Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[platform/kernel/linux-rpi.git] / drivers / macintosh / smu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * PowerMac G5 SMU driver
4  *
5  * Copyright 2004 J. Mayer <l_indien@magic.fr>
6  * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
7  */
8
9 /*
10  * TODO:
11  *  - maybe add timeout to commands ?
12  *  - blocking version of time functions
13  *  - polling version of i2c commands (including timer that works with
14  *    interrupts off)
15  *  - maybe avoid some data copies with i2c by directly using the smu cmd
16  *    buffer and a lower level internal interface
17  *  - understand SMU -> CPU events and implement reception of them via
18  *    the userland interface
19  */
20
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>
24 #include <linux/dmapool.h>
25 #include <linux/memblock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/jiffies.h>
29 #include <linux/interrupt.h>
30 #include <linux/rtc.h>
31 #include <linux/completion.h>
32 #include <linux/miscdevice.h>
33 #include <linux/delay.h>
34 #include <linux/poll.h>
35 #include <linux/mutex.h>
36 #include <linux/of_device.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/slab.h>
40 #include <linux/sched/signal.h>
41
42 #include <asm/byteorder.h>
43 #include <asm/io.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/pmac_feature.h>
47 #include <asm/smu.h>
48 #include <asm/sections.h>
49 #include <linux/uaccess.h>
50
51 #define VERSION "0.7"
52 #define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
53
54 #undef DEBUG_SMU
55
56 #ifdef DEBUG_SMU
57 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
58 #else
59 #define DPRINTK(fmt, args...) do { } while (0)
60 #endif
61
62 /*
63  * This is the command buffer passed to the SMU hardware
64  */
65 #define SMU_MAX_DATA    254
66
67 struct smu_cmd_buf {
68         u8 cmd;
69         u8 length;
70         u8 data[SMU_MAX_DATA];
71 };
72
73 struct smu_device {
74         spinlock_t              lock;
75         struct device_node      *of_node;
76         struct platform_device  *of_dev;
77         int                     doorbell;       /* doorbell gpio */
78         u32 __iomem             *db_buf;        /* doorbell buffer */
79         struct device_node      *db_node;
80         unsigned int            db_irq;
81         int                     msg;
82         struct device_node      *msg_node;
83         unsigned int            msg_irq;
84         struct smu_cmd_buf      *cmd_buf;       /* command buffer virtual */
85         u32                     cmd_buf_abs;    /* command buffer absolute */
86         struct list_head        cmd_list;
87         struct smu_cmd          *cmd_cur;       /* pending command */
88         int                     broken_nap;
89         struct list_head        cmd_i2c_list;
90         struct smu_i2c_cmd      *cmd_i2c_cur;   /* pending i2c command */
91         struct timer_list       i2c_timer;
92 };
93
94 /*
95  * I don't think there will ever be more than one SMU, so
96  * for now, just hard code that
97  */
98 static DEFINE_MUTEX(smu_mutex);
99 static struct smu_device        *smu;
100 static DEFINE_MUTEX(smu_part_access);
101 static int smu_irq_inited;
102 static unsigned long smu_cmdbuf_abs;
103
104 static void smu_i2c_retry(struct timer_list *t);
105
106 /*
107  * SMU driver low level stuff
108  */
109
110 static void smu_start_cmd(void)
111 {
112         unsigned long faddr, fend;
113         struct smu_cmd *cmd;
114
115         if (list_empty(&smu->cmd_list))
116                 return;
117
118         /* Fetch first command in queue */
119         cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
120         smu->cmd_cur = cmd;
121         list_del(&cmd->link);
122
123         DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
124                 cmd->data_len);
125         DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
126
127         /* Fill the SMU command buffer */
128         smu->cmd_buf->cmd = cmd->cmd;
129         smu->cmd_buf->length = cmd->data_len;
130         memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
131
132         /* Flush command and data to RAM */
133         faddr = (unsigned long)smu->cmd_buf;
134         fend = faddr + smu->cmd_buf->length + 2;
135         flush_dcache_range(faddr, fend);
136
137
138         /* We also disable NAP mode for the duration of the command
139          * on U3 based machines.
140          * This is slightly racy as it can be written back to 1 by a sysctl
141          * but that never happens in practice. There seem to be an issue with
142          * U3 based machines such as the iMac G5 where napping for the
143          * whole duration of the command prevents the SMU from fetching it
144          * from memory. This might be related to the strange i2c based
145          * mechanism the SMU uses to access memory.
146          */
147         if (smu->broken_nap)
148                 powersave_nap = 0;
149
150         /* This isn't exactly a DMA mapping here, I suspect
151          * the SMU is actually communicating with us via i2c to the
152          * northbridge or the CPU to access RAM.
