Merge branch 'for-3.8/drivers' of git://git.kernel.dk/linux-block
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / macintosh / windfarm_pm91.c
1 /*
2  * Windfarm PowerMac thermal control. SMU based 1 CPU desktop control loops
3  *
4  * (c) Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
5  *                    <benh@kernel.crashing.org>
6  *
7  * Released under the term of the GNU GPL v2.
8  *
9  * The algorithm used is the PID control algorithm, used the same
10  * way the published Darwin code does, using the same values that
11  * are present in the Darwin 8.2 snapshot property lists (note however
12  * that none of the code has been re-used, it's a complete re-implementation
13  *
14  * The various control loops found in Darwin config file are:
15  *
16  * PowerMac9,1
17  * ===========
18  *
19  * Has 3 control loops: CPU fans is similar to PowerMac8,1 (though it doesn't
20  * try to play with other control loops fans). Drive bay is rather basic PID
21  * with one sensor and one fan. Slots area is a bit different as the Darwin
22  * driver is supposed to be capable of working in a special "AGP" mode which
23  * involves the presence of an AGP sensor and an AGP fan (possibly on the
24  * AGP card itself). I can't deal with that special mode as I don't have
25  * access to those additional sensor/fans for now (though ultimately, it would
26  * be possible to add sensor objects for them) so I'm only implementing the
27  * basic PCI slot control loop
28  */
29
30 #include <linux/types.h>
31 #include <linux/errno.h>
32 #include <linux/kernel.h>
33 #include <linux/delay.h>
34 #include <linux/slab.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/wait.h>
38 #include <linux/kmod.h>
39 #include <linux/device.h>
40 #include <linux/platform_device.h>
41 #include <asm/prom.h>
42 #include <asm/machdep.h>
43 #include <asm/io.h>
44 #include <asm/sections.h>
45 #include <asm/smu.h>
46
47 #include "windfarm.h"
48 #include "windfarm_pid.h"
49
50 #define VERSION "0.4"
51
52 #undef DEBUG
53
54 #ifdef DEBUG
55 #define DBG(args...)    printk(args)
56 #else
57 #define DBG(args...)    do { } while(0)
58 #endif
59
60 /* define this to force CPU overtemp to 74 degree, useful for testing
61  * the overtemp code
62  */
63 #undef HACKED_OVERTEMP
64
65 /* Controls & sensors */
66 static struct wf_sensor *sensor_cpu_power;
67 static struct wf_sensor *sensor_cpu_temp;
68 static struct wf_sensor *sensor_hd_temp;
69 static struct wf_sensor *sensor_slots_power;
70 static struct wf_control *fan_cpu_main;
71 static struct wf_control *fan_cpu_second;
72 static struct wf_control *fan_cpu_third;
73 static struct wf_control *fan_hd;
74 static struct wf_control *fan_slots;
75 static struct wf_control *cpufreq_clamp;
76
77 /* Set to kick the control loop into life */
78 static int wf_smu_all_controls_ok, wf_smu_all_sensors_ok, wf_smu_started;
79
80 /* Failure handling.. could be nicer */
81 #define FAILURE_FAN             0x01
82 #define FAILURE_SENSOR          0x02
83 #define FAILURE_OVERTEMP        0x04
84
85 static unsigned int wf_smu_failure_state;
86 static int wf_smu_readjust, wf_smu_skipping;
87
88 /*
89  * ****** CPU Fans Control Loop ******
90  *
91  */
92
93
94 #define WF_SMU_CPU_FANS_INTERVAL        1
95 #define WF_SMU_CPU_FANS_MAX_HISTORY     16
96
97 /* State data used by the cpu fans control loop
98  */
99 struct wf_smu_cpu_fans_state {
100         int                     ticks;
101         s32                     cpu_setpoint;
102         struct wf_cpu_pid_state pid;
103 };
104
105 static struct wf_smu_cpu_fans_state *wf_smu_cpu_fans;
106
107
108
109 /*
110  * ****** Drive Fan Control Loop ******
111  *
112  */
113
114 struct wf_smu_drive_fans_state {
115         int                     ticks;
116         s32                     setpoint;
117         struct wf_pid_state     pid;
118 };
119
120 static struct wf_smu_drive_fans_state *wf_smu_drive_fans;
121
122 /*
123  * ****** Slots Fan Control Loop ******
124  *
125  */
126
127 struct wf_smu_slots_fans_state {
128         int                     ticks;
129         s32                     setpoint;
130         struct wf_pid_state     pid;
131 };
132
133 static struct wf_smu_slots_fans_state *wf_smu_slots_fans;
134
135 /*
136  * ***** Implementation *****
137  *
138  */
139
140
141 static void wf_smu_create_cpu_fans(void)
142 {
