERN_WARNING "windfarm: DIMMs temp sensor error %d\n",
400                        err);
401                 failure_state |= FAILURE_SENSOR;
402                 wf_control_set_max(backside_fan);
403                 return;
404         }
405         dspeed = wf_pid_run(&dimms_pid, dtemp);
406         dimms_output_clamp = dspeed;
407
408         fan_min = (dspeed * 100) / 14000;
409         fan_min = max(fan_min, backside_param.min);
410         speed = max(speed, fan_min);
411
412         err = wf_control_set(backside_fan, speed);
413         if (err) {
414                 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
415                 failure_state |= FAILURE_FAN;
416         }
417 }
418
419 static void backside_setup_pid(void)
420 {
421         /* first time initialize things */
422         s32 fmin = wf_control_get_min(backside_fan);
423         s32 fmax = wf_control_get_max(backside_fan);
424         struct wf_pid_param param;
425
426         param = backside_param;
427         param.min = max(param.min, fmin);
428         param.max = min(param.max, fmax);
429         wf_pid_init(&backside_pid, &param);
430
431         param = dimms_param;
432         wf_pid_init(&dimms_pid, &param);
433
434         backside_tick = 1;
435
436         pr_info("wf_rm31: Backside control loop started.\n");
437 }
438
439 /* Slots fan */
440 static const struct wf_pid_param slots_param = {
441         .interval       = 1,
442         .history_len    = 20,
443         .gd             = 0,
444         .gp             = 0,
445         .gr             = 0x00100000,
446         .itarget        = 3200000,
447         .additive       = 0,
448         .min            = 20,
449         .max            = 100,
450 };
451
452 static void slots_fan_tick(void)
453 {
454         s32 temp;
455         int speed;
456         int err;
457
458         if (!slots_fan || !slots_temp || !slots_tick)
459                 return;
460         if (--slots_tick > 0)
461                 return;
462         slots_tick = slots_pid.param.interval;
463
464         DBG_LOTS("* slots fans tick\n");
465
466         err = wf_sensor_get(slots_temp, &temp);
467         if (err) {
468                 pr_warn("wf_rm31: slots temp sensor error %d\n", err);
469                 failure_state |= FAILURE_SENSOR;
470                 wf_control_set_max(slots_fan);
471                 return;
472         }
473         speed = wf_pid_run(&slots_pid, temp);
474
475         DBG_LOTS("slots PID temp=%d.%.3d speed=%d\n",
476                  FIX32TOPRINT(temp), speed);
477
478         slots_speed = speed;
479         err = wf_control_set(slots_fan, speed);
480         if (err) {
481                 printk(KERN_WARNING "windfarm: slots bay fan error %d\n", err);
482                 failure_state |= FAILURE_FAN;
483         }
484 }
485
486 static void slots_setup_pid(void)
487 {
488         /* first time initialize things */
489         s32 fmin = wf_control_get_min(slots_fan);
490         s32 fmax = wf_control_get_max(slots_fan);
491         struct wf_pid_param param = slots_param;
492
493         param.min = max(param.min, fmin);
494         param.max = min(param.max, fmax);
495         wf_pid_init(&slots_pid, &param);
496         slots_tick = 1;
497
498         pr_info("wf_rm31: Slots control loop started.\n");
499 }
500
501 static void set_fail_state(void)
502 {
503         cpu_max_all_fans();
504
505         if (backside_fan)
506                 wf_control_set_max(backside_fan);
507         if (slots_fan)
508                 wf_control_set_max(slots_fan);
509 }
510
511 static void rm31_tick(void)
512 {
513         int i, last_failure;
514
515         if (!started) {
516                 started = true;
517                 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
518                 for (i = 0; i < nr_chips; ++i) {
519                         if (cpu_setup_pid(i) < 0) {
520                                 failure_state = FAILURE_PERM;
521                                 set_fail_state();
522                                 break;
523                         }
524                 }
525                 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
526
527                 backside_setup_pid();
528                 slots_setup_pid();
529
530 #ifdef HACKED_OVERTEMP
531                 cpu_all_tmax = 60 << 16;
532 #endif
533         }
534
535         /* Permanent failure, bail out */
536         if (failure_state & FAILURE_PERM)
537                 return;
538
539         /*
540          * Clear all failure bits except low overtemp which will be eventually
541          * cleared by the control loop itself
542          */
543         last_failure = failure_state;
544         failure_state &= FAILURE_LOW_OVERTEMP;
545         backside_fan_tick();
546         slots_fan_tick();
547
548         /* We do CPUs last because they can be clamped high by
549          * DIMM temperature
550          */
551         cpu_fans_tick();
552
553         DBG_LOTS("  last_failure: 0x%x, failure_state: %x\n",
554                  last_failure, failure_state);
555
556         /* Check for failures. Any failure causes cpufreq clamping */
557         if (failure_state && last_failure == 0 && cpufreq_clamp)
558                 wf_control_set_max(cpufreq_clamp);
559         if (failure_state == 0 && last_failure && cpufreq_clamp)
560                 wf_control_set_min(cpufreq_clamp);
561
562         /* That's it for now, we might want to deal with other failures
563          * differently in the future though
564          */
565 }
566
567 static void rm31_new_control(struct wf_control *ct)
568 {
569         bool all_controls;
570
571         if (!strcmp(ct->name, "cpu-fan-a-0"))