153          */
154         writel(smu->cmd_buf_abs, smu->db_buf);
155
156         /* Ring the SMU doorbell */
157         pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
158 }
159
160
161 static irqreturn_t smu_db_intr(int irq, void *arg)
162 {
163         unsigned long flags;
164         struct smu_cmd *cmd;
165         void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
166         void *misc = NULL;
167         u8 gpio;
168         int rc = 0;
169
170         /* SMU completed the command, well, we hope, let's make sure
171          * of it
172          */
173         spin_lock_irqsave(&smu->lock, flags);
174
175         gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
176         if ((gpio & 7) != 7) {
177                 spin_unlock_irqrestore(&smu->lock, flags);
178                 return IRQ_HANDLED;
179         }
180
181         cmd = smu->cmd_cur;
182         smu->cmd_cur = NULL;
183         if (cmd == NULL)
184                 goto bail;
185
186         if (rc == 0) {
187                 unsigned long faddr;
188                 int reply_len;
189                 u8 ack;
190
191                 /* CPU might have brought back the cache line, so we need
192                  * to flush again before peeking at the SMU response. We
193                  * flush the entire buffer for now as we haven't read the
194                  * reply length (it's only 2 cache lines anyway)
195                  */
196                 faddr = (unsigned long)smu->cmd_buf;
197                 flush_dcache_range(faddr, faddr + 256);
198
199                 /* Now check ack */
200                 ack = (~cmd->cmd) & 0xff;
201                 if (ack != smu->cmd_buf->cmd) {
202                         DPRINTK("SMU: incorrect ack, want %x got %x\n",
203                                 ack, smu->cmd_buf->cmd);
204                         rc = -EIO;
205                 }
206                 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
207                 DPRINTK("SMU: reply len: %d\n", reply_len);
208                 if (reply_len > cmd->reply_len) {
209                         printk(KERN_WARNING "SMU: reply buffer too small,"
210                                "got %d bytes for a %d bytes buffer\n",
211                                reply_len, cmd->reply_len);
212                         reply_len = cmd->reply_len;
213                 }
214                 cmd->reply_len = reply_len;
215                 if (cmd->reply_buf && reply_len)
216                         memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
217         }
218
219         /* Now complete the command. Write status last in order as we lost
220          * ownership of the command structure as soon as it's no longer -1
221          */
222         done = cmd->done;
223         misc = cmd->misc;
224         mb();
225         cmd->status = rc;
226
227         /* Re-enable NAP mode */
228         if (smu->broken_nap)
229                 powersave_nap = 1;
230  bail:
231         /* Start next command if any */
232         smu_start_cmd();
233         spin_unlock_irqrestore(&smu->lock, flags);
234
235         /* Call command completion handler if any */
236         if (done)
237                 done(cmd, misc);
238
239         /* It's an edge interrupt, nothing to do */
240         return IRQ_HANDLED;
241 }
242
243
244 static irqreturn_t smu_msg_intr(int irq, void *arg)
245 {
246         /* I don't quite know what to do with this one, we seem to never
247          * receive it, so I suspect we have to arm it someway in the SMU
248          * to start getting events that way.
249          */
250
251         printk(KERN_INFO "SMU: message interrupt !\n");
252
253         /* It's an edge interrupt, nothing to do */
254         return IRQ_HANDLED;
255 }
256
257
258 /*
259  * Queued command management.
260  *
261  */
262
263 int smu_queue_cmd(struct smu_cmd *cmd)
264 {
265         unsigned long flags;
266
267         if (smu == NULL)
268                 return -ENODEV;
269         if (cmd->data_len > SMU_MAX_DATA ||
270             cmd->reply_len > SMU_MAX_DATA)
271                 return -EINVAL;
272
273         cmd->status = 1;
274         spin_lock_irqsave(&smu->lock, flags);
275         list_add_tail(&cmd->link, &smu->cmd_list);
276         if (smu->cmd_cur == NULL)
277                 smu_start_cmd();
278         spin_unlock_irqrestore(&smu->lock, flags);
279
280         /* Workaround for early calls when irq isn't available */
281         if (!smu_irq_inited || !smu->db_irq)
282                 smu_spinwait_cmd(cmd);
283
284         return 0;
285 }
286 EXPORT_SYMBOL(smu_queue_cmd);
287
288
289 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
290                      unsigned int data_len,
291                      void (*done)(struct smu_cmd *cmd, void *misc),
292                      void *misc, ...)