143         struct wf_cpu_pid_param pid_param;
144         const struct smu_sdbp_header *hdr;
145         struct smu_sdbp_cpupiddata *piddata;
146         struct smu_sdbp_fvt *fvt;
147         s32 tmax, tdelta, maxpow, powadj;
148
149         /* First, locate the PID params in SMU SBD */
150         hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
151         if (hdr == 0) {
152                 printk(KERN_WARNING "windfarm: CPU PID fan config not found "
153                        "max fan speed\n");
154                 goto fail;
155         }
156         piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
157
158         /* Get the FVT params for operating point 0 (the only supported one
159          * for now) in order to get tmax
160          */
161         hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
162         if (hdr) {
163                 fvt = (struct smu_sdbp_fvt *)&hdr[1];
164                 tmax = ((s32)fvt->maxtemp) << 16;
165         } else
166                 tmax = 0x5e0000; /* 94 degree default */
167
168         /* Alloc & initialize state */
169         wf_smu_cpu_fans = kmalloc(sizeof(struct wf_smu_cpu_fans_state),
170                                   GFP_KERNEL);
171         if (wf_smu_cpu_fans == NULL)
172                 goto fail;
173         wf_smu_cpu_fans->ticks = 1;
174
175         /* Fill PID params */
176         pid_param.interval = WF_SMU_CPU_FANS_INTERVAL;
177         pid_param.history_len = piddata->history_len;
178         if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
179                 printk(KERN_WARNING "windfarm: History size overflow on "
180                        "CPU control loop (%d)\n", piddata->history_len);
181                 pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
182         }
183         pid_param.gd = piddata->gd;
184         pid_param.gp = piddata->gp;
185         pid_param.gr = piddata->gr / pid_param.history_len;
186
187         tdelta = ((s32)piddata->target_temp_delta) << 16;
188         maxpow = ((s32)piddata->max_power) << 16;
189         powadj = ((s32)piddata->power_adj) << 16;
190
191         pid_param.tmax = tmax;
192         pid_param.ttarget = tmax - tdelta;
193         pid_param.pmaxadj = maxpow - powadj;
194
195         pid_param.min = wf_control_get_min(fan_cpu_main);
196         pid_param.max = wf_control_get_max(fan_cpu_main);
197
198         wf_cpu_pid_init(&wf_smu_cpu_fans->pid, &pid_param);
199
200         DBG("wf: CPU Fan control initialized.\n");
201         DBG("    ttarged=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM\n",
202             FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
203             pid_param.min, pid_param.max);
204
205         return;
206
207  fail:
208         printk(KERN_WARNING "windfarm: CPU fan config not found\n"
209                "for this machine model, max fan speed\n");
210
211         if (cpufreq_clamp)
212                 wf_control_set_max(cpufreq_clamp);
213         if (fan_cpu_main)
214                 wf_control_set_max(fan_cpu_main);
215 }
216
217 static void wf_smu_cpu_fans_tick(struct wf_smu_cpu_fans_state *st)
218 {
219         s32 new_setpoint, temp, power;
220         int rc;
221
222         if (--st->ticks != 0) {
223                 if (wf_smu_readjust)
224                         goto readjust;
225                 return;
226         }
227         st->ticks = WF_SMU_CPU_FANS_INTERVAL;
228
229         rc = wf_sensor_get(sensor_cpu_temp, &temp);
230         if (rc) {
231                 printk(KERN_WARNING "windfarm: CPU temp sensor error %d\n",
232                        rc);
233                 wf_smu_failure_state |= FAILURE_SENSOR;
234                 return;
235         }
236
237         rc = wf_sensor_get(sensor_cpu_power, &power);
238         if (rc) {
239                 printk(KERN_WARNING "windfarm: CPU power sensor error %d\n",
240                        rc);
241                 wf_smu_failure_state |= FAILURE_SENSOR;
242                 return;
243         }
244
245         DBG("wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d\n",
246             FIX32TOPRINT(temp), FIX32TOPRINT(power));
247
248 #ifdef HACKED_OVERTEMP
249         if (temp > 0x4a0000)
250                 wf_smu_failure_state |= FAILURE_OVERTEMP;
251 #else
252         if (temp > st->pid.param.tmax)