572                 cpu_fans[0][0] = ct;
573         else if (!strcmp(ct->name, "cpu-fan-b-0"))
574                 cpu_fans[0][1] = ct;
575         else if (!strcmp(ct->name, "cpu-fan-c-0"))
576                 cpu_fans[0][2] = ct;
577         else if (!strcmp(ct->name, "cpu-fan-a-1"))
578                 cpu_fans[1][0] = ct;
579         else if (!strcmp(ct->name, "cpu-fan-b-1"))
580                 cpu_fans[1][1] = ct;
581         else if (!strcmp(ct->name, "cpu-fan-c-1"))
582                 cpu_fans[1][2] = ct;
583         else if (!strcmp(ct->name, "backside-fan"))
584                 backside_fan = ct;
585         else if (!strcmp(ct->name, "slots-fan"))
586                 slots_fan = ct;
587         else if (!strcmp(ct->name, "cpufreq-clamp"))
588                 cpufreq_clamp = ct;
589
590         all_controls =
591                 cpu_fans[0][0] &&
592                 cpu_fans[0][1] &&
593                 cpu_fans[0][2] &&
594                 backside_fan &&
595                 slots_fan;
596         if (nr_chips > 1)
597                 all_controls &=
598                         cpu_fans[1][0] &&
599                         cpu_fans[1][1] &&
600                         cpu_fans[1][2];
601         have_all_controls = all_controls;
602 }
603
604
605 static void rm31_new_sensor(struct wf_sensor *sr)
606 {
607         bool all_sensors;
608
609         if (!strcmp(sr->name, "cpu-diode-temp-0"))
610                 sens_cpu_temp[0] = sr;
611         else if (!strcmp(sr->name, "cpu-diode-temp-1"))
612                 sens_cpu_temp[1] = sr;
613         else if (!strcmp(sr->name, "cpu-voltage-0"))
614                 sens_cpu_volts[0] = sr;
615         else if (!strcmp(sr->name, "cpu-voltage-1"))
616                 sens_cpu_volts[1] = sr;
617         else if (!strcmp(sr->name, "cpu-current-0"))
618                 sens_cpu_amps[0] = sr;
619         else if (!strcmp(sr->name, "cpu-current-1"))
620                 sens_cpu_amps[1] = sr;
621         else if (!strcmp(sr->name, "backside-temp"))
622                 backside_temp = sr;
623         else if (!strcmp(sr->name, "slots-temp"))
624                 slots_temp = sr;
625         else if (!strcmp(sr->name, "dimms-temp"))
626                 dimms_temp = sr;
627
628         all_sensors =
629                 sens_cpu_temp[0] &&
630                 sens_cpu_volts[0] &&
631                 sens_cpu_amps[0] &&
632                 backside_temp &&
633                 slots_temp &&
634                 dimms_temp;
635         if (nr_chips > 1)
636                 all_sensors &=
637                         sens_cpu_temp[1] &&
638                         sens_cpu_volts[1] &&
639                         sens_cpu_amps[1];
640
641         have_all_sensors = all_sensors;
642 }
643
644 static int rm31_wf_notify(struct notifier_block *self,
645                           unsigned long event, void *data)
646 {
647         switch (event) {
648         case WF_EVENT_NEW_SENSOR:
649                 rm31_new_sensor(data);
650                 break;
651         case WF_EVENT_NEW_CONTROL:
652                 rm31_new_control(data);
653                 break;
654         case WF_EVENT_TICK:
655                 if (have_all_controls && have_all_sensors)
656                         rm31_tick();
657         }
658         return 0;
659 }
660
661 static struct notifier_block rm31_events = {
662         .notifier_call = rm31_wf_notify,
663 };
664
665 static int wf_rm31_probe(struct platform_device *dev)
666 {
667         wf_register_client(&rm31_events);
668         return 0;
669 }
670
671 static int wf_rm31_remove(struct platform_device *dev)
672 {
673         wf_unregister_client(&rm31_events);
674
675         /* should release all sensors and controls */
676         return 0;
677 }
678
679 static struct platform_driver wf_rm31_driver = {
680         .probe  = wf_rm31_probe,
681         .remove = wf_rm31_remove,
682         .driver = {
683                 .name = "windfarm",
684         },
685 };
686
687 static int __init wf_rm31_init(void)
688 {
689         struct device_node *cpu;
690         int i;
691
692         if (!of_machine_is_compatible("RackMac3,1"))
693                 return -ENODEV;
694
695         /* Count the number of CPU cores */
696         nr_chips = 0;
697         for_each_node_by_type(cpu, "cpu")
698                 ++nr_chips;
699         if (nr_chips > NR_CHIPS)
700                 nr_chips = NR_CHIPS;
701
702         pr_info("windfarm: Initializing for desktop G5 with %d chips\n",
703                 nr_chips);
704
705         /* Get MPU data for each CPU */
706         for (i = 0; i < nr_chips; i++) {
707                 cpu_mpu_data[i] = wf_get_mpu(i);
708                 if (!cpu_mpu_data[i]) {
709                         pr_err("wf_rm31: Failed to find MPU data for CPU %d\n", i);
710                         return -ENXIO;
711                 }
712         }
713
714 #ifdef MODULE
715         request_module("windfarm_fcu_controls");
716         request_module("windfarm_lm75_sensor");
717         request_module("windfarm_lm87_sensor");
718         request_module("windfarm_ad7417_sensor");
719         request_module("windfarm_max6690_sensor");
720         request_module("windfarm_cpufreq_clamp");
721 #endif /* MODULE */
722
723         platform_driver_register(&wf_rm31_driver);
724         return 0;
725 }
726
727 static void __exit wf_rm31_exit(void)
728 {
729         platform_driver_unregister(&wf_rm31_driver);
730 }
731
732 module_init(wf_rm31_init);
733 module_exit(wf_rm31_exit);
734
735 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
736 MODULE_DESCRIPTION("Thermal control for Xserve G5");
737 MODULE_LICENSE("GPL");
738 MODULE_ALIAS("platform:windfarm");