293 {
294         struct smu_cmd *cmd = &scmd->cmd;
295         va_list list;
296         int i;
297
298         if (data_len > sizeof(scmd->buffer))
299                 return -EINVAL;
300
301         memset(scmd, 0, sizeof(*scmd));
302         cmd->cmd = command;
303         cmd->data_len = data_len;
304         cmd->data_buf = scmd->buffer;
305         cmd->reply_len = sizeof(scmd->buffer);
306         cmd->reply_buf = scmd->buffer;
307         cmd->done = done;
308         cmd->misc = misc;
309
310         va_start(list, misc);
311         for (i = 0; i < data_len; ++i)
312                 scmd->buffer[i] = (u8)va_arg(list, int);
313         va_end(list);
314
315         return smu_queue_cmd(cmd);
316 }
317 EXPORT_SYMBOL(smu_queue_simple);
318
319
320 void smu_poll(void)
321 {
322         u8 gpio;
323
324         if (smu == NULL)
325                 return;
326
327         gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
328         if ((gpio & 7) == 7)
329                 smu_db_intr(smu->db_irq, smu);
330 }
331 EXPORT_SYMBOL(smu_poll);
332
333
334 void smu_done_complete(struct smu_cmd *cmd, void *misc)
335 {
336         struct completion *comp = misc;
337
338         complete(comp);
339 }
340 EXPORT_SYMBOL(smu_done_complete);
341
342
343 void smu_spinwait_cmd(struct smu_cmd *cmd)
344 {
345         while(cmd->status == 1)
346                 smu_poll();
347 }
348 EXPORT_SYMBOL(smu_spinwait_cmd);
349
350
351 /* RTC low level commands */
352 static inline int bcd2hex (int n)
353 {
354         return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
355 }
356
357
358 static inline int hex2bcd (int n)
359 {
360         return ((n / 10) << 4) + (n % 10);
361 }
362
363
364 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
365                                         struct rtc_time *time)
366 {
367         cmd_buf->cmd = 0x8e;
368         cmd_buf->length = 8;
369         cmd_buf->data[0] = 0x80;
370         cmd_buf->data[1] = hex2bcd(time->tm_sec);
371         cmd_buf->data[2] = hex2bcd(time->tm_min);
372         cmd_buf->data[3] = hex2bcd(time->tm_hour);
373         cmd_buf->data[4] = time->tm_wday;
374         cmd_buf->data[5] = hex2bcd(time->tm_mday);
375         cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
376         cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
377 }
378
379
380 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
381 {
382         struct smu_simple_cmd cmd;
383         int rc;
384
385         if (smu == NULL)
386                 return -ENODEV;
387
388         memset(time, 0, sizeof(struct rtc_time));
389         rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
390                               SMU_CMD_RTC_GET_DATETIME);
391         if (rc)
392                 return rc;
393         smu_spinwait_simple(&cmd);
394
395         time->tm_sec = bcd2hex(cmd.buffer[0]);
396         time->tm_min = bcd2hex(cmd.buffer[1]);
397         time->tm_hour = bcd2hex(cmd.buffer[2]);
398         time->tm_wday = bcd2hex(cmd.buffer[3]);
399         time->tm_mday = bcd2hex(cmd.buffer[4]);
400         time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
401         time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
402
403         return 0;
404 }
405
406
407 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
408 {
409         struct smu_simple_cmd cmd;
410         int rc;
411
412         if (smu == NULL)
413                 return -ENODEV;
414
415         rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
416                               SMU_CMD_RTC_SET_DATETIME,
417                               hex2bcd(time->tm_sec),
418                               hex2bcd(time->tm_min),
419                               hex2bcd(time->tm_hour),
420                               time->tm_wday,
421                               hex2bcd(time->tm_mday),
422                               hex2bcd(time->tm_mon) + 1,
423                               hex2bcd(time->tm_year - 100));
424         if (rc)
425                 return rc;
426         smu_spinwait_simple(&cmd);
427
428         return 0;
429 }
430
431
432 void smu_shutdown(void)
433 {
434         struct smu_simple_cmd cmd;
435
436         if (smu == NULL)
437                 return;
438
439         if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
440                              'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
441                 return;
442         smu_spinwait_simple(&cmd);
443         for (;;)
444                 ;
445 }
446
447
448 void smu_restart(void)
449 {
450         struct smu_simple_cmd cmd;
451
452         if (smu == NULL)
453                 return;
454
455         if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
456                              'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
457                 return;
458         smu_spinwait_simple(&cmd);
459         for (;;)
460                 ;
461 }
462
463
464 int smu_present(void)
465 {
466         return smu != NULL;
467 }
468 EXPORT_SYMBOL(smu_present);
469
470
471 int __init smu_init (void)
472 {
473         struct device_node *np;
474         const u32 *data;
475         int ret = 0;
476
477         np = of_find_node_by_type(NULL, "smu");
478         if (np == NULL)
479                 return -ENODEV;
480
481         printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
482
483         /*
484          * SMU based G5s need some memory below 2Gb. Thankfully this is
485          * called at a time where memblock is still available.
486          */
487         smu_cmdbuf_abs = memblock_phys_alloc_range(4096, 4096, 0, 0x80000000UL);
488         if (smu_cmdbuf_abs == 0) {
489                 printk(KERN_ERR "SMU: Command buffer allocation failed !\n");
490                 ret = -EINVAL;
491                 goto fail_np;
492         }
493
494         smu = memblock_alloc(sizeof(struct smu_device), SMP_CACHE_BYTES);
495         if (!smu)
496                 panic("%s: Failed to allocate %zu bytes\n", __func__,
497                       sizeof(struct smu_device));
498
499         spin_lock_init(&smu->lock);
500         INIT_LIST_HEAD(&smu->cmd_list);
501         INIT_LIST_HEAD(&smu->cmd_i2c_list);
502         smu->of_node = np;
503         smu->db_irq = 0;
504         smu->msg_irq = 0;
505
506         /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
507          * 32 bits value safely
508          */
509         smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
510         smu->cmd_buf = __va(smu_cmdbuf_abs);
511
512         smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
513         if (smu->db_node == NULL) {
514                 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
515                 ret = -ENXIO;
516                 goto fail_bootmem;
517         }
518         data = of_get_property(smu->db_node, "reg", NULL);
519         if (data == NULL) {
520                 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
521                 ret = -ENXIO;
522                 goto fail_db_node;
523         }
524
525         /* Current setup has one doorbell GPIO that does both doorbell
526          * and ack. GPIOs are at 0x50, best would be to find that out
527          * in the device-tree though.