253                 wf_smu_failure_state |= FAILURE_OVERTEMP;
254 #endif
255         new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
256
257         DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
258
259         if (st->cpu_setpoint == new_setpoint)
260                 return;
261         st->cpu_setpoint = new_setpoint;
262  readjust:
263         if (fan_cpu_main && wf_smu_failure_state == 0) {
264                 rc = wf_control_set(fan_cpu_main, st->cpu_setpoint);
265                 if (rc) {
266                         printk(KERN_WARNING "windfarm: CPU main fan"
267                                " error %d\n", rc);
268                         wf_smu_failure_state |= FAILURE_FAN;
269                 }
270         }
271         if (fan_cpu_second && wf_smu_failure_state == 0) {
272                 rc = wf_control_set(fan_cpu_second, st->cpu_setpoint);
273                 if (rc) {
274                         printk(KERN_WARNING "windfarm: CPU second fan"
275                                " error %d\n", rc);
276                         wf_smu_failure_state |= FAILURE_FAN;
277                 }
278         }
279         if (fan_cpu_third && wf_smu_failure_state == 0) {
280                 rc = wf_control_set(fan_cpu_third, st->cpu_setpoint);
281                 if (rc) {
282                         printk(KERN_WARNING "windfarm: CPU third fan"
283                                " error %d\n", rc);
284                         wf_smu_failure_state |= FAILURE_FAN;
285                 }
286         }
287 }
288
289 static void wf_smu_create_drive_fans(void)
290 {
291         struct wf_pid_param param = {
292                 .interval       = 5,
293                 .history_len    = 2,
294                 .gd             = 0x01e00000,
295                 .gp             = 0x00500000,
296                 .gr             = 0x00000000,
297                 .itarget        = 0x00200000,
298         };
299
300         /* Alloc & initialize state */
301         wf_smu_drive_fans = kmalloc(sizeof(struct wf_smu_drive_fans_state),
302                                         GFP_KERNEL);
303         if (wf_smu_drive_fans == NULL) {
304                 printk(KERN_WARNING "windfarm: Memory allocation error"
305                        " max fan speed\n");
306                 goto fail;
307         }
308         wf_smu_drive_fans->ticks = 1;
309
310         /* Fill PID params */
311         param.additive = (fan_hd->type == WF_CONTROL_RPM_FAN);
312         param.min = wf_control_get_min(fan_hd);
313         param.max = wf_control_get_max(fan_hd);
314         wf_pid_init(&wf_smu_drive_fans->pid, &param);
315
316         DBG("wf: Drive Fan control initialized.\n");
317         DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
318             FIX32TOPRINT(param.itarget), param.min, param.max);
319         return;
320
321  fail:
322         if (fan_hd)
323                 wf_control_set_max(fan_hd);
324 }
325
326 static void wf_smu_drive_fans_tick(struct wf_smu_drive_fans_state *st)
327 {
328         s32 new_setpoint, temp;
329         int rc;
330
331         if (--st->ticks != 0) {
332                 if (wf_smu_readjust)
333                         goto readjust;
334                 return;
335         }
336         st->ticks = st->pid.param.interval;
337
338         rc = wf_sensor_get(sensor_hd_temp, &temp);
339         if (rc) {
340                 printk(KERN_WARNING "windfarm: HD temp sensor error %d\n",
341                        rc);
342                 wf_smu_failure_state |= FAILURE_SENSOR;
343                 return;
344         }
345
346         DBG("wf_smu: Drive Fans tick ! HD temp: %d.%03d\n",
347             FIX32TOPRINT(temp));
348
349         if (temp > (st->pid.param.itarget + 0x50000))
350                 wf_smu_failure_state |= FAILURE_OVERTEMP;
351
352         new_setpoint = wf_pid_run(&st->pid, temp);
353
354         DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);
355
356         if (st->setpoint == new_setpoint)
357                 return;
358         st->setpoint = new_setpoint;
359  readjust:
360         if (fan_hd && wf_smu_failure_state == 0) {
361                 rc = wf_control_set(fan_hd, st->setpoint);
362                 if (rc) {
363                         printk(KERN_WARNING "windfarm: HD fan error %d\n",
364                                rc);
365                         wf_smu_failure_state |= FAILURE_FAN;
366                 }
367         }
368 }
369
370 static void wf_smu_create_slots_fans(void)
371 {
372         struct wf_pid_param param = {
373                 .interval       = 1,
374                 .history_len    = 8,
375                 .gd             = 0x00000000,
376                 .gp             = 0x00000000,
377                 .gr             = 0x00020000,
378                 .itarget        = 0x00000000
379         };
380
381         /* Alloc & initialize state */
382         wf_smu_slots_fans = kmalloc(sizeof(struct wf_smu_slots_fans_state),
383                                         GFP_KERNEL);
384         if (wf_smu_slots_fans == NULL) {
385                 printk(KERN_WARNING "windfarm: Memory allocation error"
386                        " max fan speed\n");
387                 goto fail;
388         }
389         wf_smu_slots_fans->ticks = 1;
390
391         /* Fill PID params */
392         param.additive = (fan_slots->type == WF_CONTROL_RPM_FAN);
393         param.min = wf_control_get_min(fan_slots);
394         param.max = wf_control_get_max(fan_slots);
395         wf_pid_init(&wf_smu_slots_fans->pid, &param);
396
397         DBG("wf: Slots Fan control initialized.\n");
398         DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
399             FIX32TOPRINT(param.itarget), param.min, param.max);
400         return;
401
402  fail:
403         if (fan_slots)
404                 wf_control_set_max(fan_slots);
405 }
406
407 static void wf_smu_slots_fans_tick(struct wf_smu_slots_fans_state *st)
408 {
409         s32 new_setpoint, power;
410         int rc;
411
412         if (--st->ticks != 0) {
413                 if (wf_smu_readjust)
414                         goto readjust;
415                 return;
416         }
417         st->ticks = st->pid.param.interval;
418
419         rc = wf_sensor_get(sensor_slots_power, &power);
420         if (rc) {
421                 printk(KERN_WARNING "windfarm: Slots power sensor error %d\n",
422                        rc);
423                 wf_smu_failure_state |= FAILURE_SENSOR;
424                 return;
425         }
426
427         DBG("wf_smu: Slots Fans tick ! Slots power: %d.%03d\n",
428             FIX32TOPRINT(power));
429
430 #if 0 /* Check what makes a good overtemp condition */
431         if (power > (st->pid.param.itarget + 0x50000))
432                 wf_smu_failure_state |= FAILURE_OVERTEMP;
433 #endif
434
435         new_setpoint = wf_pid_run(&st->pid, power);
436
437         DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);
438
439         if (st->setpoint == new_setpoint)
440                 return;
441         st->setpoint = new_setpoint;
442  readjust:
443         if (fan_slots && wf_smu_failure_state == 0) {
444                 rc = wf_control_set(fan_slots, st->setpoint);
445                 if (rc) {
446                         printk(KERN_WARNING "windfarm: Slots fan error %d\n",
447                                rc);
448                         wf_smu_failure_state |= FAILURE_FAN;
449                 }
450         }
451 }
452
453
454 /*
455  * ****** Setup / Init / Misc ... ******
456  *
457  */
458
459 static void wf_smu_tick(void)
460 {
461         unsigned int last_failure = wf_smu_failure_state;
462         unsigned int new_failure;
463
464         if (!wf_smu_started) {
465                 DBG("wf: creating control loops !\n");
466                 wf_smu_create_drive_fans();
467                 wf_smu_create_slots_fans();
468                 wf_smu_create_cpu_fans();
469                 wf_smu_started = 1;
470         }
471
472         /* Skipping ticks */
473         if (wf_smu_skipping && --wf_smu_skipping)
474                 return;
475
476         wf_smu_failure_state = 0;
477         if (wf_smu_drive_fans)
478                 wf_smu_drive_fans_tick(wf_smu_drive_fans);
479         if (wf_smu_slots_fans)
480                 wf_smu_slots_fans_tick(wf_smu_slots_fans);
481         if (wf_smu_cpu_fans)
482                 wf_smu_cpu_fans_tick(wf_smu_cpu_fans);
483
484         wf_smu_readjust = 0;
485         new_failure = wf_smu_failure_state & ~last_failure;
486
487         /* If entering failure mode, clamp cpufreq and ramp all
488          * fans to full speed.