528          */
529         smu->doorbell = *data;
530         if (smu->doorbell < 0x50)
531                 smu->doorbell += 0x50;
532
533         /* Now look for the smu-interrupt GPIO */
534         do {
535                 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
536                 if (smu->msg_node == NULL)
537                         break;
538                 data = of_get_property(smu->msg_node, "reg", NULL);
539                 if (data == NULL) {
540                         of_node_put(smu->msg_node);
541                         smu->msg_node = NULL;
542                         break;
543                 }
544                 smu->msg = *data;
545                 if (smu->msg < 0x50)
546                         smu->msg += 0x50;
547         } while(0);
548
549         /* Doorbell buffer is currently hard-coded, I didn't find a proper
550          * device-tree entry giving the address. Best would probably to use
551          * an offset for K2 base though, but let's do it that way for now.
552          */
553         smu->db_buf = ioremap(0x8000860c, 0x1000);
554         if (smu->db_buf == NULL) {
555                 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
556                 ret = -ENXIO;
557                 goto fail_msg_node;
558         }
559
560         /* U3 has an issue with NAP mode when issuing SMU commands */
561         smu->broken_nap = pmac_get_uninorth_variant() < 4;
562         if (smu->broken_nap)
563                 printk(KERN_INFO "SMU: using NAP mode workaround\n");
564
565         sys_ctrler = SYS_CTRLER_SMU;
566         return 0;
567
568 fail_msg_node:
569         of_node_put(smu->msg_node);
570 fail_db_node:
571         of_node_put(smu->db_node);
572 fail_bootmem:
573         memblock_free_ptr(smu, sizeof(struct smu_device));
574         smu = NULL;
575 fail_np:
576         of_node_put(np);
577         return ret;
578 }
579
580
581 static int smu_late_init(void)
582 {
583         if (!smu)
584                 return 0;
585
586         timer_setup(&smu->i2c_timer, smu_i2c_retry, 0);
587
588         if (smu->db_node) {
589                 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
590                 if (!smu->db_irq)
591                         printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
592                                smu->db_node);
593         }
594         if (smu->msg_node) {
595                 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
596                 if (!smu->msg_irq)
597                         printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
598                                smu->msg_node);
599         }
600
601         /*
602          * Try to request the interrupts
603          */
604
605         if (smu->db_irq) {
606                 if (request_irq(smu->db_irq, smu_db_intr,
607                                 IRQF_SHARED, "SMU doorbell", smu) < 0) {
608                         printk(KERN_WARNING "SMU: can't "
609                                "request interrupt %d\n",
610                                smu->db_irq);
611                         smu->db_irq = 0;
612                 }
613         }
614
615         if (smu->msg_irq) {
616                 if (request_irq(smu->msg_irq, smu_msg_intr,
617                                 IRQF_SHARED, "SMU message", smu) < 0) {
618                         printk(KERN_WARNING "SMU: can't "
619                                "request interrupt %d\n",
620                                smu->msg_irq);
621                         smu->msg_irq = 0;
622                 }
623         }
624
625         smu_irq_inited = 1;
626         return 0;
627 }
628 /* This has to be before arch_initcall as the low i2c stuff relies on the
629  * above having been done before we reach arch_initcalls
630  */
631 core_initcall(smu_late_init);
632
633 /*
634  * sysfs visibility
635  */
636
637 static void smu_expose_childs(struct work_struct *unused)
638 {
639         struct device_node *np;
640
641         for_each_child_of_node(smu->of_node, np)
642                 if (of_device_is_compatible(np, "smu-sensors"))
643                         of_platform_device_create(np, "smu-sensors",
644                                                   &smu->of_dev->dev);
645 }
646
647 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
648
649 static int smu_platform_probe(struct platform_device* dev)
650 {
651         if (!smu)
652                 return -ENODEV;
653         smu->of_dev = dev;
654
655         /*
656          * Ok, we are matched, now expose all i2c busses. We have to defer
657          * that unfortunately or it would deadlock inside the device model
658          */
659         schedule_work(&smu_expose_childs_work);
660
661         return 0;
662 }
663
664 static const struct of_device_id smu_platform_match[] =
665 {
666         {
667                 .type           = "smu",
668         },
669         {},
670 };
671
672 static struct platform_driver smu_of_platform_driver =
673 {
674         .driver = {
675                 .name = "smu",
676                 .of_match_table = smu_platform_match,
677         },
678         .probe          = smu_platform_probe,
679 };
680
681 static int __init smu_init_sysfs(void)
682 {
683         /*
684          * For now, we don't power manage machines with an SMU chip,
685          * I'm a bit too far from figuring out how that works with those
686          * new chipsets, but that will come back and bite us
687          */
688         platform_driver_register(&smu_of_platform_driver);
689         return 0;
690 }
691
692 device_initcall(smu_init_sysfs);
693
694 struct platform_device *smu_get_ofdev(void)
695 {
696         if (!smu)
697                 return NULL;
698         return smu->of_dev;
699 }
700
701 EXPORT_SYMBOL_GPL(smu_get_ofdev);
702
703 /*
704  * i2c interface
705  */
706
707 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
708 {
709         void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
710         void *misc = cmd->misc;
711         unsigned long flags;
712
713         /* Check for read case */
714         if (!fail && cmd->read) {
715                 if (cmd->pdata[0] < 1)
716                         fail = 1;
717                 else
718                         memcpy(cmd->info.data, &cmd->pdata[1],
719                                cmd->info.datalen);
720         }
721
722         DPRINTK("SMU: completing, success: %d\n", !fail);
723
724         /* Update status and mark no pending i2c command with lock
725          * held so nobody comes in while we dequeue an eventual
726          * pending next i2c command
727          */
728         spin_lock_irqsave(&smu->lock, flags);
729         smu->cmd_i2c_cur = NULL;
730         wmb();
731         cmd->status = fail ? -EIO : 0;
732
733         /* Is there another i2c command waiting ? */
734         if (!list_empty(&smu->cmd_i2c_list)) {
735                 struct smu_i2c_cmd *newcmd;
736
737                 /* Fetch it, new current, remove from list */
738                 newcmd = list_entry(smu->cmd_i2c_list.next,
739                                     struct smu_i2c_cmd, link);
740                 smu->cmd_i2c_cur = newcmd;
741                 list_del(&cmd->link);
742
743                 /* Queue with low level smu */
744                 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
745                 if (smu->cmd_cur == NULL)
746                         smu_start_cmd();
747         }
748         spin_unlock_irqrestore(&smu->lock, flags);
749
750         /* Call command completion handler if any */
751         if (done)
752                 done(cmd, misc);
753
754 }
755
756
757 static void smu_i2c_retry(struct timer_list *unused)
758 {
759         struct smu_i2c_cmd      *cmd = smu->cmd_i2c_cur;
760
761         DPRINTK("SMU: i2c failure, requeuing...\n");
762
763         /* requeue command simply by resetting reply_len */
764         cmd->pdata[0] = 0xff;
765         cmd->scmd.reply_len = sizeof(cmd->pdata);
766         smu_queue_cmd(&cmd->scmd);
767 }
768
769
770 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
771 {
772         struct smu_i2c_cmd      *cmd = misc;
773         int                     fail = 0;
774
775         DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
776                 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
777
778         /* Check for possible status */
779         if (scmd->status < 0)
780                 fail = 1;
781         else if (cmd->read) {
782                 if (cmd->stage == 0)
783                         fail = cmd->pdata[0] != 0;
784                 else
785                         fail = cmd->pdata[0] >= 0x80;
786         } else {
787                 fail = cmd->pdata[0] != 0;
788         }
789
790         /* Handle failures by requeuing command, after 5ms interval
791          */
792         if (fail && --cmd->retries > 0) {
793                 DPRINTK("SMU: i2c failure, starting timer...\n");
794                 BUG_ON(cmd != smu->cmd_i2c_cur);
795                 if (!smu_irq_inited) {
796                         mdelay(5);
797                         smu_i2c_retry(NULL);
798                         return;
799                 }
800                 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
801                 return;
802         }
803
804         /* If failure or stage 1, command is complete */
805         if (fail || cmd->stage != 0) {
806                 smu_i2c_complete_command(cmd, fail);
807                 return;
808         }
809
810         DPRINTK("SMU: going to stage 1\n");
811
812         /* Ok, initial command complete, now poll status */
813         scmd->reply_buf = cmd->pdata;
814         scmd->reply_len = sizeof(cmd->pdata);
815         scmd->data_buf = cmd->pdata;
816         scmd->data_len = 1;
817         cmd->pdata[0] = 0;
818         cmd->stage = 1;
819         cmd->retries = 20;
820         smu_queue_cmd(scmd);
821 }
822
823
824 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
825 {
826         unsigned long flags;
827
828         if (smu == NULL)
829                 return -ENODEV;
830
831         /* Fill most fields of scmd */
832         cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
833         cmd->scmd.done = smu_i2c_low_completion;
834         cmd->scmd.misc = cmd;
835         cmd->scmd.reply_buf = cmd->pdata;
836         cmd->scmd.reply_len = sizeof(cmd->pdata);
837         cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
838         cmd->scmd.status = 1;
839         cmd->stage = 0;
840         cmd->pdata[0] = 0xff;
841         cmd->retries = 20;
842         cmd->status = 1;
843
844         /* Check transfer type, sanitize some "info" fields
845          * based on transfer type and do more checking
846          */
847         cmd->info.caddr = cmd->info.devaddr;
848         cmd->read = cmd->info.devaddr & 0x01;
849         switch(cmd->info.type) {
850         case SMU_I2C_TRANSFER_SIMPLE:
851                 memset(&cmd->info.sublen, 0, 4);
852                 break;
853         case SMU_I2C_TRANSFER_COMBINED:
854                 cmd->info.devaddr &= 0xfe;
855                 fallthrough;
856         case SMU_I2C_TRANSFER_STDSUB:
857                 if (cmd->info.sublen > 3)
858                         return -EINVAL;
859                 break;