489          */
490         if (wf_smu_failure_state && !last_failure) {
491                 if (cpufreq_clamp)
492                         wf_control_set_max(cpufreq_clamp);
493                 if (fan_cpu_main)
494                         wf_control_set_max(fan_cpu_main);
495                 if (fan_cpu_second)
496                         wf_control_set_max(fan_cpu_second);
497                 if (fan_cpu_third)
498                         wf_control_set_max(fan_cpu_third);
499                 if (fan_hd)
500                         wf_control_set_max(fan_hd);
501                 if (fan_slots)
502                         wf_control_set_max(fan_slots);
503         }
504
505         /* If leaving failure mode, unclamp cpufreq and readjust
506          * all fans on next iteration
507          */
508         if (!wf_smu_failure_state && last_failure) {
509                 if (cpufreq_clamp)
510                         wf_control_set_min(cpufreq_clamp);
511                 wf_smu_readjust = 1;
512         }
513
514         /* Overtemp condition detected, notify and start skipping a couple
515          * ticks to let the temperature go down
516          */
517         if (new_failure & FAILURE_OVERTEMP) {
518                 wf_set_overtemp();
519                 wf_smu_skipping = 2;
520         }
521
522         /* We only clear the overtemp condition if overtemp is cleared
523          * _and_ no other failure is present. Since a sensor error will
524          * clear the overtemp condition (can't measure temperature) at
525          * the control loop levels, but we don't want to keep it clear
526          * here in this case
527          */
528         if (new_failure == 0 && last_failure & FAILURE_OVERTEMP)
529                 wf_clear_overtemp();
530 }
531
532
533 static void wf_smu_new_control(struct wf_control *ct)
534 {
535         if (wf_smu_all_controls_ok)
536                 return;
537
538         if (fan_cpu_main == NULL && !strcmp(ct->name, "cpu-rear-fan-0")) {
539                 if (wf_get_control(ct) == 0)
540                         fan_cpu_main = ct;
541         }
542
543         if (fan_cpu_second == NULL && !strcmp(ct->name, "cpu-rear-fan-1")) {
544                 if (wf_get_control(ct) == 0)
545                         fan_cpu_second = ct;
546         }
547
548         if (fan_cpu_third == NULL && !strcmp(ct->name, "cpu-front-fan-0")) {
549                 if (wf_get_control(ct) == 0)
550                         fan_cpu_third = ct;
551         }
552
553         if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
554                 if (wf_get_control(ct) == 0)
555                         cpufreq_clamp = ct;
556         }
557
558         if (fan_hd == NULL && !strcmp(ct->name, "drive-bay-fan")) {
559                 if (wf_get_control(ct) == 0)
560                         fan_hd = ct;
561         }
562
563         if (fan_slots == NULL && !strcmp(ct->name, "slots-fan")) {
564                 if (wf_get_control(ct) == 0)
565                         fan_slots = ct;
566         }
567
568         if (fan_cpu_main && (fan_cpu_second || fan_cpu_third) && fan_hd &&
569             fan_slots && cpufreq_clamp)
570                 wf_smu_all_controls_ok = 1;
571 }
572
573 static void wf_smu_new_sensor(struct wf_sensor *sr)
574 {
575         if (wf_smu_all_sensors_ok)
576                 return;
577
578         if (sensor_cpu_power == NULL && !strcmp(sr->name, "cpu-power")) {
579                 if (wf_get_sensor(sr) == 0)
580                         sensor_cpu_power = sr;
581         }
582
583         if (sensor_cpu_temp == NULL && !strcmp(sr->name, "cpu-temp")) {
584                 if (wf_get_sensor(sr) == 0)
585                         sensor_cpu_temp = sr;
586         }
587
588         if (sensor_hd_temp == NULL && !strcmp(sr->name, "hd-temp")) {
589                 if (wf_get_sensor(sr) == 0)
590                         sensor_hd_temp = sr;
591         }
592
593         if (sensor_slots_power == NULL && !strcmp(sr->name, "slots-power")) {
594                 if (wf_get_sensor(sr) == 0)
595                         sensor_slots_power = sr;
596         }
597
598         if (sensor_cpu_power && sensor_cpu_temp &&
599             sensor_hd_temp && sensor_slots_power)
600                 wf_smu_all_sensors_ok = 1;
601 }
602
603
604 static int wf_smu_notify(struct notifier_block *self,