860         default:
861                 return -EINVAL;
862         }
863
864         /* Finish setting up command based on transfer direction
865          */
866         if (cmd->read) {
867                 if (cmd->info.datalen > SMU_I2C_READ_MAX)
868                         return -EINVAL;
869                 memset(cmd->info.data, 0xff, cmd->info.datalen);
870                 cmd->scmd.data_len = 9;
871         } else {
872                 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
873                         return -EINVAL;
874                 cmd->scmd.data_len = 9 + cmd->info.datalen;
875         }
876
877         DPRINTK("SMU: i2c enqueuing command\n");
878         DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
879                 cmd->read ? "read" : "write", cmd->info.datalen,
880                 cmd->info.bus, cmd->info.caddr,
881                 cmd->info.subaddr[0], cmd->info.type);
882
883
884         /* Enqueue command in i2c list, and if empty, enqueue also in
885          * main command list
886          */
887         spin_lock_irqsave(&smu->lock, flags);
888         if (smu->cmd_i2c_cur == NULL) {
889                 smu->cmd_i2c_cur = cmd;
890                 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
891                 if (smu->cmd_cur == NULL)
892                         smu_start_cmd();
893         } else
894                 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
895         spin_unlock_irqrestore(&smu->lock, flags);
896
897         return 0;
898 }
899
900 /*
901  * Handling of "partitions"
902  */
903
904 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
905 {
906         DECLARE_COMPLETION_ONSTACK(comp);
907         unsigned int chunk;
908         struct smu_cmd cmd;
909         int rc;
910         u8 params[8];
911
912         /* We currently use a chunk size of 0xe. We could check the
913          * SMU firmware version and use bigger sizes though
914          */
915         chunk = 0xe;
916
917         while (len) {
918                 unsigned int clen = min(len, chunk);
919
920                 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
921                 cmd.data_len = 7;
922                 cmd.data_buf = params;
923                 cmd.reply_len = chunk;
924                 cmd.reply_buf = dest;
925                 cmd.done = smu_done_complete;
926                 cmd.misc = &comp;
927                 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
928                 params[1] = 0x4;
929                 *((u32 *)&params[2]) = addr;
930                 params[6] = clen;
931
932                 rc = smu_queue_cmd(&cmd);
933                 if (rc)
934                         return rc;
935                 wait_for_completion(&comp);
936                 if (cmd.status != 0)
937                         return rc;
938                 if (cmd.reply_len != clen) {
939                         printk(KERN_DEBUG "SMU: short read in "
940                                "smu_read_datablock, got: %d, want: %d\n",
941                                cmd.reply_len, clen);
942                         return -EIO;
943                 }
944                 len -= clen;
945                 addr += clen;
946                 dest += clen;
947         }
948         return 0;
949 }
950
951 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
952 {
953         DECLARE_COMPLETION_ONSTACK(comp);
954         struct smu_simple_cmd cmd;
955         unsigned int addr, len, tlen;
956         struct smu_sdbp_header *hdr;
957         struct property *prop;
958
959         /* First query the partition info */
960         DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
961         smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
962                          smu_done_complete, &comp,
963                          SMU_CMD_PARTITION_LATEST, id);
964         wait_for_completion(&comp);
965         DPRINTK("SMU: done, status: %d, reply_len: %d\n",
966                 cmd.cmd.status, cmd.cmd.reply_len);
967
968         /* Partition doesn't exist (or other error) */
969         if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
970                 return NULL;
971
972         /* Fetch address and length from reply */
973         addr = *((u16 *)cmd.buffer);
974         len = cmd.buffer[3] << 2;
975         /* Calucluate total length to allocate, including the 17 bytes
976          * for "sdb-partition-XX" that we append at the end of the buffer
977          */
978         tlen = sizeof(struct property) + len + 18;
979
980         prop = kzalloc(tlen, GFP_KERNEL);
981         if (prop == NULL)
982                 return NULL;
983         hdr = (struct smu_sdbp_header *)(prop + 1);
984         prop->name = ((char *)prop) + tlen - 18;
985         sprintf(prop->name, "sdb-partition-%02x", id);
986         prop->length = len;
987         prop->value = hdr;
988         prop->next = NULL;
989
990         /* Read the datablock */
991         if (smu_read_datablock((u8 *)hdr, addr, len)) {
992                 printk(KERN_DEBUG "SMU: datablock read failed while reading "
993                        "partition %02x !\n", id);
994                 goto failure;
995         }
996
997         /* Got it, check a few things and create the property */
998         if (hdr->id != id) {
999                 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
1000                        "%02x !\n", id, hdr->id);
1001                 goto failure;
1002         }
1003         if (of_add_property(smu->of_node, prop)) {
1004                 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1005                        "property !\n", id);