605                                unsigned long event, void *data)
606 {
607         switch(event) {
608         case WF_EVENT_NEW_CONTROL:
609                 DBG("wf: new control %s detected\n",
610                     ((struct wf_control *)data)->name);
611                 wf_smu_new_control(data);
612                 wf_smu_readjust = 1;
613                 break;
614         case WF_EVENT_NEW_SENSOR:
615                 DBG("wf: new sensor %s detected\n",
616                     ((struct wf_sensor *)data)->name);
617                 wf_smu_new_sensor(data);
618                 break;
619         case WF_EVENT_TICK:
620                 if (wf_smu_all_controls_ok && wf_smu_all_sensors_ok)
621                         wf_smu_tick();
622         }
623
624         return 0;
625 }
626
627 static struct notifier_block wf_smu_events = {
628         .notifier_call  = wf_smu_notify,
629 };
630
631 static int wf_init_pm(void)
632 {
633         printk(KERN_INFO "windfarm: Initializing for Desktop G5 model\n");
634
635         return 0;
636 }
637
638 static int wf_smu_probe(struct platform_device *ddev)
639 {
640         wf_register_client(&wf_smu_events);
641
642         return 0;
643 }
644
645 static int __devexit wf_smu_remove(struct platform_device *ddev)
646 {
647         wf_unregister_client(&wf_smu_events);
648
649         /* XXX We don't have yet a guarantee that our callback isn't
650          * in progress when returning from wf_unregister_client, so
651          * we add an arbitrary delay. I'll have to fix that in the core
652          */
653         msleep(1000);
654
655         /* Release all sensors */
656         /* One more crappy race: I don't think we have any guarantee here
657          * that the attribute callback won't race with the sensor beeing
658          * disposed of, and I'm not 100% certain what best way to deal
659          * with that except by adding locks all over... I'll do that
660          * eventually but heh, who ever rmmod this module anyway ?
661          */
662         if (sensor_cpu_power)
663                 wf_put_sensor(sensor_cpu_power);
664         if (sensor_cpu_temp)
665                 wf_put_sensor(sensor_cpu_temp);
666         if (sensor_hd_temp)
667                 wf_put_sensor(sensor_hd_temp);
668         if (sensor_slots_power)
669                 wf_put_sensor(sensor_slots_power);
670
671         /* Release all controls */
672         if (fan_cpu_main)
673                 wf_put_control(fan_cpu_main);
674         if (fan_cpu_second)
675                 wf_put_control(fan_cpu_second);
676         if (fan_cpu_third)
677                 wf_put_control(fan_cpu_third);
678         if (fan_hd)
679                 wf_put_control(fan_hd);
680         if (fan_slots)
681                 wf_put_control(fan_slots);
682         if (cpufreq_clamp)
683                 wf_put_control(cpufreq_clamp);
684
685         /* Destroy control loops state structures */
686         kfree(wf_smu_slots_fans);
687         kfree(wf_smu_drive_fans);
688         kfree(wf_smu_cpu_fans);
689
690         return 0;
691 }
692
693 static struct platform_driver wf_smu_driver = {
694         .probe = wf_smu_probe,
695         .remove = __devexit_p(wf_smu_remove),
696         .driver = {
697                 .name = "windfarm",
698                 .owner  = THIS_MODULE,
699         },
700 };
701
702
703 static int __init wf_smu_init(void)
704 {
705         int rc = -ENODEV;
706
707         if (of_machine_is_compatible("PowerMac9,1"))
708                 rc = wf_init_pm();
709
710         if (rc == 0) {
711 #ifdef MODULE
712                 request_module("windfarm_smu_controls");
713                 request_module("windfarm_smu_sensors");
714                 request_module("windfarm_lm75_sensor");
715                 request_module("windfarm_cpufreq_clamp");
716
717 #endif /* MODULE */
718                 platform_driver_register(&wf_smu_driver);
719         }
720
721         return rc;
722 }
723
724 static void __exit wf_smu_exit(void)
725 {
726
727         platform_driver_unregister(&wf_smu_driver);
728 }
729
730
731 module_init(wf_smu_init);
732 module_exit(wf_smu_exit);
733
734 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
735 MODULE_DESCRIPTION("Thermal control logic for PowerMac9,1");
736 MODULE_LICENSE("GPL");
737
738 MODULE_ALIAS("platform:windfarm");