1006                 goto failure;
1007         }
1008
1009         return hdr;
1010  failure:
1011         kfree(prop);
1012         return NULL;
1013 }
1014
1015 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1016  * when interruptible is 1
1017  */
1018 static const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1019                 unsigned int *size, int interruptible)
1020 {
1021         char pname[32];
1022         const struct smu_sdbp_header *part;
1023
1024         if (!smu)
1025                 return NULL;
1026
1027         sprintf(pname, "sdb-partition-%02x", id);
1028
1029         DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1030
1031         if (interruptible) {
1032                 int rc;
1033                 rc = mutex_lock_interruptible(&smu_part_access);
1034                 if (rc)
1035                         return ERR_PTR(rc);
1036         } else
1037                 mutex_lock(&smu_part_access);
1038
1039         part = of_get_property(smu->of_node, pname, size);
1040         if (part == NULL) {
1041                 DPRINTK("trying to extract from SMU ...\n");
1042                 part = smu_create_sdb_partition(id);
1043                 if (part != NULL && size)
1044                         *size = part->len << 2;
1045         }
1046         mutex_unlock(&smu_part_access);
1047         return part;
1048 }
1049
1050 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1051 {
1052         return __smu_get_sdb_partition(id, size, 0);
1053 }
1054 EXPORT_SYMBOL(smu_get_sdb_partition);
1055
1056
1057 /*
1058  * Userland driver interface
1059  */
1060
1061
1062 static LIST_HEAD(smu_clist);
1063 static DEFINE_SPINLOCK(smu_clist_lock);
1064
1065 enum smu_file_mode {
1066         smu_file_commands,
1067         smu_file_events,
1068         smu_file_closing
1069 };
1070
1071 struct smu_private
1072 {
1073         struct list_head        list;
1074         enum smu_file_mode      mode;
1075         int                     busy;
1076         struct smu_cmd          cmd;
1077         spinlock_t              lock;
1078         wait_queue_head_t       wait;
1079         u8                      buffer[SMU_MAX_DATA];
1080 };
1081
1082
1083 static int smu_open(struct inode *inode, struct file *file)
1084 {
1085         struct smu_private *pp;
1086         unsigned long flags;
1087
1088         pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1089         if (pp == 0)
1090                 return -ENOMEM;
1091         spin_lock_init(&pp->lock);
1092         pp->mode = smu_file_commands;
1093         init_waitqueue_head(&pp->wait);
1094
1095         mutex_lock(&smu_mutex);
1096         spin_lock_irqsave(&smu_clist_lock, flags);
1097         list_add(&pp->list, &smu_clist);
1098         spin_unlock_irqrestore(&smu_clist_lock, flags);
1099         file->private_data = pp;
1100         mutex_unlock(&smu_mutex);
1101
1102         return 0;
1103 }
1104
1105
1106 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1107 {
1108         struct smu_private *pp = misc;
1109
1110         wake_up_all(&pp->wait);
1111 }
1112
1113
1114 static ssize_t smu_write(struct file *file, const char __user *buf,
1115                          size_t count, loff_t *ppos)
1116 {
1117         struct smu_private *pp = file->private_data;
1118         unsigned long flags;
1119         struct smu_user_cmd_hdr hdr;
1120         int rc = 0;
1121
1122         if (pp->busy)
1123                 return -EBUSY;
1124         else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1125                 return -EFAULT;
1126         else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1127                 pp->mode = smu_file_events;
1128                 return 0;
1129         } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1130                 const struct smu_sdbp_header *part;
1131                 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1132                 if (part == NULL)
1133                         return -EINVAL;
1134                 else if (IS_ERR(part))
1135                         return PTR_ERR(part);
1136                 return 0;
1137         } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1138                 return -EINVAL;
1139         else if (pp->mode != smu_file_commands)
1140                 return -EBADFD;
1141         else if (hdr.data_len > SMU_MAX_DATA)
1142                 return -EINVAL;
1143
1144         spin_lock_irqsave(&pp->lock, flags);
1145         if (pp->busy) {
1146                 spin_unlock_irqrestore(&pp->lock, flags);
1147                 return -EBUSY;
1148         }
1149         pp->busy = 1;
1150         pp->cmd.status = 1;
1151         spin_unlock_irqrestore(&pp->lock, flags);
1152
1153         if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1154                 pp->busy = 0;
1155                 return -EFAULT;
1156         }
1157
1158         pp->cmd.cmd = hdr.cmd;
1159         pp->cmd.data_len = hdr.data_len;
1160         pp->cmd.reply_len = SMU_MAX_DATA;
1161         pp->cmd.data_buf = pp->buffer;
1162         pp->cmd.reply_buf = pp->buffer;
1163         pp->cmd.done = smu_user_cmd_done;
1164         pp->cmd.misc = pp;
1165         rc = smu_queue_cmd(&pp->cmd);
1166         if (rc < 0)
1167                 return rc;
1168         return count;
1169 }
1170
1171
1172 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1173                                 char __user *buf, size_t count)
1174 {
1175         DECLARE_WAITQUEUE(wait, current);
1176         struct smu_user_reply_hdr hdr;
1177         unsigned long flags;
1178         int size, rc = 0;
1179
1180         if (!pp->busy)
1181                 return 0;
1182         if (count < sizeof(struct smu_user_reply_hdr))
1183                 return -EOVERFLOW;
1184         spin_lock_irqsave(&pp->lock, flags);
1185         if (pp->cmd.status == 1) {
1186                 if (file->f_flags & O_NONBLOCK) {
1187                         spin_unlock_irqrestore(&pp->lock, flags);
1188                         return -EAGAIN;
1189                 }
1190                 add_wait_queue(&pp->wait, &wait);
1191                 for (;;) {
1192                         set_current_state(TASK_INTERRUPTIBLE);
1193                         rc = 0;
1194                         if (pp->cmd.status != 1)
1195                                 break;
1196                         rc = -ERESTARTSYS;
1197                         if (signal_pending(current))
1198                                 break;
1199                         spin_unlock_irqrestore(&pp->lock, flags);
1200                         schedule();
1201                         spin_lock_irqsave(&pp->lock, flags);
1202                 }
1203                 set_current_state(TASK_RUNNING);
1204                 remove_wait_queue(&pp->wait, &wait);
1205         }
1206         spin_unlock_irqrestore(&pp->lock, flags);
1207         if (rc)
1208                 return rc;
1209         if (pp->cmd.status != 0)
1210                 pp->cmd.reply_len = 0;
1211         size = sizeof(hdr) + pp->cmd.reply_len;
1212         if (count < size)
1213                 size = count;
1214         rc = size;
1215         hdr.status = pp->cmd.status;
1216         hdr.reply_len = pp->cmd.reply_len;
1217         if (copy_to_user(buf, &hdr, sizeof(hdr)))
1218                 return -EFAULT;
1219         size -= sizeof(hdr);
1220         if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1221                 return -EFAULT;
1222         pp->busy = 0;
1223
1224         return rc;
1225 }
1226
1227
1228 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1229                                char __user *buf, size_t count)
1230 {
1231         /* Not implemented */
1232         msleep_interruptible(1000);
1233         return 0;
1234 }
1235
1236
1237 static ssize_t smu_read(struct file *file, char __user *buf,
1238                         size_t count, loff_t *ppos)
1239 {
1240         struct smu_private *pp = file->private_data;
1241
1242         if (pp->mode == smu_file_commands)
1243                 return smu_read_command(file, pp, buf, count);
1244         if (pp->mode == smu_file_events)
1245                 return smu_read_events(file, pp, buf, count);
1246
1247         return -EBADFD;
1248 }
1249
1250 static __poll_t smu_fpoll(struct file *file, poll_table *wait)
1251 {
1252         struct smu_private *pp = file->private_data;
1253         __poll_t mask = 0;
1254         unsigned long flags;
1255
1256         if (pp == 0)
1257                 return 0;
1258
1259         if (pp->mode == smu_file_commands) {
1260                 poll_wait(file, &pp->wait, wait);
1261
1262                 spin_lock_irqsave(&pp->lock, flags);
1263                 if (pp->busy && pp->cmd.status != 1)
1264                         mask |= EPOLLIN;
1265                 spin_unlock_irqrestore(&pp->lock, flags);
1266         }
1267         if (pp->mode == smu_file_events) {
1268                 /* Not yet implemented */
1269         }
1270         return mask;
1271 }
1272
1273 static int smu_release(struct inode *inode, struct file *file)
1274 {
1275         struct smu_private *pp = file->private_data;
1276         unsigned long flags;
1277         unsigned int busy;
1278
1279         if (pp == 0)
1280                 return 0;
1281
1282         file->private_data = NULL;
1283
1284         /* Mark file as closing to avoid races with new request */
1285         spin_lock_irqsave(&pp->lock, flags);
1286         pp->mode = smu_file_closing;
1287         busy = pp->busy;
1288
1289         /* Wait for any pending request to complete */
1290         if (busy && pp->cmd.status == 1) {
1291                 DECLARE_WAITQUEUE(wait, current);
1292
1293                 add_wait_queue(&pp->wait, &wait);
1294                 for (;;) {
1295                         set_current_state(TASK_UNINTERRUPTIBLE);
1296                         if (pp->cmd.status != 1)
1297                                 break;
1298                         spin_unlock_irqrestore(&pp->lock, flags);
1299                         schedule();
1300                         spin_lock_irqsave(&pp->lock, flags);
1301                 }
1302                 set_current_state(TASK_RUNNING);
1303                 remove_wait_queue(&pp->wait, &wait);
1304         }
1305         spin_unlock_irqrestore(&pp->lock, flags);
1306
1307         spin_lock_irqsave(&smu_clist_lock, flags);
1308         list_del(&pp->list);
1309         spin_unlock_irqrestore(&smu_clist_lock, flags);
1310         kfree(pp);
1311
1312         return 0;
1313 }
1314
1315
1316 static const struct file_operations smu_device_fops = {
1317         .llseek         = no_llseek,
1318         .read           = smu_read,
1319         .write          = smu_write,
1320         .poll           = smu_fpoll,
1321         .open           = smu_open,
1322         .release        = smu_release,
1323 };
1324
1325 static struct miscdevice pmu_device = {
1326         MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1327 };
1328
1329 static int smu_device_init(void)
1330 {
1331         if (!smu)
1332                 return -ENODEV;
1333         if (misc_register(&pmu_device) < 0)
1334                 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1335         return 0;
1336 }
1337 device_initcall(smu_device_init);